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Spherically symmetric scalar field collapse in any dimension
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We describe a formalism and numerical approach for studying spherically symmetric scalar field collapse for
an arbitrary spacetime dimensiond and cosmological constantL. The prescription uses a double null formal-
ism, and is based on field redefinitions first used to simplify the field equations in generic two-dimensional
dilaton gravity. The formalism is used to construct a code in whichd andL are input parameters. We reproduce
known results ind54 andd56 with L50, and we present new results ford55 with a zero and negativeL.

DOI: 10.1103/PhysRevD.65.104036 PACS number~s!: 04.70.Dy
vi-

il
a
ll

lly
tio
ith
it

er
b
o

tio

at
ni
n

nd

s
e
b

iu

on
uc
er
n

n
f
m
pr
e
r

tiv

ny
r
en

o-

ar
ed

nd
eral
ou-
s a

lar

the
rrect
e
ined
I. INTRODUCTION

It is an interesting fact that spherically symmetric gra
tational collapse exhibits critical behavior@1#. This is a clas-
sical effect in phase space: there are one-parameter fam
of initial data sets, for a variety of matter fields, such that
the parameter is tuned, a transition from reflection of infa
ing matter to black hole formation is observed numerica
Two types of behavior are observed close to this transi
point. Depending on the matter type, black holes form w
zero or nonzero initial mass, and the matter field exhib
discrete or continuous self-similarity. A variety of matt
fields have been studied since the initial seminal work
Choptuik. There have also been some extensions bey
spherical symmetry, as well as a semianalytic perturba
theory understanding of the critical exponent.~Recent re-
views may be found in Refs.@2,3#.! If an exact time-
dependent solution were available with the appropri
boundary conditions, this critical behavior would be ma
fested in the solution of the apparent horizon conditio
which is a transcendental equation@4#. However, to date only
one time-dependent~and non-self-similar! solution is known,
but this does not have the required asymptotically flat bou
ary conditions@5#. Thus the full partial differential equation
~PDE! problem must be studied numerically.

Most numerical studies of spherically symmetric collap
have been in four spacetime dimensions. The only exc
tions are the massless minimally coupled scalar field
Garfinkle @7# in six spacetime dimensions, and by Pretor
and Choptuik@8# and Husain and Olivier@9# in three dimen-
sions with a negative cosmological constant. In additi
there exist two papers that study this problem in the m
simpler case of the self-similarity ansatz, an ordinary diff
ential equation~ODE! problem, for any spacetime dimensio
@10,11#.

The purpose of this work is to present a formalism a
numerical method for studying the gravitational collapse o
spherically symmetric scalar field for any value of spaceti
dimension and cosmological constant. The approach re
duces and supplements known results in four and six dim
sions with a zero cosmological constant, and gives new
sults in five spacetime dimensions with a zero and nega
cosmological constant.
0556-2821/2002/65~10!/104036~7!/$20.00 65 1040
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II. FIELD EQUATIONS

The basic idea for obtaining field equations valid for a
dimension is to reduce thed-dimensional Einstein-scala
field equations by imposing spherical symmetry, and th
use a field redefinition originally motivated by generic tw
dimensional dilaton gravity@12#. This allows the Einstein
equations ford-dimensional, spherically symmetric scal
field collapse to be put into a form that can be manag
numerically by a single code. In actuality, the formalism a
code we describe below are applicable to a more gen
class of models that includes nonminimal scalar field c
pling. This class of theories is quite broad, and contains a
subclass thed-dimensional spherically symmetric case.

Einstein gravity with a cosmological constant ind space-
time dimensions is given by the action

SG
(d)5

1

16pG(d)E ddxA2g(d)@R~g(d)!2L#. ~1!

The corresponding action for a minimally coupled sca
field is

SM52E ddxA2g(d)~g(d)mn]mx]nx!. ~2!

To impose spherical symmetry, we write thed-dimensional
metric gmn as

ds(d)
2 5ḡabdxadxb1r 2~xa!dV (d22) , ~3!

where dV (d22) is the metric onSd22 and a,b51,2. This
gives the reduced action1

1In most cases, one should perform dimensional reduction at
level of the field equations to guarantee that one obtains the co
solution space. It is well known@12# that in the present case th
reduced field equations correspond to the field equations obta
from the reduced action.
©2002 The American Physical Society36-1
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STOTªSG1SM

5V (n)E d2xA2ḡ F 1

2G S n

8~n21!
f̄2@R~ ḡ!2L#

1
1

2
u]f̄u21

n2

8l 2f̄ (2n24)/nD2 l nf̄2u]xu2G , ~4!

wheren5d22, V (n) is the volume of the unitn sphere, and

l n5G(d), ~5!

1

2G
5

8~n21!

16pn
, ~6!

f̄5S r

l D
n/2

. ~7!

The key simplification in our formalism is achieved by th
following conformal reparametrization of the metric, whic
eliminates the kinetic term forf̄ from the action@12#. Let

gab5V2~f̄ !ḡab , ~8!

where

V2~f̄ !5C expS 1

2E df̄

~dD̄/df̄ !
D , ~9!

D̄~f̄ !5
n

8~n21!
f̄2, ~10!

and C is an arbitrary constant. Now define a dimensionle
‘‘dilaton’’ field

f5D̄~f̄ !5
n

8~n21! S r

l D
n

. ~11!

Note thatf is proportional to the area of then sphere at
radius r. With these redefinitions, the reduced action tak
the simpler form

STOT5
1

2GE d2xA2g@fR~g!1V(n)~f!#

2E d2xA2gH(n)~f!u]xu2, ~12!

where

H (n)~f![
8~n21!

n
f, ~13!

V(n)~f![
1

n S 8~n21!

n D 1/n

f1/nF2 l 2L1
n2

8

3S 8~n21!

n D (n22)/n

f22/nG , ~14!
10403
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and the overall factor ofV (n) has been dropped.
For arbitrary functionsV(f) andH(f), the action~12! is

that of generic dilaton gravity theory coupled to a scalar fi
in two spacetime dimensions. This theory has been studie
great detail @12#. The vacuum equations (x50) can be
solved exactly. By choosing an adapted coordinate system
which the dilatonf plays the role of the spatial coordina
~i.e., x5 lf), the vacuum solution for the metric is

ds252@ j ~f!22GM#dt21@ j ~f!22GM#21dx2,
~15!

whereM plays the role of mass, and

j ~f![E
0

f

df̃V~f̃ !. ~16!

Note that we have dropped the superscriptn denoting space-
time dimension, since the above solution applies to the
neric case. For the specific case ofd-dimensional spherically
symmetric gravity,

j (n)~f!5
1

n S 8~n21!

n D 1/nF2 l 2LS n

n11Df (n11)/n

1
n3

8~n21! S 8~n21!

n D (n22)/n

f (n21)/nG . ~17!

It can easily be verified by making the appropriate subst
tions and conformal reparametrization~8! that the physical
line elementds(d)

2 corresponding to Eq.~15! is precisely that
of a d-dimensional de Sitter or anti–de Sitter black hole w
massM.2 It is important to note that the metric~15! is sin-
gular atf50 even whenM50. Up to numerical constants
j goes to zero as

j ~f!→f121/n ~18!

nearf50. This is not a physical singularity since the phys
cal metricḡ is indeed the Minkowski metric whenM andL
are zero. Nonetheless, the vanishing ofj (f) will affect the
choice of boundary conditions in our numerical method.

We now examine the field equations that derive from E
~12! in double null coordinates, for which the metric may b
parametrized as

ds2522lg~u,v !f8~u,v !du dv, ~19!

where the prime denotes partial differentiation with resp
to the null coordinatev. ~Recall that this is just theu2v part
of the physical metric.! The corresponding field equation
are

ḟ852
l

2
V(n)~f!gf8, ~20!

2In order to get the overall scale factor right, one must choose
constantC in Eq. ~9! appropriately.
6-2
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g8f8

gH(n)~f!
52G~x8!2, ~21!

@H (n)~f!x8#•1@H (n)~f!ẋ#850. ~22!

In the above, the dot refers to differentiation with respec
u, which is treated like the ‘‘time’’ coordinate for the pu
poses of the following numerical integration. Remarkab
for arbitraryn, Eqs.~20!–~22! are virtually identical in form
to those studied in@9# in the context of (211)-dimensional
AdS gravity.3 However, the boundary conditions are spec
in the case ofn51 (d53), so we will not consider this cas
further. Except where explicitly stated, we henceforth rest
consideration ton>2 ~which means spacetime dimensio
d>4).

The evolution equations may be put in a form more use
for numerical solution by defining the variable

h5x1
2fx8

f8
. ~23!

This effectively replaces the scalar fieldx by h. The evolu-
tion equations are

ḟ52g̃/2, ~24!

ḣ5
1

2f
~h2x!~gfV2g̃!, ~25!

where

g̃5E
u

v
~gf8V!dv8 ~26!

andx is now to be considered a functional ofh andg given
by

x5
1

2Af
E

u

v
dvFhf8

Af
G1

K3~u!

Af
. ~27!

The integration constantK3(u) must be zero because th
definition of h requiresh5x at f50.4 The functiong is a
functional ofh andf, obtained by integrating the constrai
~21!:

g5K1~u!expF4pE
u

v
dv

f8

f
~h2x!2G , ~28!

whereK1(u) is again an integration constant~i.e., indepen-
dent of the ‘‘spatial’’ coordinatev). We consider the case o
a spherically symmetric, collapsing shell of matter, with
black hole in the interior, initially. Thus, our boundary co

3For n51, they are identical as expected.
4We will see below that althoughf8 goes to zero atf50, it does

so slowly enough to guarantee that the second term in Eq.~23!
vanishes atf50.
10403
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dition should be such as to guarantee that the metric ar
50 ~which translates tof50) goes over to the vacuum
solution ~15!. By transforming the vacuum (M50) metric
~15! to double null coordinates~19!, we obtain a metric of
the form

ds252 j ~f!du dv, ~29!

whereu5t2f* and v5t1f* , with the generalized ‘‘tor-
toise coordinate’’f* defined by

f* 5 l E
0

f df

j ~f!
. ~30!

With these definitions,f50 corresponds to the surfacev
5u. Moreover, it follows that for the vacuum solution

f8[
]f

]v
5

1

2

j ~f!

l
. ~31!

Comparing metric~29! to our general form~19!, we see that
g51 for the vacuum solution. Since we would like the n
merical solution to approach the vacuum atf50, the above
analysis determines the required boundary conditions. In
ticular, the integration constantK1(u)51, and

ḟ[
]f

]u
→2

1

2

j ~f!

l
, ~32!

which vanishes atf50 in agreement with the expressio
~26!.

III. NUMERICAL METHOD

The numerical scheme uses av ~‘‘space’’! discretization
to obtain a set of coupled ODEs:

h~u,v !→hi~u!, f~u,v !→f i~u!, ~33!

wherei 50, . . . ,N specifies thev grid. Initial data for these
two functions are prescribed on a constantv slice, from
which the functionsg(u,v),g̃(u,v) are constructed. Evolu
tion in the ‘‘time’’ variable u is performed using the fourth
order Runge-Kutta method. The general scheme is simila
that used in@13#, together with some refinements used in@6#.
This procedure was also used for the three-dimensional
lapse calculations in@9#.

The initial scalar field configurationx(f,u50) is most
conveniently specified as a function off rather thanr. ~Re-
call thatf}r n.! This together with the initial arrangement o
the radial pointsf(v,u50) fixes all other functions. We
used the initial specificationf(0,v)5v.

We consider two types of initial scalar field configur
tions: the Gaussian and ‘‘tanh’’ functions

xG~u50,f!5af expF2S f2f0

s D 2G ~34!

and

xT~u50,f!5a tanh~f!. ~35!
6-3
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These choices permit us to test ‘‘universality,’’ which is d
fined as the independence of the details of the collapse,
as the critical exponent, on the choice of initial data sha
and parameters. Although universality may be tested fo
large variety of shapes and parameters, the emphasis he
on different spacetime dimensions, so we have restricted
tention to varying the amplitude parameter for these t
shapes.

The initial values of the other functions are determined
terms of the above by computing the integrals forgn and g̃n
using Simpson’s rule. In all cases, we used values off0
51 ands50.3 for the Gaussian initial data.

The boundary conditions at fixedu are

fk50, g̃k50, gk51, ~36!

where k is the index corresponding to the position of
origin f50. ~In the algorithm used, all grid points 0< i
<k21 correspond to ingoing rays that have reached the
gin and are dropped from the grid; see below.! These condi-
tions are equivalent tor (u,u)50, gur 505g(u,u)51, and
guarantee regularity of the metric atr 50. Notice that for our
initial data,fk and hencehk are initially zero, and therefore
they remain zero at the origin because of Eq.~25!.

As evolution proceeds via the Runge-Kutta procedure,
entries in thef i array sequentially reach 0, at which poi
they are dropped from the grid. Thus the radial grid los
points with evolution. This is similar to the procedure used
@13# and @6#.

At each u step, a check is made to see if an appar
horizon has formed by observing the function

ah[gab]af]bf52
ḟ

lg
, ~37!

whose vanishing signals the formation of an appar
horizon.5 For each run of the code with fixed amplitudea,
this function is scanned from larger to smaller radial valu
after each Runge-Kutta iteration, and evolution is termina
if the value of this function reaches 1023. The corresponding
radial coordinate value is recorded asRah . In the subcritical
case, it is expected that all the radial grid points reach z
without detection of an apparent horizon. This is the sig
of pulse reflection.

The results (a,Rah) are collated as in@1#, by seeking a
relationship of the form

Rah}~a2a* !g, ~38!

5It is worth noting that there exist special foliations of black ho
spacetimes which have no apparent horizon@14#. Therefore, there is
in principle the possibility that a numerical scheme that encoun
such a slicing may fail to detect black hole formation. This ma
festly does not happen with the double null coordinates used in
study, as demonstrated by the form of the static solution descr
above and our results below.
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wherea* is the critical amplitude which separates the bla
hole and reflection solutions.Rah is the basic dimensiona
scale if a black hole forms, and is linearly related to bla
hole mass in four spacetime dimensions.

To improve numerical accuracy nearf50, we follow a
procedure similar to@6#, where all functions on a constantu
surface are expanded in power series inf at f50, and the
first three values of the constraint integrals are derived us
the respective power series. We write

h5h01h1f ~39!

and calculate the parametersh0 ,h1 using the linear least-
squares fit for the first 15 points inhi(u).6 From this, the
expressions forx, g, and g̃ follow. The remainingN23
values of these functions are computed from their integ
using Simpson’s rule for equally spaced points. This linea
nearf50 is necessary because it elegantly handles the p
lematic 1/f factor in theh evolution equation, which would
persist even if a finer mesh were used. Thev derivatives of
functions~needed for computingg and g̃) are calculated us-
ing f i85( f i 112 f i 21)/2Dv with end-point values determine
by linear extrapolation: f 1852 f 282 f 38 and f N8 52 f N218
2 f N228 .

Further comments on the procedure are the following. T
number ofv grid points decreases as ingoing null geodes
crossr 50, and so a reflected pulse cannot be followed ba
out toward infinity.7 Also, again due to the loss of grid
points, and hence resolution, we are not able to observe
detailed behavior of the scalar field very near criticality. A
additional numerical adjustment concerns the enforcemen
boundary conditions at the origin: there is the gravitatio
tendency for the matter to pile up at the origin as the colla
proceeds. However, the formalism has the competing
plicit conditionh(u,u)50 ~i.e., atf50). This can lead to a
shift of this boundary condition under evolution. It is rec
fied by adjusting the scalar field function at each time step
adding a constant shift at all points. This shift is of ord
1025 or less at each time step, and therefore there is a m
loss of accuracy, but a corresponding gain in stability.

The code was tested for grid sizes ranging from 2000
6000 points, and with theu and v step sizes ranging from
1022 to 1024, for the two types of initial data used, as we
as the vacuum case of a vanishing scalar field. These
established that the code converges. Further tests of the
include the reproduction of the known results in four and
dimensions, which also demonstrates the accuracy of the
sults we obtain. All the results presented below were fo
grid size of 6000 points, withu andv step sizes of 1023.

Finally, we point out that this procedure allows a mo
accurate analysis of the supercritical case than the subcri

rs
-
ur
ed

6There is nothing fundamental about this number, since the be
ior of the scalar field turns out to be very linear over the first seve
points; the results forh0 and h1 were virtually insensitive if the
number of points used varied by a few on either side of 15.

7A modification of our procedure along the lines suggested in@17#
may allow the tracking of the reflected pulse to future null infini
6-4
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one, again because of the loss of grid points as the evolu
proceeds. This is less of an issue in the supercritical c
because the number of points lost depends on the in
pulse amplitude, and our termination condition is such t
typically one-quarter of the original number of points are s
present at termination, for the closest approach to critica
We could of course monitor the subcritical case up to t
point as well in an attempt to observe the self-similarity
the scalar field, but the very nature of this behavior requ
a way to replace lost grid points, as observed in@6#. For this
reason, we focus on supercritical evolutions.

IV. RESULTS AND CONCLUSIONS

The code was first tested to recalculate known result
four and six dimensions. It was then run for the fiv
dimensional case with zero, positive, and negative cos
logical constant. All the calculations were performed for a
plitudes above the threshold for black hole formation, a
for initial data specified in both Gaussian and tanh form
parametrized by amplitudea. The figures below show the
scaling law Eq. ~38!. The squares represent the poin

FIG. 1. Logarithmic plot of apparent horizon radiusRah versus
initial scalar field amplitude (a2a* ) in four spacetime dimension
for Gaussian initial data.g50.36.

FIG. 2. Logarithmic plot of apparent horizon radiusRah versus
initial scalar field amplitude (a2a* ) in six spacetime dimension
for Gaussian initial data.g50.44.
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(a,Rah) and the lines are the least-squares fit to these po
The four-dimensional results for the Gaussian initial d

are illustrated in Fig. 1. The least-squares fit gives a slope
g50.36, in good agreement (;4%) with earlier studies
@1–3#. The figure also shows the oscillation about the fit lin
again in accord with earlier work.

The six-dimensional results for Gaussian data appea
Fig. 2. Our result for the critical exponent isg50.44. For
comparison, the result in Ref.@7# is g50.424.

The results for the four- and six-dimensional calculatio
for the tanh initial data areg50.35 andg50.41, respec-
tively. This provides a further check of our code, and furth
evidence of the insensitivity of the critical exponent to t
shape of the initial data~‘‘universality’’ ! in both four and six
dimensions. Note that in six dimensions this is the first e
dence for universality, since Ref.@7# contains results only for
a specific Gaussian form of initial data, different from th
one used here. Note also that the agreement of our appa
horizon radius scaling results with those of the earlier wo
cited shows that the apparent horizon appears to be a f
good approximation to the event horizon of the long-tim

FIG. 3. Logarithmic plot of the apparent horizon radiusRah

versus initial scalar field amplitude (a2a* ) in five spacetime di-
mensions with zero cosmological constant for tanh initial datag
50.41.

FIG. 4. Logarithmic plot of apparent horizon radiusRah versus
initial scalar field amplitude (a2a* ) in five spacetime dimension
with L521 for Gaussian initial data.g50.49.
6-5
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static limit ~insofar as these earlier studies actually find t
limit !.

These tests of our formalism and code establish the c
sistency of our results with the earlier works mention
above, and set the stage for new calculations for arbitr
values of the cosmological constant. Although our code
lows calculations for any dimension, we focus on the fiv
dimensional case mainly because results already exist
three, four, and six dimensions.

With L50, for the tanh initial data, we find a critica
exponent ofg50.41 ~Fig. 3!. This value falls between the
four- and six-dimensional cases as conjectured in@7#.

With L521, and Gaussian initial data, we find a critic
exponent ofg50.49 ~Fig. 4!. All of the graphs show an
oscillation about the least-squares fit line. This is a kno
feature for zero cosmological constant, and is concomi
with discrete self-similarity of the critical solution. Our re
sults for the negative cosmological constant also show
feature, which indicates that the critical solution for this ca
also has discrete self-similarity.

We find that in five dimensions the critical exponent a
pears not to be universal, at least in the supercritical
proach to computing it. The Gaussian initial data yieldedg
50.52 forL50, in comparison tog50.41 for the tanh ini-
tial data~Fig. 5!.

The reason for this is not clear to us and it would
worthwhile to calculate the exponents using the subcrit
approach suggested in Ref.@15#, where the Ricci scalar at th
origin is calculated near criticality from below. It is als
worth noting that a similar lack of universality is manifest
in the three-dimensional AdS case using the supercritical
parent horizon method of computingg @16#.

We also carried out a preliminary investigation of t
positive cosmological constant case in five dimensions. T
is an interesting case because of the presence of a co
logical horizon in addition to the potential apparent horizo
Figure 6 shows graphs of the scalar field and apparent h

FIG. 5. Logarithmic plot of apparent horizon radiusRah versus
initial scalar field amplitude (a2a* ) in five spacetime dimension
with L50 for Gaussian initial data.g50.52.
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zon functionsh andah in the left and right columns, respec
tively, as functions off, prior to and at the onset of appare
horizon formation in the two successive rows. Note the
cation of the cosmological horizon in the right-hand colum
nearf55.8. We find that the functionf(u,v) evolved such
that instead of the radial grid contracting as for the zero a
negativeL cases, it expanded as the scalar field moved
wards the origin. This feature is visible in Fig. 6: the range
f in the lower graphs has expanded to 8 from 6. In fact,
closer the onset of apparent horizon formation is, the lar
the range of thef variable~and hence the radial grid!. This
prevented us from extracting accurate apparent horizon r
since the interesting features became confined to an e
shrinking part of the grid. We hope to study this in detail
future work.

In summary, we have described a formalism and code
studying spherically symmetric gravitational collapse of
scalar field for anyd and L, presented new results in fiv
dimensions, and given evidence for universality in six
mensions. In future work, we will present results of a sy
tematic analysis of the critical exponent as a function of b
spacetime dimension and cosmological constant.
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FIG. 6. Plots of the scalar fieldh and theah function Eq.~37!
prior to ~top row! and nearer apparent horizon formation in fiv
spacetime dimensions with positiveL. Note the expansion of thef
grid from 6 to 8 in the bottom two graphs.
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