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Quantum dilaton gravity as a linear dilaton conformal field theory
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A model of matter-coupled gravity in two dimensions is quantized. The crucial requirement for performing
the quantization is the vanishing of the conformal anomaly, which is achieved by tuning a parameter in the
interaction potential. The spectrum of the theory is determined by mapping the model first onto a field theory
with a Liouville interaction, then onto a linear dilaton conformal field theory. In the absence of matter fields,

a pure gauge theory with a massless ground state is found; otherwise it is possible to minimally couple up to
11 matter scalar fields: in this case the ground state is tachyonic and the matter sector decouples, like the
transverse oscillators in the critical bosonic string.

DOI: 10.1103/PhysRevD.65.104024 PACS nuniber04.60.Kz, 11.25.Hf

I. INTRODUCTION hole mass and the constant mode of the dilaton. This feature
appears even more puzzling when compared with the results
In recent years, many controversial features of the semief the AdS /CFT, correspondencg6], which predicts a
classical and quantum theory of gravity have been studietiuge degeneracy of states accounting for the thermodynami-
using models in two spacetime dimensions. Two-dimensionatal entropy of the black hole.
(2D) theories of gravity are not only useful toy models butin  The purpose of this paper is to go a step further in this
some cases also have a direct physical meaning, since theljrection. We will quantize exactly a 2D dilaton gravity
may be obtained from dimensional reduction of higher-model. We will focus our analysis on matter-coupled dilaton
dimensional gravity theories. gravity where the gravitational sector is given by
Basically, one can approach 2D gravity from two different
points of view: as the theory of 2D random surfades
bosonic string theory in noncritical dimension4,2] or as 1
an Einstein-like, Brans-Dicke theory of gravi2D dilaton S= Ef dzx\/—_g[d)RJr AV()], (1)
gravity) [3,4].
One crucial feature of 2D dilaton gravity is that it allows
for interesting gravitational structures already at the classical ) ) i
level. The theory admits black hole solutions, which have?"d We (Z:hoose an exponential dilaton potentigld)
been investigated both at the classical and semiclassical levalCONst<e 7¢. We wil approach the problem of the quanti-
[5]. Big progress in this direction has been achieved usingation of the model using nonperturbative methods. A natural
the anti—de SittefAdS)/conformal field theoryCFT) corre- ~ Way to introduce them is to relate the gravitational model to
spondence in two dimensiofi§—9]. The use of this corre- one of the several exactly solved quantum field theories in 1
spondence made it possible to exactly reproduce the thermo=1 dimensions. The Liouville field theoy.FT) turns out to
dynamical entropy of 2D black holes in terms of the be, not surprisingly, the right choice. Fixing the diffeomor-
degeneracy of states of a CFT. phism invariance of the actiofl) and using suitable field
It is obvious that one would like to go beyond the semi-redefinitions, we will show that the gravity model is classi-
classical approximation, in order to see how the results of theally equivalent to a LFT plus a decoupled free scalar with
semiclassical approach are modified in a full 2D quantumwrong sign kinetic energy.
theory of gravity. This program has been pursued using a We will then follow the common quantization procedure,
variety of methodg410,11,2§ but the results have been in imposing the positivity of quantum states enerp, as
some sense astonishing: the quantum theory ignores almassual in string theory, we will have ghosts in the spectrum
completely the richness of the structure of the classical ané consistent quantization can be performed provided the
semiclassical theory. The spectrum of the mo@eghich in  quantum anomaly vanishes. For this purpose, a simple
some cases is that of a CF& characterized only by two mechanism may be used. It is well known that also at the
quantum numbers, which can be identified with the blackclassical level LFT has a central chagyg depending on the
parametery appearing in the potential expy). In quantum
LFT, c, is shifted byy-dependent quantum correctiofi<].

*Electronic address: mariano.cadoni@ca.infn.it It will turn out that this shift is crucial: fixingy properly, we
"Electronic address: paolo.carta@ca.infn.it can achieve a vanishing total anomaly and remove the ob-
*Electronic address: smignemi@vaxcal.unica.it struction to quantization. If it were not for this shift, any
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dependence on the control paramegewould be lost and a per, the quantum equivalence between the md@8elwith

nonvanishing anomaly would be unavoidable. K=const) and Eq(1) can be also established showing that
In a sense, our approach is similar to that used by Davidboth can be mapped into the acti@), see below].
Distler, and Kawai in a different contek2]. In Ref.[2], the We fix the diffeomorphism invariance of the acti) by

Weyl symmetry is used to determine the coefficients of a freehoosing the conformal gauge for the metric,
action (the exponential interaction is canceled by fixing the 2o ()t
cosmological constant of the stringConversely, in this pa- ds?=e?7"Mdx* dx, 4

per we will fix the parametety appearing in the dilaton where v is a real free parameter. A glance at the classical

potential in order to ensure the conformal symmetry. It turn heory may be useful. For the moment we consider only the

out that also in our case the whole theory, including matte 2o } ) . )
fields, may be mapped onto a free field theory: a linear dila_grawtatlonal sector; matter fields will be reintroduced later.

ton CFT (see, for instance, Ref[13)) with energy- The equations of motion in the conformal gauge read

momentum tensor given by IR dV(¢)
8vye dyd_p(X)=\ dg

1
Toe=——10. X9 X, 14V, 95X~ (2)
a

N
99— p(x) = 727"0V() =0,
In our caseV, is determined by the dilaton gravity action.

The theory described by E(R) is not suitable as a string 92 =279 p(X)d+ h(X)=0,
theory since the Lorentz invariance in the target space is
explicitly broken byV, . This is not important in our con- 2 d—2v9_p(X)d_d(x)=0

text, since internal symmetries of the fields are not relevant

for us. The quantization of the theory then follows in awhere the last two equations are the constraints for the

straightforward way. theory. Two choices fo¥/(¢) lead to integrable models suit-
The structure of the paper is the following. In Sec. Il, we gple for our purposes:V(¢)=¢ and V(¢)=ae?’®

introduce the gravitational model we are going to investigate,; ge=27¢ [15]. The first case was considered in Refs.

we discuss the classical equivalence to constrained Louiville10,16. Classical solutions of the latter have been discussed

field theory plus a scalar free field, and we calculate then [17]. Here we will focus on the second case. Later on, we

central charge as a function of the paramegetn Sec. Ill,  will show that a quantum treatment of the model is not pos-
we briefly recall some basic features of LFT and we map oukjple for generic values of and 8. We choosex=1 and

model onto a linear dilaton CFT. In Sec. IV, the spectrum ofg=0. Settingk= 7y, A= u/(87), and performing the field
the quantum theory is determined. Finally, in Sec. V, we stat@edefinitions,
our conclusions.

b=2(p+¢), x=2p—¢),

Il. THE GRAVITATIONAL MODEL . .
action (1) in the conformal gaugé&4) becomes

Let us consider a general dilaton gravity model wih

—2 minimally coupled matter fields;, i=3,... N (N 1 B i
=2N<14): | S= Ef dX" x| d I x X+ A—yZeW’ :
5
S—E d?xy—g[ PR+ K()(V, ) (V¥ )+ AW( )
Tk alé ¢)(Vud ¢ ¢ whereas the constraint equations are
+L(V,0) (V¥ ], 3

1 1 1 1
Tee=— E(ﬂzlﬂ)zﬁL;(ﬁ l/f—( - 5(5:X)2+ ;fﬁx) =0.
whereW(¢) (the dilaton potentialandK(¢) are functions (6)
of the dilaton and\ and L are coupling constants. At the
classical level, whereas the matter part of the action is botfihe action(5) is invariant, up to boundary terms, under
diffeomorphism and Weyl invariant, the gravitational sectortransformations of the conformal group in two dimensions,
looks invariant only under diffeomorphisms. However, it hasgiven in light-cone coordinates byx™—w™(x™),x~
been shown that also the gravitational sector is classically-w™(x~). Under these transformations, the figldtrans-
Weyl invariant[14]. Using this symmetry, the actioi8) can  forms as a scalar, wheredstransforms as a Liouville field
be transformed, by means of a dilaton-dependent Wey! reg— ¢+ (1/y)In[(dw*/dx")(dw ™ /dx7)].
scaling of the metric, into the actioifl), with W(¢) The physical content of the 2D field theory we have ob-
=exp(fdpK(¢))V(e4). Owing to the conformal anomaly, tained can be immediately read from Eg¢S) and (6). It is
the extension of the Weyl symmetry at the quantum level igjiven by Liouville theory for the fieldy and one decoupled
in general problematic. But not in our case, since we tune tdree scalar fieldy with wrong sign kinetic energy. Both fields
zero the conformal anomalfFor the dilaton gravity model have an improvement term in the stress-energy tensor. Alter-
with an exponential potential we are considering in this pa-natively, one can see the theory as a conformally improved
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bosonic string in 2D target space, with one of the fields self=(1/47) fdx" dx [, ¢ d_+ (uldy?)exp(yy)]. At the
interacting. Of course this is just a way to describe our theoryjuantum level this charge is shift¢i2],

and clearly no Lorentz structure does exist in the “target

space.” TheN—2 matter fieldse can be straightforwardly 12 12 y?\2
introduced in the theory by adding to the previous Lagrang- 1+ —2H1+ > 1+ o5 @)
ian the termd,. ¢;d_¢;, i=3,... N, and to the stress- Y Y

5 .
energy tensor the term-(1/2)(9-¢;)* [we fix for conve- |t should be noticed that choosing a dilaton potentiéip)
nience in Eq(3) L= y/8]. =ae?"?+ Be 7%, the central charges fog and y (the

ghost field would be shifted by opposite amounts so that the

total anomaly would no longer depend gnTherefore, there

is no way to get a vanishing anomaly. A dilaton gravity
The quantization of the modéb) will be performed using model with such a potential cannot be, at least using our

the conventional quantization scheme, which preserves thecheme, quantized.

Weyl symmetry. In this way we will have a contribution to  Taking into account the shiff7), the well-known contri-

the anomaly both from the gravitational and matter field SeChution from the reparametrization ghostsy and from Bhe
tors. A consistent quantization will require a cancellation of -2 matter fields, the total central charge is

the two contributions.
12 2\ 2
1+ —2( 1+ y—)
Y

The conformal anomaly c(y)

Two different approaches have been proposed in the lit-

erature to realize this cancellation: the 2D quantum gravity in ~ C,+C,+(N—2)—26= >

the manner of David, Distler, and Kawig] and the string-

inspired dilaton gravity of Cangemi, Jackiw, and Zwiebach

[10]. +
In Ref.[2], the noncritical string theory is considered after

Polyakov's famous paper on the geometry of the bosonic

string[1]. The string ind dimensions is viewed as a model of =3(y*—4)+N-2=c(y).

d free bosons coupled to 2D quantum gravity. In the func-

tional integral, it is assumed that the measures can all b follows that

made independent of the Liouville mode by a field transfor- 14N
c(y)=0=y== VT

1 12
y2

+(N—2)—26

mation. The Jacobian so introduced is supposed to be the
exponential of a Liouville action. From these assumptions
follows the Weyl symmetry of the theory, and this is suffi- . . . . .
X : In the following, only a positive solution will be considered.

cient to determine the unknown parameters of the model.. L .

; . X Since vy has to be real and nonvanishing, we find the upper
This approach is consistent fdi<1. boundN < 14

In Ref.[10], the authors considered a 2D dilaton gravity '
model(1) with V(¢) = ¢. In the absence of matter fields, the
crucial problem of the cancellation of the quantum anomaly
has been solved by resorting to an unconventional quantiza- \ve are now in a position to consistently quantize our
tion procedure. The actiofi) is viewed as a theory of tWo  model. We have already pointed out that our theory describes
free scalars with two constraints, where the kinetic energy, | jouville field ¢, a decoupled free scalar field with
terms of the two scalars have opposite sign. Usually botRyrong sign kinetic energy, antN—2 free scalar matter
positive and negative kinetic energy scalars are quantizege|ds. The only(self-interacting field is the Liouville field,
imposing positivity of the energy of the quantum states. Thisyhose energy momentum tensor is the same as a free field
leads to negative nornighos states for the scalar with \ith a conformal improvement. From E¢§) it is easy to see
wrong sign kinetic energy and to the same central charggat also the fieldy has an improvement. The energy mo-

(+1) for both scalars. In Ref10], an opposite choice iS  mentum tensor for the quantum theory witields is there-
made; positivity of the norm is required, leading to negativesy e given by

energy states. The two scalars contribute with opposite sign
to the central charge and the total conformal anomaly can- 1 5 ) 1Q

cels. Of course this method does not work when matter fields ~ T++=— E(aix) v, i Xt v,= ;,E,O L)
are present.

In this paper, we are considering, as in R&0|, a dilaton ~ whereu=0,1,... N—1. X0 is the field x, X1 is the Liou-
gravity model, but we will use the conventional quantizationville field , and the remaining are the matter field3.
procedure of Ref[2]. Let us now evaluate the conformal =(2/y+y) andv, gives the conformal improvements. For
anomaly for the mode(5) as a function ofy. It is standard  the X* fields (the “target space) we are using the flat metric
lore that a single scalar fielde with action S 5 =diag(-1,1,...,1). Theenergy-momentum tens¢)
=(1/8m) fd®x\/|g][ 9, "¢+ (2/y)¢R] has a central can also be derived from the action
chargec..=1+12/y*, depending on the sign of the kinetic
energy term(the plus sign holds in the positive case
c, Iis the classical central charge for LFTS

®

I1l. MAPPING ONTO A LINEAR DILATON CFT

1
S=— 8_77j dzxw/—g(&ax" ﬂaXM—ZUﬂXMR)- (10
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This action describes a linear dilaton CFT. This is a free fieldvhere © - is the direct sum oveP>0 and Virypy are
theory whereas the theory described by E&$.and (6) is  irreducible representations of the Virasoro algebra of highest
not. However, both theories have the same energyweightA(P).

momentum tensor and this property can be used to determine From Eq.(13) it is evident that, paradoxically, the vacuum
the spectrum of our model. Before doing so, we will briefly |0) does not belong to the Hilbert space. Nevertheless the
remind the reader of some basic features of LUEZ,19, state-operator correspondence and VEM) still make
relying mainly on the picture proposed in Reff20,21] (see  sense. Owing to the CFT structure of LFT it is in principle
also Ref.[22]). In this approach, LFT is viewed as a mild possible to reconstruct all correlation functions starting from
generalization of the standard 2D CFT structure. The oldethe three-point function, whose exact expression is given in
approach to LFTsee, e.g., Ref18]) is much more involved Ref.[20]. VEV are obtained by suitable analytical continua-
and cannot be used for our purposes. tions summing over intermediate staf@g)].

A. Liouville field theory B. The quantization of the linear dilaton CFT

LFT is quantized as a CFT generalizing the celebrated We have already shown that our dilaton gravity model has
framework of Belavin, Polyakov, and Zamolodchikf®3],  the same energy-momentum tensor of a linear dilaton CFT.
(BPZ). The space of the states forms a representation of thghe spectrum of the theory can be found by quantizing a sort
Virasoro algebra but, in contrast with the minimal modelof bosonic string withN bosonsxX*. The energy-momentum
(BPZ schemg the set of representations is continuous. Thistensor and the action are given by E¢®.and(10). We can
is due to the noncompactness of the space where the zeggmply follow the steps that are usual for the critical bosonic
mode of the theory takes values. string, taking into accounti) the presence of a conformal

A two-dimensional CFT is characterized by a corresponimprovement andii) the previously discussed structure of
dence between fields, i.e., local operators, and s{@4ls  LFT. Concerning pointii), we take a ground stai@scilla-
The primary fieldsV, acting on theSL(2,C) invariant  tory vacuum |p;0) of momentump with component *)?
vacuum|0) generate the highest weight states of the Vira->Q2/s.
soro algebra. The descendant fielsimtes are defined by the We follow the conventions of Ref25]. The worldsheet is
action of the energy-momentum tensdi(w) (Virasoro parametrized by %,0), —e<7<®, 0O<o<m and we use
modesL ) on the primary fieldghighest weight stat¢sThe  periodic boundary conditions. The modes for right‘f and
theory is fully specified by vacuum expectation valueSeg (i) movers are independent. The commutation rela-

VEV) of the form ~ o~
( ) tions are as usudlak,,ar]=[ak, ail=mn*"8,.,. The
N M R _ Virasoro operators fom#0 are given by
(O L1 Twp) [T Two) L1 Ve, (2 ,2)10). (1) .
p= q= = .
o . LmZEE Am_q Aq—iMV - apy. (14
LFT fits into this general scheme but there are some subtle- 4

ties. If the central charge is given loy= 1+ 3Q? (in our case ) i )
Q=2/y+1y), thene®® are spinless primary fields with con- Here and in the following, the expressions for the left mode

formal dimension operators are obtained substituting— «,. The normal or-
dered expression fdr is

1
A(e“¢)=§a(Q—a)- (12) 2 =
p
LO:§+ Z a_n-dp.
The correspondence exists only in the region =t

The Hamiltonian isH=L,+L,. The normal ordering con-

O<Re(a)= 5 stant a in the mass-shell conditionsL§—a)|4)=(L,
—a)|¢)=0 and the conformal anomaly are determined in a

A scalar product can be defined for stafed, defined as Well-known way. From the relations for integey,
usual by Iimzﬂova(z)|0>, if a is given by .
2 3
— —Nm]+
0 1 (N+120°)m°—Nm]+2ma

QZE'HP,

1
+ E(m—13m3)=0,
whereP is real(we can takéP>0). As a consequence, using
Eg. (12) we find that a statéx) has a conformal dimension

A(P)=Q%8+ P?/2. The Hilbert space theory is given by V€ read
D Viram@Virge). (13 , 26N N-2
P>0 v —12 , a —24 . (15)
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As expected, the first equation above is the same as8Eq. The operators of the spectrum-generating algétrare eas-
From Eq.(15), it follows immediately that in the absence of ily found to be

matter fields N=2) the ground state is massless<0). If

matter fields are present €N<14), the ground state is Aﬂzif"dTvu(k 7

tachyonic @>0). " mlo e

IV. THE SPECTRUM OF THE MODEL Due to the kinematical setup, the vertex operatdfsare

periodic with periods. It follows that fori=4, [L,,Al]
Let us now construct explicitly the spectrum of our —q .

model. We will first consider the case in which matter fields  For j=3, a compensating term has to be added to the

are presentN=3. In this case, we can generate the spectrunéxpressmr(ﬂ) sincen3.v#0 [see Eq.(16)]. The form of

and prove the unitarity of the theory, using a SPeCiUM-piq torm is well known[26]. If v is the unit vector in the
generating algebra. This can be done adapting to our case t%ﬁectlonv we have

Brower constructiori26], a version of the covariant formal-
ism of Del Giudice, Di Vecchia, and Fubif27] (see also 5 ~ o e d e
Ref.[25]) used to prove the no-ghost theorem for the bosonic ~ V*(Kn,7) =10 - Xge™r"R: +v = (Inky - Xg) €578,
string.

We consider only the right-movers sectour results can  sg thatV? satisfies Eq(18) and consequenthp® commutes
be immediately extended to the left-movers sectdle want ity |
muting with the Virasoro generatots,,. Starting from the  generate states describing excitations in thedirections.

right-moving solution air=0, From the equatioV " (k,,7) =Xz expik.Xg), it follows that

1 1 af A is trivial, A} = (1/m) [GVT (K, ,7)=pt/2=—§,. On the
XR(m)=5x*+ —Tp”+—|§0 76 n, other handV~ can be defined as
1
we first construct primary fields of c_onformal dimension 1 V™ (k,,7)=: X elknXr: — d (In K, Xg)e'knXr,
from the vertex operatorg(k,r) =:\ - Xg exp(kXg):, where
A is a proper polarization vector. Using Ed4), we find We have completed the construction of the spectrum-

[L k- KgelkXR():] generating operator&) . They satisfy the algebra,
ms -\ AR .
AL]:m‘Sij5H+m! i,j>3,
[An Abl=—nA . >3,

[AI;] !Aﬁ] = nA2+m_ i Un25n+m )

_ A~2im7| d+ l+k2 k
-€ 2dr M ATV

I\ - XgelKXR;

KX (19

+e2im7m2( 5 —iv-\ IkXR(T) (16)

[Am Ay T=(M=MAL, 1 +2m38, s .
Let us now takek lightlike and orthogonal taw. This is ) i . )
always possible since from Eql5) it follows thatv is  Notice that the matter fields act as transverse “string” oscil-
spacelike. It is convenient to use light-cone coordinatés lators. As usual, instead with, it is convenient to work
=(X*, X7, X)) with X,Y#=—X*'Y " —=X"Y*+XY. By withthe operators
means of a Lorentz rotatlon we are free to takg 1 = N- 2
=(0,0p,0, ...,0),wherev v“=v The kinematical setup A=A —= 2 z B
. - A n n p p ton g
is fixed as follows. The “ground state momentuy§ in 2 p==a (= 8"
|po;0) can be chosen such thah=(—2,08,...), B2 5 _
=8a. Thek in V(k,7) is k,=(0,—2n,0) for mtegern k2 The operatorsA,, commute withA,. By definition, they
=0, kiv,=0. At the leveln the mass-shell condition is annihilate the oscillator vacuum,
satisfied: p+ k,)?+8(n—a)=0. _

Let us first construct the operators that generate states Ag|po;0)=0. (20)
describing excitations of the matter fieldd%4). If \' is a
vector pointing in the direction, we can findN—4 opera-

tors, [An A 1=(m—mA, .

i —oni . alkpXge
Vi(kn, 7)= N XgeTrTR:, 124, 17) We have successfully completed our task of finding the spec-
which, from Eq.(16), satisfy the commutation relations trum of the model we are considering. From the algeféa
it follows that for N=3 the spectrum is that of a bosonic
string oscillating in a target space with the-2 transverse
direction. The gravitational sector is decoupled from the mat-

Furthermorefb\; obey a Virasoro algebra:

Vik,,7). (18

_ . i d
i _a2imr| _
[Lmvv(kan)]_e ( 2dT+m
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ter field sector. Equatiof20) implies that the states of this gauge, zero norm states and the matter field sector describing
sector have zero norm, as expected for pure gauge states.transverse physical excitations. This result confirms previous
Until now we have considered only the case in whichresults[10] about quantization of pure dilaton gravity mod-
matter fields are presenNE& 3). If matter fields are absent els.
(N=2), we cannot use the previously explained construc- The theory has a free field spectrum but it is not trivial,
tion. However, in this case all the excitations are pure gaugsince as far as correlations are concerned, it has at least the
and it is evident that the Hilbert space consists of the groundame complexity as LFT. With our approach, establishing the
state whereas all the excited states have zero norm. Thequivalence with a sort of critical string, we have succeeded
conclusion is consistent with the results for pudackiw- in what seems difficult using other methods: the quantization
Teitelboim dilaton gravity obtained in Refl10], using a  of matter-coupled dilaton gravity.
different approach. As a final point, we observe that the rich structure exhib-
ited by the semiclassical analysis of 2D dilaton gravity has
V. CONCLUSIONS disappeared. The requirement of a vanishing anomaly, i.e.,
. ) . the criticality of the theory, washes out the semiclassical
In this paper, we have consistently quantized a model o§tryctures. The gap between the semiclassical and the quan-
matter-coupled dilaton gravity in two dimensions with the tym theory must still be filled. We believe this can be done
exponential dilaton potential. A vanishing conformal only going off-criticality. In this way, the theory would be

anomaly has been achieved by tuning a parameter in thgquivalent to a noncritical string and, needless to say, would
dilaton potential. The quantization has been performed byyresent severe difficulties.

mapping the theory first onto a field theory with a Liouville
interaction and then onto a linear dilaton CFT. The spectrum

has been determined in_ a st.raig.htfor_vyard way, a_nalogous to ACKNOWLEDGMENTS
that used for the bosonic string in critical dimensions. .
We have found that the ground state is tachyofuc Discussions with R. Jackiw and M. Cavagéee warmly

massless in the absence of mattdthe spectrum has two acknowledged. P.C. is grateful to the Center for Theoretical
decoupled sectors: the gravitational sector made of purBhysics, MIT, for hospitality during part of this work.
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