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Spherically symmetric scalar field collapse in any dimension
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We describe a formalism and numerical approach for studying spherically symmetric scalar field collapse for
an arbitrary spacetime dimensidrand cosmological constark. The prescription uses a double null formal-
ism, and is based on field redefinitions first used to simplify the field equations in generic two-dimensional
dilaton gravity. The formalism is used to construct a code in whiahdA are input parameters. We reproduce
known results ird=4 andd=6 with A=0, and we present new results fibx=5 with a zero and negativé.
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I. INTRODUCTION Il. FIELD EQUATIONS

. . . . . . The basic idea for obtaining field equations valid for any
.lt IS an mterestmg f_act thfit spherlcr_:llly SV”_"'“?et”C 9ravl- gimension is to reduce the-dimensional Einstein-scalar
ta_ltlonal collgpse exhibits critical behavidk]. This is a clas- _field equations by imposing spherical symmetry, and then

sical effect in phase space: there are one-parameter familigge 5 field redefinition originally motivated by generic two-
of initial data sets, for a variety of matter fields, such that asjimensional dilaton gravity12]. This allows the Einstein
the parameter is tuned, a transition from reflection of i”fa”'equations ford-dimensional, spherically symmetric scalar
ing matter to black hole formation is observed numerically.fio|q collapse to be put into a form that can be managed
Two types of behavior are observed close to this transitiony merically by a single code. In actuality, the formalism and
point. Depending on the matter type, black holes form withcoge we describe below are applicable to a more general
zero or nonzero initial mass, and the matter field exhibits;|ass of models that includes nonminimal scalar field cou-
discrete or continuous self-similarity. A variety of matter yjing. This class of theories is quite broad, and contains as a
fields have been studied since the initial seminal work byg hclass the-dimensional spherically symmetric case.

Choptuik. There have also been some extensions beyond ginstein gravity with a cosmological constantdrspace-
spherical symmetry, as well as a semianalytic perturbatiogme dimensions is given by the action

theory understanding of the critical exponefRecent re-
views may be found in Refs[2,3]) If an exact time-
dependent solution were available with the appropriate 1
boundary conditions, this critical behavior would be mani- Sg):mf d%y—g[R(g!?) - A].
fested in the solution of the apparent horizon condition,
which is a transcendental equati@t. However, to date only
one time-dependeriand non-self-similarsolution is known, The corresponding action for a minimally coupled scalar
but this does not have the required asymptotically flat boundfield is
ary conditiong5]. Thus the full partial differential equation
(PDE) problem must be studied numerically.

Most numerical studies of spherically symmetric collapse Sy=— f dix—g@(gD=rg, va,x). 2
have been in four spacetime dimensions. The only excep-
tions are the massless minimally coupled scalar field by
Garfinkle[7] in six spacetime dimensions, and by PretoriusTo impose spherical symmetry, we write tbalimensional
and Choptui8] and Husain and Olivief9] in three dimen- metricg,, as
sions with a negative cosmological constant. In addition,
there exist two papers that study this problem in the much
simpler case of the self-similarity ansatz, an ordinary differ-
ential equatiofODE) problem, for any spacetime dimension
(10,11 where dQ 4_» is the metric onS*~2 and a,8=1,2. This

The purpose of this work is to present a formalism andgives the reduced action
numerical method for studying the gravitational collapse of a
spherically symmetric scalar field for any value of spacetime————
dimension and cosmological constant. The approach repro-lin most cases, one should perform dimensional reduction at the
duces and supplements known results in four and six dimenevel of the field equations to guarantee that one obtains the correct
sions with a zero cosmological constant, and gives new resolution space. It is well knowfil2] that in the present case the
sults in five spacetime dimensions with a zero and negativesduced field equations correspond to the field equations obtained
cosmological constant. from the reduced action.

@

gy = Gapd X dXP+r2(x*)dQ g_ ), 3)
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Srori=Sc+ Sy and the overall factor o™ has been dropped.
1 . For arbitrary functiond/(¢) andH(¢), the action(12) is
—\y(n 2 | T o that of generic dilaton gravity theory coupled to a scalar field
=V )f d*~g [ZG (8(n— 1)(;S [R(g)—A] in two spacetime dimensions. This theory has been studied in
great detail[12]. The vacuum equationsy&0) can be
(@) solved exactly. By choosing an adapted coordinate system in
which the dilatong plays the role of the spatial coordinate
(i.e.,x=1¢), the vacuum solution for the metric is

1 2 I’]2_(2n74)/n n ;2 2
+§|<9¢| +gz¢ —1"¢?|ox|

wheren=d—2, V(™ is the volume of the unit sphere, and
ds?=—[j(¢)—2GM]dt2+[j(¢)—2GM] 1dx?,

I"=G@, (5) (15)
1 8(n-1) whereM plays the role of mass, and
2G  16mn ©) )
e i(¢)= JO dpV(h). (16
¢=(|—) : (7

Note that we have dropped the superscnipienoting space-

The key simplification in our formalism is achieved by the time dimension, since the above solution applies to the ge-
following conformal reparametrization of the metric, which neric case. For the specific casededlimensional spherically

eliminates the kinetic term fop from the action[12]. Let symmetric gravity,

_ _ 1n
gaﬁzﬂz(d’)gaﬁv (8) j(n)(d)):%(g(nn 1)) —12A n:]_ ¢(n+l)/n
where 3 n—2)/n
n 8(n—1)\("=2) -1
+8(n—1>( n ) # } 10

, ©)

_ 1 do
Qz(qs):Cexp(—J —_—
2) (dD/d¢) It can easily be verified by making the appropriate substitu-
tions and conformal reparametrizatio8) that the physical
B5(3)= n e (10 line elemen'ds(zd) corresponding to Eq15) is precisely that
8(n—1)" "’ of ad-dimensional de Sitter or anti—de Sitter black hole with
massM.? It is important to note that the metrid5) is sin-
andC is an arbitrary constant. Now define a dimensionlesgyular at¢=0 even wherM =0. Up to numerical constants,
“dilaton” field j goes to zero as

n

I H _ 1-1/n
¢:D(¢):m i(p)—¢ (18)

r n
T) . (12)
near¢=0. This is not a physical singularity since the physi-
Note that¢ is proportional to the area of the sphere at cal metricg is indeed the Minkowski metric whell and A
radiusr. With these redefinitions, the reduced action takesare zero. Nonetheless, the vanishingj o) will affect the
the simpler form choice of boundary conditions in our numerical method.
We now examine the field equations that derive from Eq.
(12) in double null coordinates, for which the metric may be
parametrized as

1
Stor=5g | X (~GLIR@) V()]

_J d2x ’_—gH(“)(¢)|&X|2, (12) ds?>=—2lg(u,v) ¢’ (u,v)du dv, (19
where the prime denotes partial differentiation with respect
where to the null coordinate . (Recall that this is just the—uv part
of the physical metrig. The corresponding field equations
() 1 8(n—1) are
HO(g)=——, (13
. I
r— _ _\y(n) ’ 20)
1/8(n—1)\ n2 ¢ SV(#)9e7, (
(n) == =7 1n| 2 o
ViV () n( . )d) IA+8
~2)I
% ( 8(n— 1)) 2 n¢_2/n (14) 2In order to get the overall scale factor right, one must choose the
n ' constantC in Eq. (9) appropriately.
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g'¢’
————=2G(x')?, 21
SHO(6) (x") (21
[HM(p)x'T +[H™M(¢p)x]'=0. (22

In the above, the dot refers to differentiation with respect to

u, which is treated like the “time” coordinate for the pur-
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dition should be such as to guarantee that the metric at
=0 (which translates top=0) goes over to the vacuum
solution (15). By transforming the vacuumM =0) metric
(15) to double null coordinate&l9), we obtain a metric of
the form

ds?’=—j(¢)du dv, (29

poses of the following numerical integration. Remarkably,whereu=t—¢* andv=t+ ¢*, with the generalized “tor-

for arbitraryn, Egs.(20)—(22) are virtually identical in form
to those studied if9] in the context of (2-1)-dimensional

AdS gravity> However, the boundary conditions are special

in the case oh=1 (d=3), so we will not consider this case

toise coordinate’¢* defined by

6 dg

=)

(@ (39

further. Except where explicitly stated, we henceforth restrict o
consideration ton=2 (which means spacetime dimension With these definitions¢=0 corresponds to the surface

d=4).

The evolution equations may be put in a form more useful

for numerical solution by defining the variable

2 !
h=X+ ﬂ.

!

(23

This effectively replaces the scalar fieldby h. The evolu-
tion equations are

$=-09/2, (24)
1 -
h= g(h—x)(gw—g), (25
where
§=J:<g¢'V>dv' (26)

andy is now to be considered a functional lofandg given
by
1 (v |he'| Kg(u)
X= —f dv|—= .
2Vplu Vo] e
The integration constari;(u) must be zero because the
definition of h requiresh=y at ¢=0. The functiong is a

functional ofh and ¢, obtained by integrating the constraint
(21):

+

(27)

: (28)

gzKl(u)ex;{mvadv %(h—){)z

whereK;(u) is again an integration constafite., indepen-
dent of the “spatial” coordinate). We consider the case of

a spherically symmetric, collapsing shell of matter, with N0o;qc. the Gaussian and
black hole in the interior, initially. Thus, our boundary con-

SForn=1, they are identical as expected.

“We will see below that althougih’ goes to zero ah=0, it does
so slowly enough to guarantee that the second term in(£g).
vanishes atp=0.

=u. Moreover, it follows that for the vacuum solution

,_d¢ 1j(e)
T 2 1 (31)
Comparing metri¢29) to our general forn{19), we see that
g=1 for the vacuum solution. Since we would like the nu-
merical solution to approach the vacuumd¢at 0, the above
analysis determines the required boundary conditions. In par-
ticular, the integration constait;(u)=1, and

9 1i(9)

w2 (32
which vanishes ath)=0 in agreement with the expression
(26).

Ill. NUMERICAL METHOD

The numerical scheme uses a“space”) discretization
to obtain a set of coupled ODEs:

$(u,v)— ¢i(u),

wherei=0, ... N specifies the grid. Initial data for these
two functions are prescribed on a constantslice, from

which the functionsg(u,v),g(u,v) are constructed. Evolu-
tion in the “time” variable u is performed using the fourth-
order Runge-Kutta method. The general scheme is similar to
that used iff13], together with some refinements used6h
This procedure was also used for the three-dimensional col-
lapse calculations if9].

The initial scalar field configuratioy(¢,u=0) is most
conveniently specified as a function éfrather tharr. (Re-
call thatgecr™.) This together with the initial arrangement of
the radial points¢(v,u=0) fixes all other functions. We
used the initial specificatiog(Op)=v.

We consider two types of initial scalar field configura-
“tanh” functions

el

h(u,v)—h;(u), (33

xc(U=0,¢)=a¢ ex;{—( (34)

and

xt(u=0,¢p)=atanl ¢). (395
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These choices permit us to test “universality,” which is de- wherea, is the critical amplitude which separates the black
fined as the independence of the details of the collapse, sudtole and reflection solution®?;, is the basic dimensional
as the critical exponent, on the choice of initial data shapescale if a black hole forms, and is linearly related to black
and parameters. Although universality may be tested for &ole mass in four spacetime dimensions.
large variety of shapes and parameters, the emphasis here isTo improve numerical accuracy neé=0, we follow a
on different spacetime dimensions, so we have restricted aprocedure similar t¢6], where all functions on a constamt
tention to varying the amplitude parameter for these twosurface are expanded in power seriespimt ¢=0, and the
shapes. first three values of the constraint integrals are derived using
The initial values of the other functions are determined inthe respective power series. We write
terms of the above by computing the integrals dqrandg,,
using Simpson’s rule. In all cases, we used valuespgf
=1 ando=0.3 for the Gaussian initial data.
The boundary conditions at fixadare

h=hy+h¢ (39

and calculate the parameteng,h; using the linear least-
squares fit for the first 15 points in;(u).® From this, the

~ expressions fory, g, andg follow. The remainingN—3
#=0, 9=0, 9=1, (36)  values of these functions are computed from their integral
using Simpson’s rule for equally spaced points. This linear fit
where k is the index corresponding to the position of thenear¢=0 is necessary because it elegantly handles the prob
origin ¢=0. (In the algorithm used, all grid points<0i lematic 14 factor in theh evolution equation, which would
<k—1 correspond to ingoing rays that have reached the oripersist even if a finer mesh were used. Thderivatives of
gin and are dropped from the grid; see beloWhese condi-  functions(needed for computing andg) are calculated us-
tions are equivalent to(u,u)=0, g|,—o=9(u,u)=1, and  ing f/=(f;.,—f;_;)/2Av with end-point values determined
guarantee regularity of the metricrat 0. Notice that forour by jinear extrapolation: f;=2f,—f; and f}=2f{_,
initial data, ¢, and hencen are initially zero, and therefore _ ¢/

they remain zero at the origin because of Ezp). Further comments on the procedure are the following. The
As evolution proceeds via the Runge-Kutta procedure, the,, \her of, grid points decreases as ingoing null geodesics
entries in the¢; array sequentially reach 0, at which point ¢ osqr — 9 and so a reflected pulse cannot be followed back
they are dropped from the grid. Thus the radial grid loseg, ;t toward infinity’ Also, again due to the loss of grid
points with evolution. This is similar to the procedure used inpoints, and hence resolution. we are not able to observe the

[13] and[6]. ) , detailed behavior of the scalar field very near criticality. An
At eachu step, a check is made to see if an apparent,ygiional numerical adjustment concems the enforcement of
horizon has formed by observing the function boundary conditions at the origin: there is the gravitational
tendency for the matter to pile up at the origin as the collapse
& proceeds. However, the formalism has the competing im-
ah=9g"*d,pdsp=— ig’ (37 plicit conditionh(u,u)=0 (i.e., at¢=0). This can lead to a

shift of this boundary condition under evolution. It is recti-
o . ) fied by adjusting the scalar field function at each time step by
whose Svamshmg signals the formation of an apparengqding a constant shift at all points. This shift is of order
horizon? For each run of the code with fixed amplitude  109-5 oy |ess at each time step, and therefore there is a minor
this function is scanned from larger to smaller radial valuegggg of accuracy, but a corresponding gain in stability.

after each Runge-Kutta iteration, and evolution is terminated The code was tested for grid sizes ranging from 2000 to
if the value of this function reaches 18 The corresponding 6000 points, and with the andv step sizes ranging from
radial coordinate value is recordedRg,. In the subcritical  10-2 15 1074, for the two types of initial data used, as well
case, it is expected that all the radial grid points reach zergg the vacuum case of a vanishing scalar field. These tests
without detection of an apparent horizon. This is the signakstaplished that the code converges. Further tests of the code

of pulse reflection. _ _ include the reproduction of the known results in four and six
The results &,Ray,) are collated as 1], by seeking a  gimensions, which also demonstrates the accuracy of the re-
relationship of the form sults we obtain. All the results presented below were for a
grid size of 6000 points, withi andv step sizes of 10°.
Ranx(a—ay)?, (38 Finally, we point out that this procedure allows a more

accurate analysis of the supercritical case than the subcritical

51t is worth noting that there exist special foliations of black hole
spacetimes which have no apparent horigbfi. Therefore, there is 5There is nothing fundamental about this number, since the behav-
in principle the possibility that a numerical scheme that encountersor of the scalar field turns out to be very linear over the first several
such a slicing may fail to detect black hole formation. This mani-points; the results fohy and h, were virtually insensitive if the
festly does not happen with the double null coordinates used in ounumber of points used varied by a few on either side of 15.
study, as demonstrated by the form of the static solution described’A modification of our procedure along the lines suggestgd
above and our results below. may allow the tracking of the reflected pulse to future null infinity.
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FIG. 3. Logarithmic plot of the apparent horizon radiRg;,
versus initial scalar field amplitudeat-a, ) in five spacetime di-
mensions with zero cosmological constant for tanh initial data.
=0.41.

FIG. 1. Logarithmic plot of apparent horizon radiRgy, versus
initial scalar field amplituded—a, ) in four spacetime dimensions
for Gaussian initial datay=0.36.

one, again because of the loss of grid points as the evolution
proceeds. This is less of an issue in the supercritical casg,Ran) and the lines are the least-squares fit to these points.
because the number of points lost depends on the initial The four-dimensional results for the Gaussian initial data
pulse amplitude, and our termination condition is such thagre illustrated in Fig. 1. The least-squares fit gives a slope of
typically one-quarter of the original number of points are still y=0.36, in good agreement~(4%) with earlier studies
present at termination, for the closest approach to criticalityl 1-3]. The figure also shows the oscillation about the fit line,
We could of course monitor the subcritical case up to thisagain in accord with earlier work.
point as well in an attempt to observe the self-similarity of ~The six-dimensional results for Gaussian data appear in
the scalar field, but the very nature of this behavior requiresig. 2. Our result for the critical exponent 9= 0.44. For
a way to replace lost grid points, as observefiah For this  comparison, the result in Ref7] is y=0.424.
reason, we focus on supercritical evolutions. The results for the four- and six-dimensional calculations
for the tanh initial data arey=0.35 andy=0.41, respec-
tively. This provides a further check of our code, and further
IV RESULTS AND CONCLUSIONS evidence of the insensitivity of the critical exponent to the
The code was first tested to recalculate known results ighape of the initial datétuniversality”) in both four and six
four and six dimensions. It was then run for the five-dimensions. Note that in six dimensions this is the first evi-
dimensional case with zero, positive, and negative cosmodence for universality, since R¢f7] contains results only for
logical constant. All the calculations were performed for am-a specific Gaussian form of initial data, different from the
plitudes above the threshold for black hole formation, and®ne used here. Note also that the agreement of our apparent
for initial data specified in both Gaussian and tanh formshorizon radius scaling results with those of the earlier works
parametrized by amplitude. The figures below show the Ccited shows that the apparent horizon appears to be a fairly
scaling law Eq.(38). The squares represent the pointsgood approximation to the event horizon of the long-time
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FIG. 2. Logarithmic plot of apparent horizon radiRg;, versus FIG. 4. Logarithmic plot of apparent horizon radiRg;, versus

initial scalar field amplitudeg—a, ) in six spacetime dimensions initial scalar field amplituded—a, ) in five spacetime dimensions
for Gaussian initial datay=0.44. with A= —1 for Gaussian initial datay=0.49.
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FIG. 5. Logarithmic plot of apparent horizon radiRgy, versus = o £ o
initial scalar field amplitudeg—a, ) in five spacetime dimensions ' ©
with A=0 for Gaussian initial datay=0.52.
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static limit (insofar as these earlier studies actually find this ' ;
limit).
. . 0 2 4 6 8 0 2 4 6 8
These tests of our formalism and code establish the con- i h
phi pni

sistency of our results with the earlier works mentioned
above, and set the stage for new calculations for arbitrary 5 6 piots of the scalar field and theah function Eq.(37)

values of the cosmological constant. Although our code al'prior to (top row) and nearer apparent horizon formation in five

lows calculations for any dimension, we focus on the five-gpacetime dimensions with positive Note the expansion of the
dimensional case mainly because results already exist fQ§rig from 6 to 8 in the bottom two graphs.

three, four, and six dimensions.

With A=0, for the tanh initial data, we find a critical zon functionsh andah in the left and right columns, respec-
exponent ofy=0.41 (Fig. 3). This value falls between the tjvely, as functions ofp, prior to and at the onset of apparent
four- and six-dimensional cases as conjecturef’in horizon formation in the two successive rows. Note the lo-

With A=—1, and Gaussian initial data, we find a critical cation of the cosmological horizon in the right-hand column
exponent of y=0.49 (Fig. 4). All of the graphs show an near¢=5.8. We find that the functiog(u,v) evolved such
oscillation about the least-squares fit line. This is a knownhat instead of the radial grid contracting as for the zero and
feature for zero cosmological constant, and is concomitangegativeA cases, it expanded as the scalar field moved to-
with discrete self-similarity of the critical solution. Our re- wards the origin_ This feature is visible in F|g 6: the range of
sults for the negative cosmological constant also show thig in the lower graphs has expanded to 8 from 6. In fact, the
feature, which indicates that the critical solution for this CasS&|oser the onset of apparent horizon formation is, the |arger
also has discrete self-similarity. the range of thep variable(and hence the radial ghidThis

We find that in five dimensions the critical exponent ap-prevented us from extracting accurate apparent horizon radii
pears not to be universal, at least in the supercritical apsince the interesting features became confined to an ever-
proach to computing it. The Gaussian initial data yielded shrinking part of the grid. We hope to study this in detail in
=0.52 for A=0, in comparison tay=0.41 for the tanh ini-  fyture work.
tial data(Fig. 9). In summary, we have described a formalism and code for

The reason for this is not clear to us and it would bestudying spherically symmetric gravitational collapse of a
worthwhile to calculate the exponents using the subcriticakcalar field for anyd and A, presented new results in five
approach suggested in REt5], where the Ricci scalar at the dimensions, and given evidence for universality in six di-
Origin is calculated near Crltlcallty from below. It is also mensions. In future work, we will present results of a sys-

worth noting that a similar lack of universality is manifested tematic analysis of the critical exponent as a function of both
in the three-dimensional AdS case using the supercritical apspacetime dimension and cosmological constant.

parent horizon method of computing[16].
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