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This is the first paper in a series aimed to implement boundary conditions consistent with the constraints’
propagation in 3D unconstrained numerical relativity. Here we consider spherically symmetric black hole
spacetimes in vacuum or with a minimally coupled scalar field, within the Einstein-Christéglsymmetric
hyperbolic formulation of Einstein’s equations. By exploiting the characteristic propagation of the main vari-
ables and constraints, we are able to single out the only free modes at the outer boundary for these problems.
In the vacuum case a single free mode exists which corresponds to a gauge freedom, while in the matter case
an extra mode exists which is associated with the scalar field. We make use of the fact that the EC formulation
has no superluminal characteristic speeds to excise the singularity. We present a second-order, finite difference
discretization to treat these scenarios, where we implement these constraint-preserving boundary conditions,
and are able to evolve the system for essentially unlimited tiines limited only by the available computing
time). As a test of the robustness of our approach, we allow large pulses of gauge and scalar field to enter the
domain through the outer boundary. We reproduce expected results, such as(itrithed physical sense
evolution in the vacuum cadeven in gauge-dynamical simulationand the tail decay for the scalar field.
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[. INTRODUCTION AND OVERVIEW the system is defined at an initial hypersurfatg and the
solution to the future o, is obtained through the evolution
In the initial value problem of Einstein’s equations one equations. However, if the system of equations involves con-
decomposes the original system of equati@gisen byG,,  straints, one might opt to employ only a subset of the evolu-
=87T,p) into two distinct sets: one set consistingenolu-  tion equations supplemented with enough constraint equa-
tion equations(involving time derivatives of the main vari- tions to solve for the field variables. This strategy is referred
ables and the other consisting otonstraint equations to as constrained evolutionas opposed tdree evolution
(which do not involve time derivativgsThere are infinite  (where only the evolution equations are employdd the
possible ways of achieving this decomposition, and the reparticular case of Einstein’s equations, a straightforward ma-
sulting systems are known by a variety of different namesipulation of the Bianchi identities demonstrates that either
[e.g., Arnowitt-Deser-MisnefADM), characteristic-Bondi, strategy produces, at the analytical level, the same solution.
and conformal-Einstein approaches, to name just {hreeTherefore, one need not deal with constrained evolution
However, depending on the character of the hypersurfacgsvhich usually requires solving elliptic equationand the
used to foliate the spacetime, these formulations can be se@more direct approach of free evolution can be safely em-
as belonging to different groups: the group of Cauchy for-ployed. In the numerical realm, however, the picture is more
mulations(which require a spacelike foliationthat of char-  complicated(for definiteness, from now on we concentrate
acteristic formulationghaving a null foliation, or a more  on the case of Cauchy evolutiorOn one hand, employing
generic groupwhere the foliation’s leaves need not have aconstrained evolutions might represent a significant compu-
fixed specific charactg(see, for instance, Ref1]). tational overhead as it usually involves solving elliptic equa-
Irrespective of the group and restricting to the initial valuetions at each time step; for this reason constrained evolutions
problem (where the problem is boundary-fieehe state of have been, for the most part, avoided beyond the two-
dimensional case. On the other hand, free evolution in nu-
merical implementationévhich only evaluate the constraint

*Electronic address: gioel@Isu.edu equations to monitor the quality of the implementajialis-
"Electronic address: luisl@physics.ubc.ca play violation of the constraints. At early times, these viola-
*Electronic address: tiglio@Isu.edu tions are consistent with the truncation erfaf, but as time
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progresses the observed violations often grow quite rapidlyparticular motivation of addressing issues relevant for nu-
The picture gets even more complicated in the presence afierical implementations. Although in this first paper we re-

boundaries. The violation of the constraints in unconstrainegtrict our analysis to the spherically symmetric case and a

numerical evolutions frequently grows without bound. Pos-particular way of reformulating Einstein's equations, the pro-

sible reasons, besides the ones already present in boundafgdure is straightforward to implement within any hyperbolic

free models, are constraint-violating modes introduced byormulation of gravity and in three dimensio(&D).

standard boundary conditiorf@hich might drive instabili- We present a detailed discussion of the analytic treatment

ties, and in any case do introduce spurious errors that shouf&_r the boundary conditions and illustrate its benefits with a

be avoidedl If the case under study corresponds to cosmoSimple numerical implementation which accurately evolves a

logical scenarios or short term evolutions, the aforemenSPherically symmetric spacetime, stationary or dynamical
tioned problem should not be worrisome. In the cosmologi-t€ dynamics either corresponding to gauge modes in the

cal case one has no boundaries rather, periodic boundary vacuum case or to true dynamics in the case of a minimally

conditions are specified, which trivialize the specification is-COUPIed scalar field for unlimited periods of time and with-
su8, for solutions which are restricted to the future domain©Ut Sign of instabilities. Throughout this work we minimize
of dependence of the initial data no boundary conditiond® use of techniques specifically developed for treating

need be specified, and for short-term evolutions the errorsPherically symmetric spacetimes, both analytical and nu-
introduced by approximate boundary conditions are refmerical, to expedite the generalization to the 3D case.
Our starting point is the assumption that we are dealing

stricted to a small region. There are, however, many impor-

tant non-cosmological problems, such as collapse scenariddth allfirst.—order, quasilinear strongly hyperbolic formulation
and black hole space-times, that require long term evolufor Einstein’s equations. In the spherically symmetry case

tions, hence the need to prescribe consistent boundaSuch a system can be writtenas Au’ +1.0., whereuis an

conditions. array of variables, the dot and the prime indicate time and
In the one-dimensional case, approximate boundary corspatial derivatives, respectivel, (called theprincipal part)

ditions that minimize the influence of errors introduced at the's a diagonalizable matrix that might depend wrand the

boundary have been presen{&l This is achieved by plac- spacetime coordinates, but not on derivativesl,odndl.o.

ing the boundaries far away and treating a region close tétands forlower order termsi.e., terms that do not have

them in a special wayto control spurious reflectionsUn-  derivatives(of any kind. So, we have a system of equations

fortunately, these techniques are not as effective in highefor the main variables,

dimensional scenarios, as the computational cost involved in

placing boundaries far away is excessive. Furthermore, even u=Au'+l.0. (system), (1

when there were enough computational resources, it would

b.e pref_erable to make use of them to agh|eve finer resoIve_gnd evolution for the constraints, which we assume are also

simulations, rather than to push boundaries farther away. It 'gtrongly hyperbolic

therefore of considerable importance to formulate relatively '

inexpensive boundary conditions whose associated errors do

not depend on the boundaries’ locations, minimize spurious Uc=AcUct1.0. (systeml).
reflections, and guarantee that constraint-violating modes are
not introduced. If one were interested only in system |, one would give

Essentially, one aims to provide boundary conditions suclinitial data for the variables that form, and boundary data
that there is not only a unique solution to the evolution equaenly to the ingoing characteristic mode¥hese characteris-
tions, but there isalso preservation of the constraints tic modes (eigenvectors ofA) are, depending on which
throughout the computational domain. In a strongly hyperboundary one is dealing with, the ones that are travelling to
bolic formulation of gravity(see[4] for reviews on hyper- the left (positive eigenvalugsor right (negative eigenval-
bolic techniques applied to Einstein’s equatiptise first re-  ueg.
quirement amounts to giving boundary conditions only to the A unique solution to system Il is fixed, similarly, by giv-
characteristic modes that enter the computational domain atg initial data tou, and boundary conditions to the ingoing
any given boundary. Satisfying the second requirement isnodes of the system. Since this is supposed to be a homo-
considerably more involved and has only very recentlygeneous systerwhich is the case in Einstein’s equations
started receiving attention. In the analytical realm, well pos{7]), the identically zero solution is obtained by providing
edness of the initial boundary value probléior a particular  zero as initial datay,=0) and zero boundary conditions to
system has been established [i], which sheds light on the the eigenmodes o4, entering the domain. The crucial point
physical understanding of the issue and shows that, at least in
a case-hy-case basis, the problem might be analytically trac————
table. In the numerical realm, several effo(tsstricted to  17he wordmainwill be used, when there is possibility of confu-
different scenarigshave illustrated the advantages of provid- sjon, to differentiate between the evolution equations for say, the
ing boundary conditions through the use of constrdiiisit  three-metric and extrinsic curvatutand possibly extra variables
is precisely this problem that we want to address here withimnd evolution for the constraints.
the context of Cauchy, unconstrained evolution. 2By ingoing we refer to those modes entering the computational

The present work aims to contribute to the area with thedomain with respect to a given boundary.
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here is that, in unconstrained evolution, initial data andmodes propagating towards the inner boundafe non-
boundary conditions fou, follow from that ofu. Thus, one triviality of excision if one doesiot have a formulation with
has to provide initial and boundary data fosuch that they these properties is discussed in one of the Appendixes.
imply zero initial data and boundary conditions fay (i.e. In recent years, a number of re-formulations of Einstein’s
the data are consistent with all Einstein’s equatiofke first ~ equations with physical characteristic speeds have been pre-
step, namely, providing initial data that satisfy the con-Sented[12—14: Here we make use of one of them in our
straints, is customarily well satisfied as the constraint equa@nalysis, the so-called Einstein-ChristoffelC) system[12]
tions are employed in the determination of data fofsee  (NOt€ that any other would have been equally well suited—
[1,8] and references cited thereilt is the second step thatis OUr choice is simply motivated by a comparison with avail-
usually neglected. Here we concentrate on this problem Witt"i1b|e resulti1_5])._ . . .

the goal of providing consistent data, whose associated error The organization of this paper is the following. In Sec. |l

depends neither on the location of the boundaries nor on thae present the equations for the EC system describing a

. . : . Spherically symmetric massless scalar field minimall
total evolution length; rather its error will agree with the P sy Y

It i ¢ the alobal imol i coupled to gravity. In Sec. Ill we describe how to give
overall truncation error of the giobal impiementation. boundary conditions that preserve the constraints, while in

The main difficulty with this second step is that the con-gec v/ we present our numerical method to test the proce-
straints(and, therefore, the eigenmodes of system Il as)well ,re - Numerical results are included in Sec. V, and are di-
involve spatial derivatives of the main variables. On theyided into three classes: evolution of stationary slicings of a
other hand, by controlling théngoing characteristic modes schwarzschild black hole, evolution of dynamical slicings of
of system | at the boundaries, one does not control the spatighe same spacetime, and evolution of a massless scalar field
derivatives needed to set the ingoing constraint modes tmteracting with a black hole. In all cases the simulations can
zero. One way around thignd the one we use herés to  be followed for unlimited times, even using very moderate
trade spatial derivatives for time derivatives using system Iresolutions. We demonstrate the accuracy of our method by
Consequently, enforcing the constraints at the boundaryonitoring the mass of the black hole in the vacuum case
amounts to controlling some time derivatives. We will makeand reproducing the known tail decay in the scalar field case.
this construction explicit later but, before proceeding further A particularly strong test of the robustness of the approach is
some comments are approprigteoth issues certainly de- presented by letting strong gauge or scalar field pulses enter
serve further analysjs the computational domain through the outer boundaom-

(|) To our know|edge, there is no rigorous result guaran_pare with Stan(_:iard outer bO.U.ndary treatments, where condi-
teeing that in any strongly hyperbolic formulation of Ein- tions are obtained by requiring the geometry at the outer

stein’s equations this trading of spatial for time derivativesPoundary to be close to flat or Schwarzschild spacetimes, i.e.
can be done. quite the opposite from what we do hgre

(i) When performing the trading, one ends up with some
conditions at the boundaries on some time derivatives of thel. MAIN EVOLUTION EQUATIONS AND PROPAGATION
main variables. One must find out whether these conditions OF THE CONSTRAINTS
can be fulfilled by controlling only the ingoing modes of

. I~ . As is often th in hyperbolic formulations of Ein-
system I(at the numerical level, conditions on the time de- S 1S otte € case yperbolic formulations o

o h for th licati f th hod fstein’s equations, the EC formulation uses “exa@té. arbi-
rivatives are enough for the application of the metho 0trary buta priori specified shift and exact densitized lapse

lines [9]). Again_, we know of no proof showing that this (defined bya=Ng~Y2 whereg is the determinant of the
should be possible in a general case. ~ three-metric andN is the lapsg In the present work, and for
We show here how this inversion can be performed in thgne sake of maintaining a uniform notation, we will follow as
1D case, and leave for a future paper a similar analysis in 3lqyych as possible the conventions[@5]. For example, we
linear gravity[10]. write a:=ar?sin6, and
When dealing with black hole spacetimes, boundary con- ’

ditions cus}omanly refer t_o theuter bou.ndarycondmons, . dg?=—N2dt?+g,, (dr+ Bdt)2

but one might also have inner boundaries. These constitute

“holes” or “excised” regions from a given computational +r2gr(d#?+sirfad ¢?),
domain; the most widely considered are those where the ex-

cised region has been chosen so as to remove the singulari- Kij =K, dr’+r2K(d6?+sirfod¢?)

ties when dealing with black hole spacetin{fassuming the

validity of cosmic censorshjp In this case, a region inside where all fields depend only on, (). Since the EC formu-
the black hole is excised from the computational domaination is a first-order reformulation of Einstein’s equations,
(Unruh, cited in[11]). This excision strategy introduces an besides the three metric and extrinsic curvature, further vari-
inner boundary which, if chosen inside the black hole, shouldables(which basically contain information of spatial deriva-
leave the region outside the event horizon unaffected. Math-

ematically, the realization of this idea is ensured by employ-

ing a hyperbolic formulation with no superluminal character- 3ror a discussion of different approaches towards application of
istic speeds and, in particular, where all eigenvalues describexcision techniques s¢&] and references cited therein.

104031-3



GIOEL CALABRESE, LUIS LEHNER, AND MANUEL TIGLIO

tives of the three-metrjcare needed. In our present case of
spherical symmetry, only two new variables require introduc-
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tion, f,,, andf r, defined by

g_|f|'+4grrfrT,
2 gr

free=

gr Or
frT:?—’_T'

Additionally, we plan to study a scalar fielf minimally

coupled to the geometry. In order to re-express the equation

that governs this field,

=gt (v2=8), (11
_ —1/2 P

Us=Ky =gy for  (v3=B+agr), (12
Us=Kr—g "1 (v4=B+agy), (13
_ —1/2 a

US_Krr+grr frr  (vs=B—agy), (14
Us=Kr+g, 41 (vg=B—agy), (15
u=T+g, " (v7=p—agy), (16)
ug=I1-g; "> (vg=p+agy). (17)

If we were dealing with a constraint-free system described
by Egs.(2)—(9), a unique solution would be fixed by provid-

ing boundary conditions for the characteristic modes that are
incoming at the boundaries and data on the initial hypersur-

g2V, W =0,
as a first-order hyperbolic system, we introduce two new
variables:
I:= ! V-
= —(BY' W),
O =T,

The evolution equation foW decouples from the rest, in the

face. However, we know that a solution to E¢8)—(9) is a
solution of Einstein’s equations if and only if the following
four constraints are also satisfied:

sense that one has a closed system for the set of eight vari-

ables @, ,971.K ,Kt,fipr  fip . I1,P) which one can solve
for, and afterwards obtai¥. Because of this, and following
common practice, we will dro from the system.

Thus, the main evolution equations, up to the principal
part (the complete expressions are listed in the Appendix

are
grr:ﬂgr,r—’_l'o" 2
gr=RBg;+l.0., )
. ., N,

Krr:ﬁKrr__frrr_H'O" (4)

gff

. N
K=pBK:— —f/ +1.0., (5

gl’l’
forr =B —NK/, +1.0., (6)
fr=Bflr—NK;+l.0., @)

. N
[m=pI11"'-—ao'+l.0., (8)

rr
O=Bd'—NII'+1.0. 9)

1 ﬁT(g+7nT_5i)
9n 97 2[‘291- 9 gr\r 291 O
KT(Krr Ki| @2 112
—— |+ ==+ +—=0, 18
g1\ Orr 2gT 4grr 4 ( )
K 2Ky f1/K K
=t —T—i(l+—T)+ch=o,
9r 9t 91\9r O7
(19
. 8g.fir
Cir i=0n + o —2f,, =0, (20
g7
29
ch:=g++TT—2frT:o. (21)

The first two are basically the Hamiltonian and momentum
constraints, respectively, while the other two correspond to
the definitions of the extra variables that make the system
first order with respect to spatial derivatives. As mentioned,
it is common practice to choose consistent initial data for
Einstein’s equations by solving these constraints; however
the constraints have been examined in a limited number of
cases to provide consistent boundary data. The main purpose
of this work is to provide further indications that constraints

The characteristic modes and eigenvalues determined Bhould be looked at more closely when dealing with bound-
the system play a crucial role in our boundary treatmentary conditions. First, note that these constraints are defined in

These arénote that the modes with spe@dpropagate along

terms of the main variables, and a solution of the main evo-

the timelike normal to the foliation, while the other modes ution equations completely determines them as functions of

propagate along the light cone

(v1=p), (10

Ui =0;r

spacetime. In particular, one can obtain the time evolution of
the constraints by(i) taking time derivatives of the right
hand side(r.h.s) of Egs. (18)—(21); (ii) replacing the time
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/

derivatives by the r.h.s. of Eq92)—(9); and, (iii) re-
expressing the main variables in terms of the constraints and
their spatial derivatives. In the present case, these are

/

. N
C=pC’'——C/+l.0.,

rr

C,=—-NC'+8C/+l.0.,

Crrr ZEC;” +1.0.,

s P

AT

pEN

REA Y

FIG. 1. Schematic diagram for the characteristic speeds of the
C.=C+a-Yc ¢ B—gy), 22 different modes in a stationary slicing of Schwarzschild black hole.
! Grr o (1=B—agr) (22 The computational domain is limited by the two vertical lines, and

. (@)
C,r=pCl+1.0. \*

We can also calculate the characteristic modes and eigenval-
ues of this system, obtaining:

has no singularity.

C,=C—g,"*C, (v=pB+agy), (23
Ca=C (vS=B) (24) no conditions are needed there. The usual procedure to make
37 3 ' sure that the inner boundary is inside the hole is to track the
apparent horizon. In spherical symmetry this is particularl
Ci=Cir (v5=R). (25 oMb o e ¥ Y

simple since its location is defined in terms alfyebraic

o ; ; U2 _
In the next section we exploit this information about the Combinations of the main variables,{ —g;,"Ky=0). Our
characteristic structure of our system in order to set up-actual procedure is to choose the initial data such that the

boundary conditions that will preserve the constraints at thé"ner boundary is inside the apparent horizon, and then nu-
boundaries. merically monitor its position during evolution. In our simu-

lations the horizon never touches the inner boundary, so we
do not need to move it, i.e. its grid location is fixed.

From the discussion in Sec. I, we know that at the outer
boundary(which in our case also has fixed grid locatione

In any system where the characteristic modes and eigemeed to specifyu;,u,,us,us,ug from the characteristic
values are known, the data required at a given boundary amgructure of the main equations. However, since the system is
straightforwardly assessed by examining the eigenvalue afonstrained, we are not free to choose these arbitrarily
each characteristic mode. In our present case, these eigenvéihich would be the case in an unconstrained systémt
ues are\; = B— agr, N\»,= B+ agr, and\s= 8. In the case  ratherwe must do so_such tr@§=C3=04=0 are_satisfied.
where the shift is exact, one canpriori guarantee which (Note thatC, is outgoing, therefore nothing special needs be
sign A5 will have. Throughout this paper we shall tageas dqne for it, nor should it be, otherW|_se we wo_uld c_)verdeter—
positive, since in that way we will be able to reproduce stainine the constraint system of evolution equatipfiiis pro-
tionary known slicings of the Schwarzschild spacetfamd ~ cedure, coupled with initial 'data satisfying the constraints,
to evolve dynamical spacetimes as well. The positivity of theand the fact that the constraints are propagated with a quasi-
shift implies that\, is also positive. On the other hand, the linéar homogeneous system, will ensure that they are pre-
sign of\; depends on the solution and, thus, cannot be consérved everywhere. _ .
trolled a priori. However, for typical stationary slicings of Ve now make explicit how this procedure is implemented
Schwarzschild it is negativépositive) outside (inside the ~ IN our present case. We start by discussing how to enforce
black hole, and zero at the horizon. By continuity, the samé&>s=C4=0 at the(outer, from now oh boundary. Writing
will hold for (perhaps slightdistortions of these slicings. In down the constraints explicitly in Eqé24),(25), these con-
our simulations we check numerically that this is indeed theditions are
case. As we shall see, even on highly distorted spacetimes

IIl. CONSTRAINT-PRESERVING BOUNDARY
CONDITIONS

this condition remains satisfied. Figure 1 shows a schematic 89, f,t
diagram for the characteristic modes of a Schwarzschild g, + —2f,,; =0, (26)
black hole.
Our inner boundary is always inside the black hole, and
2
g+ =221, =0, @7
4Kerr-Schild, PainleveSullstrand, full harmonic and time har-

monic slicings of Schwarzschild have positive shifts; f&4| for
the explicit form of these metrics in the EC formulation. Using Egs.(2),(3), these can be rewritten as
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. 9 for Equations(28), (29), and (31)—(36) completely determine
Orr =20, 8’ —2NK -8 g B+2f B,  (28)  the boundary conditions for our eight variables; and ug
T are the only free modes. In the vacuum casgs 0 andug
- describes a gauge mode.
gr=—2NKr+2pfr. (29 In the next section we discuss our numerical implementa-
Note that sinca,, andg; correspond to ingoing modes, we tion and results. One comment is in order before that: there is

are free to choose them such that they satisfy E23,(29). an additional constra|n(;matte,:¢>—\v’, but by repeating
As was mentioned, one does not need to solve these Nf;e treatment described fa'bove one can see that this constraint
differential equations at the boundary, since time derivative Ixes the boundary condition fo¥: Since we are not evolv-

are all that is required for the time update in the method offg ¥, we do not need to care about this.

lines, which we use for the time updaigee Sec. Y. Thus,

we simply use the expressioti88),(29) as the right hand IV. NUMERICAL SIMULATIONS

side of the corresponding fielq variable at the boundary 1, implement the proposed boundary treatment strategy,
points[and similarly forf,+ andKy, see Eqs(31),(32) be-  we have chosen a straightforward second-order dissipative

low]. ~ method of lines. In particular, it was not necessary to employ
_ Lastly,C,=0 needs to be enforced at the boundary. Usingechniques such as causal differendiig], upwind discreti-
its definition, we have zation or any special way of treating the Lie-derived terms in

Egs. (2)—(9) (however, these can be readily incorporated as
1 , well). Spatial derivatives are discretized with second-order
EfrT_KTH'O':O' centered differences plus fourth-order dissipation as dis-
cussed iM17], while for the time integrator we use second-
otherwise, this method is unstable even for a simple scalar

1. _ wave equation; see, e.¢9]).
\/—_f,T—KT+I.o.=O. (30 Our uniform grid structure consists of poirits0 .. .N,
Orr with grid spacingAr=L/N, whereL=rg,te;—linner» and

. S we implement derivatives according to standard formulas
Next observe that, by definitiot§+=K+(u,4,Ug,9,,) and
fr="F1(Us,Ug,0,). Sinceg,, at the boundary is readily

known from Eq.(28), Eq. (30) fixes the ingoing moda, (up
to now freg. From this, the definition ofi, andug, and Eq.
(28), we end with(recall thatug is outgoing, so it does not (D f):fiﬂ_fifl
need boundary conditiohs 0/ 2Ar

o
Af’—>ADOf—A—'t(Ar)4D+D+D,D,f,

1/2

. o i five— T
frT:%ueJrl.o. (31 (DJ)F%,
.1, fi—fi1
Ky=>ug+1.0. (32 (D-Di=—%;

Similarly, the ingoing modei; is completely arbitrary. From To evaluate derivatives at the boundaries, one either re-

it and the outgoing modas we have sorts toone-sidedderivatives(which require different algo-
rithms applied at boundary pointsr introducegghost zones
which are artificial points beyond the boundaries where field

Kir :E(U3+ Us), (33 values are defined via extrapolatigmne can choose the ex-
trapolation order such that the answers from the different

gl approaches are exactly the sanféor convenience we chose
fror :%(Us_ us). (34 the latter approach with only one ghost-zone for each bound-

ary. Field values at these ghost zones are defined via third-
order extrapolations and treamederivative operator is ap-
plied Vi,i=0...N.

Since our inner boundary is always inside the black hole,
1 we extrapolate all variables at the ghost zone point (
[1=5 (ur+Ug), 35 1)

At the outer boundary ghost zone{N+1), the outgo-

ing modesus andu; are also found by extrapolation, while
the ingoing modesi; andug are set as arbitrary functions of
time. Next, Eqs(298), (29), (31), and(32) are integrated, at

Finally, the ingoing modeig is also arbitrary. From it and the
outgoing modeu; we have

g1/2
== (U7~ Ug). (36)

=7
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Ar=M/8
— - Ar=M/16
+—-+ Ar=M/32

IHI

0.001f

0.0001
10
t[M]

FIG. 2. L, norm of the Hamiltonian constraint, for the evolution

of a PainleveGullstrand black hole. In these runs the outer bound-

ary is atr =10M.
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g — T

Ar=M/8
- Ar=M/16
© Ar=M/32

[8M]

0.001f

0.0001 L
10 10000
t[M]
FIG. 3. L, norm of the relative mass errpéM |=| M —M|/M,
for the same runs shown in Fig. 2. After one thousand crossing
times, the relative error for the coarsest resolution is around ten
percent.

each time step, with second-order Runge Kutta. This, plus

Eqgs.(33)—(36), completes the treatment for the outer bound-

ary.

of the Hamiltonian constraint for three different resolutions
andL=9M (ri,ner=M), theL, norm of a grid functionf

As a side note, it is worth mentioning that since we usebeing defined as

only one ghost zone for each boundary, fourth-order deriva-

tives cannot be obtained at the pointsO,N; thus, no dissi-
pation is added to these poirime seto;_y=o;_ny=0).

|~

N—-1 1/2
__20 (fi)zAr) .

|f|==(

In all the cases discussed in this paper we have checked
second-order self-convergence for the eight main variableg here is no growth in the Hamiltonian constraint, and the
for the constraints and mass, as well as convergence witbame holds true for the other three constraints.
respect to the analytic solution, whenever this is available Figure 3 shows, for the same run, thg norm of the

(this is always the case, for example, for the constraiig
self-convergence we mean computing, for example,

)

whereu refers to the numerical solution obtained with reso-
lution Ar =4, and theL, norm is defined below. Similarly,
by convergence to an analytic solutiop we mean

The Courant-Friedrich-Levy factox=At/Ar is set to

0.25, and the dissipation factor ig;=0.6/16 (for i
=1...N—-1).

[us— Uyl
Qse”-—logz( [U 52— U z7al

[us— uol
Q:=log,

|Uz2— Ug|

A. Vacuum evolutions

1. Stationary slicing of a black hole

relative error|8M|, in the mass functiooM, defined as
oM ! M-M
| oM = | M= M],

where M, the Misner-Sharp mag48], is a gauge invariant
[19] definition of the ADM massM in spherical symmetric

acuum:
grr”'

That is, each of the terms in the r.h.s. of Eg7) might be a
function of t and r, but Einstein’s vacuum equations in
spherical symmetry imply that, at the continuum, the r.h.s. is
a constantequal toM), both as a function of space and time.
When we computeM we evaluateM using the numerical
values of the right hand side of E(7), while for M we use
its analytical value.

From Fig. 3 we see that, as opposed to the constraints,
there is a drift in the masshis effect is expected, as second-

r2 2
1+ —
Or

j\/l::gilv2

5 (37

K2—

The simplest test of a black hole spacetime consists obrder errors accumulate after many iteratjowhich, after a
reproducing known stationary slicings of a Schwarzschildcouple of hundred masses, is essentially linear in time. In
black hole. For this test we give the corresponding knowrfig. 4 we plotM/M as a function of radius, for different

values both to the initial data and to the mode (ug=0 for

times andAr =M/8; the error is spread all over the domain

vacuum at the outer boundary. We concentrate here orand the mass decreases monotonically in time, which sug-

PainleveGullstrand slicings, but we have obtained similar
results using Kerr-Schild slicings. The code runs for unlim-
ited times, even with resolutions as coarsé\as- M/6 (with
M the mass of the black holeFigure 2 displays the, norm

gests that the black hole is moving through the didthe
sense that —r +tXv,,n. We have verified that this is in-
deed the casgbut, still, v, ,m=0O(Ar?)] by computing the
(grid) location of the apparent horizon. For example, with
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FIG. 4. Numerical value of the Misner-Sharp mass, scaled by its 1 5. The radial component of the metric, for a gauge pulse
analytlca! value, as a functhn of radius, for different times. Theentering the domain through the outer boundary. The amplitude’s
monotonic behavior is explained by the fact that the black holey se grows as it approaches the inner boundary, falls into the black
moves” through the grid. hole, and finally the metric gradually settles down to a stationary

one.
Ar=M/8, after 10 000 the horizon has moved from,
=2M to r,=1.75M, which accounts for the roughly ten gjicing of Schwarzschild. One way of corroborating this is to
percent error that the mass has at that time in Fig 3: follow the Misner-Sharp mass. As can be seen in Fig. 6,
SM~ler/(2M)~0.1 where |SM| is shown as a function of time for different
_ - —l( _?” i ~ resolutions, the numerical value of the mass does converge to
‘We have tried different positions for both boundaries,this analytical prediction. Just as in the stationary case, the
with the inner one always inside the black hole and the outegode runs for as long as wanted, and has a similar linear drift
one ranging from 101 to 100(M, and neither the stability in the mass at late times. The growth in the errors ardund
nor the convergence of the simulations depended on such3om seen in Fig. 6 is not due to the pulse entering the
positions. domain through the boundarghis happens at=5M) but
o due to the pulse reaching the inner boundary, where all the
2. Gauge pulse falling into a black hole gradients are steeper, and the huge growtly,jnis rather

As discussed in Sec. Ill, the modeg at the outer bound- poorly resolved. Similar growths appear in the constraints
ary is completely arbitrary. In this next test we let a gauge(see Fig. 7, but they are still second-order convergent. It is
pulse enter the domain through the boundary. We thus us@dicative of the power of consistent boundary conditiGins
initial data corresponding to a Painle@illstrand slicing of ~that we can have such a big pulse entering the domain
a black hole of masM, and fixus atr ., by superposing, through the boundary, causing the spacetime to be so dy-
on top of the Painlewullstrand value, a Gaussian pulse namical, (i) that the code is stabléiii) and that the mass
described by

0.01p

U(t)=u5 (1 +Ae (T077), (39 : =

In Fig. 5 we present snapshots of the component of the I = Ar-M/32
metric as a function of radius for different times. The width
0.001

of the pulse isc=2M, and it is centered ai,=5M. The 2 iy
amplitude is quite largeA=1, corresponding to a 100% .
“disturbance” of the stationary value. The resolution em- % N————— -
ployed is Ar=M/8, and the domain extends from,,e, AT
=M 10 'ouier=30M. The pulse grows as it approaches the °**"'t 7 E
inner boundary(which is not surprising, since it happens tees T T ]
even for a linear scalar equation propagating in curved back: ]
grounds like the one given by the Schwarzschild spacetime
g,; having a disturbance of more than 500% that of the sta- **"°° ' 50 ' 100 ' 150
tionary value when it “crosses” the inner boundary. After the o
pulse falls into the black hole, the metric components gradu- F|G. 6. Mass error for a gauge pulse “falling” into the black
ally settle down to stationary values and the code runs fohole. The peaks arounid=30M are caused by the pulse reaching
unlimited times. the inner boundary. After the pulse falls into the black hole the
Since we are dealing with a vacuum spherically symmetspacetime settles to a stationary one, and at late times the mass has
ric spacetime, the resulting spacetime must lidymamical a linear drift, just as in the stationary evolutions.

[8M]
N

N

-
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FIG. 7. L, norm of the Hamiltonian constraint for the same run

shown in Fig. 8. FIG. 8. Change in the area of the apparent horizon, due to a

quite narrow At=10M) pulse of scalar field injected at the outer

error is small(notice that even for a resolution as coarse a boundary, with a not very demanding resolutian=M/8). The
%inal mass of the black hole is more than twice the original one.

Ar=M/8 this error, while the pulse travels through the do-
main, does not exceed one pergent

In Eqg. (38) we wrote the boundary condition in that way
(i.e. the Painlewullstrand value times a time dependent

function) in order to have a measure of how large the pulse i%onsiderably finer resolution is needéte Fig. 9. For this
compared to its stationary value. In the next simulations W&eaason. we chosar = M/50 and place the outer boundary at
will havg a more physical idea of how strong these p“'se?r:louixl. In order to measure the tails, we place four differ-
can be in our code. ent observers: at=50, 70, 90 and 104@. The decay rate
(of the form ®«t™") found by these observers is=
B. Scalar field coupled to the black hole —2.89-2.97—-2.94 and—3.04, respectively. These are in

As a last test of the approach we consider the case of §xcellent agreement with the expected valuaef—3 [21].
minimally coupled scalar field which also enters the compufurthermore, the clean treatment of the outer boundary al-
tational domain through the outer boundary. As mentionedlows for accurate measurements even at the last point of the
only one scalar field mode is freely specifiable at the outefOmputational domain. Past works, which resorted to ap-

boundary. It is this mode which is chosen to describe aPfoximate boundary conditions, have observed that the
incoming pulse with amplitudéd and compact support in boundary influenced the results when the observers were

270%, until it reaches a stationary state describing, as ex-
pected, a Schwarzschild black hole of larger mass.
In the second case, in order to resolve the tails accurately,

time as placed close to it.
Finally, we should mention that we have tried with differ-
u-(t)=A(t—t)*(t—tg)*sin(mrt), ent kinds of time dependent boundary conditions for the
if te[t,,tg], andu,(t)=0 otherwise. We choosag;=0, and 1‘—‘105 T I

for the initial data we take that of a Painle@uillstrand
black hole of mas#1. Note that one advantage of this is that
one can perform nontrivial simulations without solving the
constraints initially, since one can provide, as we have done
a known solution of the constraints as initial data, and intro-
duce the nontrivial dynamics through the boundamhere

all the treatment is algebraicsee alsd?20].

We have tried different amplitudes and time range for the
pulse, obtaining stable discretizations in all cases. In order tc
illustrate the robustness of the approach we show here twc
examples. In the first one we show how the method can cop
with considerably strong pulsémeasured by the amount of

le-111 —

@ (r=100M)

le-12 -

energy that the black hole accreteand in the second one “Tooo 2000 3000 4000 5000
the tails of the scalar field are computed and shown to agree e
with the expected result. FIG. 9. Tail decay for thetime derivative of thg scalar field.

For the first case we chose=8, t,=0t=10M, Ar  The observer is located at the last grid point-(L0OOM) and mea-
=M/10 and the outer boundary at=50M. Figure 8 illus-  sures a tail decay ab=t 3% in good agreement with the expected
trates the area of the apparent horizon as a function of timejecay oft 2. This is so mainly because of the clean treatment for
Initially the area iVl and, as time progresses, it increases bythe boundary.
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modesus; and u,, and the results presented here do not decertain cases, the observed constraint violations are due to
pend on the particular choice made. Not only can we defin¢hose particular implementations. Nevertheless, as the goal is
pulses that last for a finite amount of time, as we have showito solve Einstein equations, sources of constraint violations
here, but we can define a time dependency that lasts forevenust be removed. As mentioned, standard boundary treat-
[say, uz=Asin(wt)]. In this sense, the large growth in the ments are likely to introduce these violations.

mass of the black hole mentioned above is what one can do Furthermore, carefully designed boundary conditions are
with a pulse of width 1M. In fact, one can increase arbi- important in the case oértificial boundaries These are
trarily the mass by using wider pulses, i.e. by slowly inject-boundaries which occur inside the computational domain

ing scalar field energy through the boundary. where the computational mesh has regions with different
resolutions(for instance in the case of adaptive mesh refine-
V. CONCLUSIONS mend or has been subdivided into sub-domains which are

N treated independentlge.g. when using domain decomposi-

In the present work we have presented additional SUPpOHon techniqueks As these boundaries are purely artificial and
for the need to consider the constraint equations when definntroduced for convenience, it is imperative to count with a
ing boundary conditions. Although approximate boundaryclean boundary treatment which eliminates at least mini-
conditions(which are simpler to implementan certainly be  mizeg any spurious reflections or numerical noise.
arranged to produce reliable simulations, for long term evo-  consequently, the search for accurate boundary conditions
lutions they have some important disadvantages: _is of importance in current applications. The results pre-

(i) The inherent error introduced might accumulate, spoil-sented in this work attest to that effect and suggest a practical
ing the physical outcome: For instance, even in the particulagnd simple way to obtain such boundary conditions, which
case of a binary black hole collision, the radiation is ex-ensures constraint violating modes are absent by the very

pected to be around 5% of the total mass of the systemyefinition of the approach. Current work is devoted to apply-
Therefore, even small errors which accumulate over time cafhg the same techniques to 3D problems.

account for a significant percentage of the radiated energy.
Since the outcome of some of these simulations will be used

as templat'e_s f_or gravitationgl wave data analy2), one ACKNOWLEDGMENTS
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APPENDIX A: EVOLUTION EQUATIONS

The main variables propagate according to
grr = Bgrlr +29,8 - 2Z"grlrlzg.:]TKrr

2p9r
r

gr=B97— 2ag; grK+

1/2 —-1.,1/7>

Ky = BK/, — a0, Vg:f), — a"9H?gr— 607 'op affr+ 4ger 1

Oir e’ =6l 20+ 2K B~ 2910y “ad?
- ngr_rl/ZaKrzr + 2grlr/za'Krr KT_ 8gr_rl/zafrTfrrr + 2ngr_r?‘/zZVfrzrr + 2gTr _1gr_rl/zafrrr - ngr—rl/Z&/ frrr

K= BKt—agrg, V[t +28r 'K+ grr 291 a+ agrK K 0, "= grfra’ o, Y- 2af 5 g, 2
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frrr ﬁfrrr_agl:}lfngKr,r 4'93/2«,KT+129T 1g:r;r/zaKTfrT_4grr aKrf — ngr_rl/T rrfere 10.]1/2&'( for

+3frrrﬂr+grr,3 _a,grlrlngKrr"'zr (:*]TgrlrIZFEVKrr"'8r grar/Z&KT+4agslng(DH

frr=pBfr— agrr gTKT+B fer— @ grr gTKT+29rr a’KTfrT agrr TfrrrgT+2r_lerT
®=pd’ —ag7grll’ — g, Pagllf,, +2agllf 1 +2r tag gl - o' gi g1+ ® B’
1= BH,_grrllzngq)""grr agTHKrr+2a91/2HKT 4grr aq)frT"'2r grrl/rgTq) grr gTq)Z“-

APPENDIX B: EXCISION OF THE SINGULARITY

The issue of excision is a nontrivial one, even if dealing with a strongly hyperbolic formulation of Einstein’s equations, and
even ignoring the constraints. The point is that, depending on the formulation, modes can leave the black hole. Even though
these modes cannot be physical, they would need boundary conditions in any case in order to fix the solution. If one, for
example, extrapolated all variables in such a situation, one would be implicitly giving boundary conditions that depend on the
discretization and that might not have a consistent limit as the grid spacing is decreased. Here we show a simple example to
illustrate this point.

We start with a formulation widely used in numerical relativity, the ADM drere precisely, the equations arising from
Rap=0), and we choose exact lapse and exact co-ghidit is, the covariant shjftWe use the same notation as in the body
of the paper, except that noiN=N(t,r) and 8,=,(t,r) are prescribed as arbitrary functions of spacetime. In spherical
symmetry, the evolution equations for such a formulation are

grr=—Brg” +2B] —2NK,, (B1)
rr
. B9t BiOr
= +2 —2NK B2
g gy ! (B2
) 1
Kyp=— 2 2 (— 2gTrIBr rrgrr 49TrKrr:8rgrr+4gTrKrr:8rgrr (B3)
205, 97"
+2Ng; g7rgr+4Ng; grgr— N, 97 rg197— 2N, 9/ 97— Ng7 (g7)°r (B4)
+2NgrrKrrgTr_4Ngr2rKrrgTrKT+2N”gr2rg‘2rr_g;rN’grrg‘%r) (85)
KT:4I'292 (4:8rrzgrrK',I'+8:8rrgrrKT_2Ng,1I'rzgrr 8Ng'll'rgrr+Ngr,rrzg%'i_ZNglfrrgT (86)
rr
+4Ngr2r_4NgrrgT+4NKTrzgrrKrr_2r2ngrrg‘,r—4ergrrgT)- (87)

Note that in the previous equations, oigly appears with second derivatives. This means that we can rewrite this system as a

first-order one by introducing just one new variakde; g+ ; i.e. u=Au’+B, whereu=(g,, ,g7,K, ,K7,2)".
As an evolution equation far we make the simplest possible choice: we just take the spatial derivative of the r.h.s. of Eq.
(B2) (i.e., we do not add the constraints to this new equatiiso, we replace everywherg by z. The principal part is then:
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— ﬁ 0 O 0 0
grr
0 0 O 0 0
_4rgTKrr:8r+2NgrrgT+Nzrgrr+rgrrgTN’ 0 ﬁ 0 _E
A 2rgZgr Orr g7
N(rz+2 N
( - g7) 0 0 B
4rg,, Orr 29,
rz+2
. Br( z : gT) 0 0 —2N ﬁ
rgr Orr
This matrix has as eigenvalues and eigenvectors
N'—4B8,K, rz+2
L Bir (12+29r (Ulz_ﬁ) B8
4Brgrr ngl‘r grr
u,=[0,0,1,0,9 (vzzﬁ) (B9)
grr
uz=[0,1,0,0,0 (v3=0) (B10)
1/2 1/2
1 +N
U4=| 0,0~ 2 - Tl (u4=ﬁr—g”) (B11)
gr Zgrr Orr
12 12
Orr ( IBr_ Ngrr )
us=|0,0/—, 1 =] B12
> [ g Zgrlrlz vs Orr ( )
The determinant of the matrix that diagonalizess proportional to
(_4Krrﬂr+grrN,)(rz+29T)2, (813)

72 2
64grr i’

the system being strongly hyperbolic unless this determinant is zero. For the usual slicings of Schwa(Padhldde
Gullstrand, Kerr-Schild, time harmonic and full harmonic slicingspressionB13) is different from zero, so the system is,
indeed, strongly hyperbolic, and the same will hold foerhaps slightdistortions of those spacetimes. Now, it is known that
one has to give initial data and boundary conditions to the incoming characteristic modes in order to fix the solution in such
a system. The point is that here there is always a negative eigerivlose corresponding eigenmode will thus propagate in
the direction of increasing, in particular, leaving the black hotef B,+ 0, this eigenmode is either, or u,, while the mode
is us if B,=0.

It is important to point out that whether or not modes leave the black hole strongly depends on the particular formulation
that one is dealing with. For example, using exactly the same formulg&idiM in spherical symmetrywith other choices of
lapse and shiftsuch that they “lock” the areaalso gives strongly hyperbolic formulations when rewritten in first order form,
but theydo nothave modes leaving the domaisee[23]). Also, if one uses exact-lapse and exact-staift opposed to exact
co-shiff), the system is only weakly hyperbolic and, thus, the characteristic modes are not complete but, in any case, they do
not leave the black holésee, also[23]). What we want to emphasize here is that superluminal modes can appear quite
naturally, even in standard formulations.
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