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Scalar synchrotron radiation in the Schwarzschild–anti–de Sitter geometry
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We present a complete relativistic analysis for the scalar radiation emitted by a particle in circular orbit
around a Schwarzschild–anti–de Sitter~AdS! black hole. If the black hole is large, then the radiation is
concentrated in narrow angles, high multipolar distribution; i.e., the radiation is synchrotronic. However, small
black holes exhibit a totally different behavior: in the small black hole regime, the radiation is concentrated in
low multipoles. There is a transition mass atM50.427R, whereR is the AdS radius. This behavior is new; it
is not present in asymptotically flat spacetimes.
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I. INTRODUCTION

Both cyclotron and synchrotron radiation have inherit
their names from the apparatus used to accelerate cha
particles in the 1930s and 1940s. The radiation generated
to the charge acceleration was a secondary effect which
came a subject onto itself. Cyclotron radiation comes fr

electrically charged particles in a magnetic fieldBW with non-

relativistic velocitiesvW in circular or spiraling~alongBW ) or-
bits, the spectrum of which consists of a single frequency
emission, equal to the orbital frequency of the particle in
magnetic field,v052pq B/m, whereq andm are the charge
and mass of the particles, respectively. For highly relativis
particles the spectrum is much more complex and mos

the power is radiated in a range around a frequencyv̄, which

is many times the orbital particle frequencyv0 , v̄.g3v0,
where gamma is the Lorentz factor, into a narrow cone
to the relativistic headlight effect, and strongly linearly p
larized in the plane of the circular motion. This radiation d
to relativistic circular particles is called synchrotron rad
tion. There is of course a transition from cyclotron to sy
chrotron radiation, in which the particle acquires larger a
larger velocities and higher and higher harmonics of the f
damental modev0 start to be excited. Instead of receiving
sinusoidal pulse with a sharp frequency, as in the cyclot
radiation case, the observer starts to receive a series of s
pulses repeating at intervals of 2p/v0. Synchrotron radiation
is an important electromagnetic radiation in astrophys
systems such as the Sun, the magnetosphere of Jupiter
sars, and active galaxies~for a detailed analysis of synchro
tron radiation, see@1,2#!. Fields other than the electromag
netic ~vector! field, such as the scalar@3# and the
gravitational~tensorial! field @4#, can also radiate synchro
tronically in flat spacetime. The spectrum for the three fie
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has the formP(v)}v exp(22v/vcrit), with vcrit being a few

times v̄.
By using the equivalence principle, one can further a

whether it is possible for a particle in geodesic motion in
gravitational field to emit cyclotron or synchrotron radiatio
Indeed, cyclotron gravitational radiation has been studi
see, e.g.,@5# for recent work on detailed calculations o
gravitational radiation from a particle in a geodesic circu
orbit around a Schwarzschild black hole, which is motivat
mainly by the possibility of detecting gravitational waves
the Laser Interferometric Gravitational Wave Observato
~LIGO! or VIRGO projects. On the other hand, Misneret al.
@6,7# showed that geodesic synchrotron radiation~GSR! is
possible for particles the relativistic photonic orbits aroun
black hole. This radiation was first worked out for a sca
particle and field in a Schwarzschild black hole@7# and it
showed three main features:~i! the range of radiated frequen
cies v̄ are higher harmonics~or higher multipoles! of the
particle’s orbital frequencyv05(M /r 0

3)1/3, namely, v̄
.g2v0, whereg is the Lorentz factor,g51/A123M /r 0,
andM andr 0 are the mass of the black hole and the posit
of the orbit, respectively;~ii ! it is beamed into narrow orbita
plane angles; and~iii ! it is linearly polarized in the orbital
plane@8#. The existence of GSR was then studied for ele
tromagnetic and gravitational fields@9# where it was shown
that the spectrum is broader than for the scalar field,P(v)
}v12sexp(22v/vcrit), with s being the spin of the radiate
field, andvcrit being again a few timesv̄. It is interesting to
note, following@10#, that there are differences between ord
nary ~or accelerated! synchrotron radiation~OSR! and GSR.
For OSR the spectrum does not depend on the spins of the
field, whereas for GSR it does. This stems from the fact t
geometric optics~short wavelength approximation! is valid
for a source in flat spacetime, whereas in a strong grav
tional field the effective gravitational potential does not p
mit short waves within the emitting region@10#. GSR went
into oblivion after it was shown that the GSR concept w
not applicable astrophysically@11,12#, mainly due to the fact
that it is astrophysically hard to put particles in photon
©2002 The American Physical Society33-1
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orbits, although some attempts were made with nongeod
motion @13#.

However, black holes are now not only of astrophysi
interest but also of interest to elementary particle phys
Since many elementary particle theories predict that
vacuum is anti–de Sitter~AdS!, one should reanalyze th
problem in a Schwarzschild-AdS background and work
the similarities and the differences. This is what we do in t
paper. We shall study a specific important problem of rad
tion emission: the scalar energy emitted by a small test
ticle coupled to a massless scalar field as it orbits in circu
motion a Schwarzschild-AdS black hole. This work is th
also of interest to the AdS/conformal field theory~CFT! con-
jecture@14#, which in turn has attracted much attention to t
investigation of asymptotically AdS spacetimes. Accordi
to this, phenomena in the bulk can be reinterpreted as p
nomena at the conformal field theory boundary. In additi
the black hole corresponds to a thermal state in the con
mal field theory, and the decay of a test field in the black h
spacetime correlates with the decay of a perturbed stat
the CFT. One knows, for example, that the decay of this
field is correctly described by the so called quasinorm
modes, which have been recently computed for AdS spa
times~see, e.g.,@16#, and references therein!. In order to gain
deeper insight into the conjecture, one needs to unders
how the information about the bulk is encoded in the bou
ary, namely, by probing the bulk with test fields, or pointlik
particles@15,17#, and to understand how the spacetime
sponds to specific perturbations. A specific problem, the
dial infall of a small test particle into a Schwarzschild-Ad
black hole and consequent emission of radiation, is aurre
being addressed@18#, where it is found that the signal i
dominated by quasinormal ringing@for the analogous prob
lem in the Ban˜ados-Teitelboim-Zanelli ~BTZ! three-
dimensional black hole, see@19##.

The paper is organized as follows. In Sec. II, we introdu
the problem, and the basic mathematical apparatus need
solve it. In Sec. III, we present the numerical results o
tained, and the most important features of these nume
results. In Sec. IV, we present some concluding remarks

II. EQUATIONS AND FORMALISM

A. The problem

Black holes in AdS spacetimes in several dimensions h
been recently studied. All dimensions up to 11 are of inter
in superstring theory, but experiment singles out four dim
sions~4D! as the most important. In 4D general relativity,
effective gravity theory in an appropriate string theory lim
the Kerr-Newman family of four-dimensional black hole
can be extended to include a negative cosmological cons
@20#. Our background is the 4D Schwarzschild-AdS bla
hole metric,

ds25 f ~r !dt22
dr2

f ~r !
2r 2~du21sin2udf2!, ~1!

wheref (r )5(r 2/R21122M /r ), R is the AdS radius, andM
10403
sic

l
s.
e

t
s
-
r-
r

e-
,
r-
e
in
st
l
e-

nd
-

-
-

ly

e
to

-
al

e
st
-

nt

is the black hole mass. We now consider a small part
coupled to a massless scalar field, described by the inte
tion action@7#

S52
1

8pE g1/2w ;aw ;ad4x

2m0E ~11qsw!~2gabż
ażb!1/2dl, ~2!

whereqs is the scalar charge carried by the test particle, a
m0 its mass. The massm0 is supposed to be small and th
scalar field treated as a perturbation, in the sense that
background metric is still given by Eq.~1!. This means that
the particle travels on a geodesic of the spacetime.

After the usual decomposition into spherical harmoni
w(r ,v,u,f)5(1/r )( lmc(r ,v)Ylm whereYlm are the usual
spherical harmonics, and a Fourier transformC(r ,v)
5@1/(2p)1/2#*2`

` eivtc(r ,t), the evolution of the scalar field
is given by the wave equation with a generic source termS:

]2C~r !

]r
*
2

1@v22V~r !#C~r !5S. ~3!

Here,

S5E 1

~2p!1/2

f ~r !

gr
Ylm~u,f!eivtd„r 2r ~ t !…dt, ~4!

where r (t), u(t), and f(t) are the spatial Schwarzschil
coordinates of the test particle, andg51/A123M /r . The
potentialV appearing in Eq.~3! is given by

V~r !5 f ~r !F21
2M

r 3
1

l ~ l 11!

r 2 G . ~5!

The tortoise coordinater * is defined as]r /]r * 5 f (r ).

B. Circular geodesics in the Schwarzschild-AdS geometry

Since to the best of our knowledge no full investigati
has been made on the geodesics in this spacetime, we
study the circular null and timelike geodesics in t
Schwarzschild-AdS geometry, which will be useful in wh
follows. The integrals of motionf dt/dt5E and r 2df/dt
5L, whereE is an energy parameter andL an angular mo-
mentum parameter, plus the constancy of the Lagrang
yield

ṙ 21V~r !25E,V~r !25 f ~e1L2/r 2!, ~6!

wheree50 for null geodesics ande51 for timelike geode-
sics.

( i ) Timelike circular geodesics.In this casee51. De-
mandingdV2/dr50 we get

L25
r 5/R21Mr 2

r 23M
, ~7!
3-2
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and

v0[df/dt5S 1

R2
1

M

r 3D 1/2

. ~8!

This means that circular timelike geodesics may exist for
3M,r ,`. Let us now see which of them are stable a
which are unstable. If we differentiate the potential twice a
then substituteL2 given by Eq.~7!, we obtain

d2V2/dr2522
15Mr 324r 416M2R22MR2r

r 3R2~r 23M !
. ~9!

Now, Eq. ~9! has one and only one real root in 3M,r ,`.
This root will give us the range of allowed stable and u
stable circular orbits. The roots can be obtained numerica
but two important limiting cases can be studied analytica
and these are the very large and very small black hole lim
For very large black holes, we can immediatly see that
root is atr 515/4M53.75M . For very small black holes we
can see that the root is atr 56M , which is what we expect
for small black holes the results of the Schwarzschild geo
etry should carry over. For any intermediate mass, the
stable circular orbit lies betweenr 53.75M and r 56M .

( i i ) Null circular geodesics. In this case we requiree
50, ṙ 50, anddV2/dr50, which gives us

r 53M ,
E2

L2
5

1

R2
1

1

27M2
, ~10!

andd2V2/dr,0. Thus, just as in Schwarzschild spacetime
circular orbit of radius 3M is the only allowed null geodesic
which is furthermore an unstable one.

C. The Green’s function solution

Under these conditions, Eq.~3! becomes

]2C~r !

]r
*
2

1@m2v0
22V~r !#C~r !5Sld~r 2r 0!, ~11!

with Sl54 f (r )pYlm(p/2,0)/(gr ), and again g
51/A123M /r 0. We would like to draw attention to the fac
that for circular geodesic motion the frequencyv must be a
multiple of the frequencyv0 of revolution around the black
hole, i.e.,v5mv0. In Eq. ~11! we have rescaledr, r→r /R,
and measure everything in terms ofR, i.e., v is to be read
vR, C is to be read (R/qsm0)C andr 1 , the horizon radius,
is to be readr 1 /R. Equation~11! is to be solved under the
boundary conditions appropriate for Schwarzschild-A
black holes: ingoing waves at the horizon (C;Ae2 iwr

* ),
and reflective boundary conditions (C50) at infinity @21#.
Of course, under these conditions, all the energy eventu
goes down the black hole, and this is the energy we
interested in computing. To implement a numerical soluti
10403
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we note that two independent solutionsC1 and C2 of Eq.
~11!, with the source term set to zero, have the behavior

C1;H e2 ivr
* , r→r 1 ,

Ar1B/r 2, r→`,

~12!

~13!

C2;H 1/r 2, r→`,

Ceivr
* 1De2 ivr

* , r→r 1.

~14!

~15!

The Wronskian of these two solutions isW52Civ. By a
standard Green’s function analysis, we get that the solu
to the inhomogeneous equation~11! behaves, near the hori
zon, as

C5
e2 ivr

*

~2ivC!
E

r 1

` SC2

f
d~r 2r 0!dr ~16!

5
e2 ivr

*

~2ivC!

S

f
~r 0!C2~r 0!. ~17!

All we need to do is find a solutionC2 of the corresponding
homogeneous equation satisfying the above mentio
boundary conditions~15!. In the numerical work, we chos
to adoptr as the independent variable, therefore avoiding
numerical inversion ofr * (r ). The integration was started a
a large value ofr 5r i , which wasr i5105r 1 typically. Equa-
tion ~15! was used to infer the boundary conditionsC2(r i)
and C28(r i). We then integrated inward fromr 5r i to typi-
cally r 5r 111026r 1 . Equation~15! was then used to getC.

The total powerPtot radiated into the black hole isPtot
5( l ,m.0(v2/2p)uCu2, and the power spectrumP ~power
radiated at a given frequencyv5mv0) is

P~mv0!5 (
l>umu

~mv0!2

2p
uCu2, ~18!

wherem is fixed in the summation.

III. NUMERICAL RESULTS

A. Large and intermediate black holes

We define large and intermediate black holes as bl
holes with r 1>1. The results of the numerical integratio
are shown in Figs. 1~a! and 1~b! for orbits atr 055 andr 0
520, respectively, and a horizon radiusr 151. In Fig. 2 the
power spectrum is shown as a function of the azimut
quantum numberm for largem on a semilogarithmic plot.

The results for the large black hole regime are the follo
ing.

~1! The power radiated in thel 5m modes is more than
95% of the total power.

~2! High multipoles, as one can see from Figs. 1~a! and
1~b!, are clearly enhanced, and the radiation is synchrotro
To see that most of the radiation is in fact confined to sm
angles, we have plotted the angular distribution of the pow
in Fig. 3.

~3! The location of the peak of the spectrum increas
with increasing radius of the circular orbit, so that truly sy
chrotronic radiation occurs only for highly relativistic~un-
stable! orbits.
3-3
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~4! From Figs. 1~a! and 1~b!, and as expected, we see th
the power output decreases with increasingr 0, the orbit ra-
dius. In fact one can easily prove that for highr 0 the power
varies as 1/r 0

6.
~5! The location of the peak increases dramatically w

the mass of the hole. So for large black holes the emissio
dominated by very largem. This strong dependence of th
location of the peak on the black hole mass makes us bel
that small black holes do not emit synchrotronic radiatio
This will be seen to be true in the Sec. III B.

~6! Furthermore, the power decays as an exponen
power of the frequency, for high frequencies, which is e

FIG. 1. ~a! Scalar radiation power spectrum as a function of
azimuthal quantum numberm, for an orbit with r 055, around a
Schwarzschild-AdS black hole withr 151. ~b! Scalar radiation
power spectrum as a function of the angular quantum numberm, for
an orbit withr 0520, around a Schwarzschild-AdS black hole wi
r 151.

FIG. 2. Plot of logP vs m for largem. One can see that logP is
a linear function ofm, so that for largem the power output de-
creases exponentially.
10403
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dent from Fig. 2, where we show a plot of logP versusm; an
analytical approximation for largem seems very difficult to
achieve, due to the behavior of the potential. We find num
cally that for largem the exponential dependence of th
power spectrum is

P;e22v/vcrit ~19!

where vcrit52 g M2v0/0.09. We conclude from this tha
most of the radiation is emitted at a givenv̄ and thatv̄
increases with the mass of the black hole~numerically we
have foundv̄;M2).

FIG. 4. ~a! Scalar radiation power as a function of the angu
quantum numberm, for an orbit with r 0510, around a
Schwarzschild-AdS black hole withr 150.5. ~b! Scalar radiation
power as a function of the angular quantum numberm, for an orbit
with r 0510, around a Schwarzschild-AdS black hole withr 1

50.2.

FIG. 3. Scalar power per unit solid angleq[p/22u, for the
case of a scalar particle orbiting around ar 151 black hole, with an
orbital radiusr 055.
3-4
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B. Small black holes

In Figs. 4~a! and 4~b! we show the numerical results fo
small black holes,r 1,1. In the small black hole regime, w
can see a completely different behavior, in that now
power decreases monotonically with increasingm, the angu-
lar quantum number. Numerically, we find that, indepe
dently of r 0, the location~in l ) of the peak of the spectrum
progressively approachesm50 as one lowers the mass o
the black hole. Finally, forM,0.427R (r 1,0.618R) the
spectrum is monotonically decreasing inm, for all m. Still,
for largem the spectrum continues to decay exponentiall

IV. CONCLUSIONS

We have computed the scalar radiation emitted by a sc
test particle moving in a geodesic circular orbit around
Schwarzschild-AdS black hole. For large black holes,
radiation is confined to small angles, and we therefore h
what can be called scalar synchrotron radiation. Howe
the spectrum depends drastically on the size of the b
hole. For black holes with massesM,0.427R the spectrum
does not have a peak inm, and so in this regime there is n
synchrotron radiation. One might be tempted at first sigh
say that small black holes in AdS spacetime should beh
-

-

.

.

a,

tt.

10403
e

-

ar
a
e
e
r,
k

o
ve

like Schwarzschild black holes. Our numerical results sh
that this is not true: the boundary conditions at infinity ha
changed.

These results, plus results on all previously mention
work on AdS spacetime, allow us to slowly start building
small catalog of dynamical processes in AdS spacetimes.
worth emphasizing that this is extremely important if o
wants to fully understand the AdS/CFT duality and whate
surprises there may be to unfold in AdS spaces. Indeed h
in relation to the AdS/CFT correspondence, one can say
to the black hole corresponds a thermal bath, to the orbi
particle corresponds a traveling soliton~lump of energy!, and
to the scalar field waves correspond particles decaying
bosons of the associate operator of the gauge theory. Th
the CFT boundary one has a traveling soliton perturbing
thermal state and irradiating particle pairs@15,22#.
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