
b,

001

ia,

001

PHYSICAL REVIEW D, VOLUME 65, 104031
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This is the first paper in a series aimed to implement boundary conditions consistent with the constraints’
propagation in 3D unconstrained numerical relativity. Here we consider spherically symmetric black hole
spacetimes in vacuum or with a minimally coupled scalar field, within the Einstein-Christoffel~EC! symmetric
hyperbolic formulation of Einstein’s equations. By exploiting the characteristic propagation of the main vari-
ables and constraints, we are able to single out the only free modes at the outer boundary for these problems.
In the vacuum case a single free mode exists which corresponds to a gauge freedom, while in the matter case
an extra mode exists which is associated with the scalar field. We make use of the fact that the EC formulation
has no superluminal characteristic speeds to excise the singularity. We present a second-order, finite difference
discretization to treat these scenarios, where we implement these constraint-preserving boundary conditions,
and are able to evolve the system for essentially unlimited times~i.e., limited only by the available computing
time!. As a test of the robustness of our approach, we allow large pulses of gauge and scalar field to enter the
domain through the outer boundary. We reproduce expected results, such as trivial~in the physical sense!
evolution in the vacuum case~even in gauge-dynamical simulations!, and the tail decay for the scalar field.
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I. INTRODUCTION AND OVERVIEW

In the initial value problem of Einstein’s equations o
decomposes the original system of equations~given byGab

58pTab) into two distinct sets: one set consisting ofevolu-
tion equations~involving time derivatives of the main vari
ables! and the other consisting ofconstraint equations
~which do not involve time derivatives!. There are infinite
possible ways of achieving this decomposition, and the
sulting systems are known by a variety of different nam
@e.g., Arnowitt-Deser-Misner~ADM !, characteristic-Bondi,
and conformal-Einstein approaches, to name just thr#.
However, depending on the character of the hypersurfa
used to foliate the spacetime, these formulations can be
as belonging to different groups: the group of Cauchy f
mulations~which require a spacelike foliation!, that of char-
acteristic formulations~having a null foliation!, or a more
generic group~where the foliation’s leaves need not have
fixed specific character! ~see, for instance, Ref.@1#!.

Irrespective of the group and restricting to the initial val
problem ~where the problem is boundary-free!, the state of
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the system is defined at an initial hypersurfaceS0 and the
solution to the future ofS0 is obtained through the evolutio
equations. However, if the system of equations involves c
straints, one might opt to employ only a subset of the evo
tion equations supplemented with enough constraint eq
tions to solve for the field variables. This strategy is referr
to as constrained evolution, as opposed tofree evolution
~where only the evolution equations are employed!. In the
particular case of Einstein’s equations, a straightforward m
nipulation of the Bianchi identities demonstrates that eit
strategy produces, at the analytical level, the same solut
Therefore, one need not deal with constrained evolut
~which usually requires solving elliptic equations! and the
more direct approach of free evolution can be safely e
ployed. In the numerical realm, however, the picture is m
complicated~for definiteness, from now on we concentra
on the case of Cauchy evolution!. On one hand, employing
constrained evolutions might represent a significant com
tational overhead as it usually involves solving elliptic equ
tions at each time step; for this reason constrained evolut
have been, for the most part, avoided beyond the tw
dimensional case. On the other hand, free evolution in
merical implementations~which only evaluate the constrain
equations to monitor the quality of the implementation! dis-
play violation of the constraints. At early times, these vio
tions are consistent with the truncation error@2#, but as time
©2002 The American Physical Society31-1
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progresses the observed violations often grow quite rapi
The picture gets even more complicated in the presenc

boundaries. The violation of the constraints in unconstrai
numerical evolutions frequently grows without bound. Po
sible reasons, besides the ones already present in boun
free models, are constraint-violating modes introduced
standard boundary conditions~which might drive instabili-
ties, and in any case do introduce spurious errors that sh
be avoided!. If the case under study corresponds to cosm
logical scenarios or short term evolutions, the aforem
tioned problem should not be worrisome. In the cosmolo
cal case one has no boundaries~or rather, periodic boundary
conditions are specified, which trivialize the specification
sue!, for solutions which are restricted to the future doma
of dependence of the initial data no boundary conditio
need be specified, and for short-term evolutions the er
introduced by approximate boundary conditions are
stricted to a small region. There are, however, many imp
tant non-cosmological problems, such as collapse scena
and black hole space-times, that require long term evo
tions, hence the need to prescribe consistent boun
conditions.

In the one-dimensional case, approximate boundary c
ditions that minimize the influence of errors introduced at
boundary have been presented@3#. This is achieved by plac
ing the boundaries far away and treating a region close
them in a special way~to control spurious reflections!. Un-
fortunately, these techniques are not as effective in hig
dimensional scenarios, as the computational cost involve
placing boundaries far away is excessive. Furthermore, e
when there were enough computational resources, it wo
be preferable to make use of them to achieve finer reso
simulations, rather than to push boundaries farther away.
therefore of considerable importance to formulate relativ
inexpensive boundary conditions whose associated error
not depend on the boundaries’ locations, minimize spuri
reflections, and guarantee that constraint-violating modes
not introduced.

Essentially, one aims to provide boundary conditions s
that there is not only a unique solution to the evolution eq
tions, but there isalso preservation of the constraint
throughout the computational domain. In a strongly hyp
bolic formulation of gravity~see@4# for reviews on hyper-
bolic techniques applied to Einstein’s equations! the first re-
quirement amounts to giving boundary conditions only to
characteristic modes that enter the computational domai
any given boundary. Satisfying the second requiremen
considerably more involved and has only very recen
started receiving attention. In the analytical realm, well p
edness of the initial boundary value problem~for a particular
system! has been established in@5#, which sheds light on the
physical understanding of the issue and shows that, at lea
a case-by-case basis, the problem might be analytically t
table. In the numerical realm, several efforts~restricted to
different scenarios! have illustrated the advantages of provi
ing boundary conditions through the use of constraints@6#. It
is precisely this problem that we want to address here wi
the context of Cauchy, unconstrained evolution.

The present work aims to contribute to the area with
10403
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particular motivation of addressing issues relevant for
merical implementations. Although in this first paper we r
strict our analysis to the spherically symmetric case an
particular way of reformulating Einstein’s equations, the p
cedure is straightforward to implement within any hyperbo
formulation of gravity and in three dimensions~3D!.

We present a detailed discussion of the analytic treatm
for the boundary conditions and illustrate its benefits with
simple numerical implementation which accurately evolve
spherically symmetric spacetime, stationary or dynami
~the dynamics either corresponding to gauge modes in
vacuum case or to true dynamics in the case of a minim
coupled scalar field!, for unlimited periods of time and with-
out sign of instabilities. Throughout this work we minimiz
the use of techniques specifically developed for treat
spherically symmetric spacetimes, both analytical and
merical, to expedite the generalization to the 3D case.

Our starting point is the assumption that we are deal
with a first-order, quasilinear strongly hyperbolic formulatio
for Einstein’s equations. In the spherically symmetry ca
such a system can be written asu̇5Au81 l .o., whereu is an
array of variables, the dot and the prime indicate time a
spatial derivatives, respectively,A ~called theprincipal part!
is a diagonalizable matrix that might depend onu and the
spacetime coordinates, but not on derivatives ofu, and l .o.
stands forlower order terms, i.e., terms that do not hav
derivatives~of any kind!. So, we have a system of equatio
for the main variables,1

u̇5Au81 l .o. ~system I!, ~1!

and evolution for the constraints, which we assume are a
strongly hyperbolic,

u̇c5Acuc81 l .o. ~system II!.

If one were interested only in system I, one would gi
initial data for the variables that formu, and boundary data
only to the ingoing characteristic modes.2 These characteris
tic modes ~eigenvectors ofA) are, depending on which
boundary one is dealing with, the ones that are travelling
the left ~positive eigenvalues! or right ~negative eigenval-
ues!.

A unique solution to system II is fixed, similarly, by giv
ing initial data touc and boundary conditions to the ingoin
modes of the system. Since this is supposed to be a ho
geneous system~which is the case in Einstein’s equation
@7#!, the identically zero solution is obtained by providin
zero as initial data (uc50) and zero boundary conditions t
the eigenmodes ofAc entering the domain. The crucial poin

1The wordmain will be used, when there is possibility of confu
sion, to differentiate between the evolution equations for say,
three-metric and extrinsic curvature~and possibly extra variables!
and evolution for the constraints.

2By ingoing we refer to those modes entering the computatio
domain with respect to a given boundary.
1-2
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CONSTRAINT-PRESERVING BOUNDARY CONDITIONS . . . PHYSICAL REVIEW D 65 104031
here is that, in unconstrained evolution, initial data a
boundary conditions foruc follow from that of u. Thus, one
has to provide initial and boundary data foru such that they
imply zero initial data and boundary conditions foruc ~i.e.
the data are consistent with all Einstein’s equations!. The first
step, namely, providing initial data that satisfy the co
straints, is customarily well satisfied as the constraint eq
tions are employed in the determination of data foru ~see
@1,8# and references cited therein!. It is the second step that i
usually neglected. Here we concentrate on this problem w
the goal of providing consistent data, whose associated e
depends neither on the location of the boundaries nor on
total evolution length; rather its error will agree with th
overall truncation error of the global implementation.

The main difficulty with this second step is that the co
straints~and, therefore, the eigenmodes of system II as w!
involve spatial derivatives of the main variables. On t
other hand, by controlling the~ingoing! characteristic modes
of system I at the boundaries, one does not control the sp
derivatives needed to set the ingoing constraint mode
zero. One way around this~and the one we use here!, is to
trade spatial derivatives for time derivatives using system
Consequently, enforcing the constraints at the bound
amounts to controlling some time derivatives. We will ma
this construction explicit later but, before proceeding furth
some comments are appropriate~both issues certainly de
serve further analysis!.

~i! To our knowledge, there is no rigorous result guara
teeing that in any strongly hyperbolic formulation of Ei
stein’s equations this trading of spatial for time derivativ
can be done.

~ii ! When performing the trading, one ends up with so
conditions at the boundaries on some time derivatives of
main variables. One must find out whether these conditi
can be fulfilled by controlling only the ingoing modes
system I~at the numerical level, conditions on the time d
rivatives are enough for the application of the method
lines @9#!. Again, we know of no proof showing that thi
should be possible in a general case.

We show here how this inversion can be performed in
1D case, and leave for a future paper a similar analysis in
linear gravity@10#.

When dealing with black hole spacetimes, boundary c
ditions customarily refer to theouter boundaryconditions,
but one might also have inner boundaries. These const
‘‘holes’’ or ‘‘excised’’ regions from a given computationa
domain; the most widely considered are those where the
cised region has been chosen so as to remove the sing
ties when dealing with black hole spacetimes~assuming the
validity of cosmic censorship!. In this case, a region insid
the black hole is excised from the computational dom
~Unruh, cited in@11#!. This excision strategy introduces a
inner boundary which, if chosen inside the black hole, sho
leave the region outside the event horizon unaffected. M
ematically, the realization of this idea is ensured by empl
ing a hyperbolic formulation with no superluminal charact
istic speeds and, in particular, where all eigenvalues desc
10403
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modes propagating towards the inner boundary.3 The non-
triviality of excision if one doesnot have a formulation with
these properties is discussed in one of the Appendixes.

In recent years, a number of re-formulations of Einstei
equations with physical characteristic speeds have been
sented@12–14#: Here we make use of one of them in o
analysis, the so-called Einstein-Christoffel~EC! system@12#
~note that any other would have been equally well suited
our choice is simply motivated by a comparison with ava
able results@15#!.

The organization of this paper is the following. In Sec.
we present the equations for the EC system describin
spherically symmetric massless scalar field minima
coupled to gravity. In Sec. III we describe how to giv
boundary conditions that preserve the constraints, while
Sec. IV we present our numerical method to test the pro
dure. Numerical results are included in Sec. V, and are
vided into three classes: evolution of stationary slicings o
Schwarzschild black hole, evolution of dynamical slicings
the same spacetime, and evolution of a massless scalar
interacting with a black hole. In all cases the simulations c
be followed for unlimited times, even using very modera
resolutions. We demonstrate the accuracy of our method
monitoring the mass of the black hole in the vacuum c
and reproducing the known tail decay in the scalar field ca
A particularly strong test of the robustness of the approac
presented by letting strong gauge or scalar field pulses e
the computational domain through the outer boundary~com-
pare with standard outer boundary treatments, where co
tions are obtained by requiring the geometry at the ou
boundary to be close to flat or Schwarzschild spacetimes,
quite the opposite from what we do here!.

II. MAIN EVOLUTION EQUATIONS AND PROPAGATION
OF THE CONSTRAINTS

As is often the case in hyperbolic formulations of Ei
stein’s equations, the EC formulation uses ‘‘exact’’~i.e. arbi-
trary but a priori specified! shift and exact densitized laps
~defined bya5Ng21/2, whereg is the determinant of the
three-metric andN is the lapse!. In the present work, and fo
the sake of maintaining a uniform notation, we will follow a
much as possible the conventions of@15#. For example, we
write ãªar 2sinu, and

ds252N2dt21grr ~dr1bdt!2

1r 2gT~du21sin2udf2!,

Ki j 5Krr dr21r 2KT~du21sin2udf2! ,

where all fields depend only on (t,r ). Since the EC formu-
lation is a first-order reformulation of Einstein’s equation
besides the three metric and extrinsic curvature, further v
ables~which basically contain information of spatial deriva

3For a discussion of different approaches towards application
excision techniques see@1# and references cited therein.
1-3
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GIOEL CALABRESE, LUIS LEHNER, AND MANUEL TIGLIO PHYSICAL REVIEW D65 104031
tives of the three-metric! are needed. In our present case
spherical symmetry, only two new variables require introd
tion, f rrr and f rT , defined by

f rrr 5
grr8

2
1

4grr f rT

gT
,

f rT5
gT8

2
1

gT

r
.

Additionally, we plan to study a scalar fieldC minimally
coupled to the geometry. In order to re-express the equa
that governs this field,

gab¹a¹bC50,

as a first-order hyperbolic system, we introduce two n
variables:

P:5
1

a
~bC82Ċ!,

F:5C8.

The evolution equation forC decouples from the rest, in th
sense that one has a closed system for the set of eight
ables (grr ,gT ,Krr ,KT , f rrr , f rT ,P,F) which one can solve
for, and afterwards obtainC. Because of this, and following
common practice, we will dropC from the system.

Thus, the main evolution equations, up to the princi
part ~the complete expressions are listed in the Append!,
are

ġrr 5bgrr8 1 l .o., ~2!

ġT5bgT81 l .o., ~3!

K̇rr 5bKrr8 2
N

grr
f rrr8 1 l .o., ~4!

K̇T5bKT82
N

grr
f rT8 1 l .o., ~5!

ḟ rrr 5b f rrr8 2NKrr8 1 l .o., ~6!

ḟ rT5b f rT8 2NKT81 l .o., ~7!

Ṗ5bP82
N

grr
F81 l .o., ~8!

Ḟ5bF82NP81 l .o. ~9!

The characteristic modes and eigenvalues determine
the system play a crucial role in our boundary treatme
These are~note that the modes with speedb propagate along
the timelike normal to the foliation, while the other mod
propagate along the light cone!,

u15grr ~v15b!, ~10!
10403
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u25gT ~v25b!, ~11!

u35Krr 2grr
21/2f rrr ~v35b1ãgT!, ~12!

u45KT2grr
21/2f rT ~v45b1ãgT!, ~13!

u55Krr 1grr
21/2f rrr ~v55b2ãgT!, ~14!

u65KT1grr
21/2f rT ~v65b2ãgT!, ~15!

u75P1grr
21/2F ~v75b2ãgT!, ~16!

u85P2grr
21/2F ~v85b1ãgT!. ~17!

If we were dealing with a constraint-free system describ
by Eqs.~2!–~9!, a unique solution would be fixed by provid
ing boundary conditions for the characteristic modes that
incoming at the boundaries and data on the initial hypers
face. However, we know that a solution to Eqs.~2!–~9! is a
solution of Einstein’s equations if and only if the followin
four constraints are also satisfied:

C:5
f rT8

grr gT
2

1

2r 2gT

1
f rT

grr gT
S 2

r
1

7 f rT

2gT
2

f rrr

grr
D

2
KT

gT
S Krr

grr
1

KT

2gT
D1

F2

4grr
1

P2

4
50, ~18!

Cr :5
KT8

gT
1

2KT

rgT
2

f rT

gT
S Krr

grr
1

KT

gT
D1FP50,

~19!

Crrr :5grr8 1
8grr f rT

gT
22 f rrr 50, ~20!

CrT :5gT81
2gT

r
22 f rT50. ~21!

The first two are basically the Hamiltonian and momentu
constraints, respectively, while the other two correspond
the definitions of the extra variables that make the sys
first order with respect to spatial derivatives. As mention
it is common practice to choose consistent initial data
Einstein’s equations by solving these constraints; howe
the constraints have been examined in a limited numbe
cases to provide consistent boundary data. The main pur
of this work is to provide further indications that constrain
should be looked at more closely when dealing with bou
ary conditions. First, note that these constraints are define
terms of the main variables, and a solution of the main e
lution equations completely determines them as functions
spacetime. In particular, one can obtain the time evolution
the constraints by:~i! taking time derivatives of the righ
hand side~r.h.s.! of Eqs. ~18!–~21!; ~ii ! replacing the time
1-4
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CONSTRAINT-PRESERVING BOUNDARY CONDITIONS . . . PHYSICAL REVIEW D 65 104031
derivatives by the r.h.s. of Eqs.~2!–~9!; and, ~iii ! re-
expressing the main variables in terms of the constraints
their spatial derivatives. In the present case, these are

Ċ5bC82
N

grr
Cr81 l .o.,

Ċr52NC81bCr81 l .o.,

Ċrrr 5bCrrr8 1 l .o.,

ĊrT5bCrT8 1 l .o.

We can also calculate the characteristic modes and eigen
ues of this system, obtaining:

C15C1grr
21/2Cr ~v1

c5b2ãgT!, ~22!

C25C2grr
21/2Cr ~v2

c5b1ãgT!, ~23!

C35Crrr ~v3
c5b!, ~24!

C45CrT ~v4
c5b!. ~25!

In the next section we exploit this information about t
characteristic structure of our system in order to set
boundary conditions that will preserve the constraints at
boundaries.

III. CONSTRAINT-PRESERVING BOUNDARY
CONDITIONS

In any system where the characteristic modes and eig
values are known, the data required at a given boundary
straightforwardly assessed by examining the eigenvalue
each characteristic mode. In our present case, these eige
ues arel15b2ãgT , l25b1ãgT , andl35b. In the case
where the shift is exact, one cana priori guarantee which
sign l3 will have. Throughout this paper we shall takeb as
positive, since in that way we will be able to reproduce s
tionary known slicings of the Schwarzschild spacetime,4 and
to evolve dynamical spacetimes as well. The positivity of
shift implies thatl2 is also positive. On the other hand, th
sign ofl1 depends on the solution and, thus, cannot be c
trolled a priori. However, for typical stationary slicings o
Schwarzschild it is negative~positive! outside ~inside! the
black hole, and zero at the horizon. By continuity, the sa
will hold for ~perhaps slight! distortions of these slicings. In
our simulations we check numerically that this is indeed
case. As we shall see, even on highly distorted spaceti
this condition remains satisfied. Figure 1 shows a schem
diagram for the characteristic modes of a Schwarzsc
black hole.

Our inner boundary is always inside the black hole, a

4Kerr-Schild, Painleve´-Gullstrand, full harmonic and time har
monic slicings of Schwarzschild have positive shifts; see@14# for
the explicit form of these metrics in the EC formulation.
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no conditions are needed there. The usual procedure to m
sure that the inner boundary is inside the hole is to track
apparent horizon. In spherical symmetry this is particula
simple since its location is defined in terms ofalgebraic
combinations of the main variables (f rT2grr

1/2KT50). Our
actual procedure is to choose the initial data such that
inner boundary is inside the apparent horizon, and then
merically monitor its position during evolution. In our simu
lations the horizon never touches the inner boundary, so
do not need to move it, i.e. its grid location is fixed.

From the discussion in Sec. II, we know that at the ou
boundary~which in our case also has fixed grid location! we
need to specifyu1 ,u2 ,u3 ,u4 ,u8 from the characteristic
structure of the main equations. However, since the syste
constrained, we are not free to choose these arbitra
~which would be the case in an unconstrained system!, but
rather we must do so such thatC25C35C450 are satisfied.
~Note thatC1 is outgoing, therefore nothing special needs
done for it, nor should it be, otherwise we would overdet
mine the constraint system of evolution equations.! This pro-
cedure, coupled with initial data satisfying the constrain
and the fact that the constraints are propagated with a qu
linear homogeneous system, will ensure that they are
served everywhere.

We now make explicit how this procedure is implement
in our present case. We start by discussing how to enfo
C35C450 at the~outer, from now on! boundary. Writing
down the constraints explicitly in Eqs.~24!,~25!, these con-
ditions are

grr8 1
8grr f rT

gT
22 f rrr 50, ~26!

gT81
2gT

r
22 f rT50. ~27!

Using Eqs.~2!,~3!, these can be rewritten as

FIG. 1. Schematic diagram for the characteristic speeds of
different modes in a stationary slicing of Schwarzschild black ho
The computational domain is limited by the two vertical lines, a
has no singularity.
1-5
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GIOEL CALABRESE, LUIS LEHNER, AND MANUEL TIGLIO PHYSICAL REVIEW D65 104031
ġrr 52grr b822NKrr 28
grr f rT

gT
b12 f rrr b, ~28!

ġT522NKT12b f rT . ~29!

Note that sincegrr andgT correspond to ingoing modes, w
are free to choose them such that they satisfy Eqs.~28!,~29!.
As was mentioned, one does not need to solve these
differential equations at the boundary, since time derivati
are all that is required for the time update in the method
lines, which we use for the time update~see Sec. IV!. Thus,
we simply use the expressions~28!,~29! as the right hand
side of the corresponding field variable at the bound
points @and similarly for ḟ rT and K̇T , see Eqs.~31!,~32! be-
low#.

Lastly,C250 needs to be enforced at the boundary. Us
its definition, we have

1

Agrr

f rT8 2KT81 l .o.50.

Trading spatial for time derivatives, this in turn gives

1

Agrr

ḟ rT2K̇T1 l .o.50. ~30!

Next observe that, by definition,K̇T5K̇T(u̇4 ,u̇6 ,ġrr ) and
ḟ rT5 ḟ rT(u̇4 ,u̇6 ,ġrr ). Since ġrr at the boundary is readily
known from Eq.~28!, Eq.~30! fixes the ingoing modeu̇4 ~up
to now free!. From this, the definition ofu4 andu6, and Eq.
~28!, we end with~recall thatu6 is outgoing, so it does no
need boundary conditions!

ḟ rT5
grr

1/2

2
u̇61 l .o. ~31!

K̇T5
1

2
u̇61 l .o. ~32!

Similarly, the ingoing modeu3 is completely arbitrary. From
it and the outgoing modeu5 we have

Krr 5
1

2
~u31u5!, ~33!

f rrr 5
grr

1/2

2
~u52u3!. ~34!

Finally, the ingoing modeu8 is also arbitrary. From it and the
outgoing modeu7 we have

P5
1

2
~u71u8!, ~35!

F5
grr

1/2

2
~u72u8!. ~36!
10403
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Equations~28!, ~29!, and ~31!–~36! completely determine
the boundary conditions for our eight variables;u3 and u8
are the only free modes. In the vacuum case,u850 andu3
describes a gauge mode.

In the next section we discuss our numerical implemen
tion and results. One comment is in order before that: ther
an additional constraint,Cmatter5F2C8, but by repeating
the treatment described above one can see that this cons
fixes the boundary condition forC: Since we are not evolv-
ing C, we do not need to care about this.

IV. NUMERICAL SIMULATIONS

To implement the proposed boundary treatment strate
we have chosen a straightforward second-order dissipa
method of lines. In particular, it was not necessary to emp
techniques such as causal differencing@16#, upwind discreti-
zation or any special way of treating the Lie-derived terms
Eqs. ~2!–~9! ~however, these can be readily incorporated
well!. Spatial derivatives are discretized with second-or
centered differences plus fourth-order dissipation as
cussed in@17#, while for the time integrator we use secon
order Runge-Kutta~the dissipation added is, indeed, neede
otherwise, this method is unstable even for a simple sc
wave equation; see, e.g.,@9#!.

Our uniform grid structure consists of pointsi 50 . . .N,
with grid spacingDr 5L/N, where L5r outer2r inner , and
we implement derivatives according to standard formulas

A f8→AD0f 2
s i

Dt
~Dr !4D1D1D2D2 f ,

~D0f ! i5
f i 112 f i 21

2Dr
,

~D1 f ! i5
f i 112 f i

Dr
,

~D2 f ! i5
f i2 f i 21

Dr
.

To evaluate derivatives at the boundaries, one either
sorts toone-sidedderivatives~which require different algo-
rithms applied at boundary points! or introducesghost zones,
which are artificial points beyond the boundaries where fi
values are defined via extrapolation~one can choose the ex
trapolation order such that the answers from the differ
approaches are exactly the same!. For convenience we chos
the latter approach with only one ghost-zone for each bou
ary. Field values at these ghost zones are defined via th
order extrapolations and thesamederivative operator is ap
plied ; i ,i 50 . . .N.

Since our inner boundary is always inside the black ho
we extrapolate all variables at the ghost zone point (i 5
21).

At the outer boundary ghost zone (i 5N11), the outgo-
ing modesu5 andu7 are also found by extrapolation, whil
the ingoing modesu3 andu8 are set as arbitrary functions o
time. Next, Eqs.~28!, ~29!, ~31!, and ~32! are integrated, at
1-6
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each time step, with second-order Runge Kutta. This, p
Eqs.~33!–~36!, completes the treatment for the outer boun
ary.

As a side note, it is worth mentioning that since we u
only one ghost zone for each boundary, fourth-order der
tives cannot be obtained at the pointsi 50,N; thus, no dissi-
pation is added to these points~we sets i 505s i 5N50).

In all the cases discussed in this paper we have chec
second-order self-convergence for the eight main variab
for the constraints and mass, as well as convergence
respect to the analytic solution, whenever this is availa
~this is always the case, for example, for the constraints!. By
self-convergence we mean computing, for example,

Qsel fª log2S uud2ud/2u
uud/22ud/4u

D ,

whereud refers to the numerical solution obtained with res
lution Dr 5d, and theL2 norm is defined below. Similarly
by convergence to an analytic solutionu0 we mean

Qª log2S uud2u0u
uud/22u0u D .

The Courant-Friedrich-Levy factorl5Dt/Dr is set to
0.25, and the dissipation factor iss i50.6/16 ~for i
51 . . .N21).

A. Vacuum evolutions

1. Stationary slicing of a black hole

The simplest test of a black hole spacetime consists
reproducing known stationary slicings of a Schwarzsch
black hole. For this test we give the corresponding kno
values both to the initial data and to theu3 mode (u850 for
vacuum! at the outer boundary. We concentrate here
Painlevé-Gullstrand slicings, but we have obtained simil
results using Kerr-Schild slicings. The code runs for unli
ited times, even with resolutions as coarse asDr 5M /6 ~with
M the mass of the black hole!. Figure 2 displays theL2 norm

FIG. 2. L2 norm of the Hamiltonian constraint, for the evolutio
of a Painleve´-Gullstrand black hole. In these runs the outer boun
ary is atr 510M .
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of the Hamiltonian constraint for three different resolutio
and L59M (r inner5M ), the L2 norm of a grid functionf
being defined as

u f uªS 1

L (
i 50

N21

~ f i !
2Dr D 1/2

.

There is no growth in the Hamiltonian constraint, and t
same holds true for the other three constraints.

Figure 3 shows, for the same run, theL2 norm of the
relative error,udM u, in the mass functionM, defined as

udM uª
1

M
uM2M u,

whereM, the Misner-Sharp mass@18#, is a gauge invariant
@19# definition of the ADM massM in spherical symmetric
vacuum:

Mª

rgT
1/2

2 F11
r 2

gT
S KT

22
f rT

2

grr
D G . ~37!

That is, each of the terms in the r.h.s. of Eq.~37! might be a
function of t and r, but Einstein’s vacuum equations i
spherical symmetry imply that, at the continuum, the r.h.s
a constant~equal toM ), both as a function of space and tim
When we computedM we evaluateM using the numerical
values of the right hand side of Eq.~37!, while for M we use
its analytical value.

From Fig. 3 we see that, as opposed to the constra
there is a drift in the mass~this effect is expected, as secon
order errors accumulate after many iterations! which, after a
couple of hundred masses, is essentially linear in time
Fig. 4 we plotM/M as a function of radius, for differen
times andDr 5M /8; the error is spread all over the doma
and the mass decreases monotonically in time, which s
gests that the black hole is moving through the grid~in the
sense thatr→r 1t3vnum). We have verified that this is in
deed the case@but, still, vnum5O(Dr 2)# by computing the
~grid! location of the apparent horizon. For example, w

-
FIG. 3. L2 norm of the relative mass errorudM u5uM2M u/M ,

for the same runs shown in Fig. 2. After one thousand cross
times, the relative error for the coarsest resolution is around
percent.
1-7
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Dr 5M /8, after 10 000M the horizon has moved fromr h
52M to r h51.75M , which accounts for the roughly te
percent error that the mass has at that time in Fig 3:

dM'12r h /~2M !'0.1.
We have tried different positions for both boundarie

with the inner one always inside the black hole and the ou
one ranging from 10M to 1000M , and neither the stability
nor the convergence of the simulations depended on s
positions.

2. Gauge pulse falling into a black hole

As discussed in Sec. III, the modeu3 at the outer bound-
ary is completely arbitrary. In this next test we let a gau
pulse enter the domain through the boundary. We thus
initial data corresponding to a Painleve´-Gullstrand slicing of
a black hole of massM, and fixu3 at r outer by superposing,
on top of the Painleve´-Gullstrand value, a Gaussian puls
described by

u3~ t !5u3
PG~11Ae2(t2t0)2/s̃2

!. ~38!

In Fig. 5 we present snapshots of thegrr component of the
metric as a function of radius for different times. The wid
of the pulse iss̃52M , and it is centered att055M . The
amplitude is quite large,A51, corresponding to a 100%
‘‘disturbance’’ of the stationary value. The resolution em
ployed is Dr 5M /8, and the domain extends fromr inner
5M to r outer530M . The pulse grows as it approaches t
inner boundary~which is not surprising, since it happen
even for a linear scalar equation propagating in curved ba
grounds like the one given by the Schwarzschild spacetim!,
grr having a disturbance of more than 500% that of the s
tionary value when it ‘‘crosses’’ the inner boundary. After th
pulse falls into the black hole, the metric components gra
ally settle down to stationary values and the code runs
unlimited times.

Since we are dealing with a vacuum spherically symm
ric spacetime, the resulting spacetime must be a~dynamical!

FIG. 4. Numerical value of the Misner-Sharp mass, scaled by
analytical value, as a function of radius, for different times. T
monotonic behavior is explained by the fact that the black h
‘‘moves’’ through the grid.
10403
,
r

ch

e
se

k-

-

-
r

t-

slicing of Schwarzschild. One way of corroborating this is
follow the Misner-Sharp mass. As can be seen in Fig.
where udM u is shown as a function of time for differen
resolutions, the numerical value of the mass does converg
this analytical prediction. Just as in the stationary case,
code runs for as long as wanted, and has a similar linear
in the mass at late times. The growth in the errors arount
530M seen in Fig. 6 is not due to the pulse entering t
domain through the boundary~this happens att55M ) but
due to the pulse reaching the inner boundary, where all
gradients are steeper, and the huge growth ingrr is rather
poorly resolved. Similar growths appear in the constrai
~see Fig. 7!, but they are still second-order convergent. It
indicative of the power of consistent boundary conditions~i!
that we can have such a big pulse entering the dom
through the boundary, causing the spacetime to be so
namical,~ii ! that the code is stable,~iii ! and that the mass

ts

e

FIG. 5. The radial component of the metric, for a gauge pu
entering the domain through the outer boundary. The amplitud
pulse grows as it approaches the inner boundary, falls into the b
hole, and finally the metric gradually settles down to a station
one.

FIG. 6. Mass error for a gauge pulse ‘‘falling’’ into the blac
hole. The peaks aroundt530M are caused by the pulse reachin
the inner boundary. After the pulse falls into the black hole t
spacetime settles to a stationary one, and at late times the mas
a linear drift, just as in the stationary evolutions.
1-8
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error is small~notice that even for a resolution as coarse
Dr 5M /8 this error, while the pulse travels through the d
main, does not exceed one percent!.

In Eq. ~38! we wrote the boundary condition in that wa
~i.e. the Painleve´-Gullstrand value times a time depende
function! in order to have a measure of how large the puls
compared to its stationary value. In the next simulations
will have a more physical idea of how strong these pul
can be in our code.

B. Scalar field coupled to the black hole

As a last test of the approach we consider the case
minimally coupled scalar field which also enters the com
tational domain through the outer boundary. As mention
only one scalar field mode is freely specifiable at the ou
boundary. It is this mode which is chosen to describe
incoming pulse with amplitudeA and compact support in
time as

u7~ t !5A~ t2t I !
4~ t2tF!4sin~pt !,

if tP@ t I ,tF#, andu7(t)50 otherwise. We chooseu350, and
for the initial data we take that of a Painleve´-Gullstrand
black hole of massM. Note that one advantage of this is th
one can perform nontrivial simulations without solving t
constraints initially, since one can provide, as we have do
a known solution of the constraints as initial data, and int
duce the nontrivial dynamics through the boundary~where
all the treatment is algebraic!, see also@20#.

We have tried different amplitudes and time range for
pulse, obtaining stable discretizations in all cases. In orde
illustrate the robustness of the approach we show here
examples. In the first one we show how the method can c
with considerably strong pulses~measured by the amount o
energy that the black hole accretes!, and in the second on
the tails of the scalar field are computed and shown to ag
with the expected result.

For the first case we choseA58, t I50,tF510M , Dr
5M /10 and the outer boundary atr 550M . Figure 8 illus-
trates the area of the apparent horizon as a function of ti
Initially the area isM and, as time progresses, it increases

FIG. 7. L2 norm of the Hamiltonian constraint for the same r
shown in Fig. 8.
10403
s
-

t
is
e
s

a
-
,
r
n

e,
-

e
to
o

pe

ee

e.
y

270%, until it reaches a stationary state describing, as
pected, a Schwarzschild black hole of larger mass.

In the second case, in order to resolve the tails accura
considerably finer resolution is needed~see Fig. 9!. For this
reason, we choseDr 5M /50 and place the outer boundary
r 5100M . In order to measure the tails, we place four diffe
ent observers: atr 550, 70, 90 and 100M . The decay rate
~of the form F}t2n) found by these observers isn5
22.89,22.97,22.94 and23.04, respectively. These are i
excellent agreement with the expected value ofn523 @21#.
Furthermore, the clean treatment of the outer boundary
lows for accurate measurements even at the last point of
computational domain. Past works, which resorted to
proximate boundary conditions, have observed that
boundary influenced the results when the observers w
placed close to it.

Finally, we should mention that we have tried with diffe
ent kinds of time dependent boundary conditions for

FIG. 8. Change in the area of the apparent horizon, due
quite narrow (Dt510M ) pulse of scalar field injected at the oute
boundary, with a not very demanding resolutionDr 5M /8). The
final mass of the black hole is more than twice the original one

FIG. 9. Tail decay for the~time derivative of the! scalar field.
The observer is located at the last grid point (r 5100M ) and mea-
sures a tail decay ofF}t23.04, in good agreement with the expecte
decay oft23. This is so mainly because of the clean treatment
the boundary.
1-9
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modesu3 andu7, and the results presented here do not
pend on the particular choice made. Not only can we de
pulses that last for a finite amount of time, as we have sho
here, but we can define a time dependency that lasts for
@say, u35A sin(vt)#. In this sense, the large growth in th
mass of the black hole mentioned above is what one can
with a pulse of width 10M . In fact, one can increase arb
trarily the mass by using wider pulses, i.e. by slowly inje
ing scalar field energy through the boundary.

V. CONCLUSIONS

In the present work we have presented additional sup
for the need to consider the constraint equations when de
ing boundary conditions. Although approximate bounda
conditions~which are simpler to implement! can certainly be
arranged to produce reliable simulations, for long term e
lutions they have some important disadvantages:

~i! The inherent error introduced might accumulate, sp
ing the physical outcome: For instance, even in the partic
case of a binary black hole collision, the radiation is e
pected to be around 5% of the total mass of the syst
Therefore, even small errors which accumulate over time
account for a significant percentage of the radiated ene
Since the outcome of some of these simulations will be u
as templates for gravitational wave data analysis@22#, one
should minimize all possible waveform contaminati
sources and diminish both amplitude and phase errors.

~ii ! Although the inherent error of approximate bounda
conditions can be reduced by placing the outer bound
farther away from the sources, this amounts to having
compute the solution on a larger computational dom
which naturally increases the cost of the simulation.

~iii ! Standard approximate boundary approaches pay l
or no attention to the satisfaction of the constraints at
boundary. It is hard to conceive that they do not introdu
constraint violating modes into the solution. Unless t
implemented scheme is capable of damping these mo
away, they will be present in the computational domain
possible source of instabilities~though not necessarily th
only one! in present implementations are, precisely, co
straint violating modes, hence, it is important to eliminate
possible sources for these modes. It might happen tha
10403
-
e
n
er

do

-

rt
n-
y

-

l-
ar
-

.
n
y.
d

ry
o
n

le
e
e
e
es

-
ll
in

certain cases, the observed constraint violations are du
those particular implementations. Nevertheless, as the go
to solve Einstein equations, sources of constraint violati
must be removed. As mentioned, standard boundary tr
ments are likely to introduce these violations.

Furthermore, carefully designed boundary conditions
important in the case ofartificial boundaries. These are
boundaries which occur inside the computational dom
where the computational mesh has regions with differ
resolutions~for instance in the case of adaptive mesh refin
ment! or has been subdivided into sub-domains which
treated independently~e.g. when using domain decompos
tion techniques!. As these boundaries are purely artificial a
introduced for convenience, it is imperative to count with
clean boundary treatment which eliminates~or at least mini-
mizes! any spurious reflections or numerical noise.

Consequently, the search for accurate boundary condit
is of importance in current applications. The results p
sented in this work attest to that effect and suggest a prac
and simple way to obtain such boundary conditions, wh
ensures constraint violating modes are absent by the
definition of the approach. Current work is devoted to app
ing the same techniques to 3D problems.
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APPENDIX A: EVOLUTION EQUATIONS

The main variables propagate according to

ġrr 5bgrr8 12grr b822ãgrr
1/2gTKrr

ġT5bgT822ãgrr
1/2gTKT1

2bgT

r

K̇rr 5bKrr8 2ãgrr
21/2gTf rrr8 2ã9grr

1/2gT26gT
21grr

1/2ã f rT
2 14gTr 21grr

1/2ã826gTr 22grr
1/2ã12Krr b822gTgrr

1/2ãF2

2gTgrr
21/2ãKrr

2 12grr
1/2ãKrr KT28grr

21/2ã f rT f rrr 12gTgrr
23/2ã f rrr

2 12gTr 21grr
21/2ã f rrr 2gTgrr

21/2ã8 f rrr

K̇T5bKT82ãgTgrr
21/2f rT8 12br 21KT1gTr 22grr

1/2ã1ãgTKTKrr grr
21/22gTf rTã8grr

21/222ã f rT
2 grr

21/2
1-10
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ḟ rrr 5b f rrr8 2ãgrr
1/2gTKrr8 24grr

3/2ã8KT112gT
21grr

3/2ãKTf rT24grr
1/2ãKTf rrr 2gTgrr

21/2ãKrr f rrr 210grr
1/2ãKrr f rT

13 f rrr b81grr b92ã8grr
1/2gTKrr 12r 21gTgrr

1/2ãKrr 18r 21grr
3/2ãKT14ãgrr

3/2gTFP

ḟ rT5b f rT8 2ãgrr
1/2gTKT81b8 f rT2ã8grr

1/2gTKT12grr
1/2ãKTf rT2ãgrr

21/2KTf rrr gT12r 21b f rT

Ḟ5bF82ãgrr
1/2gTP82grr

21/2ãgTP f rrr 12ãgrr
1/2P f rT12r 21ãgrr

1/2gTP2ã8grr
1/2gTP1Fb8

Ṗ5bP82grr
21/2ãgTF81grr

21/2ãgTPKrr 12ãgrr
1/2PKT24grr

21/2ãF f rT12r 21grr
21/2ãgTF2grr

21/2gTFã.

APPENDIX B: EXCISION OF THE SINGULARITY

The issue of excision is a nontrivial one, even if dealing with a strongly hyperbolic formulation of Einstein’s equation
even ignoring the constraints. The point is that, depending on the formulation, modes can leave the black hole. Eve
these modes cannot be physical, they would need boundary conditions in any case in order to fix the solution. If
example, extrapolated all variables in such a situation, one would be implicitly giving boundary conditions that depend
discretization and that might not have a consistent limit as the grid spacing is decreased. Here we show a simple ex
illustrate this point.

We start with a formulation widely used in numerical relativity, the ADM one~more precisely, the equations arising fro
Rab50), and we choose exact lapse and exact co-shift~that is, the covariant shift!. We use the same notation as in the bo
of the paper, except that nowN5N(t,r ) and b r5b r(t,r ) are prescribed as arbitrary functions of spacetime. In sphe
symmetry, the evolution equations for such a formulation are

ġrr 52
b rgrr8

grr
12b r822NKrr ~B1!

ġT5
b rgT8

grr
12

b rgT

rgrr
22NKT ~B2!

K̇rr 52
1

2grr
2 gT

2r
~22gT

2rb rKrr8 grr 24gT
2rK rr b r8grr 14gT

2rK rr b rgrr8 ~B3!

12Ngrr
2 gT9rgT14Ngrr

2 gT8gT2Ngrr grr8 rgTgT822Ngrr grr8 gT
22Ngrr

2 ~gT8 !2r ~B4!

12Ngrr Krr
2 gT

2r 24Ngrr
2 Krr gTrK T12N9grr

2 gT
2r 2grr8 N8grr gT

2r ) ~B5!

K̇T5
1

4r 2grr
2 ~4b r r

2grr KT818b r rgrr KT22NgT9r 2grr 28NgT8rgrr 1Ngrr8 r 2gT812Ngrr8 rgT ~B6!

14Ngrr
2 24Ngrr gT14NKTr 2grr Krr 22r 2N8grr gT824rN8grr gT). ~B7!

Note that in the previous equations, onlygT appears with second derivatives. This means that we can rewrite this system
first-order one by introducing just one new variable,zªgT8 ; i.e. u̇5Au81B, whereu5(grr ,gT ,Krr ,KT ,z)†.

As an evolution equation forz we make the simplest possible choice: we just take the spatial derivative of the r.h.s.
~B2! ~i.e., we do not add the constraints to this new equation!. Also, we replace everywheregT8 by z. The principal part is then:
104031-11
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A51
2

b r

grr
0 0 0 0

0 0 0 0 0

24rgTKrr b r12Ngrr gT1Nzrgrr 1rgrr gTN8

2rgrr
2 gT

0
b r

grr
0 2

N

gT

N~rz12gT!

4rgrr
2

0 0
b r

grr
2

N

2grr

2
b r~rz12gT!

rgrr
2

0 0 22N
b r

grr

2 .

This matrix has as eigenvalues and eigenvectors

u15F1,0,2
grr N824b rKrr

4b rgrr
,0,

rz12gT

2rgrr
G S v152

b r

grr
D ~B8!

u25@0,0,1,0,0# S v25
b r

grr
D ~B9!

u35@0,1,0,0,0# ~v350! ~B10!

u45F0,0,2
grr

1/2

gT
,2

1

2grr
1/2

,1G S v45
b r1Ngrr

1/2

grr
D ~B11!

u55F0,0,
grr

1/2

gT
,

1

2grr
1/2

,1G S v55
b r2Ngrr

1/2

grr
D . ~B12!

The determinant of the matrix that diagonalizesA is proportional to

~24Krr b r1grr N8!~rz12gT!2

64grr
7/2b r r

2
, ~B13!

the system being strongly hyperbolic unless this determinant is zero. For the usual slicings of Schwarzschild~Painlevé-
Gullstrand, Kerr-Schild, time harmonic and full harmonic slicings! expression~B13! is different from zero, so the system is
indeed, strongly hyperbolic, and the same will hold for~perhaps slight! distortions of those spacetimes. Now, it is known th
one has to give initial data and boundary conditions to the incoming characteristic modes in order to fix the solution
a system. The point is that here there is always a negative eigenvalue~whose corresponding eigenmode will thus propagate
the direction of increasingr, in particular, leaving the black hole!: if b rÞ0, this eigenmode is eitheru1 or u2, while the mode
is u5 if b r50.

It is important to point out that whether or not modes leave the black hole strongly depends on the particular form
that one is dealing with. For example, using exactly the same formulation~ADM in spherical symmetry! with other choices of
lapse and shift~such that they ‘‘lock’’ the area! also gives strongly hyperbolic formulations when rewritten in first order for
but theydo nothave modes leaving the domain~see@23#!. Also, if one uses exact-lapse and exact-shift~as opposed to exac
co-shift!, the system is only weakly hyperbolic and, thus, the characteristic modes are not complete but, in any case,
not leave the black hole~see, also,@23#!. What we want to emphasize here is that superluminal modes can appear
naturally, even in standard formulations.
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