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Geometry of an NÄ4 twisted string
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We compareN52 strings andN54 topological strings within the framework of the sigma model approach.
Being classically equivalent on a flat background, the theories are shown to lead to different geometries when
put in a curved space. In contrast with the well studied Ka¨hler geometry characterizing the former case, in the
latter case a manifold has to admit a covariantly constant holomorphic two-form in order to support anN
54 twisted supersymmetry. This restricts the holonomy group to be a subgroup of SU~1,1! and leads to a
Ricci-flat manifold. We speculate that theN54 topological formalism is an appropriate framework to smooth
down ultraviolet divergences intrinsic to theN52 theory.
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I. INTRODUCTION

String theory and nonlinear sigma models are intimat
linked to each other. Having originated from differe
sources, namely, the study of dual models of hadrons on
one hand and the search for renormalizable field theorie
d>2 on the other, they were soon shown to be connected
the latter provides deep insight into the former~see, e.g.,
@1–3#!. To mention only the most significant points, th
gauging of global~super!symmetries of the nonlinear sigm
model typically results in a string theory~in the Neveu-
Schwarz-Ramond formalism! coupled to the backgroun
massless modes, while the one-loop finiteness fixes the
fective low energy dynamics of the string partner. It shou
be remembered that, since the gauging brings extra c
straints into the formalism~normally forming anN-extended
superconformal algebra! the resulting string theory is no
necessarily critical and that point is to be examined on
own.

Parallel to the progress of string theory on the supers
metry route, the nonlinear sigma models revealed a num
of striking properties in the supersymmetric area. With
number of global supersymmetries growing, the backgro
geometry becomes severely restricted. Admitting an au
matic N51 supersymmetric generalization@4#, the model
was shown to require a Ka¨hler geometry in order to suppo
an N52 global supersymmetry@5#. The N54 case, which
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also corresponds to a maximally extended supersymme1

appeals to a hyper-Ka¨hler space, the latter being automa
cally Ricci flat @5#. Interestingly enough, theN<4 bound
correlates well with that known for anN-extended supercon
formal algebra~SCA! admitting a central extension@6#, the
latter typically underlying a string theory with anN-extended
local supersymmetry on the world sheet.

The gaugedN52 nonlinear sigma model, orN52 string
~coupled to background!, has attracted considerable intere
over the past decade~for a comprehensive list of reference
see, for example, Ref.@7#!. The theory is critical in two spa-
tial and two temporal dimensions~or a four-dimensional Eu-
clidean space! and contains the only physical state in th
quantum spectrum. Being a massless scalar, the latter ca
associated with either the Ka¨hler potential~closed string! or
the Yang scalar~open string! @8#. Notice, however, that al-
though theN52 model does provide a satisfactory string
description of self-dual gauge theory or self-dual gravity, t
manifest Lorentz invariance is missing and, in spite of be
the theory of anN52, d52 supergravity coupled to matte
the model fails to produce fermions in the quantum spectr
~see, however, the recent work@9#!.

At the classical level the former drawback has been ov
come recently@10,11# based on an earlierN54 topological
formalism by Berkovits and Vafa@12#. According to theN
54 topological prescription, one adds to the theory tw
more fermionic currents~of conformal spin 3/2! and two
more bosonic ones~of conformal spin 1! which on the one
hand extend theN52 SCA to a smallN54 SCA, but on the
other hand do not change the physical content of the mo
as they prove to be functionally dependent. The key po
however, is that this extension brings an extra U(1,1)outer
symmetry to the formalism~see@10,11# for an explicit real-

k
:

k
: 1N53 automatically impliesN54, as a product of two complex
structures yields a third one@5#.
©2002 The American Physical Society26-1



a

e
rin
t,
i

io
tri
as
tz

l
m
re

lo

n
b

le
o

Ge

m

th
r

th
e

xt
ith

-
in
w

tl

cs.

-
ose
om-
etry
the
la-

s in
or
-
r
V.
er-
ion
el.

-
g

he

n

gi
an

e

ls
ry

are

BELLUCCI, DERIGLAZOV, AND GALAJINSKY PHYSICAL REVIEW D 65 104026
ization!, which thus raises the global symmetry group to th
including the full Lorentz group@recall SO(2,2).SU(1,1)
3SU(1,1)8]. Quantum equivalence of the two approach
has been established by explicit evaluation of scatte
amplitudes2 in Ref. @12#. Based on the symmetry argumen
the N54 topological string action has been constructed
@10# just by installing the U(1,1)outer into the action of the
N52 string. Curiously enough, to a great extent the situat
resembles what happens for the Green-Schwarz supers
where extracting an independent set of fermionic first cl
constraints is known to be in conflict with manifest Loren
covariance.3

Given the N54 topological string action, the natura
question to ask is, what is the geometry of a nonlinear sig
model associated with it? In the present paper we add
this issue and show that~i! the global supersymmetry in
question is actuallyN54 twisted supersymmetry~hence the
title of this paper! and ~ii ! apart from being a Ka¨hler space,
the target manifold has to admit a covariantly constant ho
morphic two-form, in order to support the latter.

As is well known~see, e.g.,@14#!, the last point restricts
the holonomy group to be a subgroup of SU~1,1!, which is
equivalent to the Ricci-flatness condition for the Riema
tensor~some constructive examples of such manifolds can
found, e.g., in Ref.@8#!. Alternatively, working in real coor-
dinates, in addition to the covariantly constant comp
structure characterising the Ka¨hler geometry, one reveals tw
covariantly constant ‘‘real’’ structures~almost product struc-
tures!, forming altogether a pseudo quaternionic algebra.
ometry of this type is known as pseudo hyper-Ka¨hler geom-
etry @15,16# and has recently been discussed in the sig
model context by Hull@17# and by Abou Zeid and Hull@18#.

Finally, as the one-loop calculation proceeds along
same lines both for theN52 nonlinear sigma model and fo
theN54 twisted generalization~requiring a Ricci-flat mani-
fold for the one-loop ultraviolet finiteness@19,20#!, one con-
cludes that in the latter case the ultraviolet finiteness of
quantum theory4 is guaranteed by the presence of a high
symmetry at the classical level.

The organization of the work is as follows. In the ne
section we briefly review the nonlinear sigma models w
N-extended global supersymmetry and discuss the origin
the twisted supersymmetry. In Sec. III theN52 nonlinear
sigma model and theN54 twisted generalization are com
pared in the complex coordinates common to their str
partners. In the former case we reproduce the well kno
condition that a manifold must be Ka¨hler, while in the latter
case it is shown that in addition it has to admit a covarian
constant holomorphic two-form in order to support theN

2TheN54 topological prescription appeals to a specific topolo
cal twist which does not treat all the currents on equal footing
breaks the Lorentz group to U~1,1!.

3For a detailed discussion on covariant quantization of the Gre
Schwarz superstring and kappa symmetry, see, e.g.,@13#.

4According to the analysis of Ref.@21#, for the case of two- and
four-dimensional targets the Ricci-flatness condition one revea
the one-loop level persists to higher orders in perturbation theo
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54 twisted supersymmetry. We turn to string theory in Se
IV and V and consider gauging of anN52 global supersym-
metry and anN54 twisted global supersymmetry. We ex
plicitly check that in both cases the gauging does not imp
any new restrictions on the background geometry as c
pared to those implied already by the global supersymm
and hence is valid to describe a consistent coupling of
N52,4 strings to the external curved backgrounds. Calcu
tion of the one-loopb function is outlined in Sec. VI. We
summarize our results and discuss some further problem
the concluding Sec. VII. Two Appendixes contain our spin
notations ind52 and some elementary notions from com
plex geometry on Ka¨hler manifolds, these being relevant fo
the gauging procedure implemented in Secs. IV and
Throughout the paper we work in components. The sup
field technique is avoided in order to keep the connect
between geometry and strings at a more transparent lev

II. NONLINEAR SIGMA MODELS AND N-EXTENDED
TWISTED SUPERSYMMETRY

To elucidate the structure of anN-extended twisted super
symmetry in the sigma model context, it is worth recallin
the original argument by Alvarez-Gaume´ and Freedman@5#
valid for ordinary supersymmetry transformations. Given t
free field action on a flat background5

S5
1

2E d2x$]afn]afn2 i c̄nga]acn%, ~1!

where the target space indexn runs from 0 toN21 andg
are the Dirac matrices in two dimensions~for our d52
spinor conventions see Appendix A!, one can easily guess a
ansatz for the global supersymmetry transformation:

dfn5 f n
m~ ēcm!, dcn5l i f n

m]afm~gae!. ~2!

The bosonic fieldsfn and the fermionic partnerscn are
taken to be real,l is an arbitrary real constant, andf m

n is an
arbitrary real nondegenerate~constant! matrix, both to be
determined below.

The invariance of the action under the ansatz leadsf m
n to

obey ~the target space flat metric is denoted byhnm)

hpnf n
m1l f k

phkm50, ~3!

where one has to take into account the identitygagb5
2hab2eabg3 and integrate by parts. Making use of thed
52 Fiertz identity~see also Appendix A!

-
d

n-

at
.

5In what follows, we denote flatd52 vector indices by the letters
from the beginning of the Latin alphabet. Those from the end
reserved for the target space indices. On a flat backgroundea

a

5da
a andgaea

a[ga.
6-2
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GEOMETRY OF ANN54 TWISTED STRING PHYSICAL REVIEW D 65 104026
~ ē1]acn!gae252~ ē1gae2!]acn2 1
2 ~ ē1e2!ga]acn

2 1
2 ~ ē1ga]acn!e2

1 1
2 ~ ē1g3e2!g3ga]acn

1 1
2 ~ ē1g3ga]acn!g3e2 , ~4!

the algebra of the transformations can be readily evalua
~on-shell relations!

@d1 ,d2#fn5 il f n
mf m

k~ ē2gae12 ē1gae2!]afk, ~5!

and the same for the fieldcn. Thus, for the transformation
~2! to be the standard supersymmetry transformation one
to set

l f n
mf m

k52dn
k . ~6!

If one wishes to realize an extended supersymmetry t
each f must satisfy the conditions~3!,~6! with the corre-
spondingl involved and also the vanishing of cross brack
for two different transformations implies

l1~ f 2f 1!n
k1l2~ f 1f 2!n

k50,

l2~ f 2f 1!n
k1l1~ f 1f 2!n

k50. ~7!

Observing further that one of the transformations can alw
be generated by the unit matrix

f 0
n

m5dn
m→l0521, ~8!

one ends up with the algebraic conditions

f i
2521, l i51, iÞ0, ~9!

while Eq. ~7! reduces to the Clifford algebra~for iÞ j ). No-
tice that on a flat background the number of supersymme
does not seem to be bounded from above. It suffices to r
the value ofN and find an appropriate representation of t
Clifford algebra.

The same arguments apply also to the more complica
case of a curved manifold or the nonlinear sigma model w
anN-extended global supersymmetry. A minimal coupling
the toy system~1! to a curved background metricgnm(f)
turns out to be not enough to respect the supersymmetry
some new terms need to be added@4,5#:

S5
1

2E d2xH ]afn]afmgnm~f!2 i c̄nga]acmgnm~f!

2gnm~f!Gm
pk~f!]afpi c̄ngack

2
1

6
Rnmpk~f!~c̄ncp!~ c̄mck!J , ~10!

whereGm
pk is the Levi-Civita connection andRnmpk is the

Riemann tensor. In addition, the transformations themse
need to be slightly modified andf m

n acquires thef depen-
dence
10402
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dfn5 f n
m~f!~ ēcm!,

dcn5l i f n
m~f!]afm~gae!2Gn

mk~f! f m
p~f!~ ēcp!ck.

~11!

Varying the action and verifying the algebra of the transf
mations one again comes to the algebraic conditions~3!, ~6!,
~7!, ~8!, ~9! where the flat metric is to be exchanged with t
curved one. In addition, there appears a new restriction
f m

n must be covariantly constant

¹kf n
m50. ~12!

Notice that the latter is trivially satisfied forf 0
n

m5dn
m and

hence at least one supersymmetry can always be rea
without any restrictions on the background geometry@4#. In
checking the symmetry, the integrability condition~Ricci
identity!

Rnmlpf
l
k2lRnmlkf

l
p50, ~13!

and the standard properties of the Riemann tensor

Rn
mpk1cycle~mpk!50,

¹lR
n

mpk1cycle~ lpk!50 ~14!

are much used, while the analysis of the~on-shell! algebra
appeals to the fermionic equation of motion

igaD ack1 1
3 Rk

mplc
p~ c̄mc l !50, ~15!

with D ack5]ack1Gk
nm]afncm. It is worth noting that the

easiest way to deal with the last term in the action is
reduce thed52 spinors involved in it to their irreducible
components, as we do in Sec. IV below~see also Appendix
A!. This allows one to exploit the symmetry properties of t
Riemann tensor more efficiently and liberates one from
necessity to use Fiertz identities.

In contrast to the flat case, the fact that a target manif
has to admit a covariantly constant tensor or, in other wo
a tensor commuting with all elements from the holonom
group of a manifold, severely restricts the number of p
sible supersymmetries. TheN<4 bound has been reveale
@5# for an irreducible manifold, this based on the Sch
lemma applied to real representations of the holono
group. Since a product of two complex structures necessa
yields a third one~a quaternionic structure!, the Kähler ge-
ometry corresponding toN52 and the hyper-Ka¨hler geom-
etry associated withN54 seem to be the only option
available.6

An additional interesting possibility has been brought in
focus quite recently@15–18#. The observation made@17# is

6In Ref. @22# geometric models ofN54 supersymmetric mechan
ics have been proposed, which can be viewed as one-dimens
counterparts of the two-dimensionalN52 supersymmetric sigma
models of@5#.
6-3
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BELLUCCI, DERIGLAZOV, AND GALAJINSKY PHYSICAL REVIEW D 65 104026
that for one of the four transformations,7 say f 2, one can give
up the conventional sign in the commutation relation~5!,
thus leading to a twisted supersymmetry algebra and a ‘‘re
structure~or an almost product structure@23#!

f 2
n

mf 2
m

k5dn
k , ¹kf 2

n
m50. ~16!

A product of the latter with the complex structuref 1 then
yields another real structure while a product of the two r
structures gives back the complex structure, altogether
ducing a pseudo quaternionic structure@16,15#. The full al-
gebra is then anN54 twisted supersymmetry algebra an
the corresponding geometry is known as a pseudo hy
Kähler geometry. A detailed discussion of the latter point
the sigma model context can be found in Refs.@17,18#. No-
tice that the possibility of twisting theN54 supersymmetry
algebra is consistent with Jacobi identities since for thed
52 ~twisted! super Poincare´ algebra

$QA ,QB%52s~g0ga!ABPa ,

@M ,QA#5 1
2 g3ABQB , @M ,Pa#5eabPb, ~17!

those hold for boths51 ands521.

III. KA¨ HLER AND PSEUDO HYPER-KÄ HLER
GEOMETRIES

As was mentioned in the Introduction, the prime conce
of this work is to compare the geometry of theN52 string
and its N54 topological extension. Since gauging glob
~super!symmetries of a sigma model results in a string the
coupled to background, it is worth considering the sig
model conformed to the complex frame intrinsic to theN
52 string. The Lagrangian to start with is that of theN52
string in the superconformal gauge,

S52
1

2pE dtds$]aza]azāhaā2 i c̄ āga]acahaā

1 i ]ac̄ āgacahaā%. ~18!

Here za, with a50,1 in the critical dimension, is ad52
complex scalar andcA

a is a d52 complex ~Dirac! spinor.
Since the target space is essentially complex we shall dis
guish between the index carried by a field and its comp
conjugate (za)* 5zā, (ca)* 5c ā.

It is straightforward to check that the action exhibits t
invariance with respect to anN52 global supersymmetry
~the parameter is a complex spinor!

dza5 ēca, dca52
i

2
]aza~gae!, ~19!

thus forming the conventional algebra

7In what follows we assume that the first transformation is gen
ated by the unit matrix and the second one by the ordinary com
structure.
10402
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@d1 ,d2#5 1
2 ~ i ē1gae22 i ē2gae1!]a . ~20!

In addition, a closer look reveals the invariance under anN
52 twisted supersymmetry

dza5e āb̄h āa~ c̄ b̄e!, dca5 1
2 e āb̄h āai ]azb̄~gae!, ~21!

with eab the Levi-Civita totally antisymmetric tensor@e015
21 and (eab)* 5e āb̄#. The corresponding algebra differ
from the standard one~20! by the sign on the right hand side

@d1
twist,d2

twist#52 1
2 ~ i ē1gae22 i ē2gae1!]a . ~22!

In verification of Eq.~22! the trivial identity

h āah b̄ce āb̄5eac, ~23!

with h āa5diag(2,1), is helpful. The cross commutato
@d,d twist# proves to vanish on shell.

Turning to a curved background, it seems natural to
sume that the complex structure intrinsic to the flat mo
persists in a curved space. A target manifold is thus take
be Hermitian with a Hermitian metricgnm̄(z,z̄) @we denote
the inverse bygm̄n and conjugate as (gnm̄)* 5gmn̄# while the
action functional of the nonlinear sigma model in this fram
work acquires the form

S52
1

2pE dtds$]azn]azm̄gnm̄2 i c̄m̄ga]acngnm̄

2 i c̄m̄gack Gn
pk]azpgnm̄

1 i ]ac̄m̄gacngnm̄1 i c̄ k̄gacnGm̄
p̄k̄]azp̄gnm̄

12Rm̄np̄k~ c̄m̄cn!~ c̄ p̄ck!%. ~24!

Variation of all but the last terms in the action under anN
52 global supersymmetry transformation

dzn5~ ēcn!,

dcn52
i

2
]azn~gae!2Gn

mp~ ēcm!cp, ~25!

yields

~ ēck!]azn]azm̄~]kgnm̄2]ngkm̄!

1~ ēg3cn!]bzm̄eba]azk̄] k̄gnm̄

2 i ~ c̄m̄gacp!~ c̄ k̄e!]aznRm̄pk̄n

2 i ~ c̄m̄gacp!~ c̄ n̄e!]azkRpm̄kn̄1c.c. ~26!

Thus for the invariance to hold in a curved action one has
demand

]kgnm̄2]ngkm̄50, ] k̄gnm̄2]m̄gnk̄50, ~27!

which means that the target Hermitian manifold must be t
sion free or, equivalently, Ka¨hler. On a Ka¨hler manifold the

r-
x

6-4
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GEOMETRY OF ANN54 TWISTED STRING PHYSICAL REVIEW D 65 104026
Riemann tensor acquires extra symmetries~for completeness
we list them in Appendix B! which then can be used to sho
that the variation of the last term in Eq.~24! exactly cancels
the remnant in Eq.~26!. Making use of the fermionic equa
tion of motion one can verify also that the algebra~20! per-
sists on a Ka¨hler space.

Let us now proceed to theN52 twisted transformation
Because the metric carries indices of different types, the
ive guess likeeab→eab /A2detg that one could try to
implement in passing to a curved space does not yiel
tensor field. Hence one is forced to introduce an arbitr
two-form Bnm , enm being the flat limit, and consider th
ansatz

dzn5Bk̄p̄gk̄n~ c̄ p̄e!,

dcn5 1
2 Bk̄p̄gk̄ni ]azp̄~gae!2Gn

pmgk̄pBk̄p̄~ c̄ p̄e!cm.
~28!

With respect to this generalization the nonlinear sigma mo
action holds invariant provided

¹kBnm50, ] k̄Bnm50,

¹k̄Bn̄m̄50, ]kBn̄m̄50. ~29!

In checking the invariance, the integrability conditions

Rk
nm̄sBkp2Rk

nm̄pBks50,

Rk̄
n̄ms̄Bk̄p̄2Rk̄

n̄mp̄Bk̄s̄50 ~30!

prove to be helpful. Evaluating the algebra further, one
counters one more condition

Bn̄m̄Bspg
m̄s5gpn̄ ; ~31!

this, however, does not seem to be an extra restriction, s
for an irreducible manifold the right hand side must be p
portional to the metric with a constant real coefficient~recall
that bothg andB are covariantly constant!, the latter can be
obsorbed into a redefinition ofB @23#. Finally, taking into
account the conditions~29!, ~30! and the Fiertz identity~4!
one can verify that the cross commutator@d,d twist# vanishes
on shell which leads to the fullN54 twisted algebra.

Thus, for the nonlinear sigma model on a Ka¨hler space to
admit an extraN52 twisted global supersymmetry, th
10402
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y
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manifold must admit a covariantly constant holomorph
two-form. This means that the holonomy group of a ma
fold, which is generally a subgroup of U~1,1!, reduces to a
subgroup of SU~1,1! ~see, for example,@14#!, the latter point
implies a Ricci-flat space. Actually, contracting the first
the integrability conditions~30! with the tensorgl̄ pBl̄ r̄g

r̄ s

one immediately arrives at

Rk
kn̄m50, ~32!

which is the familiar Ricci-flatness condition.
As is well known, for theN52 model the latter condition

appears at the quantum level as a requirement of the
loop ultraviolet finiteness@19# of the theory. Curiously
enough, as we have seen above, theN54 topological pre-
scription implies it already in the classical area where
proves to be encoded into a higher symmetry of the form
ism.

IV. GAUGING NÄ2 GLOBAL SUPERSYMMETRY

We now turn to string theory and consider gauging of t
extended global supersymmetry discussed above. Give
global symmetry transformation, a conventional way to co
vert it to a local one consists in applying the Noether pro
dure. In general, extra fields are needed and for the cas
local supersymmetry these usually fill up one or anothed
52, N-extended conformal supergravity multiplet. Sin
gauging theN52 global supersymmetry in the sigma mod
~24! should result in anN52 string consistently coupled to
the curved background, the structure of the Noether c
plings is prompted by theN52 string itself. For the chiral
half, the analysis has been done in Ref.@24# while for the
ordinary ~untwisted! N54 string the question has been a
dressed in Ref.@25# ~for some related work, see@26–31#!.

In order to avoid cumbersome calculations caused by
d52 Fiertz rearrangement rules one has to use in chec
the local symmetries, as in Ref.@10# we choose to get rid of
d52 g matrices and work directly in terms of irreducib

components on the world sheet@for examplecA
a5(

c
(2)
a

c(1)
a

); for

our d52 spinor conventions, see Appendix A#. The action
functional of theN52 gauged nonlinear sigma model is the
a sum of Eq.~24!, which we rewrite here in terms of th
irreducible components
SN5252
1

2pE dtdsA2g$gab]azn]bzm̄gnm̄1 iA2~c (1)
n ]ac (1)

m̄ 1c (1)
m̄ ]ac (1)

n !e2
agnm̄1 iA2~c (2)

n ]ac (2)
m̄

1c (2)
m̄ ]ac (2)

n !e1
agnm̄1 iA2c (1)

m̄ c (1)
s Gn

ps]azpe2
agnm̄2 iA2c (1)

s̄ c (1)
n Gm̄

p̄s̄]azp̄e2
agnm̄

1 iA2c (2)
m̄ c (2)

s Gn
ps]azpe1

agnm̄2 iA2c (2)
s̄ c (2)

n Gm̄
p̄s̄]azp̄e1

agnm̄14Rn̄pm̄kc (1)
n̄ c (2)

p c (2)
m̄ c (1)

k %, ~33!

and a chain of the Noether couplings involving anN52, d52 world-sheet supergravity multiplet (ea
b ,xAb ,Ab) (a stands for

a flat index!
6-5



BELLUCCI, DERIGLAZOV, AND GALAJINSKY PHYSICAL REVIEW D 65 104026
SN52
Noether52

1

2pE dtdsA2g$2A2c (1)
m̄ c (1)

n Aae2
a gnm̄2A2c (2)

m̄ c (2)
n Aae1

agnm̄12i ]aznc (2)
m̄ xb(1)e2

ae1
bgnm̄

22i ]aznc (1)
m̄ xb(2)e1

ae2
bgnm̄22i ]azm̄c (1)

n x̄b(2)e1
ae2

bgnm̄12i ]azm̄c (2)
n x̄b(1)e2

ae1
bgnm̄

22c (1)
m̄ c (2)

n x̄a(1)xb(2)e1
ae2

bgnm̄22c (2)
m̄ c (1)

n x̄a(2)xb(1)e1
be2

agnm̄

1c (1)
m̄ c (1)

n x̄b(2)xa(2)~e1
ae2

b1e1
be2

a !gnm̄1c (2)
m̄ c (2)

n x̄b(1)xa(1)~e1
ae2

b1e1
be2

a!gnm̄%. ~34!
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Because all the terms in a variation of the action which

proportional either toc (1)
m̄ c (1)

n gnm̄ or to c (2)
m̄ c (2)

n gnm̄ can
be compensated by an appropriate variation of the ga
field Aa , it suffices to check the invariance modulo tho
terms. For anN52 local world-sheet supersymmetry on
finds

dzn5 i ē (2)c (1)
n , dc (2)

n 52 i ē (2)G
n

pkc (1)
p c (2)

k ,

dxa(1)50, de1
a 50,

dc (1)5
1

A2
e (2)]aze1

a 2
i

A2
e (2)c (2)x̄g(1)e1

g

1
i

2A2
c (1)~ ē (2)xg(2)2e (2)x̄g(2)!e1

g ,

de2
a 52

i

A2
e1

a~ ē (2)xg(2)1e (2)x̄g(2)!e2
g ,

dxa(2)5¹ae (2)1
i

2
e (2)Aa1

i

2A2
~ ē (2)xa(2)

1e (2)x̄a(2)!xg(2)e1
g

1
i

A2
e (2)xa(2)x̄g(2)e1

g , ~35!

and

dzn5 i ē (1)c (2)
n , dc (1)

n 52 i ē (1)G
n

pkc (2)
p c (1)

k ,

dxa(2)50, de2
a 50,

dc (2)5
1

A2
e (1)]aze2

a1
i

A2
e (1)c (1)x̄g(2)e2

g

2
i

2A2
c (2)~ ē (1)xg(1)2e (1)x̄g(1)!e2

g ,

de1
a 5

i

A2
e2

a~ ē (1)xg(1)1e (1)x̄g(1)!e1
g ,
10402
e
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dxa(1)52¹ae (1)2
i

2
e (1)Aa2

i

2A2
~ ē (1)xa(1)

1e (1)x̄a(1)!xg(1)e2
g

2
i

A2
e (1)xa(1)x̄g(1)e2

g . ~36!

In addition, apart from the usual reparametrization inva
ance, local Lorentz transformations, and Weyl symmetry,
model exhibits invariance under two extra bosonic transf
mations:

dAa5]aa, dc (6)52
i

2
ac (6) ,

dx (6)52
i

2
ax (6) , ~37!

dAa5e21eabgbg]gb, dc (1)52
i

2
bc (1) ,

dc (2)5
i

2
bc (2) ,

dx (1)5
i

2
bx (1) , dx (2)52

i

2
bx (2) , ~38!

wheree215@det(en
a)#215A2g, and the super Weyl trans

formation

dAa5
1

A2
gabe1

be2
g~ n̄ (1)xg(2)1x̄g(2)n (1)!

1
1

A2
gabe2

b e1
g ~ n̄ (2)xg(1)1x̄g(1)n (2)!,

dxa(1)5gabe1
bn (2) , dxa(2)5gabe2

bn (1) ,
~39!

these just preserving their flat form. In checking the loc
symmetries one has to use essentially the fact that the ta
manifold is Kähler and the metric is covariantly constant.
addition, special care is to be taken of the terms requir
6-6
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GEOMETRY OF ANN54 TWISTED STRING PHYSICAL REVIEW D 65 104026
integration by parts. When integrating by parts, the deri
tive ]a will hit the background metric

]agnm̄5]azk]kgnm̄1]azk̄] k̄gnm̄

5]azkG l
knglm̄1]azk̄G l̄

k̄m̄gn l̄ , ~40!

thus inducing extra terms as compared to the flat case.
Notice that omitting the world-sheet supergravity fields

the transformation laws above and taking the parameter t
a constant, one is left precisely with the sigma model glo
supersymmetry transformations, thus supporting the con
tency of the gauging done.
m
n
i

o
d

10402
-

be
l

is-

V. GAUGING NÄ4 TWISTED GLOBAL
SUPERSYMMETRY

An action functional for theN54 twisted string in a flat
space has been constructed in Refs.@10,11#. Just as we pro-
ceeded in the former case, in order to gauge the two rem
ing twisted global supersymmetries in theN52 gauged non-
linear sigma model it suffices to mimic the structure of t
terms entering theN54 twisted string. To this end, on th
world sheet there must be introduced two new real vec
Ca andDa , and an extra complex fermionmAa @10#, these
complementing anN52, d52 supergravity multiplet with
an N54, d52 one and playing the role of the gauge fiel
for the extra local symmetry transformations. An amendm
composed of the new fields reads
SN54
Noether52

1

2pE dtdsA2g$A2~c (2)
n c (2)

m e1
a1c (1)

n c (1)
m e2

a!~Ca1 iDa!Bnm12i ]aznc (2)
m mb(1)e2

ae1
bBnm

22i ]aznc (1)
m mb(2)e1

ae2
b Bnm2 1

2 c (1)
n c (1)

m ma(2)~x1x̄ !b(2)g
abBnm2 1

2 c (2)
n c (2)

m ma(1)~x1x̄ !b(1)g
abBnm

12c (2)
n c (1)

m ~ x̄a(1)mb(2)1x̄b(2)ma(1)!e1
ae2

bBnm12c (1)
n c (2)

m̄ m̄a(1)mb(2)e1
ae2

bgnm̄1c.c.% . ~41!
at

uge
x

ose
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ge
Before we display the local form of the twisted supersy
metry transformations, it is worth verifying that the additio
of the further Noether couplings we gathered above
SN54

Noether to the previous actionSN521SN52
Noether does not de-

stroy the local symmetries intrinsic to theN52 gauged non-
linear sigma model. For this to be the case, the locale (2)
transformation must include an extra piece in the variation
the field c (1)

n and additionally the fermionic gauge fiel
mb(2) has to be involved too:

dc (1)
n 52

i

A2
Bk̄s̄g

k̄ne (2)c (2)
s̄ m̄g(1)e1

g ,

e1
bdmb(1)50,

e2
bdmb(2)5 i e (2)~C1 iD!be2

b

1
i

A2
mb(2)~ ē (2)xg(2)

1e (2)x̄g(2)!e2
ge1

b

2
i

2A2
e (2)mg(2)~x1x̄ !b(2)g

gb

2
i

2A2
mb(2)~ ē (2)xg(2)

2e (2)x̄g(2)!e1
ge2

b . ~42!

Similarly, for thee (1) transformation one finds
-

n

f

dc (2)
n 5

i

A2
Bk̄s̄g

k̄ne (1)c (1)
s̄ m̄g(2)e2

g ,

e2
bdmb(2)50,

e1
bdmb(1)52 i e (1)~C1 iD!be1

b

2
i

A2
mb(1)~ ē (1)xg(1)

1e (1)x̄g(1)!e1
ge2

b

1
i

2A2
e (1)mg(1)~x1x̄ !b(1)g

gb

1
i

2A2
mb(1)~ ē (1)xg(1)

2e (1)x̄g(1)!e2
ge1

b . ~43!

Because all the terms in the variation of the full action th
are proportional either toc (1)

n c (1)
m Bnm or to c (2)

n c (2)
m Bnm

can be compensated by an appropriate variation of the ga
field Ca1 iDa and the same is obviously true for comple
conjugates, it suffices to check the invariance modulo th
terms. In addition, the transformation law of the fieldAa
which by the same reason we omitted in the previous sec
will be modified by new contributions involvingm (6) .

Turning to the transformations~37!, ~38!, ~39!, one dis-
covers that the following contributions from the extra gau
fields:
6-7
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damb(1)5
i

2
amb(1) , damb(2)5

i

2
amb(2) ,

da~C1 iD!a5 ia~C1 iD!a2a
i

2A2
mg(2)xb(2)g

gbea
2

2a
i

2A2
mg(1)xb(1)g

gbea
1 ; ~44!

dbmb(1)52
i

2
bmb(1) , dbmb(2)5

i

2
bmb(2) ,

db~C1 iD!a5 ibH ~C1 iD!ge2
g2

1

2A2
mg(2)xb(2)g

gbJ ea
2

2 ibH ~C1 iD!ge1
g

2
1

2A2
mg(1)xb(1)g

gbJ ea
1 ; ~45!
10402
and

dn~C1 iD!a5
1

2A2
mg(2)~n1 n̄ !(1)e2

gea
2

1
1

2A2
mg(1)~n1 n̄ !(2)e1

gea
1 ~46!

render the action invariant when combined with Eqs.~37!,
~38!, and~39!.

Having completed the consistency check, we now proc
to discuss the twisted local supersymmetry in the full act

SN545SN521SN52
Noether1SN54

Noether. ~47!

After an extremely tedious calculation with the extensive u
of Eqs.~27!, ~29!–~31!, one can verify that the action hold
invariant under theN52 twisted local supersymmetry with
fermionic parameterk (1) :
dzn5Bk̄p̄gk̄nic (2)
p̄ k (1) , dxa(2)50, dma(2)50, de2

a 50,

dc (1)
n 52Gn

pkg
k̄pBk̄p̄ic (2)

p̄ k (1)c (1)
k , de1

a5
i

A2
~k (1)mg(1)1k̄ (1)m̄g(1)!e1

ge2
a ,

e1
b dxb(1)52 i k̄ (1)~C2 iD!ae1

a2
i

A2
~k (1)mg(1)1k̄ (1)m̄g(1)!xb(1)e2

be1
g2

i

2A2
k̄ (1)m̄g(1)~x1x̄ !b(1)g

bg,

dc (2)
n 5

1

A2
Bk̄p̄gk̄n]azp̄k (1)e2

a 2
i

A2
c (1)

n k (1)mg(2)e2
g2

i

A2
Bk̄p̄gk̄nc (1)

p̄ k (1)xg(2)e2
g2Gn

pkg
k̄pBk̄p̄ic (2)

p̄ k (1)c (2)
k ,

e1
bdmb(1)5¹bk̄ (1)e1

b2
i

2
k̄ (1)Abe1

b2
i

2A2
k̄ (1)x̄b(1)xg(1)g

gb2
i

A2
~k (1)mg(1)1k̄ (1)m̄g(1)!mb(1)e1

ge2
b , ~48!

andk (2)

dzn5Bk̄p̄gk̄nic (1)
p̄ k (2) , dxa(1)50, dma(1)50, de1

a50,

dc (2)
n 52Gn

pkg
k̄pBk̄p̄ic (1)

p̄ k (2)c (2)
k , de2

a52
i

A2
~k (2)mg(2)1k̄ (2)m̄g(2)!e2

ge1
a ,

e2
b dxb(2)5 i k̄ (2)~C2 iD!ae2

a1
i

A2
~k (2)mg(2)1k̄ (2)m̄g(2)!xb(2)e1

be2
g1

i

2A2
k̄ (2)m̄g(2)~x1x̄ !b(2)g

bg,

dc (1)
n 5

1

A2
Bk̄p̄gk̄n]azp̄k (2)e1

a1
i

A2
c (2)

n k (2)mg(1)e1
g1

i

A2
Bk̄p̄gk̄nc (2)

p̄ k (2)xg(1)e1
g2Gn

pkg
k̄pBk̄p̄ic (1)

p̄ k (2)c (1)
k ,
6-8
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e2
bdmb(2)52¹bk̄ (2)e2

b1
i

2
k̄ (2)Abe2

b1
i

2A2
k̄ (2)x̄b(2)xg(2)g

gb1
i

A2
~k (2)mg(2)1k̄ (2)m̄g(2)!mb(2)e2

ge1
b .

~49!
th

ro

th

se

u

e
er

th
or
fl

e
e
e

ribe
at
et
d

ere

is

a-
es

-

of
asy

ten-
-

om
tice

ltra-
ed
Here again we omitted rather lengthy expressions for
variations of the world-sheet vector fieldsAa and Ca
1 iDa , these being responsible for removing the terms p

portional to c (6)
n c (6)

m̄ gnm̄ and c (6)
n c (6)

m Bnm . A relevant
technical point to mention is that in verification of thek (6)
invariance it proves to be helpful to cancel the terms in
following sequence: first the terms involving¹c and its
complex conjugate, then those containing]z and] z̄, then the
terms quadratic in]z,] z̄, and then the rest. This is becau
the integration by parts in the¹c terms will contribute to
]z, ]z2, and so on.

Apart from the transformations listed above, previo
work on the structure of theN54 topological string in a flat
space@10,11# indicates the presence of further local symm
tries. They prove to involve two complex bosonic paramet
and two complex fermionic ones which together withk (6)
match perfectly the number of extra gauge fields on
world sheet. It is straightforward to check that the transf
mations persist in the curved space, just maintaining their
form. Omitting the variations ofAa and Ca1 iDa , the
bosonic pair can be represented as

dcc (1)
n 5cBm̄p̄gm̄nc (1)

p̄ , dcc (2)
n 5cBm̄p̄gm̄nc (2)

p̄ ,

dcxa(1)52cma(1) ,

dcxa(2)52cma(2) , dcma(1)52 c̄xa(1) ,

dcma(2)52 c̄xa(2) , ~50!

and

d fc (1)
n 5 f Bm̄p̄gm̄nc (1)

p̄ , d fc (2)
n 52 f Bm̄p̄gm̄nc (2)

p̄ ,

d fxa(1)5 f ma(1) ,

d fxa(2)52 f ma(2) , d fma(1)5 f̄ xa(1) ,

d fma(2)52 f̄ xa(2) , ~51!

while for the fermionic transformation one finds

dma(2)5l (1)gabe2
b , dma(1)5l (2)gabe1

b . ~52!

That theN54 twisted global supersymmetry can be gaug
without imposing further restrictions on the background g
ometry implies the consistency of the coupling and provid
one with the action functional of theN54 twisted string
coupled to a Ricci-flat Ka¨hler background.
10402
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VI. ONE-LOOP b FUNCTION

As we have seen above, the action functional to desc
the N54 twisted nonlinear sigma model is identical to th
of theN52 theory. Thus the structure of one-loop ultraviol
divergences in theN54 model is immediately elucidate
due to the analysis available for theN52 case~see, e.g.,
@19#!. For completeness of the presentation we mention h
a few relevant points.

When analyzing the ultraviolet behavior of a theory, it
customary to use the background field method~for a review,
see Ref.@32#!. To maintain manifest covariance in perturb
tion theory, it is convenient to switch to normal coordinat
~for the details and conventions see@32#!

S@r~x,s51!,c~x!#5 (
n51

`
1

n!

dn

dsn
S@r~x,s!,c~x!#U

s50

5(
1

n!
Dn~s!S@r~x,s!,c~x!#U

s50

5S01S11S21•••, ~53!

whereS0 is given by Eq.~24!, the argument being the back
ground field. Splitting the metric in the common waygnm̄

5Vn
aVm̄

b̄ hab̄ and redefining the quantum field (drn/ds)us50

→Vn
a(drn/ds)us50, one ends up with the usual framework

quantum field theory, the propagators and vertices being e
to define.

Turning to one-loop divergences, one reveals that a po
tially divergent contribution from the fermionic fields in
volves the integral~in momentum space!

E ddp
2papb2dabp2

@~p1k!22m2#~p22m2!

1~finite part asd→2!, ~54!

which proves to vanish as the divergent contributions fr
the first and second terms exactly cancel each other. No
that this is in perfect agreement with the absence of an u
violet divergence in the self-energy of a minimally coupl
vector potential in two dimensions@33#. The same result can
be confirmed working in superfields@19,34#.

Then a detailed analysis shows@19# that the structure of
one-loop divergences is specified completely by theS2 ver-
tex in a sector of the bosonic fields

2
1

2pE d2sRnm̄k l̄]
azk]azl̄ ^jnjm̄&, ~55!

the divergent part thus involving
6-9
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2
1

4pe
Rk

kn̄m]azm]azn̄. ~56!

Beautifully enough, as the classicalN54 twisted model is
formulated on a Ricci-flat Ka¨hler manifold, one immediately
concludes that the corresponding quantum theory is a
matically free of ultraviolet divergences at the one-lo
level.

VII. CONCLUSION

To summarize, in the present paper we have compared
nonlinear sigma model possessing anN52 global supersym-
metry with itsN54 twisted generalization. The extra twiste
transformations were constructed with the use of a ba
ground two-form field. We argued that, in order to provide
symmetry of theN52 action, the two-form must be covar
antly constant and holomorphic. This is known to reduce
holonomy group to a subgroup of SU~1,1! and implies a
Ricci-flat Kähler background. Gauging of both theN52 and
N54 global ~twisted! supersymmetries has been perform
by appealing to theN52, d52 andN54, d52 supergrav-
ity multiplets on the world sheet, respectively. Recalling fu
ther the fact that the string partners of the sigma models
physically equivalent in a flat space, and that theN54 ex-
tension has the advantage of being manifestly Lorentz inv
ant, it seems tempting to speculate that the latter poin
responsible for the improved ultraviolet behavior of theN
54 twisted theory.

Turning to possible further developments, it would be
teresting to derive the Ka¨hler condition on the metric and
those on the two-form field directly from theN52,4 super-
conformal algebra in a curved space. The correct form of
superconformal currents is prompted by the gauged vers
of the sigma models we constructed above. Since in
Hamiltonian framework the currents appear as second
constraints, it is far from obvious that the information fo
lowing from the closure of the algebra on a background w
be as restrictive as that implied by the local Lagrangian sy
metries, although we suspect they should match. Ano
interesting point is the superfield version of the analysis
dertaken in this work.
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APPENDIX A

In this appendix we gather ourd52 spinor notations and
discuss some technical points relevant for the verification
local symmetry transformations of theN52 string and its
N54 twisted extension coupled to external curved ba
ground.
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In order to describe fermions on the world sheet of
string, it is customary to use purely imaginaryg matrices:

g05S 0 2 i

i 0 D , g15S 0 i

i 0D ,

g35g0g15S 1 0

0 21D . ~A1!

These obey the algebraic properties

$ga ,gb%522hab , gagb52hab2eabg3 ,

eabgb5g3ga, ~A2!

with hab5diag(2,1) and eab the 2D Levi-Cività totally
antisymmetric tensor,e01521. The second and third identi
ties are specific to the two-dimensional space and simp
dealing with theg matrices considerably. Notice further th
the charge conjugation matrixC, ga

T52CgaC21, just coin-
cides with g0 and furthermore (g0ga)15g0ga , (g0ga)T

5g0ga , where (•••)1 stands for the Hermitian conjugatio
and (•••)T for the transposition.

Any 232 complex matrixMAB can be decomposed wit
respect to the basis$12 ,ga ,g3%:

MAB5adAB1abgAB
b 1bg3AB , ~A3!

the coefficients having the form

a5 1
2 Tr~M !, ab52 1

2 Tr~Mgb!, b5 1
2 Tr~Mg3!.

~A4!

Taking MAB5cAwB , with arbitrary spinorscA , wB , and
differentiating with respect to the latter one gets the ba
Fiertz identity

dAKdBN5 1
2 dABdKN2 1

2 gAB
b gbNK1 1

2 g3ABg3NK . ~A5!

This allows one to rearrange the order of spinors in vario
expressions involving world-sheet fermions. The key iden
that proves to be of extensive use in checking the local
persymmetry of theN52 string action is

~ c̄w!~ x̄g3l!2~ c̄g3w!~x̄l!5~ x̄gbw!~c̄gbg3l!,
~A6!

while the one helpful in verification of global U(1,1)outer
invariance reads

~ c̄w!~ x̄g3l!1~ c̄g3w!~x̄l!52~ c̄l!~ x̄g3w!2~ c̄g3l!

3~ x̄w!. ~A7!

Since in d52 irreducible representations of the Loren
group are one dimensional, it is sometimes convenient to
the light-cone notation for vectors and spinors:

A65
1

A2
~A06A1!, AnBn52A1B22A2B1 ,

CA5S c (1)

c (2)
D , ~A8!
6-10
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g252 iA2S 0 1

0 0D , g15 iA2S 0 0

1 0D ,

A152A2 , A252A1 ,

g3g152g1 , g3g25g2 ,

in which the Lorentz transformations simplify to

dA656LA6 , dc (6)56 1
2 Lc (6)5

1
2 Lg3c. ~A9!

Obviously, the invariance is kept by contracting a ‘‘1 ’’ with
a ‘‘2 ’’ @one could equally well contract a ‘‘(1)’’ with a
‘‘( 2)’’ or a ‘‘ 1 ’’ with two ‘‘( 2)’’ #. When a local version of
the Lorentz transformations is considered, a spin connec
va is introduced, this allowing one to construct the covaria
derivatives

¹ac (1)5]ac (1)2vac (1) ,

¹ac (2)5]ac (2)1vac (2) ,

¹aA15]aA122vaA1 ,

¹aA25]aA212vaA2 , ~A10!

with dva5 1
2 ]aL. The advantage of the light-cone notatio

is that it allows one to get rid ofg matrices and work ex-
plicitly in terms of the irreducible components of the tenso
under consideration. Notice that taking into account
properties of the charge conjugation matrix it is easy
check that the objectcaCgkwbeab transforms as a comple
vector under the SO~1,1! Lorentz group, whilecaCwbeab is
a complex scalar.

Introducing the zweibeineb
a on the world sheetgab

5eb
ahbcec

b and its inverseea
b , gab5ea

bhbceb
c , wherea

stands for a curved index, one can finally verify the relatio

en
aek

g2en
gek

a5eeagekn ,

gagek
b2gabek

g5eegbekne
na.

~A11!

These prove to be helpful in checking the local supersym
try of the N52 string. Other useful identities which we ex
tensively use in the text are

ecpesk52hcshpk1hckhps, emnem
aen

b5eeab,

eaben
aem

b5eenm , ~A12!

wheree5det(en
a) andeab is a totally antisymmetric matrix

with e01521.
Turning to the light-cone framework, some identities r

evant to this work are

gab52e1
ae2

b2e2
ae1

b ,

eeab52e1
ae2

b1e2
ae1

b ,

gab52ea
1eb

22ea
2eb

1 ,
10402
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t

s
e
o

s

e-

-

e21eab5ea
1eb

22ea
2eb

1 ,

e2
aea

251, e1
aea

151,

e2
aea

150, e1
aea

250,

h115h250, h125h21521,

e1251, e21521. ~A13!

APPENDIX B

In order to make the presentation self-contained, in t
appendix we list symmetry properties of the Riemann ten
on a Kähler manifold. These prove to be of great use both
verification of anN-extended global supersymmetry for th
sigma model under consideration and in establishing the
cal version of the latter.

Given a complex manifold with a Hermitian metricgnm̄

~we denote the inverse bygm̄n), one introduces covarian
derivatives

¹nvm5]nvm2Gk
nmvk , ¹n̄vm5] n̄vm ,

¹n̄vm̄5] n̄vm̄2G k̄
n̄m̄v k̄ , ¹nvm̄5]nvm̄ .

~B1!

Assuming the covariant constancy of the metric

¹ngmk̄5]ngmk̄2Gp
nmgpk̄50,

¹n̄gmk̄5] n̄gmk̄2G p̄
n̄k̄gmp̄50, ~B2!

one readily finds the explicit form of the Levi-Civita conne
tion

Gk
nm5gp̄k]ngmp̄ , G p̄

n̄k̄5gp̄m] n̄gmk̄ . ~B3!

The simplest way to define the curvature and the tors
tensors is to consider a commutator of two covariant deri
tives. For example,

@¹A ,¹B#vp5Rp
kABvk2TAB

D ¹Dvp, ~B4!

whereA is a collective notation fora and ā, and the sum
over D involves bothd and d̄. A simple inspection of the
latter relation with the use of Eq.~B3! shows that the only
nonvanishing components of the torsion tensor are

Tnm
k 5Gk

nm2Gk
mn5gk̄k~]ngmk̄2]mgnk̄!,

Tn̄m̄
k̄

5G k̄
n̄m̄2G k̄

m̄n̄5gk̄k~] n̄gkm̄2]m̄gkn̄!,
~B5!

while those of the curvature tensor are exhausted by

Rk
np̄m52Rk

nmp̄5] p̄Gk
mn ,

Rk̄
n̄pm̄52Rk̄

n̄m̄p5]pG k̄
m̄n̄ . ~B6!
6-11



ne

an

n

n-

-
chi

BELLUCCI, DERIGLAZOV, AND GALAJINSKY PHYSICAL REVIEW D 65 104026
Introducing the notation

Rk̄np̄m5gak̄R
a

np̄m , ~B7!

and making use of the explicit form of the connection, o
finds

Rn̄mp̄k52Rmn̄p̄k . ~B8!

Assuming finally that the manifold at hand is a Ka¨hler space

Tnm
k 50→Gk

nm5Gk
mn→]ngmk̄2]mgnk̄50, ~B9!

one immediately reveals an extra symmetry for the Riem
tensor

Rk
nmp̄5Rk

mnp̄. ~B10!
s

.

s

.

n

10402
n

When combined with those valid for an arbitrary Hermitia
manifold, the last equation yields a chain of relations

Rn̄mp̄k5Rp̄mn̄k5Rn̄kp̄m5Rp̄kn̄m , ~B11!

which are known as the cyclic property of the Riemann te
sor on a Ka¨hler manifold.

Finally, when dealing with the terms involving the Rie
mann tensor that enter the sigma model action the Bian
identities

¹kRn̄mp̄l2¹mRn̄kp̄l50,

¹k̄Rn̄mp̄l2¹n̄Rk̄mp̄l50, ~B12!

which are valid for a Ka¨hler space, prove to be helpful.
.
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