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Quantum dilaton gravity as a linear dilaton conformal field theory
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A model of matter-coupled gravity in two dimensions is quantized. The crucial requirement for performing
the quantization is the vanishing of the conformal anomaly, which is achieved by tuning a parameter in the
interaction potential. The spectrum of the theory is determined by mapping the model first onto a field theory
with a Liouville interaction, then onto a linear dilaton conformal field theory. In the absence of matter fields,
a pure gauge theory with a massless ground state is found; otherwise it is possible to minimally couple up to
11 matter scalar fields: in this case the ground state is tachyonic and the matter sector decouples, like the
transverse oscillators in the critical bosonic string.
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I. INTRODUCTION

In recent years, many controversial features of the se
classical and quantum theory of gravity have been stud
using models in two spacetime dimensions. Two-dimensio
~2D! theories of gravity are not only useful toy models but
some cases also have a direct physical meaning, since
may be obtained from dimensional reduction of high
dimensional gravity theories.

Basically, one can approach 2D gravity from two differe
points of view: as the theory of 2D random surfaces~a
bosonic string theory in noncritical dimensions! @1,2# or as
an Einstein-like, Brans-Dicke theory of gravity~2D dilaton
gravity! @3,4#.

One crucial feature of 2D dilaton gravity is that it allow
for interesting gravitational structures already at the class
level. The theory admits black hole solutions, which ha
been investigated both at the classical and semiclassical
@5#. Big progress in this direction has been achieved us
the anti–de Sitter~AdS!/conformal field theory~CFT! corre-
spondence in two dimensions@6–9#. The use of this corre-
spondence made it possible to exactly reproduce the the
dynamical entropy of 2D black holes in terms of th
degeneracy of states of a CFT.

It is obvious that one would like to go beyond the sem
classical approximation, in order to see how the results of
semiclassical approach are modified in a full 2D quant
theory of gravity. This program has been pursued usin
variety of methods@10,11,28# but the results have been i
some sense astonishing: the quantum theory ignores al
completely the richness of the structure of the classical
semiclassical theory. The spectrum of the model~which in
some cases is that of a CFT! is characterized only by two
quantum numbers, which can be identified with the bla
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hole mass and the constant mode of the dilaton. This fea
appears even more puzzling when compared with the res
of the AdS2 /CFT1 correspondence@6#, which predicts a
huge degeneracy of states accounting for the thermodyn
cal entropy of the black hole.

The purpose of this paper is to go a step further in t
direction. We will quantize exactly a 2D dilaton gravit
model. We will focus our analysis on matter-coupled dilat
gravity where the gravitational sector is given by

S5
1

kE d2xA2g@fR1lV~f!#, ~1!

and we choose an exponential dilaton potentialV(f)
5const3e2gf. We will approach the problem of the quant
zation of the model using nonperturbative methods. A natu
way to introduce them is to relate the gravitational model
one of the several exactly solved quantum field theories i
11 dimensions. The Liouville field theory~LFT! turns out to
be, not surprisingly, the right choice. Fixing the diffeomo
phism invariance of the action~1! and using suitable field
redefinitions, we will show that the gravity model is class
cally equivalent to a LFT plus a decoupled free scalar w
wrong sign kinetic energy.

We will then follow the common quantization procedur
imposing the positivity of quantum states energy~so, as
usual in string theory, we will have ghosts in the spectrum!.
A consistent quantization can be performed provided
quantum anomaly vanishes. For this purpose, a sim
mechanism may be used. It is well known that also at
classical level LFT has a central chargecg , depending on the
parameterg appearing in the potential exp(2gf). In quantum
LFT, cg is shifted byg-dependent quantum corrections@12#.
It will turn out that this shift is crucial: fixingg properly, we
can achieve a vanishing total anomaly and remove the
struction to quantization. If it were not for this shift, an
©2002 The American Physical Society24-1
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dependence on the control parameterg would be lost and a
nonvanishing anomaly would be unavoidable.

In a sense, our approach is similar to that used by Da
Distler, and Kawai in a different context@2#. In Ref. @2#, the
Weyl symmetry is used to determine the coefficients of a f
action ~the exponential interaction is canceled by fixing t
cosmological constant of the string!. Conversely, in this pa-
per we will fix the parameterg appearing in the dilaton
potential in order to ensure the conformal symmetry. It tu
out that also in our case the whole theory, including ma
fields, may be mapped onto a free field theory: a linear d
ton CFT ~see, for instance, Ref.@13#! with energy-
momentum tensor given by

T6652
1

a8
: ]6Xm]6Xm :1Vm ]6

2 Xm. ~2!

In our case,Vm is determined by the dilaton gravity action
The theory described by Eq.~2! is not suitable as a string

theory since the Lorentz invariance in the target space
explicitly broken byVm . This is not important in our con
text, since internal symmetries of the fields are not relev
for us. The quantization of the theory then follows in
straightforward way.

The structure of the paper is the following. In Sec. II, w
introduce the gravitational model we are going to investiga
we discuss the classical equivalence to constrained Loui
field theory plus a scalar free field, and we calculate
central charge as a function of the parameterg. In Sec. III,
we briefly recall some basic features of LFT and we map
model onto a linear dilaton CFT. In Sec. IV, the spectrum
the quantum theory is determined. Finally, in Sec. V, we s
our conclusions.

II. THE GRAVITATIONAL MODEL

Let us consider a general dilaton gravity model withN
22 minimally coupled matter fieldsw i , i 53, . . . ,N (N
>2,N,14):

S5
1

kE d2xA2g@fR1K~f!~¹mf!~¹mf!1lW~f!

1L~¹mw i !~¹mw i !#, ~3!

whereW(f) ~the dilaton potential! andK(f) are functions
of the dilaton andl and L are coupling constants. At th
classical level, whereas the matter part of the action is b
diffeomorphism and Weyl invariant, the gravitational sec
looks invariant only under diffeomorphisms. However, it h
been shown that also the gravitational sector is classic
Weyl invariant@14#. Using this symmetry, the action~3! can
be transformed, by means of a dilaton-dependent Weyl
scaling of the metric, into the action~1!, with W(f)
5exp„*dfK(f)…V(f). Owing to the conformal anomaly
the extension of the Weyl symmetry at the quantum leve
in general problematic. But not in our case, since we tune
zero the conformal anomaly.@For the dilaton gravity mode
with an exponential potential we are considering in this
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per, the quantum equivalence between the model~3! ~with
K5const) and Eq.~1! can be also established showing th
both can be mapped into the action~5!, see below.#

We fix the diffeomorphism invariance of the action~1! by
choosing the conformal gauge for the metric,

ds25e2gr(x)dx1 dx2, ~4!

whereg is a real free parameter. A glance at the classi
theory may be useful. For the moment we consider only
gravitational sector; matter fields will be reintroduced lat
The equations of motion in the conformal gauge read

8ge22gr(x)]1]2r~x!5l
dV~f!

df
,

]1]2f~x!2
l

4
e2gr(x)V~f!50,

]1
2 f22g]1r~x!]1f~x!50,

]2
2 f22g]2r~x!]2f~x!50,

where the last two equations are the constraints for
theory. Two choices forV(f) lead to integrable models suit
able for our purposes:V(f)5f and V(f)5ae2gf

1be22gf @15#. The first case was considered in Re
@10,16#. Classical solutions of the latter have been discus
in @17#. Here we will focus on the second case. Later on,
will show that a quantum treatment of the model is not p
sible for generic values ofa and b. We choosea51 and
b50. Settingk5pg, l5m/(8g), and performing the field
redefinitions,

c52~r1f!, x52~r2f!,

action ~1! in the conformal gauge~4! becomes

S5
1

4pE dx1 dx2S ]1c ]2c2]1x ]2x1
m

4g2
egcD ,

~5!

whereas the constraint equations are

T6652
1

2
~]6c!21

1

g
]6

2 c2S 2
1

2
~]6x!21

1

g
]6

2 x D50.

~6!

The action ~5! is invariant, up to boundary terms, und
transformations of the conformal group in two dimension
given in light-cone coordinates byx1→w1(x1),x2

→w2(x2). Under these transformations, the fieldx trans-
forms as a scalar, whereasc transforms as a Liouville field
c→c1(1/g)ln@(dw1/dx2)(dw2/dx2)#.

The physical content of the 2D field theory we have o
tained can be immediately read from Eqs.~5! and ~6!. It is
given by Liouville theory for the fieldc and one decoupled
free scalar fieldx with wrong sign kinetic energy. Both field
have an improvement term in the stress-energy tensor. A
natively, one can see the theory as a conformally impro
4-2
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QUANTUM DILATON GRAVITY AS A LINEAR DILATON . . . PHYSICAL REVIEW D 65 104024
bosonic string in 2D target space, with one of the fields s
interacting. Of course this is just a way to describe our the
and clearly no Lorentz structure does exist in the ‘‘targ
space.’’ TheN22 matter fieldsw can be straightforwardly
introduced in the theory by adding to the previous Lagra
ian the term]1w i ]2w i , i 53, . . . ,N, and to the stress
energy tensor the term2(1/2)(]6w i)

2 @we fix for conve-
nience in Eq.~3! L5g/8#.

The conformal anomaly c„g…

The quantization of the model~5! will be performed using
the conventional quantization scheme, which preserves
Weyl symmetry. In this way we will have a contribution t
the anomaly both from the gravitational and matter field s
tors. A consistent quantization will require a cancellation
the two contributions.

Two different approaches have been proposed in the
erature to realize this cancellation: the 2D quantum gravity
the manner of David, Distler, and Kawai@2# and the string-
inspired dilaton gravity of Cangemi, Jackiw, and Zwieba
@10#.

In Ref. @2#, the noncritical string theory is considered aft
Polyakov’s famous paper on the geometry of the boso
string@1#. The string ind dimensions is viewed as a model
d free bosons coupled to 2D quantum gravity. In the fun
tional integral, it is assumed that the measures can al
made independent of the Liouville mode by a field transf
mation. The Jacobian so introduced is supposed to be
exponential of a Liouville action. From these assumptio
follows the Weyl symmetry of the theory, and this is suf
cient to determine the unknown parameters of the mo
This approach is consistent ford<1.

In Ref. @10#, the authors considered a 2D dilaton grav
model~1! with V(f)5f. In the absence of matter fields, th
crucial problem of the cancellation of the quantum anom
has been solved by resorting to an unconventional quan
tion procedure. The action~1! is viewed as a theory of two
free scalars with two constraints, where the kinetic ene
terms of the two scalars have opposite sign. Usually b
positive and negative kinetic energy scalars are quant
imposing positivity of the energy of the quantum states. T
leads to negative norm~ghost! states for the scalar with
wrong sign kinetic energy and to the same central cha
~11! for both scalars. In Ref.@10#, an opposite choice is
made; positivity of the norm is required, leading to negat
energy states. The two scalars contribute with opposite
to the central charge and the total conformal anomaly c
cels. Of course this method does not work when matter fie
are present.

In this paper, we are considering, as in Ref.@10#, a dilaton
gravity model, but we will use the conventional quantizati
procedure of Ref.@2#. Let us now evaluate the conforma
anomaly for the model~5! as a function ofg. It is standard
lore that a single scalar fieldw with action S
5(1/8p)*d2xAugu@]mw ]mw1(2/g)wR# has a central
chargec651612/g2, depending on the sign of the kinet
energy term ~the plus sign holds in the positive case!.
c1 is the classical central charge for LFTS
10402
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5(1/4p)*dx1 dx2@]1c ]2c1(m/4g2)exp(gc)#. At the
quantum level this charge is shifted@12#,

11
12

g2
→11

12

g2 S 11
g2

2 D 2

. ~7!

It should be noticed that choosing a dilaton potentialV(f)
5ae2gf1be22gf, the central charges forc and x ~the
ghost field! would be shifted by opposite amounts so that t
total anomaly would no longer depend ong. Therefore, there
is no way to get a vanishing anomaly. A dilaton gravi
model with such a potential cannot be, at least using
scheme, quantized.

Taking into account the shift~7!, the well-known contri-
bution from the reparametrization ghosts, and from theN
22 matter fields, the total central charge is

cc1cx1~N22!2265F11
12

g2 S 11
g2

2 D 2G
1F12

12

g2G1~N22!226

53~g224!1N225c~g!.

It follows that

c~g!50⇒g56A142N

3
. ~8!

In the following, only a positive solution will be considere
Sinceg has to be real and nonvanishing, we find the up
boundN,14.

III. MAPPING ONTO A LINEAR DILATON CFT

We are now in a position to consistently quantize o
model. We have already pointed out that our theory descr
a Liouville field c, a decoupled free scalar fieldx with
wrong sign kinetic energy, andN22 free scalar matter
fields. The only~self-!interacting field is the Liouville field,
whose energy momentum tensor is the same as a free
with a conformal improvement. From Eq.~6! it is easy to see
that also the fieldx has an improvement. The energy m
mentum tensor for the quantum theory withN fields is there-
fore given by

T6652
1

2
~]6X!21vm]6

2 Xm, vm5S 1

g
,
Q

2
,0D , ~9!

wherem50,1, . . . ,N21. X0 is the fieldx, X1 is the Liou-
ville field c, and the remaining are the matter fields.Q
5(2/g1g) and vm gives the conformal improvements. Fo
theXm fields~the ‘‘target space’’! we are using the flat metric
hmn5diag(21,1, . . . ,1). Theenergy-momentum tensor~9!
can also be derived from the action

S52
1

8pE d2xA2g~]aXm ]aXm22vmXmR!. ~10!
4-3
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M. CADONI, P. CARTA, AND S. MIGNEMI PHYSICAL REVIEW D65 104024
This action describes a linear dilaton CFT. This is a free fi
theory whereas the theory described by Eqs.~5! and ~6! is
not. However, both theories have the same ener
momentum tensor and this property can be used to determ
the spectrum of our model. Before doing so, we will brie
remind the reader of some basic features of LFT@12,19#,
relying mainly on the picture proposed in Refs.@20,21# ~see
also Ref.@22#!. In this approach, LFT is viewed as a mi
generalization of the standard 2D CFT structure. The ol
approach to LFT~see, e.g., Ref.@18#! is much more involved
and cannot be used for our purposes.

A. Liouville field theory

LFT is quantized as a CFT generalizing the celebra
framework of Belavin, Polyakov, and Zamolodchikov@23#,
~BPZ!. The space of the states forms a representation of
Virasoro algebra but, in contrast with the minimal mod
~BPZ scheme!, the set of representations is continuous. T
is due to the noncompactness of the space where the
mode of the theory takes values.

A two-dimensional CFT is characterized by a corresp
dence between fields, i.e., local operators, and states@24#.
The primary fieldsVa acting on theSL(2,C) invariant
vacuumu0& generate the highest weight states of the Vi
soro algebra. The descendant fields~states! are defined by the
action of the energy-momentum tensorT(w) ~Virasoro
modesLn) on the primary fields~highest weight states!. The
theory is fully specified by vacuum expectation valu
~VEV! of the form

^0u )
p51

N

T~wp!)
q51

M

T̄~w̄q!)
r 51

R

Var
~zr ,z̄r !u0&. ~11!

LFT fits into this general scheme but there are some sub
ties. If the central charge is given byc5113Q2 ~in our case
Q52/g1g), theneaf are spinless primary fields with con
formal dimension

D~eaf!5
1

2
a~Q2a!. ~12!

The correspondence exists only in the region

0,Re~a!<
Q

2
.

A scalar product can be defined for statesua&, defined as
usual by lim

z→0
Va(z)u0&, if a is given by

a5
Q

2
1 iP,

whereP is real~we can takeP.0). As a consequence, usin
Eq. ~12! we find that a stateua& has a conformal dimensio
D(P)5Q2/81P2/2. The Hilbert space theory is given by

%
P.0

VirD(P) ^ Vir D̄(P) , ~13!
10402
d

y-
ne

r

d

he
l
s
ro

-

-

e-

where % P.0 is the direct sum overP.0 and VirD(P) are
irreducible representations of the Virasoro algebra of high
weight D(P).

From Eq.~13! it is evident that, paradoxically, the vacuu
u0& does not belong to the Hilbert space. Nevertheless
state-operator correspondence and VEV~11! still make
sense. Owing to the CFT structure of LFT it is in princip
possible to reconstruct all correlation functions starting fro
the three-point function, whose exact expression is given
Ref. @20#. VEV are obtained by suitable analytical continu
tions summing over intermediate states@22#.

B. The quantization of the linear dilaton CFT

We have already shown that our dilaton gravity model h
the same energy-momentum tensor of a linear dilaton C
The spectrum of the theory can be found by quantizing a
of bosonic string withN bosonsXm. The energy-momentum
tensor and the action are given by Eqs.~9! and~10!. We can
simply follow the steps that are usual for the critical boso
string, taking into account~i! the presence of a conforma
improvement and~ii ! the previously discussed structure
LFT. Concerning point~ii !, we take a ground state~oscilla-
tory vacuum! up;0& of momentump with component (p1)2

.Q2/8.
We follow the conventions of Ref.@25#. The worldsheet is

parametrized by (t,s), 2`,t,`, 0<s<p and we use
periodic boundary conditions. The modes for right (an

m) and

left (ãn
m) movers are independent. The commutation re

tions are as usual@am
m ,an

n#5@ãm
m ,ãn

n#5mhmndm1n . The
Virasoro operators formÞ0 are given by

Lm5
1

2 (
q

am2q•aq2 imv•am . ~14!

Here and in the following, the expressions for the left mo
operators are obtained substitutingan→ãn . The normal or-
dered expression forL0 is

L05
p2

8
1 (

n51

`

a2n•an .

The Hamiltonian isH5L01L̃0. The normal ordering con-
stant a in the mass-shell conditions (L02a)uf&5(L̃0
2a)uf&50 and the conformal anomaly are determined in
well-known way. From the relations for integerm,

1

12
@~N112v2!m32Nm#12ma

1
1

6
~m213m3!50,

we read

v25
262N

12
, a5

N22

24
. ~15!
4-4
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As expected, the first equation above is the same as Eq~8!.
From Eq.~15!, it follows immediately that in the absence o
matter fields (N52) the ground state is massless (a50). If
matter fields are present (3<N,14), the ground state is
tachyonic (a.0).

IV. THE SPECTRUM OF THE MODEL

Let us now construct explicitly the spectrum of o
model. We will first consider the case in which matter fiel
are present,N>3. In this case, we can generate the spectr
and prove the unitarity of the theory, using a spectru
generating algebra. This can be done adapting to our cas
Brower construction@26#, a version of the covariant formal
ism of Del Giudice, Di Vecchia, and Fubini@27# ~see also
Ref. @25#! used to prove the no-ghost theorem for the boso
string.

We consider only the right-movers sector~our results can
be immediately extended to the left-movers sector!. We want
to construct a spectrum-generating set of operatorsAn

m com-
muting with the Virasoro generatorsLm . Starting from the
right-moving solution ats50,

XR
m~t!5

1

2
xm1

1

2
tpm1

1

2
i (
nÞ0

an
m

n
e22int,

we first construct primary fields of conformal dimension
from the vertex operatorsV(k,t)5:l•ẊR exp(ikXR):, where
l is a proper polarization vector. Using Eq.~14!, we find

@Lm ,:l•ẊReikXR(t):#

5e2imtF2
i

2

d

dt
1mS 11

k2

2
2 ik•v D G :l•ẊReikXR:

1e2imtm2S k•l

2
2 iv•l D :eikXR(t): ~16!

Let us now takek lightlike and orthogonal tov. This is
always possible since from Eq.~15! it follows that v is
spacelike. It is convenient to use light-cone coordinatesXm

5(X1,X2,Xi) with XmYm52X1Y22X2Y11XiYi . By
means of a Lorentz rotation, we are free to takevm
5(0,0,v,0, . . . ,0),wherevmvm5v2. The kinematical setup
is fixed as follows. The ground state momentump0

m in
up0 ;0& can be chosen such thatp0

m5(22,0,b, . . . ), b2

58a. The k in V(k,t) is kn5(0,22n,0) for integern. kn
2

50, kn
mvm50. At the level n the mass-shell condition i

satisfied: (p1kn)218(n2a)50.
Let us first construct the operators that generate st

describing excitations of the matter fields (N>4). If l i is a
vector pointing in thei direction, we can findN24 opera-
tors,

Vi~kn ,t!5:l i
•ẊReiknXR:, i>4, ~17!

which, from Eq.~16!, satisfy the commutation relations

@Lm ,Vi~kn ,t!#5e2imtS 2
i

2

d

dt
1mDVi~kn ,t!. ~18!
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The operators of the spectrum-generating algebraAn
m are eas-

ily found to be

An
m5

1

pE0

p

dt Vm~kn ,t!.

Due to the kinematical setup, the vertex operatorsVm are
periodic with periodp. It follows that for i>4, @Lm ,An

i #
50 .

For i 53, a compensating term has to be added to
expression~17!, sincel3

•vÞ0 @see Eq.~16!#. The form of
this term is well known@26#. If v̂ is the unit vector in the
directionvm , we have

V3~kn ,t!5: v̂•ẊReiknXR:1v
d

dt
~ ln kn•ẊR!eiknXR,

so thatV3 satisfies Eq.~18! and consequentlyAn
3 commutes

with Lm .
Let us now construct the operatorsAn

1 and An
2 , which

generate states describing excitations in the6 directions.
From the equationV1(kn ,t)5ẊR

1exp(iknXR), it follows that
An

1 is trivial, An
15(1/p)*0

pV1(kn ,t)5p1/252dn . On the
other hand,V2 can be defined as

V2~kn ,t!5:ẊR
2eiknXR:2

1

2
in

d

dt
~ ln kn•ẊR!eiknXR.

We have completed the construction of the spectru
generating operatorsAn

m . They satisfy the algebra,

Am
i ,An

j ] 5md i j dn1m , i , j >3,

@Am
2 ,An

j #52nAn1m
i , i .3,

~19!
@Am

2 ,An
3#52nAn1m

3 2 ivn2dn1m ,

@Am
2 ,An

2#5~m2n!Am1n
2 12m3dn1m .

Notice that the matter fields act as transverse ‘‘string’’ osc
lators. As usual, instead withAn

2 it is convenient to work
with the operators

Ãn
25An

22
1

2 (
p52`

`

(
i 51

N22

:An2p
i Ap

i :1dn

b2

8
.

The operatorsÃn
2 commute withAm

i . By definition, they
annihilate the oscillator vacuum,

Ã0
2up0 ;0&50. ~20!

Furthermore,Ãn
2 obey a Virasoro algebra:

@Ãm
2 ,Ãn

2#5~m2n!Ãm1n
2 .

We have successfully completed our task of finding the sp
trum of the model we are considering. From the algebra~19!
it follows that for N>3 the spectrum is that of a boson
string oscillating in a target space with theN22 transverse
direction. The gravitational sector is decoupled from the m
4-5
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ter field sector. Equation~20! implies that the states of thi
sector have zero norm, as expected for pure gauge state

Until now we have considered only the case in whi
matter fields are present (N>3). If matter fields are absen
(N52), we cannot use the previously explained constr
tion. However, in this case all the excitations are pure ga
and it is evident that the Hilbert space consists of the gro
state whereas all the excited states have zero norm.
conclusion is consistent with the results for pure~Jackiw-
Teitelboim! dilaton gravity obtained in Ref.@10#, using a
different approach.

V. CONCLUSIONS

In this paper, we have consistently quantized a mode
matter-coupled dilaton gravity in two dimensions with t
exponential dilaton potential. A vanishing conform
anomaly has been achieved by tuning a parameter in
dilaton potential. The quantization has been performed
mapping the theory first onto a field theory with a Liouvil
interaction and then onto a linear dilaton CFT. The spectr
has been determined in a straightforward way, analogou
that used for the bosonic string in critical dimensions.

We have found that the ground state is tachyonic~or
massless in the absence of matter!. The spectrum has two
decoupled sectors: the gravitational sector made of p
.

e-

. D

,

10402
.

-
e
d
is
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to

re

gauge, zero norm states and the matter field sector descr
transverse physical excitations. This result confirms previ
results@10# about quantization of pure dilaton gravity mod
els.

The theory has a free field spectrum but it is not trivi
since as far as correlations are concerned, it has at leas
same complexity as LFT. With our approach, establishing
equivalence with a sort of critical string, we have succeed
in what seems difficult using other methods: the quantizat
of matter-coupled dilaton gravity.

As a final point, we observe that the rich structure exh
ited by the semiclassical analysis of 2D dilaton gravity h
disappeared. The requirement of a vanishing anomaly,
the criticality of the theory, washes out the semiclassi
structures. The gap between the semiclassical and the q
tum theory must still be filled. We believe this can be do
only going off-criticality. In this way, the theory would b
equivalent to a noncritical string and, needless to say, wo
present severe difficulties.
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