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Black-hole collision with a scalar particle in three-dimensional anti-de Sitter spacetime
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We study the collision between a BTZ black hole and a test particle coupled to a scalar field. We compute
the power spectrum, the energy radiated and the plunging waveforms for this process. We show that for late
times the signal is dominated by the quasinormal ringing. In terms of the AdS-CFT correspondence the bulk
gravity process maps into a thermal state, an expanding bubble and gauge particles decaying into bosons of the
associated operator. These latter thermalize on a time scale predicted by the bulk theory.
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. INTRODUCTION string theory compactification scherfé], the dual CF7 is
the low-energy field theory of a D1-D5-brane system which

Anti—de Sitter (AdS) spacetime has been considered ofcan be thought of as living on a cylindéhe boundary of
fundamental meaning within high energy elementary particleadS;) [5], and it contains the Baulos-Teitelboim-Zanelli
physics, especially in supersymmetric theories of gravity(BTZ) black hole. The BTZ black hole is of considerable
such as 11-dimensional supergravity and M the@rystring  interest, not only because it can yield exact results, but also
theory). The dimensiord of AdS spacetime is a parameter because one hopes that the results can qualitatively be car-
which can have values from two to eleven, and where thaied through to higher dimensions. Several results related to
other spare dimensions either are joined as a compact marihe BTZ black hole itself and to the AdS-CFT correspon-
fold M into the whole spacetime to yield Ag8 M 29 or  dence have been obtainggh-9]. The AdS-CFT mapping im-
receive a Kaluza-Klein treatment. AdS spacetime appears ddies that a black hole in the bulk corresponds to a thermal
the background for black hole solutions and it also plays @tate in the gauge theof$0]. Perturbing the black hole cor-
further crucial role since it is the near-horizon geometry,responds to perturbing the thermal state and the decaying of
separated by ésoft) boundary from an otherwise asymptoti- the perturt_)atlor_n is equivalent to the return to the thermal
cally flat spacetime, of some black solutidi3. In addition, state. Partlcles_lmtlally fgr from the black hole correspond to
by taking low energy limits at strong coupling and througha blob (a localized excitationin the CFT, as the IR-UV

group theoretic analysis, Maldacena conjectured a correspoﬁi—uallty teacheg11]. The evolution towards the black hole

dence between the bulk of AdS spacetime and a dual confoF—epresents a growing size of the blob with the blob turning

mal field gauge theoryfCFT) on the spacetime boundary Into a bubble traveling close to the speed of lighL

itself [21. A hod to imol hi In this work we extend some of the previous results and
itself [2]. A concrete method to implement this correspon-, study in detail the collision between a BTZ black hole

dence is to identify the extremum of the classical stringynq 5 scalar particle. Generically, a charged particle falling
theory actiol for the dilaton fieldy, say, at the boundary of 5\yards a black hole emits radiation of the corresponding

AdS, with the generating function&lV of the Green’s corre-  fia|q | higher dimensions it also emits gravitational waves,

lation functions in the CFT for the operat@ that corre-  p ¢ since in three dimensions there is no gravitational propa-
sponds tap [3], I xs=WLeo(X*)], Whereeq is the value  gation in the BTZ case there is no emission. Thus, a scalar
of ¢ at the AdS boundary and the label the coordinates of particle falling into a BTZ black hole emits scalar waves.
the boundary. The motivation for this proposal can be seen ifThis collision process is important from the points of view of
the reviewg4]. In its strongest form the conjecture requires three-dimensional dynamics and of the AdS-CFT conjecture.
that the spacetime be asymptotically AdS, the interior couldFurthermore, one can compare this process with previous
be full of gravitons or containing a black hole. The corre-works, since there are exact results for the quasinormal mode
spondence realizes the holographic principle; since the bulkQNM) spectrum of scalar perturbations which are known to
is effectively encoded in the boundary, and is also a stronggovern their decay at intermediate and late tirfi.

weak duality, it can be used to study issues of strong gravity The phenomenon of radiation emission generated from an
using weak CFT or CFT issues at strong coupling using clasinfalling particle in asymptotically flat spacetimes has been
sical gravity in the bulk. studied by several authofd3] and most recently irf14],

A particularly important AdS dimension is three. In AJS where the results are to be compared to full scale numerical
Einstein gravity is simple; the group of isometries is givencomputations for strong gravitational wave emission of as-
by two copies ofSL(2,R), it has no propagating degrees of trophysical events[15] which will be observed by the
freedom, is renormalizable, it allows for the analytical com-GEQOG600, Laser Interferometric Gravitational Wave Observa-
putation of many physical processes extremely difficult ortory (LIGO), and VIRGO projects. A scalar infalling particle
even impossible in higher dimensions, it belongs to the fullas a model for calculating radiation reaction in flat space-

times has been considered[ib6]. Many of the techniques

have been developed in connection to such spacetimes. Such
*Email address: vcardoso@fisica.ist.utl.pt an analysis has not been carried to nonasymptotically flat
"Email address: lemos@kelvin.ist.utl.pt spacetimes, which could deepen our understanding of these
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kind of events, and of Einstein’s equations. In this respect,
for the mentioned reasons, AdS spacetimes are the most
promising candidates. As asymptatically flat spacetimes they
provide well defined conserved charges and positive energy
theorems, which makes them a good testing ground if one
wants to go beyond flatness. However, due to different
boundary conditions it raises new problems. The first one is
that since the natural boundary conditions are boxlike all of
the generated radiation will eventually fall into the black
hole, thus infinity has no special meaning in this problem, it FIG. 1. Initial datag, for a BTZ black hole withr , =0.1, and

is as good a place as any other, i.e., one can calculate thdth the particle atr,=1, for several values ofn, the angular
radiation passing at any radiusfor instance near the hori- quantum number.

zon. Second, in contrast to asymptotically flat spacetimes,

here one cannot put a particle at infinify needs an infinite  where m is the angular momentum quantum number, the
amount of energyand thus the particle has to start from wave equation is given bgafter an integration ir9)

finite r. This has been posed 4] but was not fully solved

o O © O

when applied to AdS spacetimes. Pp(t,r)  92H(t,r)
7z VDen
Il. FORMULATION OF THE PROBLEM AND BASIC *
FQUATIONS - _Zqomof (ﬂ) _15(r —ry) (5
We consider a small test particle of masg and charge rt2 \dr P

0o, coupled to a massless scalar fiefd moving along a
radial timelike geodesic outside a BTZ black hole of mislss ~ with  V(r)=3r2/41*—M/212—M?/4r?+ m?/12—Mm?/r?,

The metric outside the BTZ black hole is andr, = — M~ 2arcoth¢M ~1?).
2
dSZIf(r)dtz— dr — 12442 (1) IIl. THE INITIAL DATA AND BOUNDARY CONDITIONS
f(r) '

In the case we study, and in contrast to asymptotically flat
where f(r)=(—M+r?/1?) and | is the AdS radius @ spacetimes where initial data can be pushed to infirig},
=1/8;c=1). The horizon radius is given by, =M%, We initial data must be provided. Accordingly, we take the
treat the scalar field as a perturbation, so we shall neglect tHeaplace transformb(w,r) of ¢(t,r) to be
back reaction of the field’s stress tensor on the methis
does not introduce large errofd7]). If we represent the 1 2 ot q
particle’s worldline byx*=xg(7), with 7 the proper time R CH (2m)*2Jo e g(t,r)dt. ©®)
along a geodesic, then the interaction actiois

1 Then, Eq.(5) may be written as
I:__J 1/2 ) ;ad3
gr) 9 #a® Y PPD(r) 02— V(1)b(r) =S+ iwag
w = V(r rN=S+—:-:
ri (277)1/2

7
—mg f (1+0o¢) (— Garx™x") V1, )
with S= — (f/r¥?)(2/m)Y*(1ir ;)e'“" being the source func-
and thus the scalar field satisfies the inhomogeneous wavgn, and ¢, the initial value of ¢(t,r) satisfying
; _ -1
equation L= —4amoof S0 —xg(M)(—0) 7. 24 (v my1ar2 —V(r) go(r,m)= —(2F/r¥3)(dtidn), *(r
whereg is the metric determinant arid denotes the cova- 0

riant wave operator. As the particle moves on a timelike geo
desic, we have

—rp). We have rescaledr—r/I, and measure everything in
terms ofl, i.e., ¢, r. , andw are to be read, (I¥%qomo) ¢,
r. /I and wl, respectively. One can numerically solve the
£ . equation for the initial datapy by demanding regularity at
=ty P (E2=f(rp)"2 (3)  both the horizon and infinityfor a similar problem segl8]).
P In Fig. 1, we show the form ofp, for a typical caser .

where =d/dr, and€ is a conserved ener arameter We=0.1r0=1, and for three different values o, m=0,1,2.
— e gy p ' Other cases like ., =1,10 ... andseveral values of, can

shall be considering the test particle initially at rest at a dis- . . .
tancer, [where £2=f(ry)] and at 8,=0. Expanding the be computed. Large black holes have a direct interpretation

field as in the AdS-CFT conjecture. The results for large or small
black holes are nevertheless similar, as we have checked. As
1 a test for the numerical evaluation @f,, we have checked
e(t,r,0)= —o(t,r)>, em (4) thatasro—r., all the multipoles fade away, i.e¢—0,
ri2 m supporting the no-hair conjectufthat all the multipoles go

t
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to zerg. To solve Eq(7) one has to impose physically sen- asymptotically flat space, as ii4], where ®*—e'“’+ at
sible boundary conditions, appropriate to AdS spacetimes. linfinity, we get(recalling that¢y— 0)
our case the potential diverges at infinity, whérgvanishes,

so we impose reflective boundary conditiqd9)] there, i.e., . S

®=0 at infinity. It has been common practice to skt q’(r_’w):\,_v q)(r—m)f_mq) Sdr*}

~F(w)e "'+ near the horizon, meaning ingoing waves

there. This is an allowed boundary condition as longpgas o = dey

vanishes there. However, ¢f, does not vanish there, one has +—1/‘1>z°r%x)f h"—dr, , (11)
(2) 2w —e o dry

to be careful in defining boundary conditions at the horizon.
When dealing with AdS spacetimes this detail is crucial to ) ] ] ) ]
extract the correct information, and it has been overlooke@nd where each integral is well defined. In particular, inte-
when one deals with asymptotically flat spacetimes as igrating by parts the second integral can be put in the form
[14]. Equation(7) together with the source ter@allows us do

to conclude that near the horizonb~G(w)e'“ R R PR Tapp “ H
+F(w)e " +igy/(27)?w. Since we want waves going J,xh dr, dry =[h"¢o] ..+ J;,fb Podrs

down the black hole, we shall require

i e—iwr* o
. |¢0 :%T(r—)_oo)‘f'f CI)H(;SOdI’*.
b~Fo)e "t ——2—, =i (§) o
(2m) 2w (12
IV. GREEN'S FUNCTION SOLUTION Here, the final sum converges, but not each term in it. Ex-

pression(12) is just expression(3.15 in [14], although it

To proceed we must find a solution to B through a was obtained imposing incorrect boundary conditions and
Green's function analysis. A standard treatrida] invokes not well defined regularization schemes. Due to the fact that

contour integration to calculate the integrals near the hori;, ="~ ; L
zon. There is no need for this here; by demanding regulart-he initial data vanishes at infinity, the resultd i#f] are left

ized integrals the correct boundary conditions appear in gncha?ged: In this work, we ﬁre Lntgrested n Compuﬂf‘g the
natural way(see[20] for a regularization of the Teukolsky wave function®(r,w) near the horizon ~r.). In this
equation. Let ®* and®" be two independent solutions of limit we have
the homogeneous form of E(7), satisfying®™~e™1¢" r .
—r,; DH~A(0)r2+B(w)r 32 r—ow; ®*~C(w)e'“+ D(r~r ):i[q)Hf d*Sdr }
+D(w)e @ r—r,; ®*~1k%r —x. Define hH W ¥
throughdht'/dr, = — ®" andh” throughdh*/dr, = — ®~.

M+

We can then show thab given by N q)H[f O pydr,
1 r o (277)1/2W My
b=— <D°°f dDHSdr*HDHf d~Sdr, )
W —o r - i o(r4)
—(h"¢o)(r ) +ZT' (13)
i o (" L n9%o u[*.deo (2m) " w
+—1/ ()] J h d—dr*+<D J h d dl'*
(2m)w — M r M where an integration by parts has been used. Fortunately, one
can obtain an exact expression fbf°’ in terms of hypergeo-
+(h°°¢O<I>H—hH¢O<I>°°)(r)}, (99  metric functiong12]. The results fod™ andW are
is a solution to Eq(7) and satisfies the boundary conditions. o= 1 Flab ZM (14)
The WronskiadlV=2i o C(w) is a constant. Near infinity, we r32(1— |\/|/r2)iw/2’\/'1'2 T2
get from Eq.(9) that
1 > . 1/ i
_ ® H wl/M I
@(reoc)—v—v (D(H“’)ﬁmq) Sdr*} 2! 21“(2)1“ VI
W=2iw n
iw * d(i)o M3/4F 1+ m_w>r( _'m ot
S H_"0 [ i
2 aw (”“’)Loh ar, o' 2yM 2M 15

+(h”¢oq>H—h”¢o¢°°)(f—>°°)}- (10 Here,a=1+i[(m—w)/2yM] andb=1—i[(m+ w)/2yM].
So, to find® we only have to numerically integrat#3). We
Now, in our case, this is just zero, as it should be, becauskave also determinedP™ numerically by imposing the
both ®*, $o—0, asr —co. However, if one is working with  boundary conditions above. The agreement between the nu-
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04 r+=0.1,rg=1 dE/dw r.=0.1,ro=1
’ 0 10 — m=0
m=1
-0.5 8 -- m=2
¢m:O -1 6 ,"_\\
-1.5 4 ,’I PR
-2 > // / N\
/ / NN
0 6 v T2 3 1 35°©
8'3 FIG. 3. Typical energy spectra, shown here for=0.1 andr,
m=1 0.2
0.4 function of m goes to zero slower thanr/implying that the
-0.6 total radiated energy diverges. However, this divergence can
v be normalized by taking a minimum sizefor the particle
0.2 with a cut off given bym,,~ (7/2)(r, /L) [13]. We have
0.1 calculated forr,=0.1 the total energy for the cases
¢, 0 =0,1,2, yieldingE,-g=26, E,,-1=12, andE-,=6. An
0.1 estimation of the total energy for a particle witi,,,,
0.2 =1000 yieldsE,y,~=80 (the energy is measured in units of
30 -i0 0 10 20 qgmg). We have also computed the radiated energy for sev-
v eral values of ; and verified that it is not a monotonic func-
FIG. 2. Waveformsp(v) forar,=0.1,r,=1 BTZ black hole,  tion of ry. For small values of the energy radiated is a
for the three lowest values oh. linear function of ¢;—r ), for intermediate , it has several

peaks, and it grows monotonically for largg. The zero
merically computedb™ and Eq.(14) was excellent. To find frequency limit(ZFL) depends only on the initial data and
¢(t,r) one must apply the inverse Laplace transformation tane can prove that it is given bylE/dw),, o= qﬁé. This is
®(w,r). Integrating the wave equation in this spacetime isto be contrasted to the ZFL for outgoing gravitational radia-
simpler than in asymptotically flat space, in the sense thatjon in asymptotically flat spacetimg&2] where it depends
due to the boundary conditions at infinity the solution isonly on the initial velocity of the test particle.
more stable, and less effort is needed to achieve the same
accuracy. Using a similar method to thaf ], we estimate VI. CONCLUSIONS

the error in our results to be limited from above by 0.5%. ] ) ) )
In conclusion, we have obtained for the first time the

plunging waveforms, the power spectrum, and the energy
radiated for the collision of a scalar particle with the BTZ
black hole. We have shown these quantities for small black

To better understand the numerical results, we first poinboles. For large black holes the results are qualitatively the
out that the QNM frequencies for this geometry, calculateds@me, with the one difference that the ringing is much shorter
by Cardoso and Lemdd.2] (see alsd21] for a precise re- (these results together with results for higher dimensional
lation between these QNM frequencies and the poles of thelack holes will be reported elsewhgréor the AdS-CFT

V. NUMERICAL RESULTS FOR THE WAVEFORMS
AND SPECTRA

correlation functions on the CFT sigere corres_pondence we h_ave added to pr_evious_ W_orks th_e precise
evolution of an infalling probe and its radiation. This has
wonm= = M—2iM Y2(n+1). (16) implications in the strongly coupled CFT: to the black hole

corresponds a thermal bath, to the infalling probe corre-
In Fig. 2 we show the waveforms for the.=0.1,r,=1  Sponds an expanding bubble, and to the scalar field waves

black hole, as a function of the advanced null-coordinate Ccorrespond particles decaying into bosons of the associate
=t+r, . This illustrates in a beautiful way that QNMs gov- Operator of the gauge theory. Both the bubble and the par-
ern the late time behavior of the waveform. For example, fofticles in the CFT thermalize with the characteristic time scale
m=0, wguu=—0.2(n+1), one expects to find a purely de- calculated through the gravity in the bulk 1fl@gym], 0s-
caying perturbation. This is evident from Fig. 2. For  cillate according to Fig. 2, which for late times yields the
=1wouu=1—0.2(n+1), so the signal should rin@t late oscillation frequency Revgyw], and radiate according to

times with frequency one. This is also clearly seen from Fig.F'g' 3. This is hard_ to calculate by direct means in the
2. Form=2 we have the same kind of behavior. For IargeStrongly coupled regime of the gauge theory.

negativev and fixedt one has large negative, , so one is
near the horizon. Thug(v— —o°) in Fig. 2 should give the
same values ag, atr, in Fig. 1, which is the case. The We thank Amaro Rica da Silva for discussions and Obser-
energy spectra peak at higherwhen compared to the fun- vataio Nacional-Rio de Janeiro for hospitality. This work
damentalwgny as is evident from Fig. 3, which means that was partially funded by FCT-Portugal through project PESO/
higher modes are excited. The total radiated energy as RRO/2000/4014 and through PRAXIS XXI program.
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