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Thorny spheres and black holes with strings
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We consider thorny spheres, that is, 2-dimensional compact surfaces which are everywhere locally isometric
to a round sphereS2 except for a finite number of isolated points where they have conical singularities. We use
thorny spheres to generate, from a spherically symmetric solution of the Einstein equations, new solutions
which describe spacetimes pierced by an arbitrary number of infinitely thin cosmic strings radially directed.
Each string produces an angle deficit proportional to its tension, while the metric outside the strings is a locally
spherically symmetric solution. We prove that there can be arbitrary configurations of strings provided that the
directions of the strings obey a certain equilibrium condition. In general this equilibrium condition can be
written as a force-balance equation for string forces defined in a flat 3-space in which the thorny sphere is
isometrically embedded, or as a constraint on the product of holonomies around strings in an alternative
3-space that is flat except for the strings. In the case of small string tensions, the constraint equation has the
form of a linear relation between unit vectors directed along the string axes.
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I. INTRODUCTION

Recently@1# it was demonstrated that cosmic strings
tached radially to a black hole can be used for very effec
energy mining from black holes. There were also found s
of exact solutions of the Einstein equations which describ
black hole with infinitely thin radial cosmic strings@2# and
generalize the results of@3,4#. For such solutions a regula
round sphere is changed to a sphere with a number of con

singularities on it with angle deficitsm58pm̃, wherem̃ is
the dimensionless1 cosmic string tension.

A characteristic property of the configurations studied
@2# is that the positions of the conical singularities on
sphere form a regular symmetric structure. The numbe
types of these configurations is restricted. There are th
configurations which are related to platonic solids and o
family of configurations which looks like a ‘‘double pyra
mid.’’ In the latter case the number of conical singulariti
~and hence the strings! is not restricted.

In physical applications one can always assume that
string tension is very small. For example, for strings wh
appear in grand unified theories~GUTs! the tension is 1026,
while for electroweak strings it is 10234. Finding all possible
static radial string configurations for smallm without any

*Email address: frolov@phys.ualberta.ca
†Email address: fursaev@thsun1.jinr.ru
‡Email address: don@phys.ualberta.ca
1We work in the system of units\5G5c51. In these units the

string tensionm̃ is dimensionless and corresponds to the combi

tion Gm̂/c2, wherem̂ is the tension measured in physical units.
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additionala priori symmetry assumptions is our first goal
the present paper. We shall demonstrate that such config
tions exist for any numbern,4p/m of strings, and in the
general case they do not possess any symmetry. Neverth
there always exists a vector force-balance constraint equa

F5 (
k51

n

Fk50, ~1.1!

which for ( i 51
n mk!1 is approximated by

(
k51

n

mknk50. ~1.2!

The sum is taken over all singular points with correspond
angular deficitsmk . In the given approximation the positio
of each point is characterized by the unit vectornk on a
smooth sphereS2.

We also studied in detail the case when the string tens
is not small, and this is our second main goal. We dem
strated that there can exist configurations with an arbitr
number of stringsn, provided the total angular deficit is les
than 4p. The constraint equations which again must be s
isfied are now more involved. We demonstrate that th
relations can be written as a constraint on the products of
elements of the holonomy group representing the conical
gularities. The constraint equations are more involved si
the corresponding operators of the holonomy group do
commute.

This analysis requires knowledge of different geometri
properties of an object which we called athorny sphere. A
thorny sphere is a compact 2-dimensional surface which
n points with conical singularities, and away from the
-
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points is everywhere locally isometric to a unit sphereS2. If
l k is a length of a circle of radiusr k around the singular poin
k, thenmk52p2 limr k→0( l k /r k) is its angle deficit.

In Sec. II we study thorny spheres isometrically embe
ded in a Euclidean 3-space to derive one form of the c
straint equation. In Sec. III we show how the thorny sph
can be obtained from a regular round sphere by a se
reconstructions~elementary deformations!, starting with an
arbitrary triangulation ofS2. In Sec. IV we describe method
of mapping a thorny sphere onto a unit sphere with cu
Constraint equations are derived in Sec. V from a con
tency condition of these maps and from the holonomy gro
of a 3-space that is flat except for the strings. The spe
case of small angle deficits is also considered in this sect
Concrete examples of thorny spheres with 3, 4, and gen
n conical singularities are studied in detail in Sec. VI. Top
logical aspects of the problem are the subject of Sec.
Finally, in Sec. VIII, we demonstrate how thorny spheres c
be used to construct static solutions of the Einstein equat
with n radial cosmic strings.

II. THORNY SPHERES EMBEDDED IN FLAT EUCLIDEAN
SPACE AND THE NUMBER OF FREE PARAMETERS

A. Intrinsic geometry of a thorny sphere

We shall first consider the large class of thorny sphe
M2 ~e.g., all those with three or more conical singularitie
all of which have positive deficit angles! that are both iso-
metrically embeddable into Euclidean 3-space~in a unique
manner, up to overall translations and rotations! and also
have their geometries uniquely defined by the edge len
of geodesic triangulations with the vertices at the coni
singularities. If Nf , Ne and Nv5n>3 are the number o
triangles, edges and vertices for the triangulation, then
Euler theorem gives

Nf2Ne1Nv52. ~2.1!

Since each triangle has 3 edges and each edge belongs t
triangles, we haveNe53Nf /2. ~Thus the total number o
triangles is always even.! From this relation and the Eule
theorem, we get

Nv5n, Ne53n26, Nf52n24. ~2.2!

Except at the conical singularities at the vertices of
triangles, the thorny sphere has constant Gaussian curv
K5 1

2 R ~with R being the Ricci scalar curvature! which we
shall take to be unity, and hence each triangle can be
metrically mapped to a spherical triangle on the unit sphe

Consider a spherical triangle with vertices 1,2,3. Its ed
are parts of great circles on the sphere. Denote byl 1 , l 2 and
l 3 the lengths of the triangle, and byg1 , g2 andg3 its inte-
rior angles at the vertices 1,2,3, respectively. We assume
the edgel k is opposite to thekth vertex. For given lengths o
the edges, the angles are uniquely defined, assuming a
shall that they are all less thanp ~which is indeed the cas
when the deficit angles are all positive!. In particular one has
10402
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cosg15
cosl 12cosl 2cosl 3

sin l 2sin l 3
. ~2.3!

The triangle can also be specified by its angles. The leng
of the edges can be determined by using the relation

cosl 15
cosg2cosg31cosg1

sing2sing3
. ~2.4!

We also shall use the following expression for the areaA of
a spherical triangle:

A5g11g21g32p. ~2.5!

Because the edges of the triangles are geodesics o
thorny sphere, adjacent triangles match without produc
any singularities along the edges, except at the verti
There one gets a deficit anglemk that is 2p minus the sum of
the interior angles of the triangles at that vertex.

Thus the entire geometry of eachM2 is uniquely deter-
mined by theNe53n26 edge lengths of the triangulation
which can all be specified independently, within an open
of the (3n26)-parameter space that is restricted by cert
inequalities~e.g., triangular inequalities!. ~For n52, there is
no triangulation, and 3n2650, but there is a one-paramete
family of thorny spheres of arbitrary deficit anglem,2p.
See Appendix B.!

If the deficit angles are all positive, the thorny sphereM2

has non-negative Gaussian curvatureK everywhere, unit cur-
vature everywhere away from the conical singularities a
Dirac delta-function curvature at the singularities. The co
tribution of these two parts of the curvature to the Gau
Bonnet theorem is

E
M2

KdA5A1 (
k51

n

mk54p. ~2.6!

Therefore a thorny sphere can be isometrically rigid
~i.e., uniquely up to overall translations and rotations! em-
bedded as a convex surfaceM2 in 3-dimensional Euclidean
space@5,6#.

B. Gaussian normal map

Let n be the outward normal to the embedded surface
each point. One can then map each point ofM2 to a corre-
sponding point of a unit roundS2 also embedded in the
3-dimensional Euclidean space that has the same unit no
n. This map is known as the Gaussian normal map of
convex surfaceM2 into S2. The Gaussian normal map i
discussed in more detail in Appendix A, where it is show
that

K dA5da, ~2.7!

wheredA is the area element onM2 and da is the corre-
sponding area element onS2 ~with the same correspondin
set of unit normal vectorsn in the embedding Euclidean
3-space!.
9-2
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From the divergence theorem applied to the interior
M2, one can easily prove

E
M2

ndA50, ~2.8!

and from the divergence theorem applied to the interior
S2, one can similarly prove

E
M2

n K dA5E
S2

n da50. ~2.9!

The unit normaln to the embeddingM2 of a thorny
sphere is not well defined at each conical singularity. As o
goes around thekth conical singularity infinitesimally close
to it, the unit normaln to the embedding~well defined ev-
erywhere except at the conical singularities themselves,
hence defining a smooth Gaussian normal map from
smooth part ofM2 into the roundS2 of unit-normal direc-
tions! sweeps out a topological circle on the round sphereS2

of possible directions for the unit normal, with the area of t
disk Dk within this topological circle on the roundS2 being
the deficit anglemk . The set of thesen disks is the part of the
roundS2 that is not mapped into from the smooth part of t
M2 but instead represents the conical singularities. Thu
the case thatmk is not infinitesimal, the direction of the un
normal at that conical singularity is spread out over this co
~the diskDk on theS2) and has an angular uncertainty of th
order ofmk

1/2.

C. Constraint equation

The integral of Eq.~2.8! is the same as what it would b
if one excluded the zero-area conical singularities and
serted the unit curvatureK for reg(M2), the smooth part of
M2:

E
reg(M2)

n K dA5E
S22( Dk

n da50. ~2.10!

If one subtracts the second integral here from the sec
integral of Eq.~2.9!, one gets

E
(Dk

n da50, ~2.11!

which is one version of what we shall call the constra
equation for the thorny sphere, restricting the orientation
its conical singularities in the embedding Euclidean 3-spa

One can regard this constraint as arising from the fact
we have restricted the thorny sphere to have constant Ga
ian curvature everywhere except at the conical singularit
and this restricts three combinations of the strengths and
sitions of these singularities. A more physical interpretat
of the constraint is as a force-balance equation, to which
now turn.

One can define

Fk[E
Dk

n da, ~2.12!
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which can be interpreted as the force, defined as a vecto
the embedding Euclidean 3-space that can trivially be pa
lel transported over it and added to other such forces, exe
by a string that produces the angle deficit anglemk at thekth
conical singularity.

Since the area of the diskDk is

mk5E
Dk

da ~2.13!

~see the proof in Appendix A!, one can write

Fk5mkn̂k , ~2.14!

wheren̂k is the normaln averaged over the area of the dis
Dk :

n̂k[

E
Dk

nda

E
Dk

da

. ~2.15!

For (k51
n mk!4p, each diskDk is nearly round, and the

averaged normal will have the length

un̂ku'12
mk

4p
, ~2.16!

with this relation being exact when the diskDk is precisely
round. Thus the length is nearly unity whenmk is small, but
it decreases below that to a minimum value of 1/2 whenmk
is increased to its maximum value of 2p ~assuming a round
disk Dk , which one indeed gets in the case of just two co
cal singularities, a case in which the geometry is not de
mined by the geodesic distances between conical singu
ties, simplyp in this case, but which involves an arbitrar
deficit anglem,2p and is discussed in Appendix B!.

For an opposite extreme case, in which(k51
n mk54p and

in which the embedding of the thorny sphere gives the t
sides of a convex polygon, the deficit angle at a vertex isp
minus twice the corresponding interior angle of the polyg
~since the surfaceM2 corresponds to both sides!, and the
disk Dk is one interior lune-shaped region between two gr
circles that intersect at anglemk . Then one can show that in
this extreme case,

un̂ku5
p

mk
sin

mk

4
, ~2.17!

which for smallmk has the limitp/4 rather than the limit of
unity that Eq.~2.16! has. Thus for Eq.~2.16! to be valid, it is
required that the diskDk be nearly round, for which it is no
sufficient merely thatmk be small, but also that the effects o
all the other conical singularities on the embedding also
small.

In terms of the precisely defined forcesFk , the constraint
equation~2.11! becomes the force-balance equation that
sum of these forces vanishes:
9-3



fo

g

ra
e

ily
le
ed
iv
es

f
ls

re

er

in
W

ac
th

-
th
on
f
a

n
er
ng
re

gu
it,

nd

d
n

the
e
,
r

und

ere
call

ge

y
e

ef-
ions

of
de-
is

-
ns
un-

e-
is

to

se,
ec-

.
us
of

aint
the
he
dian

tri-
re.

V. P. FROLOV, D. V. FURSAEV, AND D. N. PAGE PHYSICAL REVIEW D65 104029
F[(
k51

n

Fk5 (
k51

n

mk n̂k5 (
k51

n E
Dk

n da50. ~2.18!

This is one precise version of the constraint equation
arbitrary possible positive deficit angles.

One way to visualize this constraint equation is to ima
ine that one covers the disksDk of the roundS2 with some
material with constant mass per unit area. Then the const
equation is the condition that the center of mass of thn
disks be at the center of the round sphere.

Although this form of the constraint equation is eas
visualizable and is precisely valid for general deficit ang
~so long as they allow the thorny sphere to be rigidly emb
ded in Euclidean 3-space, which will be the case for posit
deficit angles but need not be so for negative deficit angl!,
it is not very convenient for calculations, since forn.2 it is
a rather difficult procedure to construct the embedding o
thorny sphere into Euclidean 3-space. Therefore, it is a
useful to look at other ways of representing thorny sphe
which we shall do in Sec. IV.

Let us emphasize that the above results can be gen
ized. Instead of a thorny sphere one may consider athorni-
fold, that is a closed 2-dimensional surface with conical s
gularities and arbitrary smooth metric outside them.
assume that this metric has positive Gaussian curvatureK so
that it can be isometrically embedded in Euclidean 3-sp
as a closed convex surface. As is shown in Appendix A,
constraint equation~2.18! is modified and takes the form

F[(
k51

n

mk n̂k5E
reg(M2)

n ~12K ! dA, ~2.19!

whereK is the Gaussian curvature ofM2. We call this rela-
tion ageneralized constraint equation. The presence of non
constant Gaussian curvature in the right-hand side of
equation makes possible the existence of new configurati
e.g. with a single conical singularity. See the discussion oC
metrics in Appendix A for some interesting physical applic
tions of the generalized constraint equation.

III. SPHERICAL TRIANGULATIONS OF A
THORNY SPHERE

A. Elementary deformation of a sphere and another count of
the degrees of freedom

In this section we describe how to construct a thor
sphere starting with a triangulation of a regular unit sph
S2 ~see also@7#!. In the next section we describe the mappi
of thorny spheres into round spheres embedded in th
dimensional Euclidean space.

We start construction of a thorny sphere by taking a re
lar unit sphere with an arbitrary given triangulation of
using spherical triangles. As above, letNv5n>3, Ne53n
26, andNf52n24 be the number of vertices, edges, a
triangles for the triangulation, with Eqs.~2.3!, ~2.4!, and
~2.5! applying for the geometry of each triangle.

Now let us cut from the triangulation a spherical qua
rangle Q which consists of two triangles with a commo
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edge between vertices 2 and 3; see Fig. 1. We denote
length of this common edge byl 1. The other edges hav
lengths l 2 ,l 3 and l̄ 2 , l̄ 3 for the first and second triangles
respectively. Denote byQ8 a new spherical quadrangle fo
which the length of the common edge isl 18 , while the other
lengths are the same. This change of the lengthl 1 results in a
change of angles of each of two triangles which can be fo
by using Eq.~2.4!. In this procedure the lengthsl 2 ,l 3 , l̄ 2 , l̄ 3
of the edges ofQ8 remain the same as forQ. That is why the
modified spherical quadrangleQ8 can be glued back into a
cut sphere. The resulting surface will be smooth everywh
except at 4 vertices where angle deficits will appear. We
this procedure anelementary deformationof the sphere.

For a given triangulation, one can useNe53n26 el-
ementary deformations independently to fix all of the ed
lengths ~and hence also all the deficit angles! and thus to
determine the (3n26)-parameter metric on a generic thorn
sphere withn conical singularities. However, if we have th
goal of fixing required deficit angles at theNv5n vertices,
not all of the elementary deformations have independent
fects upon them. Some combinations of these deformat
do not generate angle deficits, but simply move vertices
the triangulation along the sphere. The number of such ‘‘
grees of freedom’’ that do not affect the deficit angles
2Nv2352n23 ~two ‘‘degrees of freedom’’ per vertex mi
nus 3 ‘‘degrees of freedom’’ corresponding to rigid rotatio
of the sphere which preserve the lengths of each edge
changed!. Thus the total number of ‘‘real degrees of fre
dom’’ which generate deformations in the angle deficits
Ne22Nv135n23. These deformations are sufficient
create the required angle deficits at all then vertices except
3. This is exactly what one can expect in a general ca
since there exist exactly 3 consistency conditions in the v
tor constraint equations~1.1! and~1.2! relating angle deficits
and positions of the singular points on the thorny sphere

The above counting of the ‘‘degrees of freedom’’ gives
also the following useful information. Let us fix the values
all n angle deficitsmk . Then 2n ‘‘degrees of freedom’’ char-
acterizing the positions of the vertices must obey 3 constr
equations. We can also use 3 ‘‘degrees of freedom’’ of
rigid rotation of the sphere to put, say, the first point to t
north pole of the sphere, and the second one on the meri

FIG. 1. Spherical quadrangle composed of two spherical
angles. The edges are the lines of the large circles of the sphe
9-4
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f50. After this there remain 2n26 free parameters. By
adding to them then parametersmk we return to the 3n26
parameters of a generic thorny sphere withn conical singu-
larities.

B. Constraints for elementary deformations of a sphere

Now to illustrate the nature of these constraints we d
cuss a case when all angle deficits are infinitesimally sm
Consider an infinitesimal elementary deformation of
spherical quadrangleQ shown on Fig. 1. To produce conica
singularities one can deform the length of the common e
(2,3) while keeping the lengths of the other edges
changed. This deformation changes internal angles at v
ces 1,2,3,4 and yields conical singularities. Let us introd
the following notations:

w35~n2•n1!, w25~n3•n1!, w̄35~n2•n4!,

w̄25~n3•n4!, w15~n2•n3!, ~3.1!

wherenk are the unit vectors~with the beginning at the cen
ter of the sphere! which define the positions of the corre
sponding vertices. Ifl k is the length of the edge opposite
the kth vertex, thenwk5coslk , which is true for triangles
whose edges are arcs of great circles. For triangles onS2, Eq.
~2.4! gives

w15
c2c31c1

s2s3
, w25

c1c31c2

s1s3
, w35

c2c11c3

s2s1
,

~3.2!

whereck5cosgk ,sk5singk . Analogous relations forw̄k can
be obtained from Eq.~3.2! by replacinggk by ḡk . Variations
of w1 produce changes of the anglesdgk[2xk , dḡk[

2 x̄k . The condition that these variations do not changew2
can be written in linear order as

dw25
1

s1s3
@~c1s3w21c3s1!x1

1~c3s1w21c1s3!x31x2s2#

5
s2

s1s3
~w3x11w1x31x2!50. ~3.3!

To get the last line we used Eq.~3.2!. A similar relation
follows from the variation ofw̄2. Their combination yields

~w3x11w1x31x2!1~w̄3x̄11w̄1x̄31 x̄2!

5w3x11~x21 x̄2!1w1~x31 x̄3!1w̄3x̄1

5w3m11m21m3w11m4w̄350, ~3.4!

where we took into account thatw15w̄1. It is easy to see
thatm15x1 , m25x21 x̄2 , m35x31 x̄3, andm45 x̄1 are the
conical angle deficits produced by the deformation at
10402
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ll.
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ti-
e

e

vertices 1,2,3,4. Consider the particular form of Eq.~1.2!
when only these four vertices have nonzero deficit angle

n1m11n2m21n3m31n4m450. ~3.5!

On projecting it on the vectorn2 we get exactly Eq.~3.4!.
To get Eq.~3.5! directly, and not just its projection onn2,

we can do some further algebra and find that for each of
two spherical triangles with only the lengthl 1 perturbed,

x1n11x2n21x3n35
dw1

12w1
2 n33n2 , ~3.6!

x̄1n41 x̄2n21 x̄3n35
dw1

12w1
2 n23n3 . ~3.7!

When these two equations are added, the right hand s
cancel, and one gets Eq.~3.5!.

A generalization of this linearized vector condition to
nite deformations will be given in the next sections.

IV. MAPPING A THORNY SPHERE ONTO A ROUND
SPHERE WITH CUTS

As we already mentioned, there exists an embedding
thorny sphere in flat space~at least for positive deficit
angles!. But in practice it is very difficult to obtain this em
bedding explicitly and get the precisely defined forcesFk for
the force balance equation~2.18! unless the angle deficits ar
small. An exception for large deficits is a simple case whe
thorny sphere has two conical singularities~see Appendix B!.
~This case is not covered by Sec. II since it cannot be tri
gulated using as vertices only the two conical singularitie!
Therefore, in this section we present another description
thorny sphere by mapping it onto a round sphere with cu
This approach allows us to formulate the constraint equa
in an explicit algebraic form. There are several ways to
this. We describe here two simple methods.

A. Method A

One method of representing the thorny sphere,S̃2, with
n5Nv conical singularitiesAk ,1<k<n, is the following,
applicable forn>3: Let the singularities be labeled so th
the sequence of the shortest geodesic fromA1 to A2 ~say
geodesic segmentg1 with beginning atA1 and end atA2),
that from A2 to A3 ~say g2), . . . , that fromA(n21) to An
~sayg (n21)), and that fromAn to A1 ~saygn) forms a closed
path P̃ that does not intersect itself. For example, one c
choose some regular point, find the shortest geodesic f
that point to each conical singularity, arbitrarily choose o
of the singular points to beA1, and then label the remainin
conical singularities in the same order as the angles, at
regular point, of the tangent vectors of these geodesics f
the regular point to those singularities. It is not obvio
whether or not the resulting sequence of geodesics betw
the conical singularities chosen in this order~or in any other
9-5



a

b

e
-

on
er

dg

t t

io

th
at
e
he

cl
he

-

ones
e
re

es

this
ing

he

bi-
y to

try

us

t
us
mp-

es
r-

n
le

d

een

and

rdi-

n
y
ve

it

ins
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possible specification of the order! will necessarily form a
closed pathP̃ that does not intersect itself, but here we sh
assume that it does.

Now the closed pathP divides the thorny sphere,S̃2, into
two parts, sayM̃1, which is encircled clockwise byP, and
M̃2, which is encircled counterclockwise byP. Because the
interiors of both contain no conical singularities, they can
isometrically mapped to corresponding regions,M1 and
M2, on the round unitS2 of the same unit curvature as th
part of the thorny sphereS̃2 away from the conical singulari
ties. The boundaries of these two regions onS2 are the geo-
desic polygons that are the imagesB1 andB2 of P̃ in these
maps from the thorny sphereS̃2 into the round sphereS2. In
the simplest case of three conical singularities the regi
M̃1 andM̃2 are spherical triangles. Their map on the sph
is shown on Fig. 2.

The two maps preserve the lengths of the geodesic e
gk of the polygon, and they preserve the anglesf (1,k) and
f (2,k) between the two successive geodesics that meet a
conical singularityAk . Let us definef (1,k) to be the angle
between the tangent vector of the geodesic ending atAk and
that of the geodesic beginning atAk , measured in the region
M̃1 and taken to be positive if clockwise, so that the inter
angle at that vertex of the polygon isp2f (1,k) . Similarly,
definef (2,k) to be the angle between the tangent vector of
geodesic ending atAk and that of the geodesic beginning
Ak , measured in the regionM̃2 and also taken to be positiv
if clockwise, so that the interior angle at that vertex of t
polygon isp1f (2,k) ~now with a plus sign since with the
ordering given for the geodesic edges, the polygon encir
M̃2 in the counterclockwise orientation rather than in t
clockwise orientation as it doesM̃1). Then the conical defi-
cit angle atAk is mk5f (1,k)2f (2,k) .

The maps fromM̃1 on the thorny sphereS̃2 to M1 on the
round sphereS2, and fromM̃2 on S̃2 to M2 on S2, give
points A(1,k) on S2 that are the vertices ofM1, and points
A(2,k) onS2 that are the vertices ofM2. Then the locations of
the 2n points A(1,k) and A(2,k) on the round sphereS2

uniquely determine the geometry of the thorny sphereS̃2,

FIG. 2. A unit sphere with cuts. By gluing the cuts one obta
a sphere with three conical singularities.
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since they determine the polygon boundariesB1 and B2 of
the regionsM1 and M2 whose interiors have the unit
curvature metric inherited from the unit sphereS2. Because
the boundary segments are geodesics, the successive
from M1 andM2 can be identified so that the union of th
two regions with this identification forms the thorny sphe

S̃2 with no singularities except for the conical singulariti
with deficit anglesmk at then vertices.

Let us see how we get the right parameter count from
construction. Naively one has two parameters for locat
each of the 2n points A(1,k) and A(2,k) on the round sphere
S2, or 4n total. However, there is the constraint that t
geodesic segments from the successiveA(1,k)’s must match
those from the successiveA(2,k)’s, which givesn constraints,
leaving only 3n parameters arbitrary. Then there is an ar
trary 3-parameter rotation that one can separately appl
both M1 and M2, so of the 3n arbitrary parameters, only
3n26 are physically significant in determining the geome

of S̃2. This is precisely equal to the number of continuo
parameters of a thorny sphere withn conical singularities of
arbitrary strength, the number of edge lengthsNe of a trian-
gulation of it, as discussed above~under the assumption tha
the triangulation exists, although the number of continuo
parameters would not be expected to depend on this assu
tion!.

Given the location ofM1 on the round sphereS2 ~which
has three Euler-angle parameters of arbitrariness!, one could
fix the three arbitrary rotation angles for the location ofM2

on theS2 so that two successive vertices ofM1 ~sayA(1,n)

andA(1,1) in order to refer to them explicitly below! coincide
with the corresponding ones ofM2 ~i.e., A(2,n) and A(2,1)

respectively!, with these two regions being on opposite sid
of the geodesic segmentgn joining these two successive ve
tices and providing the common boundary betweenM1 and
M2. The union of these two regions with their commo
boundary,gn , no longer a boundary, then gives one sing
simply connected region on the roundS2 that represents the

thorny sphereS̃2. We will denote this union region asMC ,
and its boundary asC. Note, however, that it is not ensure
that the two regions that have been joined,M1 andM2, will
not overlap somewhere other than where they have b

joined, so the map fromS̃2 to its image inS2 is not neces-
sarily one to one but can in some regions be two to one,
in generalC may have self-intersections.

In Fig. 3 we demonstrate the regions forn56 conical
singularities. RegionsM1 andM2 are shown on pictures~a!
and ~b!, respectively. Points 1 and 6 have the same coo
nates for both regions. In Fig. 4M1 andM2 are united in
the regionMC by gluing them along the edge betwee
points 1 and 6. The closed curve on Fig. 4 is the boundarC
of MC , and in the considered example it does not ha
self-intersections. Hence, one can cut the region insideC and
then glue the corresponding points~2 with 28, 3 with 38, 4
with 48 and 5 with 58). This yields a thorny sphere with
some configuration of 6 conical singularities with defic
anglem5p/12.
9-6
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The boundaryC has 2n22 verticesA(1,1)5A(2,1) ,A(1,n)
5A(2,n) ,A(1,k) for 2<k<n21, andA(2,k) for 2<k<n21,
which can be at arbitrary locations except for the constra
that the n21 geodesic distances between the succes
A(1,k)’s must be the same as those between the correspon
successiveA(2,k)’s (n21 constraints, since we have alrea
imposed the fact that the distance betweenA(1,1) andA(1,n) is
the same as that betweenA(2,1) andA(2,n) by puttingA(1,1) at
the same location asA(2,1) andA(1,n) at the same location a
A(2,n)). Therefore, the number of free parameters done
way is twice the 2n22 vertices, minus then21 constraints,
or 3n23, all of which are arbitrary, but of which thre
merely determine the orientation of the entire region on
S2, so that the number of true physical parameters isn
26. ~One could arbitrarily remove these three remain
gauge parameters of the freedom to rotate the coordinate
putting, say,A(1,1) at the ‘‘north pole’’ of theS2, at polar
angleu50, and then puttingA(1,n) along the ‘‘prime merid-
ian,’’ f50.!

As we shall see below, the 3n26 coordinate-independen
parameters that are in one-to-one correspondence with
geometries on a unit-curvature thorny sphere withn conical
singularities~up to the discrete choice of the ordering of t

FIG. 3. ~a! demonstrates the regionM1 for a the thorny sphere
with 6 singularities.M1 lies on the right when one goes from poi
1 to point 2.~b! shows regionM2 for the same sphere. It lies on th
left hand side when one goes from point 1 to point 28. On both
pictures points 1,5,58 and 6 lie on the back side of the sphere.

FIG. 4. This figure demonstrates the regionMC constructed by
method A. Points 1, 5, 58 and 6 lie on the back side of the spher
RegionMC is the unification of regionsM1 and M2 shown on
Fig. 3. The thorny sphere is obtained by gluing pointsk andk8.
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singularities in the construction above, or of the choice of
triangulation when one takes its edge lengths as the 3n26
parameters! can be interpreted as 2n23 parameters for the
relative locations of then conical singularities on someS2

~i.e., after taking out an overall rotation!, plus n23 conical
deficit angles that can be freely specified once the rela
locations are fixed. There is then a constraint fixing three
the conical deficit angles, which, at least in the case of sm
deficit angles, becomes the force-balance Eq.~1.2! for the
strings that produce the deficit angles.

One way to see this constraint on the deficit angles is
consider how much freedom one has to specify the de
anglesmk after the pointsA(1,k) have been specified. Spec
fying the pointsA(1,k) determines the anglesf (1,k) between
the successive geodesics joining those points, but the de
angles aremk5f (1,k)2f (2,k) , and the anglesf (2,k) are de-
termined by the location of the pointsA(2,k) . As noted above,
without loss of generality we can orientM2 relative toM1
so thatA(1,1) coincides withA(2,1) andA(1,n) coincides with
A(2,n) . Then the successiveA(2,k11)’s must be at the same
distances from theA(2,k)’s as theA(1,k11)’s are from the
A(1,k)’s, but fork,n22, the direction fromA(2,k) to A(2,k11)
~at anglef (2,k) clockwise from the direction of the geodes
coming fromA(2,k21) to A(2,k)) is a free parameter, whos
choice fixes the deficit anglemk5f (1,k)2f (2,k) at that ver-
tex. However, when one gets toA(2,n22) , the anglef (2,n22)
is fixed ~up to a twofold degeneracy! so that the vertex
A(2,n21) is at the same distance fromA(2,n) as A(1,n21) is
from A(1,n) . Then whenA(2,n21) is thus fixed, the angles
f (2,n22) , f (2,n21) , andf (2,n) are fixed, and hence these fin
three deficit angles,m (n22) , m (n21) , and mn , are deter-
mined ~up to the twofold degeneracy of the two possib
locations forA(2,n21) at the fixed distances fromA(2,n22) and
from A(2,n)) and are not free parameters. Therefore, once
2n23 parameters of the relative locationsA(1,k) of the n
conical singularities are determined~as seen from within
M1), one is free to specify onlyn23 of the deficit angles,
giving a total of 3n26 parameters.

Another way to express the three constraints on the de
angles once theirA(1,k) locations are fixed is from the con
straint on the holonomy from going successively around
of the conical singularities in a three-dimensional space. T
will be discussed in Sec. V.

B. Method B

Another possible method to cut the thorny sphere w
conical singularities into a piece that can be fitted onto
round sphere is the following: Let us choose one of the s
gular points, say pointAn , and connect it by shortest geod
sics with the rest of the points,Ak , k51, . . . ,n21. Since
the thorny sphere is a complete Riemannian manifold,
shortest geodesics which connectAn with differentAk do not
intersect. If there are more than one geodesic with the s
length, we choose one of them. Let us also make the follo
ing convention for ordering of pointsAk , k51, . . . ,n21.
Choose one of these points and denote it byA1. We can go
clockwise aroundAn starting from the geodesic betweenAn
andA1. The convention is that the next geodesic we hit c
9-7
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responds to the geodesic betweenAn andA2, the next geo-
desic after that corresponds to pointA3, etc.

Let us now make cuts ofS̃2 from An to pointsAk along
the geodesics. This procedure yields a spherical polygonMC

with a boundaryC which is a closed curve. In general, th
polygon will have a shape different from the polygon o
tained by method A, although the number of edges and
tices is the same, 2n22. The boundary now consists ofn
21 pairs of geodesics with equal lengths. The geodesic
the given pair are connected at a vertex which correspond
pointAn on S̃2, while different pairs are connected at vertic
Ak , k51, . . . ,n21. Let denote byB2k the vertex which
corresponds toAk , k51, . . . ,n21. Then a vertex betwee
B2(k21) andB2k is the image ofAn . We denote it byB2k21.

As in the previous caseMC can be glued on a regula
sphereS2, and the boundaryC of MC will be mapped on a
closed contour onS2. Each vertexBk on C has a uniquely
defined coordinatexk on S2. We can now define coordinate
of the singular points onS̃2 as follows: points Ak (k
51, . . . ,n21) have coordinatesnk5x2k ~coordinates of
B2k), and the coordinatenn of An can be chosen as the co
ordinate of one ofB2k11. It is convenient to putnn5x1.

The internal angles at pointsB2k are b2k5ak52p
2mk , which are polar angles aroundAk , k51, . . . ,n21,
andmk are conical angle deficits atAk . If b2k11 are internal
angles at pointsB2k11, then they are related to the pola
angle aroundAn as

an5 (
k50

n22

b2k11 . ~4.1!

By assumption, all mk.0 and hence 0,ak,2p, k
51, . . . ,n. The remarkable property of the contourC is that
the edge betweenB2k11 andB2k can be obtained by rotatin
the edge betweenB2k21 and B2k counterclockwise around
B2k by angleb2k . An example ofMC obtained by cutting
the sphere by the given method is shown on Fig. 5.

FIG. 5. This figure demonstrates the method B. Points 2,4,8
the figure lie on the back side of the sphere. After cutting the s
like region and gluing the rest one gets a sphere with six con
singularities with deficit anglem5p/12. After gluing points 1, 3, 5,
7 and 9 are identified.
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V. CONSTRAINT EQUATION

A. Derivation of the constraint equation

The procedure to construct a sphere with conical sin
larities by either method A or B requires that the contourC
be closed; see Figs. 4 and 5. This imposes a constraint on
positions of the vertices onC. We describe how this restric
tion can be found by using method A of cutting the sphe
One can show that the constraint required for method B
the same.

Consider a regionMC which appears after cuttingS̃2 by
method A. Denote the coordinates of pointsA(1,k) on S2 by
nk , k51, . . . ,n and the coordinates of pointsA(2,k) by
nk8 , k52, . . . ,n21. Let us also introduce matricesO(n,a)
which belong to the groupSO(3) and describe rotations b
anglea around the axes defined by the unit vectorn normal
to the S2. Our convention is that positivea corresponds to
counterclockwise rotation aroundn ~as seen by looking
down upon the sphere, withn up!. Define matricesOk
5O(nk ,mk), k51, . . . ,n, where mk is the conical angle
deficit at the corresponding singular point onS̃2. Given ma-
tricesOk and coordinates of the verticesA(1,k) on the bound-
ary C, coordinates of the rest of the verticesA(2,k) on C can
be found as follows.

The angle at the vertexA(1,1) between geodesics connec
ing A(1,1) with A(1,2) andA(2,2) is m1. Therefore,A(2,2) is the
image ofA(1,2) obtained by rotatingA(1,2) aroundA(1,1) by
anglem1, and by using the matrices one can write

n285O1n2 . ~5.1!

Consider now a rotation ofA(1,3) aroundA(1,2) by anglem2.
This gives a pointA38 which could be obtained by making
cut on the thorny sphere which goes throughA(1,2) and
A(1,3) . To getA(2,3) one has to do an additional rotation ofA38
aroundA(1,1) by anglem1. This second rotation takes int
account that pointA(1,2) itself has to be rotated aroundA(1,1) .
Thus, for the coordinates ofA(2,3) one gets

n385O1O2n3 . ~5.2!

This procedure can be continued further to get the coo
nates of the other pointsA(2,k) :

nk85O1O2•••Ok21nk . ~5.3!

If k5n we come to the final pointA(1,n) . This point and its
image coincide,

nn85nn . ~5.4!

This means that the vectornn is on the axis of rotation de
fined by the matrix

M5O1O2•••On21 . ~5.5!

So forM we can writeM5O(nn ,a) wherea is some angle.
We can also construct the coordinates of the images

different way by starting with the pointA(2,n21) which is
obtained by the rotation ofA(1,n21) around A(1,n) by the

n
r-
al
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anglemn . According to our convention, this rotation shou
be in the opposite direction, so for the coordinates of
points we get

nn218 5On
21nn21 . ~5.6!

By proceeding as earlier we get for the coordinates of thekth
point

nk85On
21On21

21
•••Ok11

21 nk . ~5.7!

Becausen1 and its image coincide the matrix

N5On
21On21

21
•••O2

21 ~5.8!

corresponds to a rotation aroundn1 by some angleb, N
5O(n1 ,b). By using Eqs.~5.5! and ~5.8! we can write

MOn5O~nn ,m1a!,

O1N215O~n1 ,m2b!. ~5.9!

This relation shows that matricesO(nn ,m1a) and
O(n1 ,m2b) are identical. In the general case, if poin
A(1,1) , A(1,n) are not on the same axis, this implies that t
matrices are the unit matrices. Thus, we come to the follo
ing constraint equation which follows from Eq.~5.9!:

O~n1 ,m1!O~n2 ,m2!•••O~nn ,mn!5I 3 , ~5.10!

whereI 3 is the unit 333 matrix.
Figure 3 gives an example in which the coordinates of

points on ~a! obey the condition~5.10! for m5p/12. The
method of rotations described above was used to prod
images 28,38,48,58 of points 2,3,4,5, respectively. The con
straint equation is also obeyed for the 6 points 2,4,6,8,10,
Fig. 5 with the same angle deficitm5p/12.

B. Alternate derivation of the constraint equation
using holonomies

Let the 2-metric on the thorny sphere bedṼ2 ~with unit
Gaussian curvature away from the conical singularities!, and
consider the following three dimensional metric that is fl
everywhere away from the conical singularities, which fo
strings in the radial directions:

ds25dr21r 2dṼ2. ~5.11!

One can then calculate the holonomy of going around v
ous closed curves and parallel transporting one’s fra
Since the space is flat except at the strings, the holono
will be trivial when the closed curve can be shrunk to a po
without crossing any strings, but it will generally be no
trivial when the closed curve encircles one or more strin

Choose a regular point, sayA0 in M̃1, and take a curve
that starts atA0 and stays inM̃1 until it nears the conica
singularity atA(1,k) . Then have the curve encircle that si
gularity ~but no other one!, in the counterclockwise direction
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~by going briefly intoM̃2!, and then return inM̃1 to A0. Let
the element of the holonomy group generated by that cu
be labeledHk .

All of the elements of the holonomy group can be o
tained by products of these elements and their inverses.
example, the curve that first goes out fromA0 to encircle
A(1,k) clockwise and then goes acrossM̃1 to encircleA(1,j )

clockwise before returning inM̃1 to A0 is H j
21Hk

21 . To take
a slightly more complicated example, the curve that goes
from A0 to leaveM̃1 betweenA(1,1) andA(1,2) and then goes
acrossM̃2 to encircleA(2,4) clockwise and then return bac
along its previous path toA0 generates the holonomy grou
elementH̃45H2H3H4

21H3
21H2

21.

Now consider the curve that starts atA0, goes out inM̃1

and encirclesA(1,n) counterclockwise, returns directly inM̃1
to A0, and then in turn goes out and encirclesA(1,n21) coun-
terclockwise and returns, and then encirclesA(1,n22) coun-
terclockwise, etc., until finally it encirclesA(1,n) counter-
clockwise and returns toA0. Thus it encircles each of the
conical singularities clockwise in order, staying inM̃1 ex-
cept for each time it encircles a singularity. The total h
lonomy generated by this curve isH1H2H3•••Hn21Hn .

But since this curve encircles all of the singularities, it c
be deformed so that all of it lies inM̃2 except for the initial
part leavingA0 and the final part returning toA0. This curve
can then be shrunk to zero without crossing any singularit
so for consistency it must represent the trivial holonomy
ement~the identity!. Therefore, we get the constraint equ
tion

H1H2H3•••Hn21Hn5I . ~5.12!

In the SO(3) representation this constraint coincides w
Eq. ~5.10! which was found by the alternate computatio
with Hk5O(nk ,mk).

If we use anSU(2) spinor representation of the ho
lonomy, then the conical singularity atA1 with deficit angle
mk generates the holonomy element

Hk5Uk5U~nk ,mk![e( i /2)n” kmk

5I cos
mk

2
1 in” ksin

mk

2
, ~5.13!

where

n” k[nk•s[nk
i s i5S nk

3 nk
11 ink

2

nk
12 ink

2 2nk
3D ~5.14!

with nk
i being thei th Cartesian coordinates of the unit no

mal nk to the roundS2 embedded in flat three-space, at t
point A(1,k) of M1 that representsAk on the thorny sphere
S̃2. The Pauli matricess i are chosen such thatis1s2s3
51 which guarantees thatUk corresponds to counterclock
wise rotation aroundnk . For generic assumed deficit angle
without imposing the constraint~5.12!, the product of all the
Uk’s will also be a holonomy element of the form
9-9
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U1U2U3•••Un21Un5e( i /2)N” , ~5.15!

where

N” [N"s[Nis i5S N3 N11 iN2

N12 iN2 2N3D ~5.16!

for some vectorN with Cartesian coordinatesNi ~and which
without loss of generality can be taken to have length, wh
represents the total angle of rotation,<2p). Then the con-
straint ~5.12! is the condition that the total rotation vector
zero,

N50, or Ni50 for eachi , ~5.17!

which gives the three conditions on the deficit angles.
The constraint Eq.~5.12! has two immediate conse

quences:~1! there cannot exist a thorny sphere with a sin
conical singularity with a deficit angle 0,umu,2p, and~2!
on a sphere with a pair of conical singularities, the singu
points lie on the same axis.

We can note that Eq.~5.12! in theSU(2) spinor represen
tation follows from the single equation

Tr@U1U2U3•••Un21Un#52. ~5.18!

Indeed, the product of matrices in the left hand side of
~5.15! is a unitary matrix which corresponds to a rotation
an anglew around some axis. If the trace of this matrix is
then the angle isw54pm, wherem is an integer, and the
unitary matrix is simply the unit matrix. Conversely, whe
the trace of a 232 unitary matrix is 2, it must be the un
matrix.

C. Constraint equations for small angle deficits

In the case of small deficit angles, so that all of the su
of the products of different matricesn” k are small, then the
constraint Eq.~5.12! or Eq. ~5.17! becomes

05N'(
k51

n

mknk , ~5.19!

which is Eq. ~1.2! of the Introduction. Since in the three
dimensional space with small deficit angles, the coni
singularities correspond to strings with tensionmk at
directions given bynk , the constraint equation becomes t
equilibrium condition for the forces exerted by the strings
force-balance equation. For an even number of con
singularities Eq.~5.19! is satisfied when for each conica
singularity whose position is defined by the vectornk , there
is another singularity with the same deficit angle who
position is 2nk . This situation is realized for polyhedra
configurations of singularities discussed in@2#.
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VI. CONSTRUCTION OF THORNY SPHERES WITH
LARGE DEFICITS: EXAMPLES

A. Three conical singularities

1. Case of equal angle deficits

We now discuss some examples of spheres with la
deficit angles. To construct them it is enough to solve
constraint equation~5.12!. Let us consider first the case i
which there are three deficit angles that are all the same
equal to m, and the conical singularities are at poin
n1 ,n2 ,n3. The constraint Eq.~5.12! for this configuration
yields the holonomy around one point in terms of holon
mies of two other points. We will write this in the following
form, using theSU(2) representation of the holonomy give
by Eq. ~5.13!:

U~n1 ,m!U~n2 ,m!5U21~n3 ,m!5U~2n3 ,m!. ~6.1!

Suppose that the angle between vectorsn2 and n1 is a(0
,a,p). We can choosen1 andn2 lying in the (xy) plane
such that matrices for the corresponding points are

n” 15cosas11sinas2 , n” 25s1 . ~6.2!

We get

U~n1 ,m!U~n2 ,m!5S cos2
m

2
2cosasin2

m

2 D I

1 isin
m

2 Fcos
m

2
~11cosa!s1

1cos
m

2
sinas2

1sin
m

2
sinas3G . ~6.3!

To satisfy Eq.~6.1! one has to choosea such that

cosa52
cos~m/2!

11cos~m/2!
. ~6.4!

In the limit thatm50, one getsa54p/3, so each spherica
triangle fills a hemisphere. Asm is increased, the lengtha of
the sides decreases and reaches 0 whenm54p/3.

Given Eq.~6.4!, the position of the third point,n3, is fixed
by the matrix which follows from Eq.~6.1!,

n” 35cosas12cos
m

2
sinas22sin

m

2
sinas3 . ~6.5!

Equations~6.2! and~6.5! give coordinates of the conical sin
gularities with deficit anglem. The corresponding spher
with conical singularities can be constructed from a spher
polygonMC with a boundaryC on regular sphereS2. This
can be done by either method A or B. Consider, for instan
method A. The contourC consists of two parts,C1 andC2.
The contourC1 consists of two shortest geodesics conne
ing pointsn1 with n2 andn2 with n3. The contourC2 con-
9-10
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sists of geodesics connectingn1 with n28 and n28 with n3

wheren28 is the image ofn2 obtained by rotation aroundn1

by anglem:

n” 285U~n1 ,m!n” 2U21~n1 ,m!. ~6.6!

For some values ofm anda the corresponding contours a
presented in Fig. 6.

2. Arbitrary angle deficits µk

In the general case ofn53 conical singularities with ar-
bitrary deficit anglesmk , let A5n1tan(m1/2)56An1 ,B
5n2tan(m2/2)56Bn2, andC5n3tan(m3/2)56Cn3, where
A, B, andC are chosen to be positive. Then

U15U~n1 ,m1!5cos
m1

2
~ I 1 iA” !5

I 1 iA”

A11A2
, ~6.7!

U25U~n2 ,m2!5cos
m2

2
~ I 1 iB” !5

I 1 iB”

A11B2
, ~6.8!

U35U~n3 ,m3!5cos
m3

2
~ I 1 iC” !5

I 1 iC”

A11C2
, ~6.9!

where the signs of the square roots in the denominators
chosen to be the same as those of the respective cos(mk/2)’s
~positive if umku,p). Then forU1U2U3 to be the unit matrix
that represents the trivial holonomy, one uses the Pa
matrix identity ~for is1s2s351)

A” B” [~A•s!~B•s!5~A•B!I 2 i ~A3B!•s ~6.10!

and gets the constraint

A1B1C1A3B1A3C1B3C

2~A•B! C1~A•C! B2~B•C! A50. ~6.11!

One can see that the linear part of this is simply that the s
of the three vectors is zero,A1B1C50.

In the nonlinear case, if, say,A andB are specified, then
the solution forC is

FIG. 6. ~a! and ~b! demonstrate cuts which after gluing yie
thorny spheres with three conical singularities with deficitsm
5p/12 and 7p/6, respectively. On~a! points 1 and 3 lie on the bac
side of the sphere.
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C52
A1B1A3B

12A•B
. ~6.12!

Again one can see that ifA andB are small, to linear order
in those vectors,C52A2B. Alternatively, if the three unit
normals nk are specified, then the solution for the defic
angles is

tan
m1

2
5

n1•~n23n3!

~n13n2!•~n13n3!
, ~6.13!

tan
m2

2
5

n1•~n23n3!

~n23n1!•~n23n3!
, ~6.14!

tan
m3

2
5

n1•~n23n3!

~n33n1!•~n33n2!
. ~6.15!

A third specification would be to fix the three defic
angles and thereby to fix the three lengthsA, B, andC of the
three vectorsA, B, andC respectively. Then the constrain
determines the relative directions ofA, B, andC. Suppose
that these are given by the cosines of the angles betw
them, say

a5cosa5n2•n35B•C/~BC!, ~6.16!

b5cosb5n3•n15C•A/~CA!, ~6.17!

g5cosc5n1•n25A•B/~AB!. ~6.18!

Then by equating the squared magnitudes of the two side
Eq. ~6.12!, one can solve for

g5
1

AB F17A11A21B21A2B2

11C2 G . ~6.19!

Similarly, by cyclic permutations one gets

a5
1

BC F17A11B21C21B2C2

11A2 G , ~6.20!

b5
1

CA F17A11C21A21C2A2

11B2 G . ~6.21!

One must choose the signs so that the cosines are bet
21 and 1.~For small A, B, and C, one must choose the
upper signs.! In order that the cosines can be between21
and 1, the absolute magnitudes of the three deficit an
must obey the triangular inequalities~each larger than the
absolute difference between the other two, and each sm
than the sum of the other two!, which translates into the
nonlinear inequalities forA, B, andC that

uA2Bu
u11ABu

<C<
A1B

u12ABu
, ~6.22!

uB2Cu
u11BCu

<A<
B1C

u12BCu
, ~6.23!
9-11
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uC2Au
u11CAu

<B<
C1A

u12CAu
. ~6.24!

In the case of three conical singularities that we are p
ently considering, the regionsM1 and M2 are simply
spherical triangles that are identical except for their orien
tion. The interior angles at the verticesA, B, andC are p
2m1/2, p2m2/2, andp2m3/2 respectively, and the cosine
of the angular lengths of the opposite sides area5cosa, b
5cosb, andg5cosc respectively. Then, as an alternative
the constraint equations given above, one can use the
dard formulas~2.3! and~2.4! for spherical triangles. For ex
ample, from Eq.~2.3!,

a5cosa5
cos~m2/2!cos~m3/2!2cos~m1/2!

sin~m2/2!sin~m3/2!
~6.25!

and cyclically forb5cosb andg5cosc. This reduces to Eq
~6.4! in the special case in which all of the three defi
angles are equal tom.

B. Four conical singularities

1. Case of equal angle deficits

Consider now a sphere with four conical singularities w
deficitsmk at pointsnk , k51,2,3,4. The constraint~5.12! on
the holonomies is

U~n1 ,m1!U~n2 ,m2!U~n3 ,m3!U~n4 ,m4!5I . ~6.26!

Given the coordinates and angular deficits of three poi
we can find from Eq.~6.26! the coordinates and the deficit o
the fourth point. We first present here a particular solution
Eq. ~6.26! for the case in which all the deficit angles coi
cide. Then the constraint~6.26! can be rewritten as

U~n,b!5U~n1 ,m!U~n2 ,m!

5U~2n4 ,m!U~2n3 ,m!, ~6.27!

wheren is a unit vector in the Euclidean 3-space. The p
rametersb andn are uniquely defined by Eq.~6.27! if m and
the coordinates of the pair of pointsn1 ,n2 are known. For
n1 ,n2 defined as in Eq.~6.2!,

n”5C21/2S cos
m

2
~11cosa!s11cos

m

2
sinas2

2sin
m

2
sinas3D , ~6.28!

C5sin2a1cos2
m

2
~11cosa!2. ~6.29!
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Given coordinatesn1 andn2 it is easy to see that Eq.~6.27!
holds if n3 and n4 are obtained by a rotation of2n2 ,2n1
aroundn by some angleu, i.e.,

n” 352U~n,u!n” 2U21~n,u!,

n” 452U~n,u!n” 1U21~n,u!. ~6.30!

This procedure yields a three-parameter family of sphe
with four conical singularities. The parameters arem,u and
the anglea betweenn1 andn2. The internal regionMC of an
example of such a sphere obtained by method B is show
Fig. 7. Pointsn28 andn38 are the images ofn2 andn3, respec-
tively. The same method was applied to get configuratio
with 6 conical singularities on Figs. 4 and 5.

2. Arbitrary angle deficits µk

Now let us turn to the case when then54
conical singularities have arbitrary conical deficit ang
mk . Similar to what was done for n53,
let A5n1tan(m1/2)56An1 ,B5n2tan(m2/2)56Bn2 ,D
5n3tan(m3/2)56Dn3 ,E5n4tan(m4/2)56En4, where
A, B, D, and E are chosen to be positive. Now there a
various ways to proceed with solving the constra
U1U2U3U45I , depending on what is specified and what
to be solved for.

If A, B, andD are specified andE is to be solved for, one
writes the constraint in the form

U4[
I 1 iE”

A11E2
5U3

21U2
21U1

21

5
~ I 2 iD” !~ I 2 iB” !~ I 2 iA” !

A11D2A11B2A11A2
, ~6.31!

and then one can explicitly solve for

FIG. 7. This figure shows the cut for 4 conical singularities w
deficits m5p/12 and parameters cosa50.2 andu5p/2. Points 3
and 38 lie on the back side of the sphere.
E5
2A2B2D2A3B2A3D2B3D1~A•B! D2~A•D! B1~B•D! A

12A•B2A•D2B•D2~A3B!•D
. ~6.32!
9-12
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This obviously generalizes to arbitraryn: If the first n
21 positions and deficit angles are specified, so thatUk is
given for 1< i<n21, then one can readily solve for

Un5Un21
21 Un22

21
•••U2

21U1
21 . ~6.33!

If instead all of the deficit angles are given, and all b
two consecutive positions on the sphere, then, assuming
the appropriate triangular inequalities are satisfied, one
solve for these two positions up to an overall rotation ab
an axis determined by what is given.~This rotation has non-
trivial significance only forn>4.! Let us illustrate this with
the casen54.

Suppose that the positions and deficit angles of the
and 4th conical singularities are given, so thatD andE are
given, and the deficit angles but not the positions of the
and 2nd conical singularities are given, so thatA andB are
given, but not the directionn1 of A and the directionn2 of B.
Then we can use the constraint in the form

U2
21U1

215U3U4 , ~6.34!

or

I 2A•B2 i ~A1B1A3B!•s

A11A2A11B2
5U3U4

5
I 1 iC”

A11C2
, ~6.35!

where forn54

C5
D1E1D3E

12D•E
~6.36!

represents the combined effect ofU3 andU4.
Then we can proceed as we did forn53 when the mag-

nitudesA, B, andC were given, to solve for the angles b
tween A, B, and C. Since hereC is determined from the
givenD andE, the directions ofA andB are then determined
up to an overall rotation about the vectorC.

C. n conical singularities

Obviously, the procedure of the preceding section gen
alizes to highern. If the Uk are specified for all 3< i<n, and
if the deficit anglesm1 andm2 are also specified~so thatA
5utanm1/2u andB5utanm2/2u are specified!, then we define
C by

U3U4•••Un21Un5
I 1 iC”

A11C2
~6.37!

and solve for the angles betweenA, B, and C. This deter-
minesA andB up to an overall rotation about the vectorC.

If all of the deficit angles are specified, and all but tw
non-consecutive positions, then one has to permute the p
tions and put in the appropriate commutators to solve
those positions~up to the arbitrary rotation!. For example,
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for n54, suppose that the deficit angles but not the positi
of the 1st and 3rd points are specified, and that both
specified for the 2nd and 4th points, so thatU2 andU4 are
given. Then if we defineŨ35U2U3U2

21, the constraint

equation becomesŨ3
21U1

215U2U4, and one can use th

previous procedure to solve forU1 andŨ3, up to an overall
rotation about the axis of the rotationU2U4. Finally, one
reconstructsU35U2

21Ũ3U2. This procedure has a straigh
forward generalization for all highern and for the unspeci-
fied positions to be further separated in the cyclic chain
rotationsUk that combine to produce the identity.

VII. TOPOLOGICAL ASPECTS OF SPHERE CUTTING

Using method A developed in Sec. III one gets a map

C:S̃2→$M1 ,M2% ~7.1!

of a thorny sphereS̃2 onto a pair of simply connected region
on a unit round sphere. The boundariesB15]M1 and B2
5]M2 are isometric spherical polygons which are to
identified. Each of the polygons hasn vertices,A(1,k) and
A(2,k) , wheren is the number of conical singularities of th
thorny sphereS̃2. It should be emphasized that the change
the reference point which is used to order the conical sin
larities may result in a change of order of the verticesA(1,k)
and A(2,k) , and as a result of this, one can get a differe
choice of regionsM1 ,M2 representing the same thorn
sphere. It is evident that the corresponding mapsC andC8,
formally different, are in fact equivalent.

When we construct regionsM1 and M2 using the
method described in Sec. IV A by solving the constra
equations we do not know in advance which ordering pro
dure of the conical singularities on the thorny sphere wo
correspond to the set of vertices obtained by gluing
boundariesB1 andB2 and identifying the verticesA(1,k) and
A(2,k) . In fact, the situation is even more complicated.

Let us note that the constraint equations~5.10! and~5.12!
remain unchanged if one includes a unit operator betw
any two subsequent terms, sayi and i 11 in the product of
matrices. But a rotation along an axisn by the angle 2pm is
represented by a unit operator. Thus adding two new vert
with angle deficits 2pm ~one for each of the regionsMk)
does not violate the constraint equations. We can choose
new angle deficits to be negative and put the new vertice
the north and south poles of a round sphere. This is equ
lent to the usage of a covering spaceSm

2 for a round sphere
with a winding numberm.0. That is why by solving the
constraint equations~5.10! and~5.12! one may end not with
regular regionsM1 ,M2 on a round sphere, but with region
on a covering space forSm

2 . After identifying the points ofm
different leaves and projectingSm

2 onto S2, one obtains
boundariesB1 andB2 which are topologically circlesS1, but
which have intersections.

In order to exclude such cases one must be certain
after a solution of the constraint equations one does not h
9-13
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undesirable extra vertices with22pm angle deficits. We
describe now a procedure which allows one to do this.

Consider a mapca of the regionMa onto the regionM̃a
of the thorny sphere:

ca : Ma→M̃a . ~7.2!

Under this map the boundaryBa of Ma is transformed into
the boundaryB̃a of M̃a . Take a regular pointp̃ insideM̃a

and letpk be its images underca
21 . Let ym be coordinates

nearp̃ andxk
n be coordinates nearpk . SinceM̃a andMa are

orientable manifolds, we use local coordinate systems
both of them so that any transition from one coordinate s
tem to another on the same manifold has the value of
Jacobian equal to11. Thedegree of a mapca is determined
as

degca5(
k

sgn detS ]ym

]xk
n D

pk

. ~7.3!

One can prove~see e.g.@8,9#! that the index of the map
does not depend on the choice of the regular pointp̃ and is
invariant under smooth homotopies. Moreover, the index
the mapca is the same as the index of the mapca restricted
to the boundaryBa . Since both of the boundaries are top
logically circlesS1, the degree of this map is just a windin
numberm. Note thatM1 andM2 have the same degree o
map becauseB2 can be obtained by a deformation ofB1
~recall that we got vertices onB2 by rotating vertices onB1).

To calculate this winding number we consider a ster
graphic projection ofBa into a plane. We take the origin o
the stereographic projection to lie in the interior of the reg
M1. For a resulting curveB̂a with intersections we define

m5
1

2p R k dl, ~7.4!

wherek is the Gaussian curvature of the curveB̂a anddl is
the proper distance element. Sincem is invariant under
smooth homotopic transformations, it remains the same
der a continuous change of the position of the ‘‘north’’ po
used for the stereographic projection until it crossesBa .

To summarize the above discussion we stress that u
method A, starting with a given thorny sphereS̃2 one can
define~not uniquely! regionsM1,2 and the gluing procedure
which recoversS̃2. In the inverse procedure, when one sta
with a solution of the constraint equations, one must fi
check whether the winding number of the boundary is
Only in this case will the gluing procedure give a thor
sphereS̃2 without any additional angle deficits that are neg
tive integer multiples of 2p.

VIII. THORNY SPHERES AND SOLUTIONS OF EINSTEIN
EQUATIONS WITH RADIAL STRINGS

Let us discuss now solutions of the Einstein equations
the thorny sphere configurations, with strings at the con
10402
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singularities. The total action of the system is2

I 5
1

16pG F EM
A2gd4xR12E

]M
KA2hd3xG

2
1

4p (
k

m̂kE Ask d2zk . ~8.1!

The last term in the right hand side of Eq.~8.1! is the
Nambu-Goto action for the strings, where (sk)ab is the met-
ric induced on the world sheet of a particular string. W
assume in Eq.~8.1! that the space-timeM has a timelike
boundary. We take the metric in the form

ds25gabdxadxb1e2fa2 dṼ2. ~8.2!

Here gab is a 2D metric,f5f(x) is a dilaton field which
depends on coordinatesxa, and dṼ2 is the metric on the
thorny sphereS̃2 with conical singularities. For a string lo
cated at fixed angles, the induced metric on a string wo
sheet coincides withgab . The parametera in Eq. ~8.2! has
the dimensionality of length. Locally near each string t
metric dṼ2 can be written as

dṼ25sin2udw21du2, ~8.3!

where 0<u<p, andw is periodic with period 2p2mk . To
proceed we have to take into account in Eq.~8.1! the pres-
ence of delta-function-like contributions due to the conic
singularities~see, for instance@11#!

E
M

A2gd4xR5E
reg(M2)

A2gd4xR

12(
k

mkE Ask d2zk , ~8.4!

where reg(M2) is the regular domain ofM. If we impose
the on-shell conditionmk58p Gm̂k , the contribution of the
conical singularities in the curvature in Eq.~8.1! will cancel
exactly the contribution from the string actions. There w
remain only the bulk part of the action. On the metric~8.2! it
will reduce to the 2D dilaton gravity action

I 5
1

4G2
F E Agd2xS e2fR212e2f~¹f!21

2

a2D
12E dye2w~k2k0!G , ~8.5!

1

G2
5

a2C

G
, ~8.6!

2In this section we restore a normal valueG for the Newton con-
stant.
9-14
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C5122G(
k

m̂k512
1

4p (
k

mk . ~8.7!

The curvatureR2 in Eq. ~8.5! is the 2D curvature determine
by gab . As a result of the modification of the area of sphe
due to the conical singularities, the gravitational action~in-
cluding the boundary term! acquires an overall coefficien
which depends on themk’s. We included this coefficient in
the definition of effective two dimensional gravitational co
pling G2, Eq. ~8.6!. It is important that the action~8.5! has
precisely the same form as the dilatonic action obtained
der a spherical reduction of the gravitational action in
absence of cosmic strings. Therefore strings have no e
on the dynamical equations for the metricgab and the dila-
ton f. For these quantities one has standard solutions
particular, the Birkhoff theorem can be applied in this ca
and guarantees that in the absence of other matter in
bulk, the solution is static and is a 2D black hole of massM:

dg252Fdt21F21dr2, F512
2M

r
. ~8.8!

The corresponding four-dimensional solution is a Schwa
schild black hole of the same mass parameter, but w
strings in the radial direction. In a similar way, by using E
~8.5! one can construct non-static solutions in the presenc
strings. Non-vacuum static spherically symmetric solutio
such as a charged black hole with strings, can be constru
as well by adding matter in the bulk.

For example, if we defined2V̂5dṼ2/C to give a re-
scaled thorny sphere with area 4p and a smooth part havin
Gaussian curvature no longer unity but

K5C5122G(
k

m̂k512
1

4p (
k

mk , ~8.9!

then the Reissner-Nordstrom black hole generalizes to
following solution with strings:

ds252S K2
2M

r
1

Q2

r 2 Ddt2

1S K2
2M

r
1

Q2

r 2 D 21

dr21r 2d2V̂. ~8.10!

HereQ is precisely the charge, defined as 1/(4p) times the
flux of electric field through each thorny sphere.

This form of the Reissner-Nordstrom metric remains va
~but is no longer asymptotically flat with a static timelik
Killing vector ]/]t) when the rescaled thorny sphere wi
positive Gaussian curvature,K.0, on its smooth part, is
replaced by a rescaledthorny pseudospherewith negative
Gaussian curvature,K,0, on its smooth part that is the
locally isometric to a hyperbolic 2-space with constant ne
tive curvature.
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APPENDIX A: GAUSSIAN NORMAL MAPS AND
GENERALIZED CONSTRAINT EQUATION

1. Gaussian map

Let M2 be a closed 2-dimensional surface in
3-dimensional Euclidean space

F~X1,X2,X3!50, ¹FÞ0, ~A1!

or locally Xi5Xi(y1,y2). Using the rotational freedom in th
choice of Xi , one can describe the surfaceM2 locally as
follows:

X35 f ~y1,y2!, X15y1, X25y2. ~A2!

The first quadratic form~induced metric! is

ds25gab dya dyb, ~A3!

g11511 f ,1
2 , g22511 f ,2

2 ,

g115 f ,1 f ,2 , detg511 f ,1
2 1 f ,2

2 , ~A4!

while the components of the second quadratic form are

bab5
f ,ab

Adetg
. ~A5!

The Gaussian curvature is

K5
detb

detg
5

f ,11 f ,222 f ,12
2

~11 f ,1
2 1 f ,2

2 !2
. ~A6!

We also have

R52K, ~A7!

whereR is the Ricci scalar for the induced metricgab .
Consider a unit sphereS2 determined by the equation

~X1!21~X2!21~X3!251. ~A8!

Let (z1,z2) be coordinates on the sphere, so

Xi5Xi~za!. ~A9!

Then the induced metric on the unitS2 in these coordinates
is

gab5d i j X,za
i X,zb

j . ~A10!

The area element isda5Adet(g) dz1 dz2 .
We determine theGaussian normal mapw: M2→S2 of

M2 into the sphereS2 as follows~see e.g.@8,9#!. Let ni(P)
be a unit normal toM2 at a pointP. Then we put into cor-
9-15
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respondence withP a pointp on the unit sphere with coor
dinatesXi5ni(P) ~which means that the normal vector
M2 at pointP coincides with the normal vector toS2 at point
p). This map determines the relation between coordinateya

on M2 and coordinatesza on S2:

ya5ya~zb!. ~A11!

Let us now show that for the Gaussian normal map
following relation is valid@8,9#:

K dA5da, ~A12!

wheredA5Ag dy1 dy2 is the surface area element onM2

andda is the area element onS2. To prove this relation we
chooseX3 to be orthogonal toM2 at a given pointp and
y15X1 and y25X2 to be tangent to this surface. Then th
surface M2 is determined by the equationX35 f (y1,y2),
where f ,15 f ,250 at the pointp. Hence

K5detU f ,11 f ,12

f ,21 f ,22
U, gab5dab . ~A13!

The Euclidean coordinates of a unit normal vectorNi in the
vicinity of the pointp are

ni~y1,y2!5~11 f ,1
2 1 f ,2

2 !21/2~ f ,1 , f ,2 ,21!. ~A14!

We choose now the coordinatesza on S2 so that near a
point P5w(p),

X̄15z1, X̄25z2, X̄35A12~z1!22~z2!2. ~A15!

HereX̄i are such Cartesian coordinates that axisX̄3 coincides
with the normal vector toS2 at p, Ni(p). In what follows we
will denote the normal toS2 the same as the normal toM2.
In these coordinatesgab(p)5dab . Using Eq.~A14! we get

za5
f ,a

A11 f ,1
2 1 f ,2

2
. ~A16!

This relation establishes a relation between coordinatesya on
M2 and coordinatesza on S2. The canonical invariant ele
ment of area on a unit sphere at the pointp written in the
coordinatesya is

da5det~z ,yb
a

!uPdy1dy2

5Kdy1dy25KAgdy1dy2, ~A17!

which proves Eq.~A12!. To obtain these equalities we us
that detguP5detgup51.

Suppose thatM2 is a compact 2 dimensional manifol
diffeomorphic to the unit sphereS2 and its embedding inR3

is a closed convex surface, so that the Gaussian sphe
map is a regular one-to-one map onS2. In this case one ha

E
M2

n K dA50. ~A18!

This relation directly follows from Eq.~A12! and the relation
10402
e

cal

E
S2

n da50. ~A19!

2. Generalized constraint equation

Consider a closed 2D manifoldM2 with n conical singu-
larities with positive deficit anglesmk (0,mk,2p), such
that(kmk,4p. We call such manifold athorny manifold, or,
for brevity, athornifold. Assume that the Gaussian curvatu
K of M2 is positive everywhere, so that one can isometrica
embed theM2 in Euclidean 3-space as a closed convex s
face. Consider the Gaussian normal map of a regular dom
reg(M2) of M2 onto S2. To see what happens under th
Gaussian map with conical singularities, consider a sm
regionSk around thekth conical singularity~but not includ-
ing the singularity itself! with the boundaryPk . The region

Sk is mapped onto a regionS̃k on S2 with boundaryP̃k .
When Pk shrinks to the conical singularity, the contourP̃k
shrinks to a contourCk on S2, because the normal vector a
a conical singularity does not have a unique direction. LetDk
be the region insideCk . The remarkable property ofDk is
that, although its form depends on the concrete thornif
M2, its surface area ismk where mk is the conical angle
deficit at the corresponding singular point. To see this, ap
the Gauss-Bonnet formula to the regionSk :

E
Sk

KdA1E
Pk

kdl52p, ~A20!

where k is the extrinsic curvature ofPk embedded inM2.
WhenPk shrinks to the conical singularity, the limit for in
tegral *Pk

kdl is 2p2mk . So we get from Eq.~A20! by
using Eq.~A12!

Ak5E
Dk

da5 lim
Sk→0

E
Sk

KdA5mk . ~A21!

To summarize, the Gaussian map of a thornifoldM2 with n
conical singularities is a regular sphere withn disks Dk re-
moved, each disk corresponding to a conical singularity.
using Eq.~A12! we can write

E
reg(M2)

n K dA5E
S2

n da2 (
k51

n E
Dk

n da, ~A22!

Because the first term in the left hand side of Eq.~A22!
vanishes, we get the following identity:

E
reg(M2)

n K dA1 (
k51

n E
Dk

n da50. ~A23!

By taking into account Eq.~A21!, this identity can also be
rewritten as

E
reg(M2)

n K dA1 (
k51

n

mkn̂k50, ~A24!
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wheren̂k is the averaged normaln over the area of the disk
Dk @see Eq.~2.15!#. Now if we subtract Eq.~2.8! from Eq.
~A24! and use the definition Eq.~2.12! of the forceFk we get

F[(
k51

n

mk n̂k5E
reg(M2)

n ~12K ! dA. ~A25!

The constant 1 in this equation can be any constant, bec
of Eq. ~2.8!, but it is here chosen to be 1, the value of t
Gaussian curvature on the unit thorny sphere, so that
right hand side is obviously zero for the thorny sphere. Eq
tion ~A25! can be considered as the generalized constr
equation for a closed thornifold whose Gaussian curvaturK
is not constant.

3. C-metric example

To illustrate the action of the generalized constraint eq
tion we discuss how it works forC metrics. TheC metric is
the following solution of the Einstein equations:

ds252H du222 du dr22 a r2 du dx1r 2 dv2, ~A26!

dv25
dx2

G~x!
1G~x! df̃2, ~A27!

H52a2 r 2 G„x21/~ar !…,

G~x!512x22a x3. ~A28!

This metric describes the gravitational field of a uniform
accelerated black hole~see e.g.@12#!. The parametera is the
acceleration, anda5r g a, where r g52M is the Schwarz-
schild gravitational radius.

We focus our attention on the geometry of
2-dimensional surfaceu5const,r 5const. Its geometry is
r 2dv2. It is easy to show that fora,2/3A3 the equation
G(x)50 has 3 real roots. Two of them are negative, sayx3
,x2,0, and one is positivex1.0. From now on we assum
that xP(x2 ,x1), so that the functionG is positive. One also
hasG8(x2).0 andG8(x1),0. For an arbitrary period off̃
the surfaceS with the metricdv2 is a thornifold with two
conical singularities atx1 andx2. The singularity atx1 van-
ishes when

f̃5b f[
2

uG8~x1!u
f, fP~0,2p!. ~A29!

We fix this periodicity and write the metric~A27! as

dv25habdxadxb5
dx2

G~x!
1b2 G~x! df2. ~A30!

The Gaussian curvature ofS is

K5
1

2
R52

1

2
G95113 a x. ~A31!
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IntegratingK over the regular part ofS, we get

E K Ah d2x5
2p

uG8~x1!u
@G8~x2!1uG8~x1!u#.

~A32!

In order to satisfy the Gauss-Bonnet equation, the con
singularity atx1 must have the angle deficit

m52pS 12
G8~x2!

uG8~x1!u
D . ~A33!

The dependence ofm on a can be presented in the followin
parametric form:

m5
2pe ~425e12e2!

~12e! ~21e22e2!
, a5

e ~12e!

~12e1e2!3/2
.

~A34!

The angle deficitm as a function ofa is shown in Fig. 8.
The surfaceS can be embedded into a 3-dimensional fl

space as a surface of rotation. In cylindrical coordinates
equation of this surface is

r5b AG~x!, z52E
x2

x

dxA12b2 G8~x!2/4

G~x!
.

~A35!

SinceG8(0)50, one hasr8(0)50 and hence a normal vec
tor toS at the linex50 is orthogonal to thez axis. Using Eq.
~A31! we find that above this lineK,1 and below itK.1.

When the string tension is small one can apply the gen
alized constraint equation to the case shown in Fig. 9. T
equation shows that as a result of the action of the ‘‘inerti
force of acceleration, the form of the surface is changed
that extra positive curvature is located in the lower part
the surface, while the extra negative curvature is located
the upper part. As a result, the generalized constraint eq
tion ~A25! is obeyed.

FIG. 8. The angle deficitm as a function ofa.
9-17



e

m
s

in

d-
ac
h
T

he

i
ca

ace

n-

t
11.
ur-
ay,
ngu-

ta-

th
ne
h

flat

gle

V. P. FROLOV, D. V. FURSAEV, AND D. N. PAGE PHYSICAL REVIEW D65 104029
Another surface of interest is the event horizon. It is d
fined by the equationH50, or r 51/@a(x2x3)#. A surface
of rotation in a 3-dimensional space which has the sa
internal geometry as the horizon is given by the equation

r5
b AG~x!

x2x3
,

z52E
x2

x dx

x2x3
A12b2 G8~x!2/4

G~x!
. ~A36!

The form of this surface is very similar to the one shown
Fig. 9.

APPENDIX B: SIMPLE EXAMPLES OF EMBEDDING OF
A THORNY SPHERE INTO A EUCLIDEAN SPACE

When all the angle deficits are positive~which is the case
of the most physical interest!, a thorny sphere can be consi
ered as a special limit of a 2-dimensional compact surf
diffeomorphic toS2 which has positive curvature and whic
can be embedded into a three-dimensional flat space.
curvature is everywhere constant except forNv localized re-
gions vk where it is high. An angle deficitmk arises in the
limit when the size of the regionvk tends to zero while the
curvature inside it grows infinitely, so that the integral of t
Gaussian curvatureK ~one-half the Ricci scalar curvatureR)
over this region remains finite and has the limitmk .

The simplest example of a thorny sphere is a sphere w
two conical singularities located at its poles. This sphere

FIG. 9. Embedding ofS into a 3 dimensional flat space (a
50.1). A ‘‘string’’ responsible for an angle deficit enters the nor
pole. A solid line onS separates it into two parts, the upper o
where the Gaussian curvature is less than 1 and the lower one w
it is greater than 1.
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be obtained by cutting a unit sphere by planesP1 andP2 at
anglesf50 andf5m and gluing the cuts together@see Fig.
10~a!#. It can also be obtained as the geometry on the surf
of rotation embedded in a flat 3-space~see e.g.@10#!. This
surface is obtained by a rotation around thez axis of the
following meridianal curve:

x5acoss, y50,

z5E
0

s
A12a2sin2sds, usu<p/2. ~B1!

Herea<1. For a51 the angle deficit vanishes. In the ge
eral case the angle deficit is 2p(12a). This surface is
shown in Fig. 10~b!. A similar surface of rotation of constan
curvature for a negative angle deficit is shown at Fig.
~Note that it is impossible to embed the entirety of this s
face in 3-dimensional flat space in an axially symmetric w
so the embedding stops before one gets to the conical si
larities with negative deficit angles.! The corresponding
equations of the meridian curve which generate this ro
tional surface are

x5Aa22sin2s, y50,

z5E
0

s cos2s

Aa22sin2s
ds. ~B2!

ere

FIG. 10. A unit sphere with a cut~a!, and embedding of a thorny
sphere with two positive angle deficits into a 3-dimensional
space~b!.

FIG. 11. Embedding of a thorny sphere with two negative an
deficits into a 3-dimensional flat space.
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