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Black-hole collision with a scalar particle in three-dimensional anti–de Sitter spacetime

Vitor Cardoso* and Jose´ P. S. Lemos†

CENTRA, Departamento de Fı´sica, Instituto Superior Te´cnico, Av. Rovisco Pais 1, 1096 Lisboa, Portugal
~Received 9 January 2002; published 10 May 2002!

We study the collision between a BTZ black hole and a test particle coupled to a scalar field. We compute
the power spectrum, the energy radiated and the plunging waveforms for this process. We show that for late
times the signal is dominated by the quasinormal ringing. In terms of the AdS-CFT correspondence the bulk
gravity process maps into a thermal state, an expanding bubble and gauge particles decaying into bosons of the
associated operator. These latter thermalize on a time scale predicted by the bulk theory.
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I. INTRODUCTION

Anti–de Sitter~AdS! spacetime has been considered
fundamental meaning within high energy elementary part
physics, especially in supersymmetric theories of grav
such as 11-dimensional supergravity and M theory~or string
theory!. The dimensiond of AdS spacetime is a paramet
which can have values from two to eleven, and where
other spare dimensions either are joined as a compact m
fold M into the whole spacetime to yield AdSd3M 112d or
receive a Kaluza-Klein treatment. AdS spacetime appear
the background for black hole solutions and it also play
further crucial role since it is the near-horizon geomet
separated by a~soft! boundary from an otherwise asympto
cally flat spacetime, of some black solutions@1#. In addition,
by taking low energy limits at strong coupling and throu
group theoretic analysis, Maldacena conjectured a corres
dence between the bulk of AdS spacetime and a dual con
mal field gauge theory~CFT! on the spacetime boundar
itself @2#. A concrete method to implement this correspo
dence is to identify the extremum of the classical str
theory actionI for the dilaton fieldw, say, at the boundary o
AdS, with the generating functionalW of the Green’s corre-
lation functions in the CFT for the operatorO that corre-
sponds tow @3#, I w0(xm)5W@w0(xm)#, wherew0 is the value

of w at the AdS boundary and thexm label the coordinates o
the boundary. The motivation for this proposal can be see
the reviews@4#. In its strongest form the conjecture requir
that the spacetime be asymptotically AdS, the interior co
be full of gravitons or containing a black hole. The corr
spondence realizes the holographic principle; since the b
is effectively encoded in the boundary, and is also a stro
weak duality, it can be used to study issues of strong gra
using weak CFT or CFT issues at strong coupling using c
sical gravity in the bulk.

A particularly important AdS dimension is three. In AdS3
Einstein gravity is simple; the group of isometries is giv
by two copies ofSL(2,R), it has no propagating degrees
freedom, is renormalizable, it allows for the analytical co
putation of many physical processes extremely difficult
even impossible in higher dimensions, it belongs to the
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string theory compactification scheme@4#, the dual CFT2 is
the low-energy field theory of a D1-D5-brane system wh
can be thought of as living on a cylinder~the boundary of
AdS3) @5#, and it contains the Ban˜ados-Teitelboim-Zanelli
~BTZ! black hole. The BTZ black hole is of considerab
interest, not only because it can yield exact results, but a
because one hopes that the results can qualitatively be
ried through to higher dimensions. Several results relate
the BTZ black hole itself and to the AdS-CFT correspo
dence have been obtained@6–9#. The AdS-CFT mapping im-
plies that a black hole in the bulk corresponds to a therm
state in the gauge theory@10#. Perturbing the black hole cor
responds to perturbing the thermal state and the decayin
the perturbation is equivalent to the return to the therm
state. Particles initially far from the black hole correspond
a blob ~a localized excitation! in the CFT, as the IR-UV
duality teaches@11#. The evolution towards the black hol
represents a growing size of the blob with the blob turn
into a bubble traveling close to the speed of light@7#.

In this work we extend some of the previous results a
we study in detail the collision between a BTZ black ho
and a scalar particle. Generically, a charged particle fall
towards a black hole emits radiation of the correspond
field. In higher dimensions it also emits gravitational wav
but since in three dimensions there is no gravitational pro
gation in the BTZ case there is no emission. Thus, a sc
particle falling into a BTZ black hole emits scalar wave
This collision process is important from the points of view
three-dimensional dynamics and of the AdS-CFT conjectu
Furthermore, one can compare this process with previ
works, since there are exact results for the quasinormal m
~QNM! spectrum of scalar perturbations which are known
govern their decay at intermediate and late times@12#.

The phenomenon of radiation emission generated from
infalling particle in asymptotically flat spacetimes has be
studied by several authors@13# and most recently in@14#,
where the results are to be compared to full scale numer
computations for strong gravitational wave emission of
trophysical events@15# which will be observed by the
GEO600, Laser Interferometric Gravitational Wave Obser
tory ~LIGO!, and VIRGO projects. A scalar infalling particl
as a model for calculating radiation reaction in flat spa
times has been considered in@16#. Many of the techniques
have been developed in connection to such spacetimes.
an analysis has not been carried to nonasymptotically
spacetimes, which could deepen our understanding of th
©2002 The American Physical Society32-1
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kind of events, and of Einstein’s equations. In this respe
for the mentioned reasons, AdS spacetimes are the m
promising candidates. As asymptotically flat spacetimes t
provide well defined conserved charges and positive ene
theorems, which makes them a good testing ground if
wants to go beyond flatness. However, due to differ
boundary conditions it raises new problems. The first on
that since the natural boundary conditions are boxlike al
the generated radiation will eventually fall into the bla
hole, thus infinity has no special meaning in this problem
is as good a place as any other, i.e., one can calculate
radiation passing at any radiusr, for instance near the hori
zon. Second, in contrast to asymptotically flat spacetim
here one cannot put a particle at infinity~it needs an infinite
amount of energy! and thus the particle has to start fro
finite r. This has been posed in@14# but was not fully solved
when applied to AdS spacetimes.

II. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

We consider a small test particle of massm0 and charge
q0, coupled to a massless scalar fieldw, moving along a
radial timelike geodesic outside a BTZ black hole of massM.
The metric outside the BTZ black hole is

ds25 f ~r !dt22
dr2

f ~r !
2r 2du2, ~1!

where f (r )5(2M1r 2/ l 2) and l is the AdS radius (G
51/8;c51). The horizon radius is given byr 15M1/2l . We
treat the scalar field as a perturbation, so we shall neglec
back reaction of the field’s stress tensor on the metric~this
does not introduce large errors@17#!. If we represent the
particle’s worldline byxm5xp

m(t), with t the proper time
along a geodesic, then the interaction actionI is

I52
1

8pE g1/2w ;aw ;ad3y

2m0E ~11q0w!~2gabẋ
aẋb!1/2dt, ~2!

and thus the scalar field satisfies the inhomogeneous w
equation hw524pm0q0*d3

„xm2xp
m(t)…(2g)21/2dt,

whereg is the metric determinant andh denotes the cova
riant wave operator. As the particle moves on a timelike g
desic, we have

ṫ p5
E

f ~r p!
, ṙ p52„E 22 f ~r p!…1/2, ~3!

where˙[d/dt, andE is a conserved energy parameter. W
shall be considering the test particle initially at rest at a d
tance r 0 @where E 25 f (r 0)# and at up50. Expanding the
field as

w~ t,r ,u!5
1

r 1/2
f~ t,r !(

m
eimu, ~4!
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where m is the angular momentum quantum number, t
wave equation is given by~after an integration inu)

]2f~ t,r !

]r
*
2

2
]2f~ t,r !

]t2
2V~r !f~ t,r !

52
2q0m0f

r 1/2 S dt

dt D 21

d~r 2r p!, ~5!

with V(r )53r 2/4l 42M /2l 22M2/4r 21m2/ l 22Mm2/r 2,
and r * 52M 21/2arcoth(rM 21/2).

III. THE INITIAL DATA AND BOUNDARY CONDITIONS

In the case we study, and in contrast to asymptotically
spacetimes where initial data can be pushed to infinity@13#,
initial data must be provided. Accordingly, we take th
Laplace transformF(v,r ) of f(t,r ) to be

F~v,r !5
1

~2p!1/2E0

`

eivtf~ t,r !dt. ~6!

Then, Eq.~5! may be written as

]2F~r !

]r
*
2

1@v22V~r !#F~r !5S1
ivf0

~2p!1/2
, ~7!

with S52( f /r 1/2)(2/p)1/2(1/ṙ p)eivt being the source func
tion, and f0 the initial value of f(t,r ) satisfying

]2f0(r ,m)/]r
*
2 2V(r )f0(r ,m)5 2(2 f /r 1/2)(dt/dt) r 0

21d(r

2r p). We have rescaledr ,r→r / l , and measure everything i
terms ofl, i.e.,f, r 1 , andv are to be read, (1/l 1/2q0m0)f,
r 1 / l and v l , respectively. One can numerically solve th
equation for the initial dataf0 by demanding regularity a
both the horizon and infinity~for a similar problem see@18#!.
In Fig. 1, we show the form off0 for a typical caser 1

50.1,r 051, and for three different values ofm,m50,1,2.
Other cases liker 151,10, . . . andseveral values ofr 0 can
be computed. Large black holes have a direct interpreta
in the AdS-CFT conjecture. The results for large or sm
black holes are nevertheless similar, as we have checked
a test for the numerical evaluation off0, we have checked
that asr 0→r 1 , all the multipoles fade away, i.e.,f0→0,
supporting the no-hair conjecture~that all the multipoles go

FIG. 1. Initial dataf0 for a BTZ black hole withr 150.1, and
with the particle atr 051, for several values ofm, the angular
quantum number.
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to zero!. To solve Eq.~7! one has to impose physically se
sible boundary conditions, appropriate to AdS spacetimes
our case the potential diverges at infinity, wheref0 vanishes,
so we impose reflective boundary conditions@19# there, i.e.,
F50 at infinity. It has been common practice to setF
;F(v)e2 ivr

* near the horizon, meaning ingoing wav
there. This is an allowed boundary condition as long asf0
vanishes there. However, iff0 does not vanish there, one ha
to be careful in defining boundary conditions at the horiz
When dealing with AdS spacetimes this detail is crucial
extract the correct information, and it has been overloo
when one deals with asymptotically flat spacetimes as
@14#. Equation~7! together with the source termS allows us
to conclude that near the horizonF;G(v)eivr

*
1F(v)e2 ivr

* 1 if0 /(2p)1/2v. Since we want waves goin
down the black hole, we shall require

F;F~v!e2 ivr
* 1

if0

~2p!1/2v
, r→r 1 . ~8!

IV. GREEN’S FUNCTION SOLUTION

To proceed we must find a solution to Eq.~7! through a
Green’s function analysis. A standard treatment@14# invokes
contour integration to calculate the integrals near the h
zon. There is no need for this here; by demanding regu
ized integrals the correct boundary conditions appear i
natural way~see@20# for a regularization of the Teukolsk
equation!. Let F` andFH be two independent solutions o
the homogeneous form of Eq.~7!, satisfyingFH;e2 ivr

* ,r
→r 1 ; FH;A(v)r 1/21B(v)r 23/2, r→`; F`;C(v)eivr

*
1D(v)e2 ivr

* ,r→r 1 ; F`;1/r 3/2,r→`. Define hH

throughdhH/dr* 52FH andh` throughdh`/dr* 52F`.
We can then show thatF given by

F5
1

W FF`E
2`

r

FHSdr* 1FHE
r

`

F`Sdr* G
1

iv

~2p!1/2W
FF`E

2`

r

hH
df0

dr*
dr* 1FHE

r

`

h`
df0

dr*
dr*

1~h`f0FH2hHf0F`!~r !G , ~9!

is a solution to Eq.~7! and satisfies the boundary condition
The WronskianW52ivC(v) is a constant. Near infinity, we
get from Eq.~9! that

F~r→`!5
1

W FF (r→`)
` E

2`

`

FHSdr* G
1

iv

~2p!1/2W
FF (r→`)

` E
2`

`

hH
df0

dr*
dr*

1~h`f0FH2hHf0F`!~r→`!G . ~10!

Now, in our case, this is just zero, as it should be, beca
both F`,f0→0, asr→`. However, if one is working with
10403
In

.

d
in

i-
r-
a

.

se

asymptotically flat space, as in@14#, where F`→eivr
* at

infinity, we get~recalling thatf0→0)

F~r→`!5
1

W FF (r→`)
` E

2`

`

FHSdr* G
1

iv

~2p!1/2W
F (r→`)

` E
2`

`

hH
df0

dr*
dr* , ~11!

and where each integral is well defined. In particular, in
grating by parts the second integral can be put in the for

E
2`

`

hH
df0

dr*
dr* 5@hHf0#2`

` 1E
2`

`

FHf0dr*

5
if0e2 ivr

*

v
~r→2`!1E

2`

`

FHf0dr* .

~12!

Here, the final sum converges, but not each term in it. E
pression~12! is just expression~3.15! in @14#, although it
was obtained imposing incorrect boundary conditions a
not well defined regularization schemes. Due to the fact t
the initial data vanishes at infinity, the results in@14# are left
unchanged. In this work, we are interested in computing
wave functionF(r ,v) near the horizon (r→r 1). In this
limit we have

F~r;r 1!5
1

W FFHE
r 1

`

F`Sdr* G
1

iv

~2p!1/2W
FHF E

r 1

`

F`f0dr*

2~h`f0!~r 1!G1
if0~r 1!

~2p!1/2v
, ~13!

where an integration by parts has been used. Fortunately,
can obtain an exact expression forF` in terms of hypergeo-
metric functions@12#. The results forF` andW are

F`5
1

r 3/2~12M /r 2! iv/2M1/2FS a,b,2,
M

r 2D , ~14!

W52iv

2iv/M1/2
G~2!GS 2

iv

M1/2D
M3/4GS 11 i

m2v

2AM
D GS 12 i

m1v

2AM
D .

~15!

Here,a511 i @(m2v)/2AM # andb512 i @(m1v)/2AM #.
So, to findF we only have to numerically integrate~13!. We
have also determinedF` numerically by imposing the
boundary conditions above. The agreement between the
2-3
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merically computedF` and Eq.~14! was excellent. To find
f(t,r ) one must apply the inverse Laplace transformation
F(v,r ). Integrating the wave equation in this spacetime
simpler than in asymptotically flat space, in the sense t
due to the boundary conditions at infinity the solution
more stable, and less effort is needed to achieve the s
accuracy. Using a similar method to that in@14#, we estimate
the error in our results to be limited from above by 0.5%

V. NUMERICAL RESULTS FOR THE WAVEFORMS
AND SPECTRA

To better understand the numerical results, we first po
out that the QNM frequencies for this geometry, calcula
by Cardoso and Lemos@12# ~see also@21# for a precise re-
lation between these QNM frequencies and the poles of
correlation functions on the CFT side!, are

vQNM56m22iM 1/2~n11!. ~16!

In Fig. 2 we show the waveforms for ther 150.1, r 051
black hole, as a function of the advanced null-coordinatv
5t1r * . This illustrates in a beautiful way that QNMs gov
ern the late time behavior of the waveform. For example,
m50, vQNM520.2i (n11), one expects to find a purely de
caying perturbation. This is evident from Fig. 2. Form
51,vQNM5120.2i (n11), so the signal should ring~at late
times! with frequency one. This is also clearly seen from F
2. For m52 we have the same kind of behavior. For lar
negativev and fixedt one has large negativer * , so one is
near the horizon. Thusf(v→2`) in Fig. 2 should give the
same values asf0 at r 1 in Fig. 1, which is the case. Th
energy spectra peak at higherv when compared to the fun
damentalvQNM as is evident from Fig. 3, which means th
higher modes are excited. The total radiated energy a

FIG. 2. Waveformsf(v) for a r 150.1, r 051 BTZ black hole,
for the three lowest values ofm.
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function ofm goes to zero slower than 1/m implying that the
total radiated energy diverges. However, this divergence
be normalized by taking a minimum sizeL for the particle
with a cut off given bymmax;(p/2)(r 1 /L) @13#. We have
calculated for r 150.1 the total energy for the casesm
50,1,2, yieldingEm50.26, Em51.12, andEm52.6. An
estimation of the total energy for a particle withmmax
.1000 yieldsEtotal.80 ~the energy is measured in units o
q0

2m0
2). We have also computed the radiated energy for s

eral values ofr 0 and verified that it is not a monotonic func
tion of r 0. For small values ofr 0 the energy radiated is a
linear function of (r 02r 1), for intermediater 0 it has several
peaks, and it grows monotonically for larger 0. The zero
frequency limit ~ZFL! depends only on the initial data an
one can prove that it is given by (dE/dv)v→05f0

2. This is
to be contrasted to the ZFL for outgoing gravitational rad
tion in asymptotically flat spacetimes@22# where it depends
only on the initial velocity of the test particle.

VI. CONCLUSIONS

In conclusion, we have obtained for the first time t
plunging waveforms, the power spectrum, and the ene
radiated for the collision of a scalar particle with the BT
black hole. We have shown these quantities for small bl
holes. For large black holes the results are qualitatively
same, with the one difference that the ringing is much sho
~these results together with results for higher dimensio
black holes will be reported elsewhere!. For the AdS-CFT
correspondence we have added to previous works the pre
evolution of an infalling probe and its radiation. This h
implications in the strongly coupled CFT: to the black ho
corresponds a thermal bath, to the infalling probe cor
sponds an expanding bubble, and to the scalar field wa
correspond particles decaying into bosons of the assoc
operator of the gauge theory. Both the bubble and the
ticles in the CFT thermalize with the characteristic time sc
calculated through the gravity in the bulk 1/Im@vQNM#, os-
cillate according to Fig. 2, which for late times yields th
oscillation frequency Re@vQNM#, and radiate according to
Fig. 3. This is hard to calculate by direct means in t
strongly coupled regime of the gauge theory.

ACKNOWLEDGMENTS

We thank Amaro Rica da Silva for discussions and Obs
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FIG. 3. Typical energy spectra, shown here forr 150.1 andr 0
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