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Scalar and spinor particles in the spacetime of a domain wall in string theory
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We consider scalar and spinor particles in the spacetime of a domain wall in the context of low energy
effective string theories, such as the generalized scalar-tensor gravity theories. This class of theories allows for
an arbitrary coupling of the wall and ttigravitationa) scalar field. First, we derive the metric of a wall in the
weak-field approximation and we show that it depends on the wall's surface energy density and on two
post-Newtonian parameters. Then, we solve the Klein-Gordon and the Dirac equations in this spacetime. We
obtain the spectrum of energy eigenvalues and the current density in the scalar and spinor cases, respectively.
We show that these quantities, except in the case of the energy spectrum for a massless spinor particle, depend
on the parameters that characterize the scalar-tensor domain wall.
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I. INTRODUCTION various low energy effective string modg0,11]. In what
concernes the domain wall solutions, these configurations

Topological defects arise whenever a symmetry is spontawere the object of Ref12], in which the authors studied the
neously broken. They can be of various types according tproperties of the wall’s gravitational field in Brans-Dicke and
the topology of the vacuum manifold of the field theory be-in dilatonic gravities. In this class of solutions, the dilaton
ing under consideration. In this work, we will concentratecan couple to the matter potential forming the wall. It is
our attention on domain walls which are defects arising fromshown that the dilaton’s solution varies with the spatial dis-
a breaking of a discrete symmetry by means of a Higgs fieldance from the wall giving rise to a defect called the “dila-
[1-3]. tonic domain wall.”

Domain walls have been extensively studied in the litera- The aim of this paper is twofold. First, we investigate the
ture. In particular, it was soon realized that they may lead tqy ayitational field of a domain wall in the context of a gen-
a cosmological catastroplie], even if they were produced g5jized scalar-tensor gravity. Second, we analyze how par-
n a late Flme ph"’?se tran3|t|o[m]. From the gravlltanongl ticles are affected by this particular gravitational field. The
Eggl ?ifel\(;"ia;vih?a? i t'gtvevfi'Egl(;eaa‘tuiix?r;;?; nwg(l)lss gE]r(‘i‘tvl:tf;;_gravitational interaction on quantum mechanical systems has

PP been studied by many authof43]. For this purpose the

respond to any exact static solution of the Einstein's equa_Klein-Gordon and Dirac equations in covariant form have

tions, hence implying that they are gravitationally unstabl ) X
[5]. In Ref.[6], a time-dependent metric was obtained and i?been used and solved in curved spacetimes. The search for

was shown that observers experience a repulsion from thif€S€ solutions is very interesting and may be accounted for
wall. Current-carrying walls and their cosmological conse-PY the scheme of unifying quantum mechanics and general

quences were also object of investigations. In R@f, the relativity. As examples of Work§ concerning this subject we
internal structure of a surface current-carrying wall was studcan mention Audretsch and Séba[14] who presented a
ied and the internal quantities such as the energy per unfletailed analysis of the energy spectrum of the hydrogen
surface and the surface current were calculated numericalljtom in Robertson-Walker universes and Pafié;16 who
The above-mentioned features of a domain wall were anastudied a one-electron atom in a curved spacetime.
lyzed in the framework of Einstein’s theory of gravity. How-  In the present work, we are particularly interested in
ever, it has been argued that gravity may be described by studying scalar and spinor particles in the spacetime of a
scalar-tensorial gravitational field, at least at sufficiently highscalar-tensorial domain wall. In Sec. Il we derived the metric
energy scales. Indeed, a scalar figldwhich from now on  of a wall in the weak field approximation. We show that it
we will call generically adilaton, appears as a necessary depends on the wall’s surface energy densitand on two
partner of the graviton field,, in all superstring models post-Newtonian parameter§,, and a?(¢). In Sec. Ill we
[8,9]. Topological defects of various types and their gravita-solve the Klein-Gordon equation, we find the energy eigen-
tional effects have already been studied in the framework ofalues and we point out the dependence of the current on the
parameters that characterize the scalar-tensor domain wall. In
Sec. IV we first consider the Dirac equation for a massive

*Email address: valdir@fisica.ufpb.br spinor field. Then, we solve explicitly the Weyl equations for
"Email address: colatto@fis.unb.br a massless spinor field and we determine the expression for
*Email address: emilia@mat.unb.br the energy spectrum and for the current. Finally, in Sec. V,
SEmail address: rmuniz@ufba.br we present our concluding remarks.
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Il. THE METRIC OF A DOMAIN WALL In what follows, we will consider the solution of a domain
IN THE WEAK-FIELD APPROXIMATION wall in theyz plane in the weak-field approximation. There-
fore, we will expand Eqs(3) to first order inG, A%(¢y) in

In this section we will derive the metric of a domain wall
such a way that

in a low energy effective string model, in which the axion
field is vanishing. This action is analogous to the class of
scalar-tensor theories developed in REt§] and, in the case

of the scalar sector of the gravitational interaction, is mass-

g,lLV: 77,uv+ h,lLV

less. For technical purposes, it is better to work in the so- ¢=dot b
called Einstein(conforma) frame in which the kinematic
terms of tensor and scalar fields do not mix. Then, a domain A(P)=A(do)[1+ a(do) ()]
wall solution arises from the action
L Th= Tf‘o)v+ Tf‘l)y . (4)
S= J d*xy—g[R—2g9*"d,$d, . o =y
167G, ol 9" 0u b ] In this apprOX|mat|on,Tf‘o)V=A2(¢>O)Té‘0)v is the energy-

1 momentum tensor of a static domain wall with negligible
ngaﬂq)ayqj_v((b) , (v  width and lying in ayz plane. Therefore,

+ [ ax—gae)

T/, = A2 8(x)diag(1,0,1, 5
whereg,,, is a pure rank-2 metric tensdR is the curvature Q) ($o)ors(x)diag 3 ©)

scalar associated with it ar@l, is some “bare” gravitational i, the Cartesian coordinate systetpx(y,Z). The parameter

coupling constant. The second term in the right-hand side of s e \all's surface energy density. In our convention, the
Eq. (1) is the matter action representing a model of a real,qiic signature is- 2.

Higgs scalar fieldd and the symmetry breaking potential Equations(3) in the linearized regime reduce to
V(®) which possesses a discrete set of degenerate minima.

Action (1) is obtained from the original action appearing in 1
[Rlzgi.[lﬂ by a conformal transformatiofsee, for instance, Vth=167rG* T(O),U-V_E 7T (0)
9, =A%($)9,,. (2) VZ¢1)=47G, a(ho)T(o). (6)

whereg,,, is the physical metric which contains both scalar Let us begin by solving the equation for the dilaton field

and tensor degrees of freedom, and by a redefinition of th& in Eq. (6):

quantities )
Veh1y=12moGoa( o) 8(X)
1
G A% ()= = $(1y=6m0Goa( bo)|X, (7)
~ » _ whereGy=G, A%(¢y).
where® is the original scalar field, and Now, the linearized Einstein’s equation in E&) with a
source given by Eq(5) are just the same as in Vilenkin’s
()= dinA 1 paper[5], except that in our case the metric is multiplied by
“er= dd _[Zw($)+3]1/2' 'Ejhe I_inga;ized factoA?($). Therefore, we havéo first or-
erinGy):

which can be interpreted as ttield-dependentcoupling ) )
strength between matter and the scalar field. We choose to ds*=A%(¢o)[1+4moGo|x|(3a*(ho) —1)]
leave A?( ) as an arbitrary function of the dilaton field. 2 42 A2 42

In the Einstein frame, the field equations are written as X[dE=dx*—dy"=dZ’]. ®)

follows: The factorA?(¢,) appearing in the above expression can be
1 absorbed by a redefinition of the coordinatésy,z). We
Ry, =2d,¢d,4+ 87TG*(TM,,—§gM,,T) finally, then, obtain
ds’=(1+4D|x|)[dt?—dx*—dy?*—dZ*], 9
(gdm —47G, a( )T @ (1+4Dx])[ y=dZl, (9

whereD=70Gy(3a%—1).

This is the line element corresponding to a domain wall in
2 S, the framework of scalar-tensor gravity in the weak-field ap-
T = proximation. The geometry given by E@®) is only valid for

SN D|x|<1.
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IIl. KLEIN-GORDON EQUATION IN SCALAR-TENSOR +[E2— K2— k2= m2(1+ 4Dx) ]X(X) =0, (15
DOMAIN WALL vz

Let us consider a scalar quantum particle embedded in whose general solution is
classical background gravitational field. Its behavior is de-
scribed by the covariant Klein-Gordon equation
X(x)={C Airy Ai[ — (— 1)V~ 43m?D) 2"

2_pE2 2 2 2 2
{J—%( ~aga) 4 me w0, 10 X (M2 — B2+ K2+ K2+ 4m?Dx + 4D)]
+ CLAIry Bi[ — (—1)¥32~43(m?D) 23
wherem.is the mass of the particle, i; thg determ?nant of ><(m2—E2+k§+k§+4m2Dx+4D2)]}e‘2Dx,
the metric tensog,,, and we are considering a minimal cou-
pling. (16)
In the space-time of a scalar-tensor domain wall given by
metric (9), Eq. (10) takes the form with functions Airy Ai(x) and Airy Bi(x) being the Airy
functions andC, andC, are integration constants. Note that
1 s o 4D dlx| . the arguments of the Airy functions have only terms of order
N — — — - 2 i 2
1+4D[X] (z% dy—dy—d; 1+4D[x| dx dx | +m=| ¢ less tharD“. Neglecting terms of orderD<, we get
=0. (11)

X(x)={CyAiry Ai[ — (—1)32"*¥(m?D) 2R
Multiplying this equation by ¥ 4D|x| and neglecting terms s o 2o ) )
of order D2 and up(because we are working in the weak X(m*—E“+kj+k;+4m°Dx+4D“)]

field aproximation, we get 1 CLAINY Bi[ - (— 1) Y2 43(m2D) 23

d|x| X (M?—E?+K;+ k3 +4m?Dx+4D?)[}(1-2Dx),
= 32— 92— —4D -9 +m2(1+4D|x|) |¢=0.
t x Oy (17)

(12

Since Eq.(12) is invariant under the transformation» [N order to determine the bound states energies we must re-
—x, we shall restrict the allowed values wfto the interval ~ Auiré periodicity conditions in directionsandz, with peri-
x>0. Then, we have odsL, andL,, respectively, supplemented by the boundary
conditions that the solution vanishesxat a andx=b, with
a<b and such thaba<1 andDb<1. These boundary con-

2 2 2 2 2 _
[0f—dk—dy—09;=4D o+ m*(1+4Dx)]¢=0. (13  jitions can be expressed as

Let us assume that

lr,j(t'xyy,z):e—i(Et—kyy—kZz)X(X), (14) P(t,X,Y,2)=(t,X,y+Ly,2)
whereE, k, andk, are constants. If we substitute relation P(t,X,y,2)=(t,x,y,z+L,)
(14) into Eq. (13), we obtain
¥(t,a,y,z)=i(t,b,y,z)=0. (18
d?X(x) 4D dX(x)
dx? dx These boundary conditions lead us to the following results:

X(x)=Cyj Airy Ai[ — (= 1)V~ *4m?D) ~?¥(m?— E2+ kj + kI +4m’Dx+4D?)]

Airy Ai[—(—1)Y327#¥(m?D) =2 (m?— E?+ Kk + ki +4m?Da+4D?)]

AirvBil—(—1 1/32—4/3 m2D —2/3
Airy Bi[ —(—1)Y27*3(m?D) ~?¥(m?~ E2+ ki + ki +4m’Da+4D?)] YR (mo)

X (M?—E2+ K+ ki +4m’Dx+4D?)] (1-2DXx), (19

104027-3
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where
27Tny
ky= L, n=0+1+2,... (20
21n,
k,= , n,=0*x1,*x2,..., (21
L,
and
X(b)=0. (22

The boundary condition given by E@22) determines the
energy levels of the particle in the stationary state in the
region under consideration. It should be stressed that in order

to solve this problem we must impose than”—E*+k;
+k2+4m?Dx|>|(m?D)?H,

Now, let us takeE?—kj—kZ—
Eq. (26) as a system of equations involving its real and
imaginary parts as follows:

PHYSICAL REVIEW D65 104027

m?>0, then we can rewrite

4m2D(b2—a

+ \/Ez_k§ k2 “ r[z VEZ k k - ](b a)
=se¢2\/E2—ky2—kzz—mz](b—a), (27

4m?D(b%—a?)

VEZ— K- K —m?’

(28)

tar{ 2/E?—k;—kZ—m?](b—a)

in which case the absolute As the function tanX) is of orderD, we can make the as-

value of the argument of Airy’s functions are much greatersumption that tan{)=x. Then, Eq.(28) results in

than unity, which allows us to use the following assymptotic

expansion$19]:

AiryAi(z)~%z 1ag fZ (—1)ke, &K

Airy Bi z)~—z Vgt > ¢ &7 (23
y Bi( N Z
where

gZEZS/Z

3
(2k+1)(2k+3)---(6k—1)
=1, = ) 24
o G 216! 24

In this approximation, Eq(22) can be written as

4m?D(b%-a?)
> 2+n7T,
VE —kyf— k2—m

n=0,+1+2,.... (29

m?(b—a)=

Equation(27) is assured if is even. Then, we have

4m?D(b%—a?)
VEZ— kS —KZ—m?

2\E*~k;—k;—m?*(b—a)=

+2n7,

n=0,+1+2,.... (30)

From the previous equation we get, finally, that

2,”_2
—k 2_ 20 12 12
e (2/3)W3/2(b)2 (—1)kc, 2W3’2(b) — o~ (43W¥a) Ef=m+ky+k;+ —a)?
nw
°° 2 —k + 2+b— m’D(b+a), n=12,.... (31
2 (ke 3 Wa) -
> k=0 e2/3\/\/3’2(b)
E W3’2 o« It is worth noting that the presence of the wall increases the
= (@) energy eigenvalues with paramefers a(¢,) andG, and
. that for D=0 (absence of the wallwe recover the result
2 K corresponding to the Minkowski spacetime as it should be.
X 2 Ck §W (b)| =0, (29 In what concerns the current associated with the scalar
field given by
where W(x)=—(—1)*2"4¥(m?D) ~#¥(m? - E?+ Kk} +kZ
+4m?Dx+4D?). iV—g
Considering only the first two terms of the summation and Jh= 5m *), (32

neglecting terms of ordexD?, we find

2 2_ 4,2
NENGS k m?(b— a){l_ Am™D(b a)2 1.

VE?—KJ—kZ—

(26)

LJust as a reminder for the readeta(¢,) andG, are the wall's

surface energy density, the coupling strength between the wall and

the dilaton, and the effective gravitational constant, respectively.

104027-4
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it is clear that the current depends on the parameters that which we neglected terms of orderD? and considered

characterize the scalar-tensor domain wall throyghg and ~ only the intervalx>0. In order to determine the solutions in

the solutiony of the Klein-Gordon equation. the spinoral case, let us choose the following representation
of Dirac matrices:

IV. DIRAC EQUATION IN A SCALAR-TENSOR DOMAIN

WALL (0)— 10
. . . . Y lo —1)
Now, let us consider a spinor particle embedded in a clas-
sical gravitational field. The covariant Dirac equation gov- 0 o
erning the particle in a curved spacetime for a spiffomay 5y = ') o i=1.23 (43)
be written as -0 0
[ y"(X)3d,+iy*(x)T ,—m]¥(x)=0, (33) whereo; (i=1,2,3) are the usual Pauli matrices.

Since we are interested in the qualitative behavior of the
where y#(x) are the generalized Dirac matrices and areparticle with respect to the parameters that define the wall,
given in terms of the standard flat space Dirac matricesve will simplify our analysis considering the solution of the
(y®) as Dirac equation corresponding to the massless spinor particle

in which case Eq(42) reduces to
YH(X) = efay () Y, (34)

{iy"g,+i3D Yy} (x)=0, (44)
wheree(,(x) are tetrad components defined by
and is supplemented by the helicity condition

efa)(X)€(p)(x) 7P =g, (35) ]
(1+y)¥(x)=0, (45)
The producty*(x)I", that appears in Dirac equation can be
written as where
YOO = YO A0 +1YTBe(0], (36 75:< 0 1)
-1 0/

with y®)=iy(0y1(2yB) and A,y andB, are given by
Equations(44) and (45) are the Weyl equations for a mass-
1 p P TH less spinz particle. The condition given by E¢45) implies
A(a)_i(aue(a)+e(a)rp,/,) (37 pinz particle. ' g y E@ p
that the four-spino®¥ (x) is such that

and W1(x)

W5(x)

1 W(x)= (
Ba)=5 €@ o@e” e d,ell (38)
with W 1(X) =W,(X).

where e )o@ iS the completely antisymmetric fourth- A suitable set of solutions of Weyl's equations is of the

order unit tensor. form
In the spacetime of a scalar-tensor domain wall given by
metric (9), let us choose the following set of tetrads: W (t,x,y,2)= ( UEX;) e 1(Et-ky—k;2) (46)
u(x
e@=[1+4D|x|]*252, (39)
where
which implies that
Uy (x)
y*=[1-2D|x|]¥*), (40 U=\ 00/

in which we have neglected terms of ordeD?.

: g . If we substitute relatiori46) into Eq. (44), we obtain
Computing the expressions féy, andB, and putting

these results into Eq36) and neglecting terms of order du;(x)
=D?, we get I =g~ (ky=3D)us(X) + (E+kz)uz(x)=0
7*()T,=3D ™. (41) B0 (47
. 2
Now, using Eqs(40) and(41), the Dirac equatioi33) in the =ax T (kyF3D)u00 + (E-kp)us(x)=0.

spacetime of a scalar-tensor domain wall reads
Neglecting terms of ordéb? and up, the set of Eq$47) can
{iy"g,+i3DyM—[1+2Dx]m}¥(x)=0, (42)  be written as

104027-5
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d?uy(x) duy(x) . s

a2 dx +(E—ky_kz)U1(X):O,

2 49
d“u,(x) du,(x) > 12 B

™ o TE-K— KU (0 =0,

whose general solution reads

L2222 L2222
U(X)che(_3D+"/E _ky_kz)X+C2e(_3D_' VE —ky—kZ x’

(49

PHYSICAL REVIEW D65 104027

The energy levels arrive from E¢8) and are given by

n?a?

E?=kj+kZ+ (59

(b—a)®
Note that the energy spectrum is the same as in the flat
Minkowski spacetime case. This result comes from the fact
that the spinor field is massless. The same coincidence oc-
curs in the case of a massless scalar field.

From previous results we conclude that the current differs
from that in the Minkowski spacetime by the terms contain-
ing the parameters, a« andG, used to describe the scalar-

whereC, andC, are constant bispinors. Neglecting terms oftensor domain wall and tends to the corresponding result in

orderD? and up, we get
U(X)=(1—3Dx)(Cyel VE Ky ke
+Cye VKK
Again, we notice that the solutions depend®na and Gy,

as expected.
Now, let us compute the currejt, which is defined by

(50

A=Wy, (51)

Using Eq.(40), the expression for the current in the approxi-

mation considered turns into

j =(1—4Dx) ¥ TpO (1, (52)

Substituting Eqs(46) and(50) into Eq.(52) and considering,
for simplicity, the case in whicl€C,= 0, we get

C
j#=(1-10Dx)(C] CD?’(O)V(”)(Cl)-
1

Minkowski spacetime in the absence of the wall as it should
be.

V. CONCLUDING REMARKS

Recently there has been growing interest in domain walls
as brane world scenarios and also in scalar-tensor theories of
gravity due to its possible role in the understanding of the
physics of the early Universe when topological defects like
domain walls were formed. At that time the dilaton fields as
well as the topological defect, such as a scalar-tensor domain
wall, were, certainly, very relevant. These points constitute
the main motivation for this work.

A scalar or spinor particle placed in the spacetime of a
scalar-tensor domain wall is perturbed by this background
due to the geometrical and topological features of the space-
time under consideration. In other words, the dynamic of
atomic systems is determined by the curvature at the position
of the system and also by the topology of the background
spacetime.

Summarizing our conclusions we can say that the metric

same boundary conditions given by Ed8) for the scalar
field. Thus, we have

Y(t,xy,z)=¥(txy+Ly,2)
W(t,x,y,2)=W¥(t,x,y,z+L,)

v(t,a,y,z)=W¥(t,b,y,z)=0. (54

Analogously to the case of a scalar field, from these boun

ary conditions we get
U(x)=Cse \/Ez—ki—k?( 1—e 2 \/Ez—kf,—kﬁ(x—a)) (55)

where

27Tny
ky= L, n=0*+1+2,... (56)
27n,
k,= , n,=0%x1,*x2,..., (57
L,
and
u(b)=0. (58)

energy densityo and on two post-Newtonian parameters
a(¢g) andG,. The solutions for the scalar and spinor cases
differ from the flat Minkowski spacetime case by the pres-
ence of these parameters. The presence of the wall shift the
energy levels and alters the current in the scalar case as com-
pared with the flat spacetime. In the massless spinor particle
case, there is no shift in the energy spectrum, but the current
is altered by the presence of the scalar-tensor domain wall.

d- Finally, it is worth commenting that the study of a quan-
tum system in a gravitational field such as, for example, the
one considered in this paper, may shed some light on the
problems of combining quantum mechanics and gravity. On
the other hand, the investigation of topological defects in the
framework of general scalar-tensor theories seems to be im-
portant in order to understand the role played by these stru-
tures in this general context.
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