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We compareN =2 strings andN=4 topological strings within the framework of the sigma model approach.
Being classically equivalent on a flat background, the theories are shown to lead to different geometries when
put in a curved space. In contrast with the well studietilikageometry characterizing the former case, in the
latter case a manifold has to admit a covariantly constant holomorphic two-form in order to suppért an
=4 twisted supersymmetry. This restricts the holonomy group to be a subgroup(dfiStind leads to a
Ricci-flat manifold. We speculate that the=4 topological formalism is an appropriate framework to smooth
down ultraviolet divergences intrinsic to ti=2 theory.
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I. INTRODUCTION also corresponds to a maximally extended supersymrhetry,
appeals to a hyper-Kéer space, the latter being automati-

String theory and nonlinear sigma models are intimatelyCally Ricci flat [5.]' Interestingly enough, thél<4 bound
. . - . correlates well with that known for ad-extended supercon-
linked to each other. Having originated from dn‘ferentf | algeb dmitti | . h

ly, the study of dual models of hadrons on th orma; alge rASCA) a mlttmg a centra e_xten5|c{|6], the
sourzes,dnarr:je {1 hf lizable field theori ,Ieo\ttertyplcally underlying a string theory with &trextended
one hand and the search for renormalizable field theories ip . supersymmetry on the world sheet.

d=2 on the other, they were soon shown to be connected, as 1,o gauged\ =2 nonlinear sigma model, &i=2 string

the latter provides deep insight into the formieee, €.9., (coupled to backgroundhas attracted considerable interest
[1-3]). To mention only the most significant points, the oyer the past decadéor a comprehensive list of references
gauging of globalsupefsymmetries of the nonlinear sigma see, for example, Ref7]). The theory is critical in two spa-
model typically results in a string theor§in the Neveu- tjal and two temporal dimensiorisr a four-dimensional Eu-
Schwarz-Ramond formalismcoupled to the background clidean spaceand contains the only physical state in the
massless modes, while the one-loop finiteness fixes the efjuantum spectrum. Being a massless scalar, the latter can be
fective low energy dynamics of the string partner. It shouldassociated with either the Kker potential(closed string or
be remembered that, since the gauging brings extra corthe Yang scalafopen string [8]. Notice, however, that al-
straints into the formalisntnormally forming anN-extended though theN=2 model does provide a satisfactory stringy
superconformal algebrathe resulting string theory is not description of self-dual gauge theory or self-dual gravity, the
necessarily critical and that point is to be examined on itsnanifest Lorentz invariance is missing and, in spite of being
own. the theory of arlN=2, d=2 supergravity coupled to matter,
Parallel to the progress of string theory on the supersymthe model fails to produce fermions in the quantum spectrum
metry route, the nonlinear sigma models revealed a numbdsee, however, the recent warg]).
of striking properties in the supersymmetric area. With the At the classical level the former drawback has been over-
number of global supersymmetries growing, the backgroundome recentlyf10,11] based on an earlied=4 topological
geometry becomes severely restricted. Admitting an autoformalism by Berkovits and Vaf@12]. According to theN
matic N=1 supersymmetric generalizatidd], the model =4 topological prescription, one adds to the theory two
was shown to require a Kiéer geometry in order to support more fermionic currentgof conformal spin 3/2 and two
an N=2 global supersymmetr{5]. The N=4 case, which more bosonic one&f conformal spin 1 which on the one
hand extend th&l=2 SCAto a smalN=4 SCA, but on the
other hand do not change the physical content of the model
*Email address: Stefano.Bellucci@Inf.infn.it as they prove to be functionally dependent. The key point,
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ization), which thus raises the global symmetry group to that=4 twisted supersymmetry. We turn to string theory in Secs.
including the full Lorentz grougrecall SO(2,2»=SU(1,1) IV andV and consider gauging of &h=2 global supersym-

X SU(1,1)]. Quantum equivalence of the two approachesmetry and anlN=4 twisted global supersymmetry. We ex-
has been established by explicit evaluation of scatteringlicitly check that in both cases the gauging does not impose
amplituded in Ref.[12]. Based on the symmetry argument, @any new restrictions on the background geometry as com-
the N=4 topological string action has been constructed inPared to those implied already by the global supersymmetry
[10] just by installing the U(1,1),e, into the action of the and hence is valid to describe a consistent coupling of the
N=2 string. Curiously enough, to a great extent the situatior]\ = 2:4 Strings to the external curved backgrounds. Calcula-

resembles what happens for the Green-Schwarz superstringPn Of the one-loopgs function is outlined in Sec. VI. We
where extracting an independent set of fermionic first clasSummarize our results and discuss some further problems in

constraints is known to be in conflict with manifest Lorentz the c_onclu_dlng Sec. VII. Two Appendixes contain our spinor
covariance notations ind=2 and some _elementary notions from com-
Given the N=4 topological string action, the natural plex geometry on Kialer manifolds, these being relevant for

guestion to ask is, what is the geometry of a nonlinear sigm%g}?roﬂgﬂg'&g th%rogaesgrn\a/velmvscl)erlr(n?nntfgmlgor?eiiz' %eagfp;-
model iated with it? In the present rw r : . . ! ' .
thiosd?ssi?%?]g esc:]ow that) the eglgb?aslesup%arlgjmmitg/d?ne%em technique is avoided in order to keep the connection
question is actualljN=4 twisted supersymmetihence the between geometry and strings at a more transparent level.
title of this papey and (ii) apart from being a Kaler space,

the target manifold has to admit a covariantly constant holo- || NONLINEAR SIGMA MODELS AND N-EXTENDED

morphic two-form, in order to support the latter. TWISTED SUPERSYMMETRY
As is well known(see, e.g.[14]), the last point restricts
the holonomy group to be a subgroup of @\1), which is To elucidate the structure of arextended twisted super-

equivalent to the Ricci-flatness condition for the Riemannsymmetry in the sigma model context, it is worth recalling
tensor(some constructive examples of such manifolds can b&he original argument by Alvarez-Gaunaed Freedmaib5]
found, e.g., in Ref[8]). Alternatively, working in real coor- Valid for ordinary supersymmetry transformations. Given the
dinates, in addition to the covariantly constant complexiree field action on a flat backgrouhd

structure characterising the Klar geometry, one reveals two

covariantly constant “real” structure@lmost product struc- 1 -

tures, formln_g altog_ether a pseudo quaternionic algebra. Ge- S= EJ d2X{9%P"3 o — 1 YYD i}, (1)
ometry of this type is known as pseudo hyperl&a geom-

etry [15,16 and has recently been discussed in the sigma

model context by Hul[17] and by Abou Zeid and Hull18]. \yhere the target space indexruns from 0 toN—1 andy
Finally, as the one-loop calculation proceeds along thgye the Dirac matrices in two dimensiofr our d=2
same lines both for thBl=2 nonlinear sigma model and for spinor conventions see Appendiy,fone can easily guess an

the N=4 twisted generalizatiofrequiring a Ricci-flat mani-  ansatz for the global supersymmetry transformation:
fold for the one-loop ultraviolet finitene$49,20), one con-

cludes that in the latter case the ultraviolet finiteness of the L

quantum theo’/is guaranteed by the presence of a higher SP"=1"(ey™), SY"=\if",0,06M(y%e). (2)
symmetry at the classical level.

The organization O.f the work IS as fOI.IOWS' In the next The bosonic fields¢p" and the fermionic partnerg” are
section we briefly review the nonlinear sigma models with ken o b N bit | tant. affl i
N-extended global supersymmetry and discuss the origin o en 1o be reair 1S an arvitrary reai constant, a flis an
the twisted supersymmetry. In Sec. Il the=2 nonlinear arbitrary real nondegenerateonstant matrix, both to be

sigma model and th&l=4 twisted generalization are com- det_(rar:m[ned pelow. £ th . der th |
pared in the complex coordinates common to their string  1Ne invariance of the action under the ansatz lekfdieo

partners. In the former case we reproduce the well know?PeY (the target space flat metric is denoted )

condition that a manifold must be Kker, while in the latter
case it is shown that_ in addition it has to admit a covariantly npnf“m-{_)\fkpy]kmzo, 3
constant holomorphic two-form in order to support tNe

where one has to take into account the identityy,=

2The N=4 topological prescription appeals to a specific topologi- ~ 7ab ™ €an¥3 @nd integrate by parts. Making use of te
cal twist which does not treat all the currents on equal footing and=2 Fiertz identity(see also Appendix A
breaks the Lorentz group to(UU,1).
3For a detailed discussion on covariant quantization of the Green-
Schwarz superstring and kappa symmetry, see, [@6.8]., %In what follows, we denote flat=2 vector indices by the letters
4According to the analysis of Reff21], for the case of two- and  from the beginning of the Latin alphabet. Those from the end are
four-dimensional targets the Ricci-flatness condition one reveals aeserved for the target space indices. On a flat backgragfid
the one-loop level persists to higher orders in perturbation theory.= 85 and y?e,“= y“.
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(20,0 Y €2= — (€17"€2) Iath"~ 5 (€162) Y90 8" ="l B) (ey™),
S S n ) _
2erdadle UM =Nif " )3, ™7 €) ~ Tl ) Tl ) (€P) g
- 11
+3(€173€2) ¥3Y d0t" @y
+1 (?1 ey D ") ya€a, 4) Varying the action and verifying the algebra of the transfor-

mations one again comes to the algebraic conditiBhg6),

the algebra of the transformations can be readily evaluatetf): (8), (9) where the flat metric is to be exchanged with the
(on-shell relations curved one. In addition, there appears a new restriction that

f) must be covariantly constant
[61,8,]¢"=IN"f (27" €1— €17%€2) 00 d®,  (5)

and the same for the field". Thus, for the transformation _ - o
(2) to be the standard supersymmetry transformation one ha¥otice that the latter is trivially satisfied fdig,= 6", and

kaanO. (12)

to set hence at least one supersymmetry can always be realized
without any restrictions on the background geométly In
AN M= — 8" (6)  checking the symmetry, the integrability conditigRicci
identit
If one wishes to realize an extended supersymmetry then Y
eachf must satisfy the condition§3),(6) with the corre- anlpflk_)\anlkflp:(_)' (13
sponding\ involved and also the vanishing of cross brackets
for two different transformations implies and the standard properties of the Riemann tensor
Ni(faf )"+ Na(f1f2)" =0, R"mpkt cycleimpk) =0,
No(fof )Ny (f1f2)"=0. () ViR pict cycle(lpk) =0 (14)

Observing further that one of the transformations can alwayare much used, while the analysis of timn-shel) algebra
be generated by the unit matrix appeals to the fermionic equation of motion

fom=0"m—No=—1, (8) . —
o mne 1D o+ ER (W) =0, (15
one ends up with the algebraic conditions ) ‘ Kok . ,
with D "= 0,y + T, nd " ™. It is worth noting that the
f2=—1, N\=1, i#0, (9) easiest way to deal with the last term in the action is to

reduce thed=2 spinors involved in it to their irreducible
while Eq.(7) reduces to the Clifford algebr@or i#j). No-  components, as we do in Sec. IV belg¢see also Appendix
tice that on a flat background the number of supersymmetrie8). This allows one to exploit the symmetry properties of the
does not seem to be bounded from above. It suffices to raiggiemann tensor more efficiently and liberates one from the
the value ofN and find an appropriate representation of thenecessity to use Fiertz identities.
Clifford algebra. In contrast to the flat case, the fact that a target manifold

The same arguments apply also to the more complicatelias to admit a covariantly constant tensor or, in other words,

case of a curved manifold or the nonlinear sigma model witte tensor commuting with all elements from the holonomy
anN-extended global supersymmetry. A minimal coupling of group of a manifold, severely restricts the number of pos-
the toy system(1) to a curved background metrig,(¢)  Sible supersymmetries. THé<4 bound has been revealed
turns out to be not enough to respect the supersymmetry an8] for an irreducible manifold, this based on the Schur
some new terms need to be adddgb]: lemma applied to real representations of the holonomy

group. Since a product of two complex structures necessarily

I T . = yields a third ongla quaternionic structuyethe Kaler ge-
S=35] d%| 9°¢"0¢"Gnm( ) 14"y Iath " Gnm( H) ometry corresponding tdl=2 and the hyper-Kisler geom-
. etry associated witiN=4 seem to be the only options
~Onm( BT "ok ) d o BPT "y Y available®
1 An additional interesting possibility has been brought into
_ anmpk( ) (PP (P (10) focus quite recently15—-18. The observation madd7] is
wherel'™, is the Levi-Civita connection anBmp is the ®In Ref.[22] geometric models dfl=4 supersymmetric mechan-

Riemann tensor. In addition, the transformations themselvegs have been proposed, which can be viewed as one-dimensional
need to be slightly modified antf,, acquires thep depen-  counterparts of the two-dimensionil=2 supersymmetric sigma-
dence models of{5].
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that for one of the four transformatioAsayf,, one can give [81,6,]
. . . . . 1,02

up the conventional sign in the commutation relatic,

thus leading to a twisted supersymmetry algebra and a “realin addition, a closer look reveals the invariance undeNan

structure(or an almost product structuf@3]) =2 twisted supersymmetry

=iiery e, —iery¥er)d,. (20)

fomf2k=3", Vifom=0. (16) 522=exm®(PPe), SYP=texn™@ia,(ve), (21)

A product of the latter with the complex structufe then  with ¢,, the Levi-Civita totally antisymmetric tens@e,;=
yields another real structure while a product of the two real-1 and (e,,)* =€5;]. The corresponding algebra differs

structures gives back the complex structure, altogether infrom the standard on@0) by the sign on the right hand side:
ducing a pseudo quaternionic struct(ités,15. The full al-

gebra is then alN=4 twisted supersymmetry algebra and [SWVist sWist= —L(je,y%—i€7%€1)d,. (22
the corresponding geometry is known as a pseudo hyper-

Kahler geometry. A detailed discussion of the latter point inIn verification of Eq.(22) the trivial identity

the sigma model context can be found in R¢fs7,18. No-

tice that the possibility of twisting thal=4 supersymmetry 7P =€, (23
algebra is consistent with Jacobi identities since for dhe —
=2 (twisted super Poincaralgebra with n?*=diag(—,+), is helpful. The cross commutator
[ 8,6"'Y proves to vanish on shell.
{QA,Q8}=20(voY") rgPua: Turning to a curved background, it seems natural to as-
sume that the complex structure intrinsic to the flat model
[M,Qal=37v328Qs., [M,P,]= eaBPﬁ, (17) persists in a curved space. A target manifold is thus taken to

be Hermitian with a Hermitian metrigna(z,?) [we denote
the inverse byy™ and conjugate agy(,;m)* = 9mnl While the
action functional of the nonlinear sigma model in this frame-
work acquires the form

those hold for bothr=1 ando=—1.

lll. KA HLER AND PSEUDO HYPER-KA HLER
GEOMETRIES

As was mentioned in the Introduction, the prime concern S=— if drdo{99z" zag 7_@57% g
of this work is to compare the geometry of thie=2 string o =nm ar nm
and its N=4 topological extension. Since gauging global

(supejsymmetries of a sigma model results in a string theory =1y Y T 0d,2°Gnm

coupled to background, it is worth considering the sigma @ — 1 K. a.n

model conformed to the complex frame intrinsic to tNe 10Ty P Gam Ty I pkdaZ’ gnm

=2 string. The Lagrangian to start with is that of tNe=2 +2Ran5k(am¢/n)(ap¢k)}_ (24)

string in the superconformal gauge,
Variation of all but the last terms in the action under ldn

1 — - - .
S=— Ef drda {99220, 22 naa— | P Y0 P 7am =2 global supersymmetry transformation
- 82"=(ey"),
+ido Y Y naat. (18)
[ _
Here z2, with a=0,1 in the critical dimension, is d=2 54,//”2—E&azn(yae)—T”mp(etlfm)l/fp, (25
complex scalar and/3 is a d=2 complex (Dirac) spinor.
Since the target space is essentially complex we shall distinie|ds
guish between the index carned by a field and its complex B
conjugate ¢°)* =2%, (¢4°)* = (€4%)9°2"9,2™ (O Gnm— InGkim)
It is stralghtforward to check that the action exhibits the _ — -
invariance with respect to aN=2 global supersymmetry +(eysy™) 952" €P* 3,7 hTnm

(the parameter is a complex spipor = —
—i(ymy” wp)(l//kf)aaanEpIn

_ i — —
6f=e€y?, OSyYi=-— Eﬁaza( y¥e), (19 i (Y YP) (4"€) 9,2 RpmintC.C. (26)
Thus for the invariance to hold in a curved action one has to

thus forming the conventional algebra demand

IH9nm~— InOkm=0, i Gnm— ImInk=0, 27
’In what follows we assume that the first transformation is gener- . N _
ated by the unit matrix and the second one by the ordinary complexvhich means that the target Hermitian manifold must be tor-
structure. sion free or, equivalently, Kder. On a Kaler manifold the
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Riemann tensor acquires extra symmettfes completeness manifold must admit a covariantly constant holomorphic

we list them in Appendix Bwhich then can be used to show two-form. This means that the holonomy group of a mani-

that the variation of the last term in E@®4) exactly cancels fold, which is generally a subgroup of(U1), reduces to a

the remnant in Eq(26). Making use of the fermionic equa- subgroup of SL,1) (see, for exampld,14]), the latter point

tion of motion one can verify also that the algelf2®) per-  implies a Ricci-flat space. Actually, contracting the first of

sists on a Khler space. the integrability conditiong30) with the tensorg'PBj;g™
Let us now proceed to the=2 twisted transformation. one immediately arrives at

Because the metric carries indices of different types, the na-

ive guess likee,,— €,,/\—detg that one could try to Rrm=0, (32

implement in passing to a curved space does not yield a

tensor field. Hence one is forced to introduce an arbitraryyhich is the familiar Ricci-flatness condition.

two-form B, eny being the flat limit, and consider the  ag is well known, for theN=2 model the latter condition

ansatz appears at the quantum level as a requirement of the one-
. T loop ultraviolet finitenesg19] of the theory. Curiously
62"=Bipg " (4Pe), enough, as we have seen above, w4 topological pre-
0 o 0 —_ scription implies it alrgady in_the classical area where it
OY"=3Bip0 19, 2°(y*€) — " @ PBi (P €) Y. proves to be encoded into a higher symmetry of the formal-
(28 ism.
With respect to this generalization the nonlinear sigma model
action holds invariant provided IV. GAUGING N=2 GLOBAL SUPERSYMMETRY
ViBim=0, B,m=0, We now turn to string theory and consider gauging of the
extended global supersymmetry discussed above. Given a
ViBam=0, B m=0. (290  global symmetry transformation, a conventional way to con-
vert it to a local one consists in applying the Noether proce-
In checking the invariance, the integrability conditions dure. In general, extra fields are needed and for the case of

local supersymmetry these usually fill up one or anotter
=2, N-extended conformal supergravity multiplet. Since
gauging theN=2 global supersymmetry in the sigma model
(24) should result in ailN=2 string consistently coupled to
the curved background, the structure of the Noether cou-
plings is prompted by thé& =2 string itself. For the chiral
half, the analysis has been done in R&4] while for the
BEBSngs:gpF; (31) ordinary (untwisted N=4 string the question has been ad-
dressed in Ref(25] (for some related work, s§@6—31)).
this, however, does not seem to be an extra restriction, since In order to avoid cumbersome calculations caused by the
for an irreducible manifold the right hand side must be pro-d=2 Fiertz rearrangement rules one has to use in checking
portional to the metric with a constant real coefficiéricall  the local symmetries, as in R¢fl0] we choose to get rid of
that bothg andB are covariantly constaptthe latter can be d=2 y matrices and work directly in terms of irreducible
obsorbed into a redefinition d [23]. Finally, taking into
account the condition&9), (30) and the Fiertz identity4)
one can verify that the cross commutatéy 5''s'] vanishes our d=2 spinor conventions, see Appendi¥.Ahe action
on shell which leads to the fuN=4 twisted algebra. functional of theN=2 gauged nonlinear sigma model is then
Thus, for the nonlinear sigma model on ater space to a sum of Eq.(24), which we rewrite here in terms of the
admit an extraN=2 twisted global supersymmetry, the irreducible components

RknEska_ Rknakas: 0,
R 5mBip— RmpBis=0 (30)

prove to be helpful. Evaluating the algebra further, one en
counters one more condition

a
components on the world sheér example¢,§:(igﬂ); for

1 o . m m . m
Sn=2=— EJ drdo _g{gaﬁ(gaznaﬁzmgnadl' I \/E( ¢?+)(7a¢?1+)+ l//?l)ﬁalﬁ?ﬂ)ef“gnﬁr I \/E( ’ﬂ?f)(ga‘//?]—)
U Dty 4 DT IN24 0 iy T psd 2P “Unm— I N207 ) Yy T "psd 2P “Tim

20 T s002Pes Q= N2 ] T 504278 “Gm+ ARpmkct (o W U 1 (33)

and a chain of the Noether couplings involvings 2, d=2 world-sheet supergravity multiple¢{® Xag Ap) (a stands for
a flat index
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1 i . i
h — _ Lo _
Smgezt o= — Zj drdoy—g{— \/Elﬁ?l)lﬂ?ﬂAaecf Onm— \/Elﬂ?],)(p?,)AaeJr “Onmt2i (9azn‘/’[n7)Xﬁ(+)ef ae+ﬂgnm
= 2i0,2" (i X g8+ 8- POnm— 210, 2™ X g €+ “€_PUnmt 21 0,2™W(_ ) X g+ - "€ Plnm
=200 W)X ()X B 8+ “€—Pnm— 20 ¥l ) X a(—) X p(+)B+ €~ “Tnm

+ w?lr)¢?+)X,8(7)Xa(—)(e+aefﬁ+ e.’e?)gnm+ ‘//En—)w?f)Xﬂ(+)Xa(+)(e+ae—B+ e.e_“)gnm}- (34

Because all the terms in a variation of the action which are i P
proportional either tay(". ¥ Gnm O t0 ¢(Ly¢s(_ygnm can OXa(+)= ~ Va€(+)™ 56(+)Aa— ﬁ(E(Jr)Xa(Jr)
be compensated by an appropriate variation of the gauge
field A,, it suffices to check the invariance modulo those

e X, e ”
terms. For anN=2 local world-sheet supersymmetry one (DXa()X5)

finds i _
— =€) Xa()Xy(+)E-7 (36)
57"= T n S no__i_ ro p k \/E
=l Py, Oy = —le b -y,
N In addition, apart from the usual reparametrization invari-
OXo(+)=0, 564 =0, ance, local Lorentz transformations, and Weyl symmetry, the
model exhibits invariance under two extra bosonic transfor-
i mations:

1 _

Mn= F 10t T HEOXmes _
|

i o - 5Aa:aaa1 5{//(i): - an(i) ’

2 VOEX ) T EXr) 8T i

' OX ()=~ 28X(+) (37)

| — —

oo = e e T Ex e i

5Aa:e_16aﬁgﬁyt9yb, 5lﬁ(+):_§bl/l(+),
i i

Xa()=Va€)F g € Aat 5 B € Xa() i

- Y- =50¥,

+ €)X a(-) X x84

i

i i
— Sx(n==bx1y, Ox(y=—=bx), 38
+Ee(,)xa(,)xy(,)e+7, (35) X(+)T50x), Ox(-)=~ 5bx( (38)

q wheree '=[det(e,*)] *=—g, and the super Weyl trans-
an formation

— — K
S =€y U= —TenIMpdly sy 1 _ _
oA, = Egaﬁefej( V) Xy (—) T Xy () V(+)
5)(“(,):0, 5ei'=0,

1 _ _
1 wy | - +Egaﬁe€ei(V(—)Xy(+)+Xy(+)V(—>)v
o) = G 92T S X e

i o - 5Xa(+):ga,ge+ﬂV(7), 5Xa(—):9a,ge—BV(+),
_—zﬁw(f)(f(ﬂ?(w)_€(+)Xy(+))ej' | | | | 39
these just preserving their flat form. In checking the local
i symmetries one has to use essentially the fact that the target
56% =—e_ (€ \Xv(t) T €)X (1)€Y, manifold is Kéhler and the metric is covariantly constant. In

T2 (A 7R addition, special care is to be taken of the terms requiring
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V. GAUGING N=4 TWISTED GLOBAL

integration by parts. When integrating by parts, the deriva-
SUPERSYMMETRY

tive 4, will hit the background metric

An action functional for theN=4 twisted string in a flat
space has been constructed in Rgf€,11]. Just as we pro-
ceeded in the former case, in order to gauge the two remain-

(40) ing twisted global supersymmetries in tNe=2 gauged non-
linear sigma model it suffices to mimic the structure of the
terms entering thé&=4 twisted string. To this end, on the

thus inducing extra terms as compared to the flat case.  world sheet there must be introduced two new real vectors
Notice that omitting the world-sheet supergravity fields inC, andD,,, and an extra complex fermioa,, [10], these
the transformation laws above and taking the parameter to beomplementing aiN=2, d=2 supergravity multiplet with

a constant, one is left precisely with the sigma model globahn N=4, d=2 one and playing the role of the gauge fields

supersymmetry transformations, thus supporting the consiger the extra local symmetry transformations. An amendment
tency of the gauging done. composed of the new fields reads

4,z &kgnﬁ-h? z a—gnm

agnm

= 0,2T (oG 922T T

SN o f drdo=g{ V2 U 8.+ P ilye ) (Cat I Do) Bt 210,20 (18- "€ PBrpy

—Ziﬁaanﬂ?l),uﬁ(,)eJrae[_anm— % ‘ﬂ?—%—)‘pm—)ﬂa(f)(}("'X),B(f)gaﬁBnm_ % ‘ﬂ?—)¢[n—)ﬂa(+)(X+X)B(+)ga'BBnm

+ 200 W) (Xa() a(—) + X (=) a(+)) €+ “€—PBamT 204y Ly a(+) i p(—) B+ “€-PDnmt C-C-}- (41)

Before we display the local form of the twisted supersym-

metry transformations, it is worth verifying that the addition

of the further Noether couplings we gathered above in
NoeNer to the previous actiofBy -+ SN°5 " does not de-

T
oY= EB@MGHW@)M(—)G—V’

stroy the local symmetries intrinsic to tIMe:Z gauged non-
linear sigma model. For this to be the case, the lagal
transformation must include an extra piece in the variation of
the field lﬂ?ﬂ and additionally the fermionic gauge field

e Ppp=0,

e+B5MB(+): —i 6(+)(C+ i D)[geJr‘B

Mg~y has to be involved too:
i — - _
== EBEQK"'E(—W?—)MMGH'

€. dup+)=0,
e_’B(S/.LB(_): i 6(_)(C+ iD)Be_B

+ EI"“B(*)(G(*)XV(*)

+€(7);y(f))efye+ﬁ
2\/—€< (X FX) (97

| .
N P
22 MBI EOX0)

_E(,);y(,))eerelj . (42)

Similarly, for the ¢ .y transformation one finds

- E“B(H(E(HXV(H

TenXyes e’
_i ) B
+ 2\/§E(+)My(+)(X+X)B(+)gy

i _
+— €
2\/§MB(+)( ()X 5(+)

— €)Xy 0 TEL P (43

Because all the terms in the variation of the full action that
are proportional either tay(,,#()Bnm Or t0 ¥(_y (1 \Bnm
can be compensated by an appropriate variation of the gauge
field C,+iD, and the same is obviously true for complex
conjugates, it suffices to check the invariance modulo those
terms. In addition, the transformation law of the field,
which by the same reason we omitted in the previous section
will be modified by new contributions involving (..

Turning to the transformation&7), (38), (39), one dis-
covers that the following contributions from the extra gauge
fields:
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i i
Salp(+)= ZaKp(+)s  Galp(—)=5aMp(-),
8,(C+iD), =ia(C+iD) | "Pe,,”
+iD),=ia(C+iD),—a—— .\ x5-9"e,
a 52 M XBC)
i
_aﬁ“ﬂﬂXﬁ(ﬂgwef ? (44)
i i
dorp(+)= ~ 5Pmpy Forp-)=5brp-)

. . : 1 _
5b(C+ID)a=Ib[ (C+|D)ye_7_ ﬁﬂy(_)Xﬁ(_)g’y‘g] e,

—ib| (C+iD),e.”

1
-— Bre, 45
2\/§My(+)X,B(+)g ] (45)

02" =BGl 1Y)k (1), Xa()=0, Ota()=0,
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and

1 _
6,(CHiD)y=—=p (v+v),e_"e,”
+—1 (v+v) et (46)
v+v)_ye.’e,
2\/5/’“7(+) (—)C+

render the action invariant when combined with E(&Y),
(38), and(39).

Having completed the consistency check, we now proceed
to discuss the twisted local supersymmetry in the full action

Sn=4=Sn=2+ SN2S" e+ S5, (47)

After an extremely tedious calculation with the extensive use
of Egs.(27), (29—(31), one can verify that the action holds
invariant under thé\= 2 twisted local supersymmetry with a
fermionic parametek:

oe? =0,

o ) o
Yy =~ T g PBii ¥y Ky ¥+ » 5e+“=ﬁ('<(+)#y(+)+K(+)ﬂy(+))e+’e—“,

— . i — — i — —
ef OXp(+)= ~1K(+)(C—1D) e~ E(K(Jr)l/«y(ﬂ‘*‘ K(+)My(+)) X p(+) -8 7= ﬁK(Jr)Iu’y(Jr)(X—{_X)ﬁ(Jr)g'Byi

1 - i
oY= EB@k"ﬁaZpK(ﬂei - Ew?ﬂkmﬂy(f)e—“

i - _ _
. k
EBﬁgkn'//&)KH)Xy(*)e*y_ ankgkpB@ lﬂ?’)K(ﬂl’b(f) ’

— - — i - —
€ 0 p)= VeK(1)8+ P 5K(1 AL - ﬁKH)XﬁmXW)g’B_ E(KH)“«/H)"'K(+)/Lv(+))"‘ﬁ(+)e+ye—ﬁi (48)
andK(_)
5Zn=B@kni l,[/E)Jr)K(,), 5Xa(+)=01 5Ma(+)=o, 5e+a=0,

o ) o
3Py =~ T @ PBigh ¥y k() (- » oo = G KMy ¥ Ky )8 T8,

— i - — i - — —
B =i —j ay Ba Y4 —— By
€” Ox g \=ik(_\(C—ID) e_+ —=(K(_ )T KV —)) Xp(—)E+E_ 7+ KM (X T X)g-1977,
B(-) (=) a B (=)Fy(-) (=) AB(—)=+ 2.2 () y(-) B(-)

1 i i o
; k
Y= EB@M%Z"KH%” VOO e T EBﬁgkn‘/’?ﬂ"(ﬂ){y(ﬂeﬂ—F”pkgkkaTn' Yooy s
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— i— [ — i -
B =— By By N Ye B
e_Péug—y=—Vgrye_F+ sk \Age_F+ K(AXB(X 9P+ —= (K oy T KV =) Mgy B TELF.
B(-) BH(-) 2% ()78 2.2 (AB()AY(-) R (A=) T R PEA(=) PB(-) +

(49

Here again we omitted rather lengthy expressions for the VI. ONE-LOOP B FUNCTION

variations of the world-sheet vector fields, and C, . . .
; : ) ; As we have seen above, the action functional to describe
+iD,, these being responsible for removing the terms pro;

i 0o 0om the N=4 twisted nonlinear sigma model is identical to that

portional 10 .y (-yGnm and ¢y ¢(+)Bnm- A relevant  of theN=2 theory. Thus the structure of one-loop ultraviolet

technical point to mention is that in verification of the.)  divergences in theN=4 model is immediately elucidated

invariance it proves to be helpful to c_ancel_the terms in theyue to the analysis available for thé=2 case(see, e.g.,

following sequence: first the terms involvingy and its  [19]). For completeness of the presentation we mention here

complex conjugate, then those containimanddz, then the  a few relevant points.

terms quadratic inz,dz, and then the rest. This is because When analyzing the ultraviolet behavior of a theory, it is

the integration by parts in th€ ¢ terms will contribute to  customary to use the background field metitfodl a review,

9z, 972, and so on. see Ref[32]). To maintain manifest covariance in perturba-
Apart from the transformations listed above, previoustion theory, it is convenient to switch to normal coordinates

work on the structure of the=4 topological string in a flat  (for the details and conventions sk&2])

spacd10,11] indicates the presence of further local symme- 2 g

tries. They prove to involve two complex bosonic parameters _ _ L+ a0

and two complex fermionic ones which together with. , Sp(x.s= 1)"”0‘)]‘”; n! dSnS[p(x,s),w(x)]

match perfectly the number of extra gauge fields on the =0
world sheet. It is straightforward to check that the transfor- 1
mations persist in the curved space, just maintaining their flat =2 D (8)Sp(x,9),¢(x)]
form. Omitting the variations ofA, and C,+iD,, the s=0
bosonic pair can be represented as =S+ S+ S+ - -, (53
50(/,&):05%9%(/,5), 501/,?_)205%9%1/,(5_), whereS, is given by Eq.(24), the argument being the back-
ground field. Splitting the metric in the common way,
OcXa(+)=— Clha(+) =V,‘;‘V%nag and redefining the quantum fieldig"/ds)|s—o
—V3(dp"/ds)|s—o, one ends up with the usual framework of
ScXa(~)= ~Cla(=)r Ocla(+)= _EXQ(+) , quantum field theory, the propagators and vertices being easy
to define.

Turning to one-loop divergences, one reveals that a poten-
tially divergent contribution from the fermionic fields in-
volves the integralin momentum spage

Ochba(—)= _EXa(—) ) (50

and

5f¢?+):f8%gmn¢?+)’ 5f¢-?_):_f8mmn¢-|(°_)’ [(p+k)2—m2](p2—m2)

OtXa(+)= Fla(r) s + (finite part asd—2), (54)
Sev o = —fu S -1 which proves to vanish as the divergent contributions from
Xa(-) Fa=)r Othra() ™ IXa(+) the first and second terms exactly cancel each other. Notice
_ that this is in perfect agreement with the absence of an ultra-
Otsa(-)= ~FXa(-) (51 violet divergence in the self-energy of a minimally coupled
vector potential in two dimensioni83]. The same result can
while for the fermionic transformation one finds be confirmed working in superfield49,34.

Then a detailed analysis shoWk9] that the structure of
Sta(—)=N(+)9ape-,  Sa)=N()9ase+?. (520  one-loop divergences is specified completely by Shever-
tex in a sector of the bosonic fields
That theN=4 twisted global supersymmetry can be gauged

without imposing further restrictions on the background ge- 1 2 o ko T en e

ometry implies the consistency of the coupling and provides - ﬂf d°0Rmq 29,2 (£"€M), (59)
one with the action functional of thbl=4 twisted string

coupled to a Ricci-flat Klaler background. the divergent part thus involving
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In order to describe fermions on the world sheet of a

- rmRkkﬁmﬁazmﬁaZn- (56)  string, it is customary to use purely imaginapymatrices:
. . ) ) 0 —i 0 i
Beautifully enough, as the classidd=4 twisted model is Yo=1 . . oY1= . ,
formulated on a Ricci-flat Kiler manifold, one immediately Y 10
concludes that the corresponding quantum theory is auto- 1 0
matically free of ultraviolet divergences at the one-loop _ _ Al
level. YITYOMT g ) (AL)

These obey the algebraic properties
VII. CONCLUSION

o {Ya,70}==2%ab,  Ya¥b= ~ Nab— €ap?¥3,
To summarize, in the present paper we have compared the

nonlinear sigma model possessingNai 2 global supersym- ePy,= 372, (A2)
metry with itsN=4 twisted generalization. The extra twisted ) N
transformations were constructed with the use of a backWith 7ap=diag(—,+) and e,y the 2D Levi-Civita totally
ground two-form field. We argued that, in order to provide a@ntiSymmetric tensoko,= — 1. The second and third identi-
symmetry of theN=2 action, the two-form must be covari- ties are s_pecmc to tht_a two—dlm_ensmnal space and simplify
antly constant and holomorphic. This is known to reduce thél€aling with they matrices consuierably. Not|<1:e_ further that
holonomy group to a subgroup of $1J1) and implies a the charge conjugation matri®, y,=—Cy,C" ", just coin-
Ricci-flat Kehler background. Gauging of both the=2 and ~ Cides with o and furthermore fo7a) "= ¥o¥a, (vo¥a)"
N=4 global (twisted supersymmetries has been performed= YoYa, Where (--)" stands for the Hermitian conjugation
by appealing to thél=2, d=2 andN=4, d=2 supergrav- and (---)" for the transposition. _

ity multiplets on the world sheet, respectively. Recalling fur- Any 2X2 complex matrixM 5g can be decomposed with
ther the fact that the string partners of the sigma models arééspect to the basisl,, v, , v}

physically equivalent in a flat space, and that Me 4 ex-
tension has the advantage of being manifestly Lorentz invari-
ant, it seems tempting to speculate that the latter point ishe coefficients having the form

responsible for the improved ultraviolet behavior of tRe ) . )

=4 twisted theory_ a=3;Tr(M), ap=— 2 Tr(M ')/b)v b=3Tr(M 73)-

Turning to possible further developments, it would be in- (A4)
teresting to derive the '_Kﬂer condition on the metric and Taking M ag= y/a@g, With arbitrary spinorsys, ¢g, and
those on the two-form field directly from thé=2,4 super- gifferentiating with respect to the latter one gets the basic
conformal algebra in a curved space. The correct form of thesertz identity
superconformal currents is prompted by the gauged versions
of the sigma models we constructed above. Since in the 5AK5BN=%5AB5KN—%Vf\avbNﬁ%?’sAB)’sNK- (A5)
Hamiltonian framework the currents appear as seconda
constraints, it is far from obvious that the information fol-
lowing from the closure of the algebra on a background will
be as restrictive as that implied by the local Lagrangian sym
metries, although we suspect they should match. Anothel?

interesting point is the superfield version of the analysis un- IRV (T N = (v ()
dertaken in this work. (o) (xvshN) = (Pyse) (XN) = (XY @) (v y3h), 6

Mag=2adas+ay¥as+bVaas. (A3)

r¥his allows one to rearrange the order of spinors in various
expressions involving world-sheet fermions. The key identity
that proves to be of extensive use in checking the local su-
ersymmetry of théN=2 string action is
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Spacetime. group are one dimensional, it is sometimes convenient to use
the light-cone notation for vectors and spinors:
APPENDIX A

1
In this appendix we gather odr=2 spinor notations and A.=—(ApxA;), A'B,=—A,B_-A_B,,
discuss some technical points relevant for the verification of V2

local symmetry transformations of tHé=2 string and its

N=4 twisted extension coupled to external curved back- q,A=< "D(”), (A8)
ground. by
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0 1 i 00 e le,p=e, ey —e, et
, 1 O ’ a - a +
e_‘e, =1, e,%, =1,

a

e_%,"=0, e,%, =0,
V3V+T T V+s V3V-T V- _ _ _
n++=n-=0, 7. =n_,=-1,
in which the Lorentz transformations simplify to
e._=1, e_.=-1. (A13)
SA.=*AA., SPh)=*3APy=3Ay30. (A9)

Obviously, the invariance is kept by contracting & ™ with APPENDIX B

a “—" [one could equally well contract a )" with a In order to make the presentation self-contained, in this
“(—)"ora* +"with two “( —)” ]. When a local version of appendix we list symmetry properties of the Riemann tensor
the Lorentz transformations is considered, a spin connectiopn a Kaler manifold. These prove to be of great use both in
o, is introduced, this allowing one to construct the covariantverification of anN-extended global supersymmetry for the

derivatives sigma model under consideration and in establishing the lo-
B cal version of the latter.
Vatb(1)=dath(1) = @atli4) Given a complex manifold with a Hermitian metrig,,
_ (we denote the inverse bg™), one introduces covariant
V()= dath) T @ath(-). derivatives

VaAs = oA+ —20aA anm:anvm_rknmvkr Vi m=dnvm,

VA =0,A_+2w,A_, (A10) B e B B
Viom=dom=— I, Vaom=dnvm.-
with dw,=24d,A. The advantage of the light-cone notation (BY)
is that it allows one to get rid oy matrices and work ex- . . .
plicitly in terms of the irreducible components of the tensors’A‘SSlJrn'ng the covariant constancy of the metric
under consideration. Notice that taking into account the
properties of the charge conjugation matrix it is easy to
Sheck that the object*Cy* ¢ ey, transforms as a tr);omplex Vg g TP, (B2
ector under the SQ@,1) Lorentz group, while?C¢°e,, is P
a complex scalar.
Introducing the zweibeire,® on the world sheeg®?
=ep*n %P and its inverse,”, g,5=€,"7b€5°, Wherea
stands for a curved index, one can finally verify the relations

VaOmk= InGmi— I’ pnmgp?: 0,

one readily finds the explicit form of the Levi-Civita connec-
tion

l_‘knm:gpkangmgv IP=9""d,gmk- (B3)

The simplest way to define the curvature and the torsion
tensors is to consider a commutator of two covariant deriva-
(A11) tives. For example,

er‘e’—e e =ee“e,,

g“'}/ekﬁ_ gaﬁek'}/: eg'}/ﬁeknena_

. . - k_TD
These prove to be helpful in checking the local supersymme- [Va,VelvP=RPkagv~TagVov", (B4)
try of the N=2 string. Other useful identities which we ex- . _ _ —
tensively use in the text are where A is a collective notation foa and a, and the sum
cp_sk es. pk, . ck_ps Mha an B o8 over D involves bothd andd. A simple inspection of the
€TeET=—Ty Ty, €7 en ey =ee latter relation with the use of EqB3) shows that the only
nonvanishing components of the torsion tensor are
€00 " €m" = €€nm, (A12) B
. . . . TK =T m= T = 0" 9nGmic— @
wheree=det(e;) and e,z is a totally antisymmetric matrix nm= T om ™ I mn= G (OnGmk™ ImGnid
with €01~ — 1.

. : . Kk Tk kK g —— 9y
Turning to the light-cone framework, some identities rel- Tom= = I = 9 (n0km— dmOkn)
evant to this work are (BS)
g*f=—e,%_P-e_%. P, while those of the curvature tensor are exhausted by
eeP=—e, % P+e_ e, P, Rpm=~Rnmp= dpI “mn,
Jup= €4 €5 —€, €57, R pm=—Rmp= 7pl - (B6)
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Introducing the notation When combined with those valid for an arbitrary Hermitian
manifold, the last equation yields a chain of relations
REan: Jak anEm ) (B7)
and making use of the explicit form of the connection, one Rompc=Rpmekc = Roicpm =Rk (B1Y)
finds which are known as the cyclic property of the Riemann ten-
B - sor on a Kéler manifold.
Rampk= ~ Rmnpk - (B8) Finally, when dealing with the terms involving the Rie-

Assuming finally that the manifold at hand is atier space Mmann tensor that enter the sigma model action the Bianchi
identities

TEm=0—T% n=T* 11— 0nGmk— ImIni=0, (B9
nm nm mn n9mk mInk ( ) VkRFmH_VmR;ka:O’

one immediately reveals an extra symmetry for the Riemann

tensor VikRamp — VaRimp =0, (B12)
R mp=R¥nnp- (B10)  which are valid for a Khler space, prove to be helpful.
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