PHYSICAL REVIEW D, VOLUME 65, 104033

Scalar synchrotron radiation in the Schwarzschild-anti—de Sitter geometry
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We present a complete relativistic analysis for the scalar radiation emitted by a patrticle in circular orbit
around a Schwarzschild—anti—de Sitf&dS) black hole. If the black hole is large, then the radiation is
concentrated in narrow angles, high multipolar distribution; i.e., the radiation is synchrotronic. However, small
black holes exhibit a totally different behavior: in the small black hole regime, the radiation is concentrated in
low multipoles. There is a transition massMt=0.427R, whereR is the AdS radius. This behavior is new; it
is not present in asymptotically flat spacetimes.

DOI: 10.1103/PhysRevD.65.104033 PACS nuni®er04.70-~s, 04.30-w, 04.50:+h, 11.15-q

. INTRODUCTION has the fornP () = w exp(— 2w/ wgi), With w. being a few
L . . timesw.

Both cyclotron and synchrotron radiation have inherited By using the equivalence principle, one can further ask
their names from the apparatus used to accelerate chargggheiher it is possible for a particle in geodesic motion in a
particles in the 1930s and 1940s. The radiation generated dyg,jitational field to emit cyclotron or synchrotron radiation.
to the charge acceleration was a secondary effect which bgngeed, cyclotron gravitational radiation has been studied:
came a subject onto itself. Cyclotron radiation comes fromsge, e.g.[5] for recent work on detailed calculations of
electrically charged particles in a magnetic fi@ldvith non-  gravitational radiation from a particle in a geodesic circular
relativistic velocitiess in circular or spiraling(alongB) or- ~ Orbit around a Schwarzschild black hole, which is motivated
bits, the spectrum of which consists of a single frequency off@inly by the possibility of detecting gravitational waves by
emission, equal to the orbital frequency of the particle in théN€_Laser Interferometric Gravitational Wave Observatory
magnetic fieldw,=27q B/m, whereq andm are the charge (LIGO) or VIRGO projects. On the other hand, Misreral.

and mass of the particles, respectively. For highly relativistic[6’7] showed that geodesic synchrotron radiati®8R is

articles the spectrum is much more complex and most 0Eossible for particles the relativistic photonic orbits around a
P P P lack hole. This radiation was first worked out for a scalar

the power is radiated in a range around a frequencyhich  particle and field in a Schwarzschild black hd@ and it
is many times the orbital particle frequeneyy, o=7yw,,  showed three main feature) the range of radiated frequen-

where gamma is the Lorentz factor, into a narrow cone dugjes » are higher harmonicgor higher multipoles of the
to the relativistic headlight effect, and strongly linearly po- particle’s orbital frequencyw0=(M/r8) U3 namely .

larized |n the pl_ane of the F:irculgr motion. This radiation d_uez y2w,, Where y is the Lorentz factory=1/ ’—1—3M/r0,
tp relat|V|st|(? circular particles |_s'caIIed synchrotron radia- 5nqm andr, are the mass of the black hole and the position
tion. There is of course a transition from cyclotron to syn-of the orhit, respectively(ii) it is beamed into narrow orbital
chrotron radiation, in which the particle acquires larger anob|ane angles; andii) it is linearly polarized in the orbital
larger velocities and higher and higher harmonics of the fU”pIane[S]. The existence of GSR was then studied for elec-
damental mode», start to be excited. Instead of receiving a tromagnetic and gravitational field§] where it was shown
sinusoidal pulse with a sharp frequency, as in the cyclotromhat the spectrum is broader than for the scalar fiBlgy)
radiation case, the observer starts to receive a series of shakw!~ Sexp(— 2w/wg;), with s being the spin of the radiated
pulses repeating at intervals ofr2w,. Synchrotron radiation  fie|d, andw,; being again a few times. It is interesting to
is an important electromagnetic radiation in astrophysicahote, following[10], that there are differences between ordi-
systems such as the Sun, the magnetosphere of Jupiter, phkry (or acceleratedsynchrotron radiatiofOSR) and GSR.
sars, and active galaxi¢tor a detailed analysis of synchro- For OSR the spectrum does not depend on the spinthe
tron radiation, se¢1,2]). Fields other than the electromag- field, whereas for GSR it does. This stems from the fact that
netic (vectop field, such as the scalaf3] and the geometric opticgshort wavelength approximatipis valid
gravitational (tensoria) field [4], can also radiate synchro- for a source in flat spacetime, whereas in a strong gravita-
tronically in flat spacetime. The spectrum for the three fieldgional field the effective gravitational potential does not per-
mit short waves within the emitting regidd0]. GSR went
into oblivion after it was shown that the GSR concept was
*Email address: vcardoso@fisica.ist.utl.pt not applicable astrophysicalljt1,12], mainly due to the fact
"Email address: lemos@Kkelvin.ist.utl.pt that it is astrophysically hard to put particles in photonic
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orbits, although some attempts were made with nongeodesis the black hole mass. We now consider a small particle

motion[13]. coupled to a massless scalar field, described by the interac-
However, black holes are now not only of astrophysicaltion action[7]

interest but also of interest to elementary particle physics.

Since many elementary particle theories predict that the 1 12 !

vacuum is anti—de SittefAdS), one should reanalyze the S__ﬂj 9 ¢apdx

problem in a Schwarzschild-AdS background and work out

the similarities and the differences. This is what we do in this

paper. We shall study a specific important problem of radia-

tion emission: the scalar energy emitted by a small test par-

ticle coupled to a massless scalar field as it orbits in circula¥vhereqs is the scalar charge carried by the test particle, and

motion a Schwarzschild-AdS black hole. This work is thusM its mass. The mass), is supposed to be small and the

also of interest to the AdS/conformal field thedGFT) con-  scalar field treated as a perturbation, in the sense that the

jecture[14], which in turn has attracted much attention to thebackground metric is still given by Eq1). This means that

investigation of asymptotically AdS spacetimes. Accordingthe particle travels on a geodesic of the spacetime.

to this, phenomena in the bulk can be reinterpreted as phe- After the usual decomposition into spherical harmonics,

nomena at the conformal field theory boundary. In addition@(r,,6,¢)=(1/r)=,,¥(r,»)Y,, whereY, are the usual

the black hole corresponds to a thermal state in the confoispherical harmonics, and a Fourier transfonin(r,w)

mal field theory, and the decay of a test field in the black hole=[ 1/(2) V211 e'“ty(r,t), the evolution of the scalar field

spacetime correlates with the decay of a perturbed state iis given by the wave equation with a generic source t&rm

the CFT. One knows, for example, that the decay of this test

field is correctly described by the so called quasinormal W (r)

modes, which have been recently computed for AdS space-

times(see, e.g16], and references therginin order to gain

deeper insight into the conjecture, one needs to understal

how the information about the bulk is encoded in the bound-

ary, namely, by probing the bulk with test fields, or pointlike 1)

particles[15,17], and to understand how the spacetime re- Szf__Yl (6,450 —r(t))dt, (4

sponds to specific perturbations. A specific problem, the ra- (2m)Y2 yr "

dial infall of a small test particle into a Schwarzschild-AdS

black hole and consequent emission of radiation, is aurrentlywhere r(t), 6(t), and ¢(t) are the spatial Schwarzschild

being addressefil8], where it is found that the signal is coordinates of the test particle, and=1/y1—3M/r. The

dominated by quasinormal ringiridor the analogous prob- potentialV appearing in Eq(3) is given by

lem in the Baados-Teitelboim-Zanelli (BTZ) three-

—mg f (14 0s¢) (—gapz®2®) V2N, )

2 +[w?=V(r)]¥(r)=S. (3

ere,

dimensional black hole, s¢&9]]. 2M  I(1+1)

The paper is organized as follows. In Sec. II, we introduce V=t 2+ —+——| )
the problem, and the basic mathematical apparatus needed to ' '
solve it. In Sec. lll, we present the numerical results ob-

tained, and the most important features of these numeric:}ihe tortoise coordinate, is defined asir/dr., =(r).

results. In Sec. IV, we present some concluding remarks. . o )
B. Circular geodesics in the Schwarzschild-AdS geometry

Since to the best of our knowledge no full investigation
Il. EQUATIONS AND FORMALISM has been made on the geodesics in this spacetime, we shall
A. The problem study the circular null and timelike geodesics in the

Black holes in AdS i . | di . h Schwarzschild-AdS geometry, which will be useful in what
acknoes in spacetimes In several Gimensions Navg, .,y The integrals of motiorfdt/dr=E and r2d¢/dr

been recently studied. All dimensions up to 11 are of interesl L, whereE is an energy parameter ahdan angular mo-
in superstring theory, but experiment singles out four dimen-mer’]tum parameter, plus the constancy of the Lagrangian
sions(4D) as the most important. In 4D general relativity, an ield '

effective gravity theory in an appropriate string theory limit, y

the Kerr-Newman family of four-dimensional black holes 2 V(1) 2=E,V(r)2=f(e+L%r2) (6)

can be extended to include a negative cosmological constant ’ ’

[20]. Our_background is the 4D Schwarzschild-AdS black,naree=0 for null geodesics and=1 for timelike geode-
hole metric, sics.

dr2 (i) Timelike circular geodesicdn this casee=1. De-
ds?=f(r)dt*— f(—r)—rz(d02+sin20d¢2), (1)  mandingdV?/dr=0 we get

I_2_r5/RZ+ Mr? .

wheref(r)=(r?/R?+1—2M/r), Ris the AdS radius, anhl  r—3M ™
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and

1/2

wo=d¢/dt= = (8

1
=t

This means that circular timelike geodesics may exist for any

3M<r<. Let us now see which of them are stable and
which are unstable. If we differentiate the potential twice an
then substitutd.? given by Eq.(7), we obtain

15Mr3—4r*+6M2R?>°~ MR?r

d?v?/dr?=-2
r3R2(r—3M)

Now, Eg.(9) has one and only one real root ifM3<r <,
This root will give us the range of allowed stable and un-

stable circular orbits. The roots can be obtained numerically,

but two important limiting cases can be studied analytically,

PHYSICAL REVIEW D 65 104033

we note that two independent solutiows, and ¥, of Eq.
(11), with the source term set to zero, have the behavior

e 19, r—r,, (12)
Y1~ Ar+B/r?, r—o, (13

1/r?, r—oo, (14)
Wy~ i wr —iwr

Ce“«+De ', r—r,. (15

dThe Wronskian of these two solutions W=2Ciw. By a

standard Green’s function analysis, we get that the solution
to the inhomogeneous equati¢hl) behaves, near the hori-
zon, as

g ior

o]

S¥,

lI,I(ZiTC) ) f 5(I'—I'O)dl' (16)
e—iwr* S
—m?(ro)\lfz(ro). 7

and these are the very large and very small black hole limitsAll we need to do is find a solutiol, of the corresponding
For very large black holes, we can immediatly see that thélomogeneous equation satisfying the above mentioned

root is atr =15/4M =3.79M. For very small black holes we
can see that the root is at=6M, which is what we expect:
for small black holes the results of the Schwarzschild geom

boundary condition$15). In the numerical work, we chose
to adoptr as the independent variable, therefore avoiding the
numerical inversion of . (r). The integration was started at

etry should carry over. For any intermediate mass, the ladt large value of =r;, which wasr;=10°r .. typically. Equa-

stable circular orbit lies betwear=3.75M andr=6M.
(ii) Null circular geodesicsIn this case we require

=0, r=0, anddV?/dr=0, which gives us

E2
L2

1

= =

1

r=3M, ey
27M?2

(10

andd?Vv?/dr<0. Thus, just as in Schwarzschild spacetime, a

circular orbit of radius 81 is the only allowed null geodesic,
which is furthermore an unstable one.

C. The Green'’s function solution

Under these conditions, E¢3) becomes

2w (r) ) 2
ar—2+[m wo=V(N]V(r)=8d(r—rg), (11
with  §=4f(r)7Y,,(7/2,0)/(yr), and again vy

=1/J1-3M/ry. We would like to draw attention to the fact
that for circular geodesic motion the frequensymust be a
multiple of the frequencyw of revolution around the black
hole, i.e.,o=mwg. In EQ. (11) we have rescaled r—r/R,
and measure everything in terms Rf i.e., o is to be read
oR, ¥ is to be read R/gsmg) W andr , , the horizon radius,
is to be read , /R. Equation(11) is to be solved under the

tion (15) was used to infer the boundary conditios(r;)
and ¥ (r;). We then integrated inward from=r; to typi-
callyr=r,+10 °r, . Equation(15) was then used to g€t

The total powerP,, radiated into the black hole B
=3 m=o(w?/2m)|¥|?, and the power spectru® (power
radiated at a given frequeney=maw,) is

P(Mwo) =|§m|

wherem is fixed in the summation.

(mw0)2
2

| 2

v (19

IIl. NUMERICAL RESULTS
A. Large and intermediate black holes

We define large and intermediate black holes as black
holes withr ,=1. The results of the numerical integration
are shown in Figs. (&) and Xb) for orbits atro=5 andr,
=20, respectively, and a horizon radius=1. In Fig. 2 the
power spectrum is shown as a function of the azimuthal
quantum numbem for largem on a semilogarithmic plot.

The results for the large black hole regime are the follow-
ing.

(1) The power radiated in the=m modes is more than
95% of the total power.

(2) High multipoles, as one can see from Fig¢a)land
1(b), are clearly enhanced, and the radiation is synchrotronic.
To see that most of the radiation is in fact confined to small

boundary conditions appropriate for Schwarzschild-AdSangles, we have plotted the angular distribution of the power

black holes: ingoing waves at the horizoW Ae "),
and reflective boundary condition®&0) at infinity [21].
Of course, under these conditions, all the energy eventuall
goes down the black hole, and this is the energy we ar
interested in computing. To implement a numerical solution

in Fig. 3.

(3) The location of the peak of the spectrum increases
with increasing radius of the circular orbit, so that truly syn-
ehrotronic radiation occurs only for highly relativistian-
stable orbits.

104033-3
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p ry=1,1ry=5 dpP/dQ ry=1,ry=5
0.0007 0.012
0.0006
0.01
0.0005
0.008
0.0004
0.0003 0.006
0.0002 0.004
0.0001 0.002
(@) 10 20 30 40 50 60 70 -0.2 0 0.2 0.4 0
P r.=1,10=20 FIG. 3. Scalar power per unit solid anglie= =/2— 6, for the
case of a scalar particle orbiting around.a=1 black hole, with an
24107 orbital radiusry=5.
1.5x10 7 dent from Fig. 2, where we show a plot of IBgversusm; an
analytical approximation for largm seems very difficult to
1x107" achieve, due to the behavior of the potential. We find numeri-
s cally that for largem the exponential dependence of the
5x10 power spectrum is
o 20l oy
(b) 10 20 30 40 50 60 P~ e (19

FIG. 1. (@) Scalar radiation power spectrum as a function of thewhere w.;=2 y M?w,/0.09. We conclude from this that

azimuthal quantum numben, for an orbit withr,=5, around a
Schwarzschild-AdS black hole with, =1. (b) Scalar radiation
power spectrum as a function of the angular quantum numbésr

an orbit withr =20, around a Schwarzschild-AdS black hole with
ry=1.

most of the radiation is emitted at a giva_m and thatw
increases with the mass of the black héimerically we

have foundw~M?2).

P ri=0.5,r9=10
-8
(4) From Figs. 1a) and 1b), and as expected, we see that 3x10
the power output decreases with increasiggthe orbit ra- 2.5x1078
dius. In fact one can easily prove that for highthe power 251078
varies as If. s
(5) The location of the peak increases dramatically with ~ 1-5x 10
the mass of the hole. So for large black holes the emission is 1x10°8
dominated by very largen. This strong dependence of the -9
location of the peak on the black hole mass makes us believt 5x10
that sn_"lall black holes do I’]Qt emit synchrotronic radiation. (@) 5 7 3 8 10 12 12 D™
This will be seen to be true in the Sec. Il B.
(6) Furthermore, the power decays as an exponential
power of the frequency, for high frequencies, which is evi- 5 10_10P r.=0.2,r0=10
X
Log P =1 1.5x10 1
-8
-10 1x10°
-12 5x107"
— ry=5
14 ro .
---- =20 (b) N 2 3 7] 5 ™
-16f_______
_____________ FIG. 4. (a) Scalar radiation power as a function of the angular
25 50 55 _60 m guantum numberm, for an orbit with ry=10, around a

Schwarzschild-AdS black hole with, =0.5. (b) Scalar radiation

FIG. 2. Plot of logP vs m for largem. One can see that Idgis
a linear function ofm, so that for largem the power output de-
creases exponentially.
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B. Small black holes like Schwarzschild black holes. Our numerical results show
In Figs. 4a) and 4b) we show the numerical results for E:T]Egntgésdls not true: the boundary conditions at infinity have

small black holesr, . <1. In the small black hole regime, we
can see a completely different behavior, in that now tth

power decreases monotonlca[ly with mcrga&mghe angu- - gmall catalog of dynamical processes in AdS spacetimes. It is
lar_quantum number. Numerically, we find that, indepen-y it emphasizing that this is extremely important if one
dently ofro, the location(in 1) of the peak of the spectrum \yans to fully understand the AJS/CFT duality and whatever
progressively approachea=0 as one lowers the mass of gyrprises there may be to unfold in AdS spaces. Indeed here,
the black hole. Finally, foM<0.42R (r,<0.61&) the  in relation to the AdS/CFT correspondence, one can say that
spectrum is monotonically decreasingrm for all m. Still,  to the black hole corresponds a thermal bath, to the orbiting
for largem the spectrum continues to decay exponentially. particle corresponds a traveling solitinmp of energy, and
to the scalar field waves correspond particles decaying into
IV. CONCLUSIONS bosons of the associate operator of the gauge theory. Thus at

_ . the CFT boundary one has a traveling soliton perturbing the
We have computed the scalar radiation emitted by a scalgf,armal state andyirradiating particle rg)aﬁﬂsfa 27 P 9
test particle moving in a geodesic circular orbit around a T

Schwarzschild-AdS black hole. For large black holes, the
radiation is confined to small angles, and we therefore have
what can be called scalar synchrotron radiation. However, This work was partially funded by Fundaxpara a Cia-

the spectrum depends drastically on the size of the blackia e Tecnologia(FCT) through project SAPIENS 36280.
hole. For black holes with mass&<0.42R the spectrum V.C. also acknowledges financial support from FCT through
does not have a peak im, and so in this regime there is no the PRAXIS XXI programe. J.P.S.L. thanks Observiato
synchrotron radiation. One might be tempted at first sight tdNacional do Rio de Janeiro for hospitality. We acknowledge
say that small black holes in AdS spacetime should behaveonversations with Donald Lynden-Bell.

These results, plus results on all previously mentioned
ork on AdS spacetime, allow us to slowly start building a
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