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Thorny spheres and black holes with strings
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We consider thorny spheres, that is, 2-dimensional compact surfaces which are everywhere locally isometric
to a round spher&? except for a finite number of isolated points where they have conical singularities. We use
thorny spheres to generate, from a spherically symmetric solution of the Einstein equations, new solutions
which describe spacetimes pierced by an arbitrary number of infinitely thin cosmic strings radially directed.
Each string produces an angle deficit proportional to its tension, while the metric outside the strings is a locally
spherically symmetric solution. We prove that there can be arbitrary configurations of strings provided that the
directions of the strings obey a certain equilibrium condition. In general this equilibrium condition can be
written as a force-balance equation for string forces defined in a flat 3-space in which the thorny sphere is
isometrically embedded, or as a constraint on the product of holonomies around strings in an alternative
3-space that is flat except for the strings. In the case of small string tensions, the constraint equation has the
form of a linear relation between unit vectors directed along the string axes.
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[. INTRODUCTION additionala priori symmetry assumptions is our first goal in
the present paper. We shall demonstrate that such configura-

Recently[1] it was demonstrated that cosmic strings at-tions exist for any numben<4/u of strings, and in the
tached radially to a black hole can be used for very effectivegeneral case they do not possess any symmetry. Nevertheless
energy mining from black holes. There were also found setéhere always exists a vector force-balance constraint equation
of exact solutions of the Einstein equations which describe a n
black hole with infinitely thin radial cosmic strind2] and F=> F.=0 (1.1)

. . k ’ .

generalize the results ¢8,4]. For such solutions a regular k=1
round sphere is changed to a sphere with a number of conical | ) )
singularities on it with angle deficita =877, wherep is ~ Wieh for Zi_,u<1 is approximated by
the dimensionledscosmic string tension. n

A characteristic property of the configurations studied in > mn=0. (1.2
[2] is that the positions of the conical singularities on a k=1

Sphere form a regular symmetric structure. The number 0ﬁ'he sum is taken over all singular points with corresponding

types of these configurations is restricted. There are thregngular deficitsz, . In the given approximation the position

configurations which are related to platonic solids and ongy ",-h point is characterized by the unit vectgron a
family of configurations which looks like a “double pyra- ¢.,50th spheré?.
mid.” In the latter case the num_ber of conical singularities  \we also studied in detail the case when the string tension
(and hence the stringss not restricted. is not small, and this is our second main goal. We demon-
In physical applications one can always assume that thgirated that there can exist configurations with an arbitrary
string tension is very small. For example, for strings ‘g/h'Chnumber of strings, provided the total angular deficit is less
appear in grand unified theorié§UTs) the tension is 10°,  than 47, The constraint equations which again must be sat-
while for electroweak strings it is 16“. Finding all possible  jsfied are now more involved. We demonstrate that these
static radial string configurations for small without any  ye|ations can be written as a constraint on the products of the
elements of the holonomy group representing the conical sin-
gularities. The constraint equations are more involved since

*Email address: frolov@phys.ualberta.ca the corresponding operators of the holonomy group do not
"Email address: fursaev@thsund.jinr.ru commute.
*Email address: don@phys.ualberta.ca This analysis requires knowledge of different geometrical

we work in~the system of units=G=c=1. In these units the properties of an object which we calledtlrorny sphere A
string tensionu is dimensionless and corresponds to the combinathorny sphere is a compact 2-dimensional surface which has
tion Gu/c?, wherepu is the tension measured in physical units.  n points with conical singularities, and away from these
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points is everywhere locally isometric to a unit sph&fe|f cosl; —cosl ,cosl 4
I is a length of a circle of radius, around the singular point COoSy, =
K, then,uk=27r—limrkﬁ0(lk/rk) is its angle deficit.

In Sec. Il we study thorny spheres isometrically embed-The triangle can also be specified by its angles. The lengths
ded in a Euclidean 3-space to derive one form of the conef the edges can be determined by using the relation
straint equation. In Sec. Il we show how the thorny sphere
can be obtained from a regular round sphere by a set of COSy,C0Sy3+ COSy;
reconstructiongelementary deformatiohsstarting with an cosly = Siny,Sin 7
arbitrary triangulation of?. In Sec. IV we describe methods
of mapping a thorny sphere onto a unit sphere with cutswe also shall use the following expression for the akaat
Constraint equations are derived in Sec. V from a consisa spherical triangle:
tency condition of these maps and from the holonomy group
of a 3-space that is flat except for the strings. The special A=y, + y,+ y3— . (2.5
case of small angle deficits is also considered in this section.
Concrete examples of thorny spheres with 3, 4, and general Because the edges of the triangles are geodesics of the
n conical singularities are studied in detail in Sec. VI. Topo-thorny sphere, adjacent triangles match without producing
logical aspects of the problem are the subject of Sec. Vllany singularities along the edges, except at the vertices.
Finally, in Sec. VIII, we demonstrate how thorny spheres carThere one gets a deficit anglg that is 27 minus the sum of
be used to construct static solutions of the Einstein equationhe interior angles of the triangles at that vertex.
with n radial cosmic strings. Thus the entire geometry of eadhh? is uniquely deter-
mined by theN.=3n—6 edge lengths of the triangulation,
which can all be specified independently, within an open set
of the (3n—6)-parameter space that is restricted by certain
inequalities(e.qg., triangular inequalitigs(For n=2, there is
A. Intrinsic geometry of a thorny sphere no triangulation, and 8—6=0, but there is a one-parameter

We shall first consider the large class of thorny sphere§dMily of thorny spheres of arbitrary deficit angle<2.

M2 (e.g., all those with three or more conical singularities,>€€ Appendix B.

all of which have positive deficit angleshat are both iso- If the deficit angles are all positive, the thomy sphisré
metrically embeddable into Euclidean 3-spdtea unique has non-negative Gaussian curvatifreverywhere, unit cur-

manner, up to overall translations and rotatioasd also vature everywhe.re away from the conical singularities and
have their geometries uniquely defined by the edge IengthQ,'raC, delta-function curvature at the singularities. The con-
of geodesic triangulations with the vertices at the conicaffioution of these two parts of the curvature to the Gauss-
singularities. IfN;, N, and N,=n=3 are the number of Bonnettheorem is

triangles, edges and vertices for the triangulation, then the

- n
Euler theorem gives j 2K(11A=A+2 =4, (2.6)
K=
N;—Ng+N,=2. 2. . !

sinl,sinl 5 23

(2.9

IIl. THORNY SPHERES EMBEDDED IN FLAT EUCLIDEAN
SPACE AND THE NUMBER OF FREE PARAMETERS

Therefore a thorny sphere can be isometrically rigidly
Since each triangle has 3 edges and each edge belongs to tWwe., uniquely up to overall translations and rotatjoas-
triangles, we haveN,=3N;/2. (Thus the total number of bedded as a convex surfab# in 3-dimensional Euclidean
triangles is always evenFrom this relation and the Euler space5,6].
theorem, we get

B. Gaussian normal map

N,=n, Ng=3n—6, N;=2n-—-4. (2.2

Let n be the outward normal to the embedded surface at
_ ) - ) each point. One can then map each poinMd to a corre-

Except at the conical singularities at the vertices of thesponding point of a unit round? also embedded in the
triangles, the thorny sphere has constant Gaussian curvatugéjimensional Euclidean space that has the same unit normal
K=3R (with R being the Ricci scalar curvatyrevhich we 1y This map is known as the Gaussian normal map of the
shall take to be unity, and hence each triangle can be isQsgnvex surfaceM? into S2. The Gaussian normal map is

metrically mapped to a spherical triangle on the unit spheregiscyssed in more detail in Appendix A, where it is shown
Consider a spherical triangle with vertices 1,2,3. Its edgegt

are parts of great circles on the sphere. Denoté by, and

I; the lengths of the triangle, and by, vy, and y; its inte- K dA=da, (2.7
rior angles at the vertices 1,2,3, respectively. We assume that

the edgd, is opposite to théth vertex. For given lengths of wheredA is the area element ol? and da is the corre-
the edges, the angles are uniquely defined, assuming as wponding area element @&* (with the same corresponding
shall that they are all less than (which is indeed the case set of unit normal vectors in the embedding Euclidean
when the deficit angles are all positjvén particular one has 3-space
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From the divergence theorem applied to the interior ofwhich can be interpreted as the force, defined as a vector in

M2, one can easily prove the embedding Euclidean 3-space that can trivially be paral-
lel transported over it and added to other such forces, exerted
f 2ndA= 0, 2.9 by astring that produces the angle deficit angjeat thekth
M conical singularity.

. . o Since the area of the didBy is
and from the divergence theorem applied to the interior of

S?, one can similarly prove
u=| da (2.13
Dy

f nK dA=f nda=0. (2.9
m? s (see the proof in Appendix JAone can write

The unit normaln to the embeddingVi? of a thorny A
sphere is not well defined at each conical singularity. As one Fie= s, (2.14
goes around th&th conical singularity infinitesimally close .. )
to it, the unit normaln to the embeddingwell defined ev- wheren, is the normaln averaged over the area of the disk
erywhere except at the conical singularities themselves, andk:
hence defining a smooth Gaussian normal map from that
smooth part oM? into the roundS? of unit-normal direc- f nda
tions) sweeps out a topological circle on the round splre ~ JDg
of possible directions for the unit normal, with the area of the M= ' (2.19
disk D, within this topological circle on the roun& being da
the deficit angleu, . The set of thesa disks is the part of the P
round$? that is not mapped into from the smooth part of the
M2 but instead represents the conical singularities. Thus iny
the case thaf, is not infinitesimal, the direction of the unit
normal at that conical singularity is spread out over this cone R
(the diskD, on theS?) and has an angular uncertainty of the Iny |~
order of ui?.

For =}_,u<4r, each diskD is nearly round, and the
eraged normal will have the length

Mk

1- (2.16
_ _ with this relation being exact when the difk is precisely

C. Constraint equation round. Thus the length is nearly unity whef is small, but

The integral of Eq(2.8) is the same as what it would be it decreases below that to a minimum value of 1/2 wign

if one excluded the zero-area conical singularities and iniS increased to its maximum value ofr2(assuming a round

serted the unit curvaturé for reg(M?), the smooth part of disk Dy, which one indeed gets in the case of just two coni-
M 2: cal singularities, a case in which the geometry is not deter-

mined by the geodesic distances between conical singulari-
_ _ ties, simply 7 in this case, but which involves an arbitrary
req(M2 nKdA= z,z nda=0. (2.10 deficit angleu<2# and is discussed in Appendix) B
gM?) S Dy . .
For an opposite extreme case, in WhEp , 1, =47 and
If one subtracts the second integral here from the seconih which the embedding of the thorny sphere gives the two

integral of Eq.(2.9), one gets sides of a convex polygon, the deficit angle at a vertexis 2
minus twice the corresponding interior angle of the polygon
f nda=0 (2.1 (since the surfacéM? corresponds to both sidesand the
$Dy ' disk D, is one interior lune-shaped region between two great

circles that intersect at angle,. Then one can show that in
which is one version of what we shall call the constraintthis extreme case,

equation for the thorny sphere, restricting the orientation of
its conical singularities in the embedding Euclidean 3-space. - T My

One can regard this constraint as arising from the fact that In = ,M_st’ (2.17)
we have restricted the thorny sphere to have constant Gauss- K
lan curvature everywhere except at the conical singularitiesyhich for smallu has the limit/4 rather than the limit of
and this restricts three combinations of the strengths and pemity that Eq.(2.16) has. Thus for Eq(2.16) to be valid, it is
sitions of these singularities. A more physical interpretatioryequired that the disl, be nearly round, for which it is not
of the constraint is as a force-balance equation, to which wgfficient merely thag, be small, but also that the effects of

now turn. . all the other conical singularities on the embedding also be
One can define small.
In terms of the precisely defined forcEg, the constraint
szf nda, (2.12 equation(2.11) becomes the force-balance equation that the
Dy sum of these forces vanishes:
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n n n
F=> Fe=> Mkﬁszf nda=0. (2.18
k=1 k=1 k=1 Jp,

This is one precise version of the constraint equation for
arbitrary possible positive deficit angles.

One way to visualize this constraint equation is to imag-
ine that one covers the disk, of the roundS? with some
material with constant mass per unit area. Then the constraint
equation is the condition that the center of mass of rthe
disks be at the center of the round sphere.

Although this form of the constraint equation is easily
visualizable and is precisely valid for general deficit angles
(so long as they allow the thorny sphere to be rigidly embed-
ded in Euclidean 3-space, which will be the case for positive FIG. 1. Spherical quadrangle composed of two spherical tri-
deficit angles but need not be so for negative deficit anglesangles. The edges are the lines of the large circles of the sphere.
it is not very convenient for calculations, since for 2 it is
a rather difficult procedure to construct the embedding of a&dge between vertices 2 and 3; see Fig. 1. We denote the
thorny sphere into Euclidean 3-space. Therefore, it is als¢ength of this common edge bl;. The other edges have
useful to look at other ways of representing thorny sphereSengihs|,,l, and1,,15 for the first and second triangles,

which we shall do in Sec. IV. respectively. Denote bf)’ a new spherical quadrangle for
ed d h h id enerdfhich the length of the common edgelis while the other
ized. Instead of a thorny sphere one may consi " lengths are the same. This change of the lehgtesults in a

fold, t_hat IS a close.d 2-dimensional Sufface W!th conical Sln'change of angles of each of two triangles which can be found
gularities and arbitrary smooth metric outside them. We

assume that this metric has positive Gaussian curvitise by using Eq.(2.4?. In th_is procedure the Iength§_,l3,lz,l3
that it can be isometrically embedded in Euclidean 3-spa08f thfe.edges OQ remain the sa,me as 16). That is WhY the
as a closed convex surface. As is shown in Appendix A, thénedified spherical quadrang®@” can be glued back into a

constraint equatiof2.18) is modified and takes the form cut sphere. The_ resulting surface Wil! l_)e sr_nooth everywhere
except at 4 vertices where angle deficits will appear. We call

n this procedure aelementary deformatioof the sphere.
FEE Mkﬁk:f n(1-K)daA, (2.19 For a given triangulation, one can ud&=3n—6 el-
k=1 regM?) ementary deformations independently to fix all of the edge

) _ 5 ) lengths(and hence also all the deficit angleend thus to
whereK is the Gaussian curvature <. We call this rela-  getermine the (8— 6)-parameter metric on a generic thorny
tion ageneralized constraint equatioihe presence of non-  gphere withn conical singularities. However, if we have the
constant Gaussian curvature in the right-hand side of thi@oa| of fixing required deficit angles at ti,=n vertices,
equation makes possible the existence of new configurationgoy 4| of the elementary deformations have independent ef-
e.g. with a single conical singularity. See the discussioB of facts upon them. Some combinations of these deformations
metrics in Appendix A for some interesting physical applica-gq not generate angle deficits, but simply move vertices of
tions of the generalized constraint equation. the triangulation along the sphere. The number of such “de-
grees of freedom” that do not affect the deficit angles is
[ll. SPHERICAL TRIANGULATIONS OF A 2N,—3=2n-3 (two “degrees of freedom” per vertex mi-
THORNY SPHERE nus 3 “degrees of freedom” corresponding to rigid rotations
of the sphere which preserve the lengths of each edge un-
changed Thus the total number of “real degrees of free-
dom” which generate deformations in the angle deficits is
In this section we describe how to construct a thornyN.—2N,+3=n—-3. These deformations are sufficient to
sphere starting with a triangulation of a regular unit spherecreate the required angle deficits at all theertices except
S? (see alsg7)). In the next section we describe the mapping3. This is exactly what one can expect in a general case,
of thorny spheres into round spheres embedded in threaince there exist exactly 3 consistency conditions in the vec-
dimensional Euclidean space. tor constraint equationd.1) and(1.2) relating angle deficits
We start construction of a thorny sphere by taking a reguand positions of the singular points on the thorny sphere.
lar unit sphere with an arbitrary given triangulation of it,  The above counting of the “degrees of freedom” gives us
using spherical triangles. As above, Mf=n=3, N,=3n also the following useful information. Let us fix the values of
—6, andN¢{=2n—4 be the number of vertices, edges, andall n angle deficitsu,. Then Zh “degrees of freedom” char-
triangles for the triangulation, with Eq$2.3), (2.4), and  acterizing the positions of the vertices must obey 3 constraint
(2.5 applying for the geometry of each triangle. equations. We can also use 3 “degrees of freedom” of the
Now let us cut from the triangulation a spherical quad-rigid rotation of the sphere to put, say, the first point to the
rangle Q which consists of two triangles with a common north pole of the sphere, and the second one on the meridian

A. Elementary deformation of a sphere and another count of
the degrees of freedom

104029-4



THORNY SPHERES AND BLACK HOLES WITH STRINGS PHYSICAL REVIEW B5 104029

¢=0. After this there remain 2—6 free parameters. By vertices 1,2,3,4. Consider the particular form of Ef.2)
adding to them the parameterg., we return to the 8—6  when only these four vertices have nonzero deficit angles:
parameters of a generic thorny sphere witbonical singu-
larities.

(3.5

Nyt Nppa+Napma+Naus=0.
B. Constraints for elementary deformations of a sphere On projecting it on the vectan, we get exactly Eq(3.4).

Now to illustrate the nature of these constraints we dis- T0 get Eq.(3.5) directly, and not just its projection am,,
cuss a case when all angle deficits are infinitesimally smallwe can do some further algebra and find that for each of the
Consider an infinitesimal elementary deformation of atwo spherical triangles with only the length perturbed,
spherical quadrangl® shown on Fig. 1. To produce conical

singularities one can deform the length of the common edge oW,
(2,3) while keeping the lengths of the other edges un- X1t XoNp +X3Ng= T 7 N3 X Ny, (3.9
changed. This deformation changes internal angles at verti- !
ces 1,2,3,4 and yields conical singularities. Let us introduce Sw
the following notations: — — — 1
9 X1Ng+ XoNo+ XgNg= mnzx ns. (3.7
1

W3z=(ny-Ng), Wp=(Nz-Ny), Wz=(Ny-Ny),

Wy=(N3-Ng), Wi=(Nz-N3), (3.9
wheren, are the unit vectoréwith the beginning at the cen-
ter of the sphenewhich define the positions of the corre-
sponding vertices. If, is the length of the edge opposite to
the kth vertex, therw,=cosl,, which is true for triangles
whose edges are arcs of great circles. For triangle®’pRq.

(2.4) gives

CZC3+ Cq
Wy=——-,
! $2S3

C,C3 + Co
a $1S3

C,C;+C3

$251
(3.2

wherec, = cosvy,,S=Sin .. Analogous relations foWk can
be obtained from Eq.3.2) by replacingy, by v, . Variations
of_wl produce changes of the angléd,=—X,, dy=

—X,. The condition that these variations do not chamge
can be written in linear order as

1
——[(C1S3Wp+C3S1) Xy

é\Nz =
$1S3

+ (C3S1Wo 1 C1S3) X3+ XS5 ]

S
= _2(W3X1+W1X3+X2):0. (33)

$1S3

To get the last line we used E¢3.2). A similar relation
follows from the variation ofv,. Their combination yields

(W3X1 + W Xg+Xp) + (WaXy + WX+ X,)
= WXy + (XpF Xp) + Wy (Xg+Xg) +WaXy
(3.4

=Wyt pot puaWy+ ugws=0,

where we took into account thml=v_vl. It is easy to see
that,u1=xl, /.L2=X2+X2, /.L3=X3+ X3, and/.L4=X1 are the

When these two equations are added, the right hand sides
cancel, and one gets E(.5).

A generalization of this linearized vector condition to fi-
nite deformations will be given in the next sections.

IV. MAPPING A THORNY SPHERE ONTO A ROUND
SPHERE WITH CUTS

As we already mentioned, there exists an embedding of a
thorny sphere in flat spacéat least for positive deficit
angles. But in practice it is very difficult to obtain this em-
bedding explicitly and get the precisely defined foreggor
the force balance equati@B.18 unless the angle deficits are
small. An exception for large deficits is a simple case when a
thorny sphere has two conical singularitieee Appendix B
(This case is not covered by Sec. Il since it cannot be trian-
gulated using as vertices only the two conical singularities.
Therefore, in this section we present another description of a
thorny sphere by mapping it onto a round sphere with cuts.
This approach allows us to formulate the constraint equation
in an explicit algebraic form. There are several ways to do
this. We describe here two simple methods.

A. Method A

One method of representing the thorny sphé&, with
n=N, conical singularitiesA,,1<k=n, is the following,
applicable forn=3: Let the singularities be labeled so that
the sequence of the shortest geodesic fldamto A, (say
geodesic segment; with beginning atA; and end atA,),
that fromA,; to Az (say y,), ... , that fromA,,_q to A,
(sayy(n-1)), and that fromA, to A, (sayy,) forms a closed

path P that does not intersect itself. For example, one can
choose some regular point, find the shortest geodesic from
that point to each conical singularity, arbitrarily choose one
of the singular points to b&,, and then label the remaining
conical singularities in the same order as the angles, at the
regular point, of the tangent vectors of these geodesics from
the regular point to those singularities. It is not obvious
whether or not the resulting sequence of geodesics between

conical angle deficits produced by the deformation at thehe conical singularities chosen in this order in any other
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since they determine the polygon boundarfgsand 5, of
" the regionsM; and M, whose interiors have the unit-
curvature metric inherited from the unit spheé3& Because
_ the boundary segments are geodesics, the successive ones
) - . from M, and M, can be identified so that the union of the
two regions with this identification forms the thorny sphere

% with no singularities except for the conical singularities
with deficit anglesu, at then vertices.
Let us see how we get the right parameter count from this
: construction. Naively one has two parameters for locating
L each of the B points A1y and A,y on the round sphere
; S?, or 4n total. However, there is the constraint that the
geodesic segments from the succesglyg,’s must match
FIG. 2. A unit sphere with cuts. By gluing the cuts one obtainsthose from the successivig, s, which givesn constraints,
a sphere with three conical singularities. leaving only 3 parameters arbitrary. Then there is an arbi-
trary 3-parameter rotation that one can separately apply to
possible specification of the ordewill necessarily form a  poth A, and M., so of the 3 arbitrary parameters, only
closed pathP that does not intersect itself, but here we shall3n—6 are physically significant in determining the geometry

assume that it does. B of 2. This is precisely equal to the number of continuous
Now the closed pat® divides the thorny spher&?, into parameters of a thorny sphere wiitconical singularities of

two parts, sayM;, which is encircled clockwise b, and  arbitrary strength, the number of edge lengthsof a trian-

M., which is encircled counterclockwise B3 Because the gulation of it, as discussed abotender the assumption that

interiors of both contain no conical singularities, they can bethe triangulation exists, although the number of continuous

isometrically mapped to corresponding regions{; and parameters would not be expected to depend on this assump-

M,, on the round uni? of the same unit curvature as the tion).

part of the thorny sphef& away from the conical singulari-  Given the location of\1; on the round sphers? (which

ties. The boundaries of these two regionsSSrare the geo- has three Euler-angle parameters of arbitrarinesse could

desic polygons that are the imagBg and 3, of P in these fix the three arbitrary rotation angles for the location/eff,
maps from the thorny sphe®? into the round spherg?. In " theS” so that two successive vertices b, (say A

the simplest case of three conical singularities the regiongndA(m) in order to refer to them explicitly belovcoincide

~ ~ . . . with the corresponding ones o¥1, (i.e., Ay and Ap gy
i/:lslha:)r\]/s;\g% aIL:r%sghencal triangles. Their map on the Sphererespectively, with these two regions being on opposite sides

The two maps preserve the lengths of the geodesic edg Osf the geodesic segmet, joining these two successive ver-

¥« of the polygon, and they preserve the angigs, and ICeS ?_?]d prov |d|ngf tr;]e common bqundaryr:) engAd@ and

b (2 between the two successive geodesics that meet at tiﬁil? € union of these two regions with their common
conical singularityA. Let us defineg;, to be the angle oundary,y,, no longer a boundary, then gives one single
between the tangent vector of the geodesic endimy, and simply conneEted region on the rouBd that represents the
that of the geodesic beginning Af, measured in the region thorny sphereS®. We will denote this union region astc,

M and taken to be positive if clockwise, so that the interiorand its boundary a€. Note, however, that it is not ensured
angle at that vertex of the polygon is— ¢y . Similarly, ~ that the two regions that have been joingd; and M, will
defined,y to be the angle between the tangent vector of théhot overlap somewhere other than where they have been
geodesic ending &, and that of the geodesic beginning at joined, so the map fron®? to its image inS? is not neces-
A, measured in the regia!, and also taken to be positive sarily one to one but can in some regions be two to one, and
if clockwise, so that the interior angle at that vertex of thein generalC may have self-intersections.

polygon is 7+ ¢,y (now with a plus sign since with the In Fig. 3 we demonstrate the regions for=6 conical
ordering given for the geodesic edges, the polygon encirclesingularities. Regiond; and M, are shown on picture®)

M, in the counterclockwise orientation rather than in theand (b), respectively. Points 1 and 6 have the same coordi-

clockwise orientation as it doe§1;). Then the conical defi- nates fqr both regions._ In Fig. A, and .M, are united in
cit angle atAy is = i~ bk the region M by gluing them along the edge between

o ~ points 1 and 6. The closed curve on Fig. 4 is the boun@ary
The maps fromi, on theNthorny~spher82 to M, on the of Mc, and in the considered example it does not have
round spheres”, and from M, on $? to M, on §*, give  self-intersections. Hence, one can cut the region inSided
points A(lé() on §* that are the vertices aM;, and points  then glue the corresponding poir(® with 2’, 3 with 3', 4
A2k OnS° that are the vertices o¥1,. Then the locations of  wjth 4’ and 5 with 5). This yields a thorny sphere with
the 2n points A1) and Ay on the round spherf;z some configuration of 6 conical singularities with deficit
uniquely determine the geometry of the thorny sphgfe  angleu=7/12.

104029-6



THORNY SPHERES AND BLACK HOLES WITH STRINGS PHYSICAL REVIEW B5 104029

singularities in the construction above, or of the choice of the
triangulation when one takes its edge lengths as the &
parameternscan be interpreted asn2-3 parameters for the
relative locations of the conical singularities on som&?
(i.e., after taking out an overall rotatiprplus n—3 conical
deficit angles that can be freely specified once the relative
locations are fixed. There is then a constraint fixing three of
the conical deficit angles, which, at least in the case of small
deficit angles, becomes the force-balance @) for the
strings that produce the deficit angles.

One way to see this constraint on the deficit angles is to
consider how much freedom one has to specify the deficit

with 6 singularities. M lies on the right when one goes from point angles after the pointsi,y have been specified. Speci-
1 to point 2.(b) shows region\, for the same sphere. It lies on the fying the pointsA, ) determines the angled,) between
left hand side when one goes from point 1 to poirt @n both  the successive geodesics joining those points, but the deficit

pictures points 1,55and 6 lie on the back side of the sphere. ~ 8NgI€S areu= ¢ — b2y, and the angles(,y, are de-
termined by the location of the poinég,, . As noted above,

The boundaryC has -2 verticesA 1 1y= A1), A(n) without loss of _ge_nerality we can oriefl, relgtiv_e toM_l
=Agn Aay for 2<ks=n—1, andAgy for 2<k<n-1, so thatA(; 1) coincides W|§hA(2,1) andA ;) coincides with
which can be at arbitrary locations except for the constrainté\(2n) - Then the successivl,x.1)'s must be at the same
that then—1 geodesic distances between the successivélistances from theA's as theA . 1y's are from the
A(1x’s must be the same as those between the correspondifyi’s, but fork<n—2, the direction fromA;y) t0 Azys1)
successived ,'s (n—1 constraints, since we have already (at angleé ;) clockwise from the direction of the geodesic
imposed the fact that the distance betw&gpy) andA ;) is ~ coming fromA_1) 10 Apy) is a free parameter, whose
the same as that betwedp, ;) andA ,,) by puttingA; ;yat  choice fixes the deficit angle = ¢ 19— ¢z at that ver-
the same location &, ;) andA, , at the same location as tex. However, when one gets /,,—,), the angleg;,»)
A(2p)- Therefore, the number of free parameters done thi¢s fixed (up to a twofold degeneragyso that the vertex
way is twice the 21— 2 vertices, minus the— 1 constraints, An-1) IS at the same distance frol,,) asAp-1) is
or 3n—3, all of which are arbitrary, but of which three from A, . Then whenA,-1 is thus fixed, the angles
merely determine the orientation of the entire region on theP(2n-2), $(2n-1), aNde 2y, are fixed, and hence these final
S?, so that the number of true physical parametersns 3 three deficit anglesy -2y, pn-1y, and u,, are deter-
—6. (One could arbitrarily remove these three remainingmined (up to the twofold degeneracy of the two possible
gauge parameters of the freedom to rotate the coordinates #gcations forA,, 1) at the fixed distances froly,,_,) and
putting, say,A; 1) at the “north pole” of theS?, at polar fromA(,y)) and are not free parameters._ Therefore, once the
angle#=0, and then putting\; ,, along the “prime merid- 2n—3 parameters of the relative locatiohg,y, of the n
ian,” $=0.) conical singularities are determingds seen from within

As we shall see below, then3-6 coordinate-independent M3), one is free to specify onlp—3 of the deficit angles,
parameters that are in one-to-one correspondence with th#ving a total of 1—6 parameters.
geometries on a unit-curvature thorny sphere wittonical Another way to express the three constraints on the deficit
singularities(up to the discrete choice of the ordering of the angles once theiA, ,, locations are fixed is from the con-
straint on the holonomy from going successively around all
of the conical singularities in a three-dimensional space. This
will be discussed in Sec. V.

FIG. 3. (a) demonstrates the regiolt; for a the thorny sphere

B. Method B

Another possible method to cut the thorny sphere with
conical singularities into a piece that can be fitted onto the
round sphere is the following: Let us choose one of the sin-
gular points, say poimd,,, and connect it by shortest geode-
sics with the rest of the point#\,, k=1,... n—1. Since
the thorny sphere is a complete Riemannian manifold, the
shortest geodesics which connégtwith differentA, do not
intersect. If there are more than one geodesic with the same
length, we choose one of them. Let us also make the follow-

FIG. 4. This figure demonstrates the regibii. constructed by — INg convention for ordering of pointéy, k=1,...n—1.
method A. Points 1, 5, ’5and 6 lie on the back side of the sphere. Choose one of these points and denote itAgy We can go
Region M is the unification of regions\; and M, shown on  clockwise around\, starting from the geodesic betweép
Fig. 3. The thorny sphere is obtained by gluing poikndk’. andA;. The convention is that the next geodesic we hit cor-
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V. CONSTRAINT EQUATION
A. Derivation of the constraint equation

The procedure to construct a sphere with conical singu-
larities by either method A or B requires that the cont@ur
be closed; see Figs. 4 and 5. This imposes a constraint on the
positions of the vertices o@. We describe how this restric-
tion can be found by using method A of cutting the sphere.
One can show that the constraint required for method B is
the same.

Consider a region\ which appears after cuttin§’ by
method A. Denote the coordinates of poiitg ,, on S? by

e e X k
—_— ng, k=1,...n and the coordinates of pointd,, by
o ) .
FIG. 5. This figure demonstrates the method B. Points 2,4,8 oftk» K=2, ....,n—1. Let us also introduce matric€(n, «)

the figure lie on the back side of the sphere. After cutting the starwhich belong to the grouij_(S) and descr_ibe rotations by
like region and gluing the rest one gets a sphere with six conica@Nglea around the axes defined by the unit veatanormal

singularities with deficit angle.= 7/12. After gluing points 1, 3, 5,
7 and 9 are identified.

responds to the geodesic betwenandA,, the next geo-
desic after that corresponds to po#Ay, etc.

Let us now make cuts d& from A, to pointsA, along
the geodesics. This procedure yields a spherical polygtn
with a boundaryC which is a closed curve. In general, this
polygon will have a shape different from the polygon ob-
tained by method A, although the number of edges and ve
tices is the same,r2-2. The boundary now consists of
—1 pairs of geodesics with equal lengths. The geodesics i

the given pair are connected at a vertex which corresponds to

pointA,, on'S?, while different pairs are connected at vertices
Ay, k=1,... n—1. Let denote byB,, the vertex which
corresponds t&\,, k=1,... n—1. Then a vertex between
Bo—1) andBy is the image ofA,. We denote it byB,y ;.

As in the previous casé 1. can be glued on a regular
sphereS?, and the boundarg of M will be mapped on a
closed contour or8?. Each vertexB, on C has a uniquely
defined coordinate, on S?>. We can now define coordinates

of the singular points onS? as follows: pointsAy (k
=1,...n—1) have coordinatesy=x,, (coordinates of
B,y), and the coordinate, of A, can be chosen as the co-
ordinate of one 0B, . It is convenient to put,=X;.

The internal angles at point8,, are By =a =2
— u, Which are polar angles arour, k=1,... n—-1,
and u are conical angle deficits & . If B8, 1 are internal
angles at point$,,, 4, then they are related to the polar
angle around\,, as

n—-2
an=go Boii1- (4.2)

By assumption, all u,>0 and hence &« <2, k
=1, ... n. The remarkable property of the contdliis that
the edge betweeB,, , ; andB,, can be obtained by rotating
the edge betweeB,,_; and B, counterclockwise around
B, by angleB,,. An example of M obtained by cutting
the sphere by the given method is shown on Fig. 5.

to the S2. Our convention is that positive corresponds to
counterclockwise rotation around (as seen by looking
down upon the sphere, with up). Define matricesOy
=0(ng,ui), k=1,...n, where u, is the conical angle
deficit at the corresponding singular point 8h Given ma-
tricesOy and coordinates of the verticég, ,, on the bound-
ary C, coordinates of the rest of the verticag,, on C can
be found as follows.
The angle at the verteX, ;) between geodesics connect-

ing A1) With A1 5 and A, ) is u1. Therefore A, 5 is the

image ofA(1 2y Obtained by rotatingA(; ;) aroundA 4 4y by

anglewq, and by using the matrices one can write
n

né: Olnz . (51)
Consider now a rotation ok, 3y aroundA; 5 by angleu..
This gives a poinfA which could be obtained by making a
cut on the thorny sphere which goes through ) and
A(1,3)- To getA, 3 0ne has to do an additional rotationA§
aroundA(; 1y by angleu;. This second rotation takes into
account that poinf\; ,) itself has to be rotated arourq, ;).
Thus, for the coordinates &, 5) one gets

né=0102n3. (52)
This procedure can be continued further to get the coordi-
nates of the other point&, ), :

n{<=0102~ . Ok,lnk . (53)
If k=n we come to the final poim . This point and its
image coincide,

!

n,=n,. (5.9
This means that the vector, is on the axis of rotation de-
fined by the matrix
M=0102- . 'On—l- (55)

So forM we can writeM =O(n,,«) wherea is some angle.

We can also construct the coordinates of the images in a
different way by starting with the poind,_1) which is
obtained by the rotation oA(;, 1) aroundA,,, by the
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anglle,un. Accordjng to our convention, this rota}tion should (by going briefly into1,), and then return iV, to A,. Let
be' in the opposite direction, so for the coordinates of thgna element of the holonomy group generated by that curve
poinits we get be labelecH,.
-1 All of the elements of the holonomy group can be ob-
n. ,=0."N,_. (5.6 : -
n—=17*n "n-1 tained by products of these elements and their inverses. For
example, the curve that first goes out frolg to encircle

By proceeding as earlier we get for the coordinates okthe . ~ .
y P 9 9 A(1)) clockwise and then goes acradd; to encircleA,

point i S RN
clockwise before returning in; to Ag is H; "H, ~. To take
n,ﬁ=0;10;_11' . .ok—+11nk_ (5.7 a slightly more cgmplicated example, the curve that goes out
from A, to leave M, betweenA; 1) andA, ) and then goes
Becausen, and its image coincide the matrix acrossM, to encircleA, 4 clockwise and then return back
along its previous path t8, generates the holonomy grou
N=0,%0;%- -0, (5.8 J T8 previons pa o 9 v group
elementH,=H,HsH, "H; "H, "
=0(ny,B). By using Egs(5.5) and(5.8) we can write and encircled\(; ) counterclockwise, returns directly ik,
to Ap, and then in turn goes out and encirchgs ,— 1) coun-
MO,=0(n,,u+a), terclockwise and returns, and then encirchgs, ») coun-
terclockwise, etc., until finally it encircled;,y counter-
O;N"*=0(ny,u—B). (5.9  clockwise and returns té\,. Thus it encircles each of the

conical singularities clockwise in order, staying Ml ex-
This relation shows that matrice®O(n,,u+a) and cept for each time it encircles a singularity. The total ho-
O(ny,u—B) are identical. In the general case, if points onomy generated by this curve fig;H,Hz- - -H,_H,,.
A1), A are not on the same axis, this implies that the  But since this curve encircles all of the singularities, it can

matrices are the unit matrices. Thus, we come to the followye geformed so that all of it lies i, except for the initial
ing constraint equation which follows from E.9): part leavingA, and the final part returning t,. This curve
can then be shrunk to zero without crossing any singularities,
O(ny,11)O(N2, 12) - --O(My, pn) =13, (510 g4 for consistency it must represent the trivial holonomy el-

. . ) ement(the identity. Therefore, we get the constraint equa-
wherel ; is the unit 3X 3 matrix. ;

Figure 3 gives an example in which the coordinates of th(;[Ion
points on(a) obey the condition(5.10 for w=m/12. The HiH,oHz - -HpoHp=1. (5.12
method of rotations described above was used to produce
images 2,3',4',5" of points 2,3,4,5, respectively. The con- In the SO(3) representation this constraint coincides with
straint equation is also obeyed for the 6 points 2,4,6,8,10,1 ifcg. (5.10 which was found by the alternate computation,

Fig. 5 with the same angle defigit= 7/12. with H,=0(n,, wy) -
If we use anSU(2) spinor representation of the ho-
B. Alternate derivation of the constraint equation lonomy, then the conical singularity at; with deficit angle
using holonomies i generates the holonomy element
Let the 2-metric on the thorny sphere 882 (with unit Hy= U= U(ny, ) = el/Dksx

Gaussian curvature away from the conical singulaitiesd

consider the following three dimensional metric that is flat — Cos'lﬂ+imksinﬂ1 (5.13
everywhere away from the conical singularities, which form 2 2
strings in the radial directions:
where
ds?=dr?+r2dQ?. (5.11) 3 L
B L ni+ing 51
One can then calculate the holonomy of going around vari- A=y 0=y = ni—in2 -nd (5.14

ous closed curves and parallel transporting one’s frame. _
Since the space is flat except at the strings, the holonomyith n, being theith Cartesian coordinates of the unit nor-
will be trivial when the closed curve can be shrunk to a pointmal n, to the roundS? embedded in flat three-space, at the
without crossing any strings, but it will generally be non- point A ;) of M, that represents, on the thorny sphere
trivial when the closed curve enC|rcI~es one or more stringsZ2 The pauli matricesr; are chosen such thatr,opog
Choose a regular point, sa, in M;, and take a curve =1 which guarantees that, corresponds to counterclock-
that starts af\, and stays inM; until it nears the conical wise rotation arouna,. For generic assumed deficit angles,
singularity atA(;y,. Then have the curve encircle that sin- without imposing the constrairts.12), the product of all the
gularity (but no other ong in the counterclockwise direction U,’s will also be a holonomy element of the form
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U,UoUs- - U, _ U, =el2N (5.15 VI. CONSTRUCTION OF THORNY SPHERES WITH
LARGE DEFICITS: EXAMPLES
where A. Three conical singularities
1. Case of equal angle deficits
3 14iN2 . .
K= Neo=N'o N N*+iN (5.16 We now discuss some examples of spheres with large
—NOENOIT IoiN2 —N83 ' deficit angles. To construct them it is enough to solve the

constraint equatiori5.12. Let us consider first the case in

) ) . i ) which there are three deficit angles that are all the same and
for some vectolN with Cartesian coordinate¥' (and which equal to x, and the conical singularites are at points

without loss of generality can be taken to have length, Whicml,nz,n3. The constraint Eq(5.12) for this configuration

represents the total angle of rotatioR2ar). Then the con- yig|ds the holonomy around one point in terms of holono-
straint(5.12) is the condition that the total rotation vector is mies of two other points. We will write this in the following

zero, form, using theSU(2) representation of the holonomy given
by Eg.(5.13:
N=0, or N'=0 foreachi, (5.17 ~
U(ng, m)U(np,u)=U"(ng,u)=U(=ng,u). (6.1
which gives the three conditions on the deficit angles. Suppose that the angle between vectogsand n; is a(0

The constraint Eq.(5.12 has two immediate conse- <a<m). We can choose; andn, lying in the (xy) plane
quences(1) there cannot exist a thorny sphere with a singlesuch that matrices for the corresponding points are
conical singularity with a deficit angle<0|u| <2, and(2) .
on a sphere with a pair of conical singularities, the singular hy=cosao;tsinag;, hy=o;. (6.2)
points lie on the same axis.

We can note that Eq5.12) in the SU(2) spinor represen-
tation follows from the single equation

We get

U(ng,m)U(nz, u)= Coszg—cosasinzg)l
Tr{U;U,Ug - UpoqUp]=2. (5.18
+isin§

cos'%( 1+cosa)oy
Indeed, the product of matrices in the left hand side of Eq.
(5.19 is a unitary matrix which corresponds to a rotation by mo
an anglep around some axis. If the trace of this matrix is 2, +cos;sinag;
then the angle isp=47m, wherem is an integer, and the

unitary matrix is simply the unit matrix. Conversely, when LM
the trace of a X2 unitary matrix is 2, it must be the unit tsingsinaos, . 6.3
matrix.
To satisfy Eq.(6.1) one has to choosa such that
C. Constraint equations for small angle deficits cog u/2)

In the case of small deficit angles, so that all of the sums cosa=-— 1+coqul/2)’ 64
of the products of different matriceg, are small, then the
constraint Eq(5.12 or Eq.(5.17 becomes In the limit that =0, one getaa=4/3, so each spherical

triangle fills a hemisphere. Ag is increased, the lengtiof

the sides decreases and reaches 0 whed /3.

0= N~k21 e, (5.19 Given Eq.(6.4), the position of the third point)s, is fixed
by the matrix which follows from Eq(6.1),

n

which is Eq.(1.2) of the Introduction. Since in the three- Mo LM

dimensional space with small deficit angles, the conical ﬁgzcosaal—cosismaaz—smismaog. (6.9
singularities correspond to strings with tensign, at

directions given byn,, the constraint equation becomes the Equationg6.2) and(6.5) give coordinates of the conical sin-
equilibrium condition for the forces exerted by the strings, agularities with deficit anglew. The corresponding sphere
force-balance equation. For an even number of conicalith conical singularities can be constructed from a spherical
singularities Eq.(5.19 is satisfied when for each conical polygon M with a boundaryC on regular spher&?. This
singularity whose position is defined by the veatQr there  can be done by either method A or B. Consider, for instance,
is another singularity with the same deficit angle whosemethod A. The contou€ consists of two partsC; andC,.
position is —n,.. This situation is realized for polyhedral The contourC; consists of two shortest geodesics connect-
configurations of singularities discussed &. ing pointsn; with n, andn, with n;. The contourC, con-
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o A+B+AXB 61
- 1-A-B 6.12

Again one can see that £ andB are small, to linear order
in those vectorsC= — A— B. Alternatively, if the three unit
normalsn, are specified, then the solution for the deficit

angles is
M1 Ny- (N XnNg)
tan——= . (6.13
b) 2 (nyXny)-(ngXng)
FIG. 6. (a) and (b) demonstrate cuts which after gluing yield tan&: N1-(NzXn3) 6.14
thorny spheres with three conical singularities with defigits 2 (nyXng)-(nyXngz)’ '
= /12 and 77/6, respectively. Oita) points 1 and 3 lie on the back
side of the sphere. Ny -(NyXnNg3)
tans=— 278 6.15
) . ) ) , . 2 (ngXng)-(ngXny)
sists of geodesics connecting with n, and n;, with ns
wheren; is the image of, obtained by rotation arounad, A third specification would be to fix the three deficit
by angleu: angles and thereby to fix the three lenghsB, andC of the

three vectorsA, B, and C respectively. Then the constraint
determines the relative directions Af B, andC. Suppose
that these are given by the cosines of the angles between

Ay =U(ng, m)hU " (ng, ). (6.6)

For some values ofc anda the corresponding contours are

presented in Fig. 6. them, say
2. Arbitrary angle deficits a=cosa=n,-n;=B-C/(BC), (6.1
In the general case af=3 conical singularities with ar- B=cosb=n5;-n;=C-A/(CA), (6.17
bitrary deficit anglesu,, let A=n tan(u,/2)=*An.,B
=n,tan(u,/2)= *=Bn,, andC= nstan(us/2) = = Cns, where y=cosc=n;-n,=A-B/(AB). (6.18

A, B, andC are chosen to be positive. Then
Then by equating the squared magnitudes of the two sides of

m +iA Eq. (6.12), one can solve for
Us=U(ng,pq)=cos- (I +ik)= , (6.7)
2 V1+AZ 1[ _ [1+AZ+B?+A%B?
Y= B 1+ 17 C2 (6.19
U,=U _cod2(11ip)= 12 6.8 '
2=U(Nz, pg) =COST- (1 +iB) = J1+82 6.8 Similarly, by cyclic permutations one gets
H3 | +iC 1 '1_ \/1+ B?+C?+B%C? 6.20
= = i = a= o= + 2 ! *
Us=U(n3,ug) =cos-(1+iC) e (6.9) BC| 1+A ]
[ 2 2 272
where the signs of the square roots in the denominators are B= i 1% \/1+C +A+CA _ (6.2
chosen to be the same as those of the respective,g@yé CA| 1+B?

(positive if | u| < ). Then forU,U,U; to be the unit matrix ) )
that represents the trivial holonomy, one uses the Pauli- One must choose the signs so that the cosines are between

matrix identity (for i oy0p03=1) —1 and 1.(For smallA, B, and C, one must choose the
upper signs.In order that the cosines can be betweem
AB=(A-0)(B-o)=(A-B)I—i(AXB)-¢ (6.10 and 1, the absolute magnitudes of the three deficit angles
must obey the triangular inequaliti¢sach larger than the

and gets the constraint absolute difference between the other two, and each smaller
than the sum of the other twowhich translates into the
A+B+C+AXB+AXC+BXC nonlinear inequalities foA, B, andC that
—(A-B)C+(A-C)B—(B-C)A=0. (6.10 |A—B| ALB
=C< , (6.22
One can see that the linear part of this is simply that the sum |1+ AB]| |1-AB]|
of the three vectors is zeré,+B+C=0.
In the nonlinear case, if, saj, andB are specified, then [B—C]| _ B+C 6.23
the solution forC is [1+BC| " |1-BC|’ :
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c-Al . C+A o
= . .
1+ CA-B=[1-CA 6.29

In the case of three conical singularities that we are pres-
ently considering, the regiong1; and M, are simply
spherical triangles that are identical except for their orienta-
tion. The interior angles at the verticds B, andC are =
—u1/2, m— u,l2, andw— u5/2 respectively, and the cosines
of the angular lengths of the opposite sides arecosa, 8
=cosh, and y= cosc respectively. Then, as an alternative to
the constraint equations given above, one can use the stan-
dard formulag2.3) and(2.4) for spherical triangles. For ex-
ample, from Eq(2.3),

FIG. 7. This figure shows the cut for 4 conical singularities with
co /2)co /2)—co /2 deficits u=7/12 and parameters cas-0.2 andf#= /2. Points 3
a=cosa= S p2/2)COS 13/2) $pal2) (6.25 and 3 lie on the back side of the sphere.

Sin( u2/2)sin( p3/2)
) ) Given coordinates; andn, it is easy to see that E§6.27)
and cyclically forg=cosb and y=cosc. This reduces to Eq. pq|ds if n; andn, are obtained by a rotation ofn,,—n,
(6.4 in the special case in which all of the three deficit 3r5undn by some angle, i.e.,

angles are equal tp.

. . L. mSZ_U(n!a)ﬁ2U71(an)a
B. Four conical singularities
1. Case of equal angle deficits h,=—U(n, g)ﬁlu—l(n, 0). (6.30
Consider now a sphere with four conical singularities with

deficits uy at pointsn,, k=1,2,3,4. The constrair{s.12 on
the holonomies is

This procedure yields a three-parameter family of spheres
with four conical singularities. The parameters arg® and
the anglea betweem; andn,. The internal region\ of an
example of such a sphere obtained by method B is shown in
U(ny, Uz, u2)U (N3, 3)U(Ng, ) =1. (6.26  Fig. 7. Pointsn) andn} are the images af, andnj, respec-

Given the coordinates and angular deficits of three pointstlvely' The same method was applied to get configurations

we can find from Eq(6.26 the coordinates and the deficit of With 6 conical singularities on Figs. 4 and 5.
the fourth point. We first present here a particular solution of
Eq. (6.26 for the case in which all the deficit angles coin-

cide. Then the constrairi6.26) can be rewritten as Now let us turn to the case when tha=4
conical singularities have arbitrary conical deficit angles

_ Mi- Similar  to what was done for n=3,
Un,g)=U(ng,w)U(nz, 1) let  A=njtan(u,/2)=*An;,B=n,tan(u,/2)=*+Bn,,D
=U(—ng,uw)U(—ngz,u), (6.27 =ngtan(us/2)= £ Dng,E=nytan(u./2)= £ Eny, where
A, B, D, andE are chosen to be positive. Now there are
wheren is a unit vector in the Euclidean 3-space. The pa-arious ways to proceed with solving the constraint
rameters3 andn are uniquely defined by E¢6.27) if » and  U,U,U3U,=1, depending on what is specified and what is
the coordinates of the pair of poinig,n, are known. For to be solved for.
nqy,n, defined as in Eq(6.2), If A, B, andD are specified an# is to be solved for, one
writes the constraint in the form

2. Arbitrary angle deficits g

B “ ©
n=C 1’2( cos5(1+ cosa) oy + coszsinac,

2 U= I +iE _U-iysiy-t
P 4_m 3 2 1
—sinzsinao; |, (6.28
2 _(1=iD)(1—iB)(I—iA) 6.3
u J1+DZJ1+BZ{1+AZ’ '
=gj — 2
C=sirfa+cos 2 (1+cosa)™. 6.29 and then one can explicitly solve for
|
_ —A-B-D-AXB—AXD-BXD+(A-B)D—(A-D)B+(B-D)A 63
B 1-A-B—A-D-B-D—(AXB)-D ‘ (6.32
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This obviously generalizes to arbitrary If the first n for n=4, suppose that the deficit angles but not the positions
—1 positions and deficit angles are specified, so thais  of the 1st and 3rd points are specified, and that both are
given for 1I<i=n-—1, then one can readily solve for specified for the 2nd and 4th points, so thht andU, are

given. Then if we define03=U2U3U271, the constraint
equation become&;'U;'=U,U,, and one can use the

If instead all of the deficit angles are given, and all butprevious procedure to solve fat; andU, up to an overall
two consecutive positions on the sphere, then, assuming thadtation about the axis of the rotatidd,U,. Finally, one

the appropriate triangular inequalities are satisfied, one Caféconstructg_jszuz_lfjsuz_ This procedure has a straight-
solve for these two positions up to an overall rotation aboutorward generalization for all higher and for the unspeci-
an axis determined by what is give{This rotation has non-  fied positions to be further separated in the cyclic chain of

trivial significance only fom=4.) Let us illustrate this with  rotationsU,, that combine to produce the identity.
the casen=4.

Suppose that the positions and deficit angles of the 3rd
and 4th conical singularities are given, so tBaandE are VIl. TOPOLOGICAL ASPECTS OF SPHERE CUTTING
given, and the deficit angles but not the positions of the 1st
and 2nd conical singularities are given, so tAsand B are
given, but not the direction; of A and the directiom, of B.

U,=U, UL uturt, (6.33

Using method A developed in Sec. Ill one gets a map

Then we can use the constraint in the form \P;~52_>{M1,M2} (7.1
U, U =U3Uy, (6.34 _
of a thorny spher&? onto a pair of simply connected regions
or on a unit round sphere. The boundari#s=d M, and B,
=dM, are isometric spherical polygons which are to be
I-A-B—i(A+B+AX B)-o_U U identified. Each of the polygons hasvertices,A(; ) and
J1+AZ1+B? 3-4 A2k whereﬂ is the number of conical singularities of the
thorny spherés?. It should be emphasized that the change of
1+iC the reference point which is used to order the conical singu-

- Jirce (6.35 larities may result in a change of_ order of the vertié@gk)
and Ay, and as a result of this, one can get a different

where forn=4 choice of regionsM;, M, representing the same thorny
sphere. It is evident that the corresponding mépand V',
D+E+DXE formally different, are in fact equivalent.
~~1-DE (6.36 When we construct regions\f; and M, using the
method described in Sec. IVA by solving the constraint
represents the combined effectd§ andU,. equations we do not know in advance which ordering proce-

Then we can proceed as we did for=3 when the mag- dure of the conical singularities on the thorny sphere would
nitudesA, B, andC were given, to solve for the angles be- correspond to the set of vertices obtained by gluing the
tweenA, B, and C. Since hereC is determined from the Poundariess; andB, and identifying the verticed, ) and
givenD andE, the directions oA andB are then determined Ak - In fact, the situation is even more complicated.

up to an overall rotation about the vec®r Let us note that the constraint equatidbsl0 and(5.12)
remain unchanged if one includes a unit operator between

any two subsequent terms, sagndi+1 in the product of
matrices. But a rotation along an axidy the angle Zrm is
Obviously, the procedure of the preceding section generrepresented by a unit operator. Thus adding two new vertices
alizes to highen. If the U, are specified for all &i<n, and  with angle deficits 2rm (one for each of the regions,)
if the deficit anglesu; and u, are also specifie¢so thatA  does not violate the constraint equations. We can choose the
=|tanu,/2| andB=|tanu,/2| are specifiey] then we define new angle deficits to be negative and put the new vertices at
C by the north and south poles of a round sphere. This is equiva-
_ lent to the usage of a covering sp@% for a round sphere
I +iC 6.37) with a winding nhumbem>0. That is why by solving the
\/1+—CZ ' constraint equationg.10 and(5.12 one may end not with
regular regions\;, M, on a round sphere, but with regions
and solve for the angles betweén B, andC. This deter- 0on a covering space f(ﬁrzn.After identifying the points ofn
minesA andB up to an overall rotation about the vector  different leaves and projectingsfn onto S?, one obtains
If all of the deficit angles are specified, and all but two boundaries3; and 3, which are topologically circle§?, but
non-consecutive positions, then one has to permute the posithich have intersections.
tions and put in the appropriate commutators to solve for In order to exclude such cases one must be certain that
those positiongup to the arbitrary rotation For example, after a solution of the constraint equations one does not have

C. n conical singularities

UgUy---Up_qUp=
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undesirable extra vertices with-27m angle deficits. We singularities. The total action of the systerf is
describe now a procedure which allows one to do this.

Consider a magy, of the regionM, onto the regionM, 1 | Tha3
of the thorny sphere: '= 167G M gd'xR+2 a/le hd'
D My—M,. (7.2 1 ~
Va: MamMa = S i Vo (8.1

Under this map the bounda#y, of M, is transformed into

the boundary3, of M, . Take a regular poinp inside M,  The |ast term in the right hand side of E¢B.1) is the
and letp, be its images undey, . Let y" be coordinates  Nambu-Goto action for the strings, where] . is the met-
nearp andx, be coordinates nea . SinceM, andM, are  ric induced on the world sheet of a particular string. We
orientable manifolds, we use local coordinate systems omssume in Eq(8.1) that the space-timeVl has a timelike
both of them so that any transition from one coordinate sysboundary. We take the metric in the form

tem to another on the same manifold has the value of the

Jacobian equal te- 1. Thedegree of a magy, is determined d?= y,0xdxP + e?%a? doz. (8.2
as
P Here v,z is a 2D metric,¢= ¢(x) is a dilaton field which
deg,/,aZE sgn de( y ) (7.3 depends on coordinates’, and dQ)? is the metric on the
k K/ py thorny sphereS? with conical singularities. For a string lo-

cated at fixed angles, the induced metric on a string world

One can provdsee e.g[8,9]) that the index of the map sheet coincides withy, 5. The parametea in Eq. (8.2 has
does not depend on the choice of the regular ppiand is  the dimensionality of length. Locally near each string the
invariant under smooth homotopies. Moreover, the index ofmetric d{)2 can be written as
the mapy, is the same as the index of the map restricted
to the boundary3,. Since both of the boundaries are topo- d02=sir?ad e+ d6?, 8.3
logically circlesS!, the degree of this map is just a winding
numberm. Note thatM,; and M2 have the same Qegree of \where 0< < a, and e is periodic with period Z— . To
map becausd, can be obtained by a deformation 85 r5ceed we have to take into account in E8d) the pres-

(recall that we got vertices o, by rotating vertices o1).  ence of delta-function-like contributions due to the conical
To calculate this winding number we consider a Stereo'singularities(see for instancgl1])

graphic projection of3, into a plane. We take the origin of
the stereographic projection to lie in the interior of the region

M. For a resulting curvés, with intersections we define fM\/—gd“XR: reg(Mz)\/—9d4><R
B 1
m= gy § Kol 74 23 [ Vods, @4

wherek is the Gaussian curvature of the cug anddl is where reg?) is the regular domain oM. If we impose
the proper distance element. Sinoe is invariant under 9 9 ' P

smooth homotopic transformations, it remains the same uri€ on-shell conditiony =8 G, the contribution of the

der a continuous change of the position of the “north” pole conical singularities in the curvature in E@.1) will cancel

used for the stereographic projection until it crosBes exactly the contribution from the string actions. There will
To summarize the above discussion we stress that usidgmain only the bulk part of the action. On the met8c2) it

method A, starting with a given thorny sphe®2 one can will reduce to the 2D dilaton gravity action
define(not uniquely regionsM, , and the gluing procedure 1

which recoverss?. In the inverse procedure, when one starts | = E[I Jyd?x
with a solution of the constraint equations, one must first 2

check whether the winding number of the boundary is 1.

Only in this case will the gluing procedure give a thorny +ZJ dyez“’(k—ko)}, (8.9
sphereS? without any additional angle deficits that are nega-
tive integer multiples of .

2
e??R,+2e??(V ¢)*+ P

=== (8.6
VIIl. THORNY SPHERES AND SOLUTIONS OF EINSTEIN
EQUATIONS WITH RADIAL STRINGS

Let us discuss now solutions of the Einstein equations for 2in this section we restore a normal valGefor the Newton con-
the thorny sphere configurations, with strings at the conicastant.
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by v.g- As a result of the modification of the area of sphere
due to the conical singularities, the gravitational action

cluding the boundary termacquires an overall coefficient APPENDIX A: GAUSSIAN NORMAL MAPS AND
which depends on thg,’s. We included this coefficient in GENERALIZED CONSTRAINT EQUATION
the definition of effective two dimensional gravitational cou- 1. Gaussian map

pling G,, Eqg. (8.6). It is important that the actiofB8.5 has 5 . . .
precisely the same form as the dilatonic action obtained un- L€t M® be a closed 2-dimensional surface in a
der a spherical reduction of the gravitational action in the3-dimensional Euclidean space

absence of cosmic strmgs. Therefore st.rmgs have no effect F(X1,X2,X3%)=0, VF#0, (A1)

on the dynamical equations for the metyig; and the dila-

ton ¢. For these quantities one has standard solutions. 18r [ocally X'=X!(y*,y?). Using the rotational freedom in the

particular, the Birkhoff theorem can be applied in this casechoice of X', one can describe the surfad#? locally as
and guarantees that in the absence of other matter in thg|lows:

bulk, the solution is static and is a 2D black hole of misks
X3=f(yty?), Xt=y!, X?=y2 (A2)

dy?=—Fdt?+Fidr?, F=1— ﬂ (8.9 The first quadratic fornfinduced metritis

ds?=gg,pdy?dy®, (A3)

The corresponding four-dimensional solution is a Schwarz-
schild black hole of the same mass parameter, but with
strings in the radial direction. In a similar way, by using Eq.

(8.5 one can construct non-static solutions in the presence of

strings. Non-vacuum static spherically symmetric solutions,yhjle the components of the second quadratic form are
such as a charged black hole with strings, can be constructed

911:1‘”,21, 922:1+f,22,

gp="F1f,, deg=1+f3+13, (A4)

as well by adding matter in the bulk. f a0
For example, if we definel?Q=dQ?/C to give a re- bab:\/ﬁ- (AS)
scaled thorny sphere with areardand a smooth part having
Gaussian curvature no longer unity but The Gaussian curvature is
R 1 detb  f11f =13,
= = — f— _—— K: = . . A6
K=C=1 262k p=1= ; i (8.9 delg (1412415 (A6)

) ) We also have
then the Reissner-Nordstrom black hole generalizes to the

following solution with strings: R=2K, (A7)
M Q2 whereR is the Ricci scalar for the induced metig,, .
ds?= — ( K— —+ — |dt? Consider a unit spher®” determined by the equation
r r
oM 02 (X124 (X?)%+(X3)?=1. (A8)
- 2 242
H K-tz drisridiQ. (810 | (£%, %) be coordinates on the sphere, so

_ _ _ . X'=X'(£%. (A9)
HereQ is precisely the charge, defined as HH)4times the
flux of electric field through each thorny sphere. Then the induced metric on the urSt in these coordinates

This form of the Reissner-Nordstrom metric remains validijs

(but is no longer asymptotically flat with a static timelike o
Killing vector d/dt) when the rescaled thorny sphere with Yao= 0 X ;a X o (A10)
positive Gaussian curvaturé&>0, on its smooth part, is
replaced by a rescalethorny pseudosphereith negative The area element isa= /det(y) dZ* dZ2.
Gaussian curvaturé€<0, on its smooth part that is then ~ We determine théSaussian normal mag: M*—S* of
locally isometric to a hyperbolic 2-space with constant negaM? into the spheres? as follows(see e.g[8,9]). Let n'(P)
tive curvature. be a unit normal tV? at a pointP. Then we put into cor-
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respondence witl? a pointp on the unit sphere with coor-
dinatesX'=n'(P) (which means that the normal vector to
M2 at pointP coincides with the normal vector & at point
p). This map determines the relation between coordingtes
on M? and coordinateg?® on S?:

yA=ya(b).

Let us now show that for the Gaussian normal map th
following relation is valid[8,9]:

(A11)

K dA=da, (A12)

wheredA=\/g dy' dy? is the surface area element &i?
andda is the area element o®. To prove this relation we
chooseX® to be orthogonal tdVi? at a given pointp and

PHYSICAL REVIEW [®5 104029

Jzn da=0. (A19)
5

2. Generalized constraint equation

Consider a closed 2D manifol? with n conical singu-
larities with positive deficit angleg, (0<u,<2), such
dhat=u<4m. We call such manifold &horny manifold or,
for brevity, athornifold. Assume that the Gaussian curvature
K of M? is positive everywhere, so that one can isometrically
embed theM? in Euclidean 3-space as a closed convex sur-
face. Consider the Gaussian normal map of a regular domain
reg(M?) of M? onto S?. To see what happens under the
Gaussian map with conical singularities, consider a small
region,, around thekth conical singularity(but not includ-

y'=X! andy?=X? to be tangent to this surface. Then the ing the singularity itself with the boundaryP,. The region

surfaceM? is determined by the equatiod®=f(y!,y?),
wheref ;,=f ,=0 at the pointp. Hence

f,ll f,12

Jab= Oab- (A13)

K= de*

f,21 f,22
The Euclidean coordinates of a unit normal vedtbrin the
vicinity of the pointp are

n'(yhy?)=(1+f3+1%) Y2(f 1,f5,—1). (Al4)

We choose now the coordinatéd on S? so that near a
point P=¢(p),

Xt=gt, X3=\1-({H?= ()2 (A15)
HereX' are such Cartesian coordinates that a&dsoincides
with the normal vector t&? atp, N'(p). In what follows we
will denote the normal t&? the same as the normal M2
In these coordinateg,,(p) = d,p- Using Eq.(Al4) we get

X2=2,

§a=—f'a
J1+fﬁ+f§'

This relation establishes a relation between coordingtesm
M? and coordinateg® on S?. The canonical invariant ele-
ment of area on a unit sphere at the pgnivritten in the
coordinates/? is

(A16)

da=de{ §i,b) |pdy*dy?

=Kdy'dy?=K/gdy'dy?,

which proves Eq(A12). To obtain these equalities we use
that degg|P=dety|p=1.

Suppose thaM? is a compact 2 dimensional manifold
diffeomorphic to the unit spher® and its embedding iR>

(A17)

S is mapped onto a regioB, on S? with boundaryP,.
When Py shrinks to the conical singularity, the contoR
shrinks to a contou€, on S?, because the normal vector at
a conical singularity does not have a unique direction.et

be the region insid€, . The remarkable property @ is
that, although its form depends on the concrete thornifold
M2, its surface area ig, where u, is the conical angle
deficit at the corresponding singular point. To see this, apply
the Gauss-Bonnet formula to the regibip:

k

wherek is the extrinsic curvature oP, embedded irM?.
When P, shrinks to the conical singularity, the limit for in-
tegral [p kdl is 2m—puy. So we get from Eq(A20) by

using Eq.(A12)

KdA—l—f kdl=2, (A20)

Py

Ak:
Dy

da= lim
3 —0

f KAA= gy . (A21)
2y

To summarize, the Gaussian map of a thornifsld with n
conical singularities is a regular sphere wittdisks D re-
moved, each disk corresponding to a conical singularity. By
using Eqg.(A12) we can write

n
f anA:j nda—z nda, (A22)
reg(Mz) s? k=1 JDy

Because the first term in the left hand side of E422)
vanishes, we get the following identity:

,f regM 2)

nda=0.
Dy

n
nKdA+ >,
k=1

(A23)

is a closed convex surface, so that the Gaussian spherical

map is a regular one-to-one map 8h In this case one has
f nKdA=0. (A18)
M2

This relation directly follows from EqA12) and the relation

By taking into account Eq(A21), this identity can also be
rewritten as

n

f nKdA+ >, un=0, (A24)
reg(Mz) k=1
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whereﬁk is the averaged normal over the area of the disk  2p"
Dy [see Eq.2.195]. Now if we subtract Eq(2.8) from Eq. &
(A24) and use the definition E@2.12) of the forceF, we get

n
k=1 reg(Mz)

The constant 1 in this equation can be any constant, becaus
of Eqg. (2.8), but it is here chosen to be 1, the value of the
Gaussian curvature on the unit thorny sphere, so that the
right hand side is obviously zero for the thorny sphere. Equa-
tion (A25) can be considered as the generalized constrain
equation for a closed thornifold whose Gaussian curvature

iS not constant. 0 o o2 o3 o

alpha

8. C-metric example FIG. 8. The angle deficit as a function ofa.

To illustrate the action of the generalized constraint equa-
tion we discuss how it works fo€ metrics. TheC metric is  IntegratingK over the regular part of, we get
the following solution of the Einstein equations:

ds?=—Hdu?’—2dudr—2ar®dudx+r?de? (A26) f K b dx= 2m [G(X0) +|G' (x))]]
|G’ (x1)] .
dx? ~ (A32)
2_ 2
do?= grg + 00 497, (A27)

In order to satisfy the Gauss-Bonnet equation, the conical

H=—a?r2G(x—1/ar)) singularity atx; must have the angle deficit

(A33)

P o x® '
G(x)=1-x x3. (A28) ,u—277(1 G'(x2) )

This metric describes the gravitational field of a uniformly |G (x|
accelerated black holsee e.g[12]). The parametea is the
acceleration, andv=r4a, wherery=2M is the Schwarz-
schild gravitational radius.

We focus our attention on the geometry of a

The dependence @f on « can be presented in the following
parametric form:

2-dimensional surfacei=constr =const. Its geometry is _ 27e (4—5e+2€%) Y €(l-e)
r’de?. It is easy to show that forr<<2/3./3 the equation K 1=e (2te—26)" (1- e+ €232
G(x)=0 has 3 real roots. Two of them are negative, say (A34)

<X,<0, and one is positive; >0. From now on we assume o _ _ o
thatx e (X,,X;), so that the functioi® is positive. One also The angle deficiw as a function ofw is shown in Fig. 8.
hasG’(x,)>0 andG’(x,)<0. For an arbitrary period Gb The surface can be embedded into a 3-dimensional flat

the surfaceS, with the metricdw? is a thornifold with two  SPaC€ as & surface of rotation. In cylindrical coordinates the
conical singularities at, andx,. The singularity ak; van- equation of this surface is

ishes when , .
X 1-b“G'(x)“/4
3 ) p=bG(x), z JXZ dx G0
d=bp=—¢, ¢e(0,2m). (A29) (A35)
|G’ (x1)]
SinceG’(0)=0, one hag'(0)=0 and hence a normal vec-
We fix this periodicity and write the metriiA27) as tor to S, at the linex=0 is orthogonal to the axis. Using Eq.
(A31) we find that above this lin&k <1 and below itk >1.
dx? When the string tension is small one can apply the gener-

dw?=hy,dx3dxP= +b?G(x)d¢?.  (A30) alized constraint equation to the case shown in Fig. 9. This
equation shows that as a result of the action of the “inertial”
force of acceleration, the form of the surface is changed so
that extra positive curvature is located in the lower part of
the surface, while the extra negative curvature is located in
the upper part. As a result, the generalized constraint equa-

tion (A25) is obeyed.

G(x)

The Gaussian curvature &f is

1 1
K=5R=-3G"=1+3ax. (A31)
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FIG. 9. Embedding off, into a 3 dimensional flat spacex(
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FIG. 10. A unit sphere with a cu#), and embedding of a thorny

sphere with two positive angle deficits into a 3-dimensional flat
space(b).

be obtained by cutting a unit sphere by plagsand P, at
angles¢p=0 and¢= u and gluing the cuts togethgsee Fig.
10(a)]. It can also be obtained as the geometry on the surface
of rotation embedded in a flat 3-spatsee e.g[10]). This
surface is obtained by a rotation around thexis of the

=0.1). A "string” responsible for an angle deficit enters the north following meridianal curve:

pole. A solid line on3, separates it into two parts, the upper one

where the Gaussian curvature is less than 1 and the lower one where
it is greater than 1.

Another surface of interest is the event horizon. It is de-
fined by the equatiotd =0, orr=1[a(x—x3)]. A surface
of rotation in a 3-dimensional space which has the same

Xx=acow, Yy=0,

- f 1I-a%itodo, |ol=ml2.  (BY)
0

internal geometry as the horizon is given by the equations Herea<1. Fora=1 the angle deficit vanishes. In the gen-

_b VG(X)
v

dx

X
|
XZX_X3

1-b°G’(x)%/4
G(X)

(A36)

eral case the angle deficit ism21—a). This surface is
shown in Fig. 1(b). A similar surface of rotation of constant
curvature for a negative angle deficit is shown at Fig. 11.
(Note that it is impossible to embed the entirety of this sur-
face in 3-dimensional flat space in an axially symmetric way,
so the embedding stops before one gets to the conical singu-
larities with negative deficit anglgs.The corresponding
equations of the meridian curve which generate this rota-

The form of this surface is very similar to the one shown intional surface are

Fig. 9.

APPENDIX B: SIMPLE EXAMPLES OF EMBEDDING OF
A THORNY SPHERE INTO A EUCLIDEAN SPACE

When all the angle deficits are positigghich is the case
of the most physical interesta thorny sphere can be consid-
ered as a special limit of a 2-dimensional compact surface
diffeomorphic toS? which has positive curvature and which
can be embedded into a three-dimensional flat space. The
curvature is everywhere constant exceptNgrlocalized re-
gionsuv, where it is high. An angle deficit, arises in the
limit when the size of the region, tends to zero while the
curvature inside it grows infinitely, so that the integral of the
Gaussian curvaturé (one-half the Ricci scalar curvaturR)
over this region remains finite and has the limit.

x=\a?—sirfe, y=0,

o cofo g ©2)
7= | ———do.

0 JaZ—sirfo

The simplest example of a thorny sphere is a sphere with FIG. 11. Embedding of a thorny sphere with two negative angle
two conical singularities located at its poles. This sphere cadeficits into a 3-dimensional flat space.
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