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Quantum mechanics of a superparticle with 1Õ4 supersymmetry breaking
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We study quantum mechanics of a massive superparticle ind54 which preserves 1/4 of the target space
supersymmetry with eight supercharges, and so corresponds to the partial breakingN58→N52. Its worldline
action contains a Wess-Zumino term, explicitly breaksd54 Lorentz symmetry and exhibits one complex
fermionic k symmetry. We perform the Hamiltonian analysis of the model and quantize it in two different
ways: with gauge-fixedk symmetry and in the Gupta-Bleuler formalism. Both approaches give rise to the same
supermultiplet structure of the space of states. It contains three irreducibleN52 multiplets with the total
number of (414) complex on-shell components. These states prove to be in one-to-one correspondence with
the de Rham complex ofp-forms on a three-dimensional subspace of the targetx manifold. We analyze the
vacuum structure of the model and find that the nontrivial vacua are given by the exact harmonic one- and
two-forms. Despite the explicit breaking ofd54 Lorentz symmetry in the fermionic sector, thed54 mass-
shell condition is still valid in the model.
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I. INTRODUCTION

Nowadays, partial breaking of global supersymme
~PBGS! @1,2# is widely understood to be an inborn feature
supersymmetric extended objects~for a recent review, see
Ref. @3#!. Exhibiting local kappa invariance, convention
p-brane models enjoy the feature of breaking half of the
get space global supersymmetry. Viewed differently,
PBGS concept can be exploited to construct superbrane
tions in a static gauge@4#, the technical tool here being th
method of nonlinear realizations@5#.

Recently, there has been growing interest in PBGS
tions other than the 1/2 breaking@6–15#. This is essentially
due to the discovery of thed511 supergravity solutions pre
serving 1/4 or 1/8 of thed511 supersymmetry@7# and their
subsequent interpretation in terms of intersecting bran
Since branelike world volume effective actions which wou
be capable of describing those solutions are still unknown
seems interesting to study pointlike models that mimic
exotic supersymmetry breaking options inherent in the in
secting branes. Such models could share some characte
features of the systems of intersecting branes, much like
ordinary superparticle bears a similarity to the Gree
Schwarz superstring.

In a series of recent papers@16–19# superparticle models
exhibiting 3/4 or 1/4 PBGS have been constructed. In c
trast with the conventional superparticle which, like a sin
superbrane, preserves half of the target space supersymm
these models reveal some new interesting peculiarities.
lowing the argument of Refs.@16,17,19#, in order to realize
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3/4, 1/4 or some further fractional PBGS options one has
extend the standardR4uN superspace by new central char
bosonic coordinates. In one of the 1/4 PBGS massive su
particle models of Ref.@18# the target superspace isR7u8.
The 1/4 breaking of the originalN58 supersymmetry1 down
to N52 manifests itself in the presence of only one comp
k symmetry in the corresponding worldline action. This
achieved at cost of the explicit breaking of the target sp
Lorentz symmetry down toSO(3) symmetry~in the fermi-
onic sector!.

In the present paper we continue the analysis of Ref.@18#
and study quantum aspects of this particularN58→N52
model as a typical example of massive superparticles w
1/4 PBGS. We first simplify the Lagrangian of Ref.@18# by
taking a real slice in the sector of bosonic variables. T
does not change the structure of global and local symmet
while still provides us with an example of 1/4 PBGS in a
ordinary four-dimensional Minkowski space-time~with R4u8

as the target superspace and explicitly broken Lorentz s
metry!. Prior to quantization, Hamiltonian analysis is acco
plished in full detail. A subspace of physical variables
specified. The supersymmetry algebra is shown to acquir
extra constant central term which appears differently in
commutation relations of the broken and unbroken sup
symmetry generators. This is typical of the superbranes
the PBGS approach and allows one to evade the no-go a
ment of @20# in the line of the general reasoning of@2#. We
quantize the model in two different ways: in a fixed gau
and using the Gupta-Bleuler method requiring no gauge
ing. Both approaches perfectly match. We obtain a spect
of eight complex on-shell states, four bosons and four fer
ons, which prove to be in one-to-one correspondence w
the space of differential zero-, one-, two- and three-forms

.

1Throughout the paper,N denotes the number of independentreal
supersymmetries from the one-dimensional worldline perspecti
©2002 The American Physical Society23-1
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the x manifold. It is worth mentioning that a similar corre
spondence is known to hold in one of the versions of Wit
supersymmetric quantum mechanics@21#. The vacuum struc-
ture of the theory is elucidated and shown to be provided
exact harmonic one- and two-forms on the manifold. Fina
we elaborate on the structure of the representations of
unbrokenN52 supersymmetry acting in a space of the e
cited states. This space is shown to contain twoSO(3) scalar
and oneSO(3) vector supermultiplets.

II. CLASSICAL HAMILTONIAN ANALYSIS

According to the original formulation of Ref.@18#, a su-
perparticle realizing theN58→N52 PBGS mechanism
propagates inR7u8 superspace. The even part of the sup
manifold is parametrized by seven bosonic coordina
x0,xi ,x̄i , i 51,2,3. The model exhibits anN58 rigid space-
time supersymmetry, as well as a localk invariance with one
complex parameter. It is noteworthy that, without spoili
the symmetry structure, one can reduce the model to the
subspacexi5 x̄i , after which the bosonic coordinates can
regarded to parametrize the usual four-dimensional
Minkowski space. Since this reduction does not invalid
the basic features of the problem we are dealing with,
considerably simplifies the analysis, in the rest of the pa
we shall concentrate just on this ‘‘real slice’’ of the origin
model. Its dynamics is governed by the action functio
with a Wess-Zumino term;m

S5E dtH 1

2e
~2P0P01P iP i !2

1

2
e m21 im~uu̇̄2c i ċ̄ i !J ,

~2.1!

where

P05 ẋ01
i

2
uu̇̄1

i

2
ū u̇1

i

2
c i ċ̄ i1

i

2
c̄ i ċ i ,

P i5 ẋi1 ic i u̇1 i c̄ i u̇̄ ~2.2!

and u,c i are four complex fermions parametrizing the o
sector of the model.

Apart from conventionalt reparametrizations, the actio
~2.1! is invariant under the localk transformations

du5k, dxi52 ic idu2 i c̄ idū, dc i5
P idū

P01me
,

dx052
i

2
udū2

i

2
ūdu2

i

2
c idc̄ i2

i

2
c̄ idc i , ~2.3!

de5
2ie~duu̇̄1dūu̇ !

P01me
.
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Here,k(t) is a complex Grassmann parameter. The actio
also invariant under the rigidx0,xi translations extended b
the supertranslations with eight real parameters~or four com-
plex onese i , e):

dc i5e i , dx052
i

2
e i c̄ i2

i

2
ē ic i ,

dxi52 i e iu2 i ē i ū, ~2.4!

du5e, dx052
i

2
eū2

i

2
ēu. ~2.5!

The algebra of the corresponding quantum Noether gen
tors is given below in Eq.~2.29!. Besides, the action~2.1!
enjoys a globalSO(3) symmetry acting as rotations in th
vector indexi. As distinct from the standard massive sup
particles with a Wess-Zumino term@22–24# corresponding to
1/2 PBGS, the fulld54 Lorentz symmetry is explicitly bro-
ken in Eq.~2.1! and is restored only in the limit of vanishin
fermions. One more distinction is that the fermionic va
ables are split into a singlet and triplet of the groupSO(3),
like x0,xi , while in the case of 1/2 superparticles they are
a spinor representation of the space-time group. In this
spect the considered model resembles a spinning par
where both fermionic and bosonic fields are space-time v
tors. This analogy, however, is rather far-fetched, since
manifest space-time supersymmetry is present in the s
ning particle.2 It is also worth noting that the algebra of th
global supersymmetry~2.4!,~2.5! is a truncation of the mos
general extension of the standardN52,d54 (N58,d51)
superalgebra by tensorial ‘‘central charges’’@25,14#, with
P0 ,Pi being combinations of the standardd54 translation
generators and the central charge ones@18#. One more sym-
metry of Eq.~2.1! is the invariance under phaseU(1) trans-
formations of the fermionic variables@u andc i have oppo-
site U(1) charges#.

It has to be stressed that, although the manifest Lore
covariance is missing in the model under consideration,
can still treat the variablex0 as a time coordinate in the targe
space. The corresponding momentum then specifies the
ergy

p052p052E, ~2.6!

with hnm5diag (2,1,1,1). In support of this assertion
the mass shell condition still holds in the model@18# @see Eq.
~2.10! below#. The Lorentz invariance gets broken in th
sector of Fermi variables only. Curiously enough, the sit
tion resembles what happens in theN52 string theory,
where theU(1) current of theN52 superconformal algebra

2An interplay between ad54 spinning particle and one of the 1/
PBGS models of Ref.@18# was studied in@19#.
3-2
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QUANTUM MECHANICS OF A SUPERPARTICLE WITH . . . PHYSICAL REVIEW D65 104023
is constructed out of fermionic fields, which is known
break the full Lorentz groupSO(2,2) down to the subgroup
U(1,1) @26#.

As is well known, the presence of local symmetries
characteristic of a constrained dynamical system which
quires special care in quantization. Following Dirac’s reci
in the Hamiltonian framework one finds five primary co
straints

A[pu2
i

2
~p01m!ū2 ipic i50,

Ā52pū1
i

2
~p01m!u1 ipi c̄ i50,

~2.7!

Ai[pc i2
i

2
~p02m!c̄ i50,

Āi52pc̄ i1
i

2
~p02m!c i50, pe50,

while the complete canonical Hamiltonian reads

H5pele1Alu2Ālū1Ailc
i 2Āilc̄

i
1

1

2
e~m22p0p0

1pipi !. ~2.8!

Here (pu ,p0 ,pi ,pc i,pe) stand for the momenta canonical
conjugate to the variables (u,x0, xi ,c i ,e) and le , etc. are
the Lagrange multipliers. The canonical brackets read

$x0,p0%5$e,pe%51, $xi ,pk%5d ik,

$pu ,u%5$pū ,ū%51, ~2.9!

$pc
i ,ck%5$pc̄

i ,c̄k%5d ik.

Given the Hamiltonian~2.8!, conservation of the primary
constraints implies one secondary constraint

M[m22p0p01pipi50, ~2.10!

and specifies some of the Lagrange multipliers

~p02m!lc i1pilū50, ~p02m!lc̄ i1pilu50,
~2.11!

~p01m!lu1pilc̄
i
50, ~p01m!lū1pilc

i 50.

Hereafter, we eliminate the canonically conjugate pair
nondynamical variablespe ande from the consideration in a
standard way~by fixing the gaugee5const, after which the
constraintpe becomes second class andpe can be removed
altogether by passing to the appropriate Dirac brackets!.

Aiming at the construction of a quantum mechanical d
scription of the system at hand, in the following we sh
restrict ourselves to the upper shell of the massive hype
loid ~2.10!:

p05E>m, or p0<2m,⇒p02mÞ0, ~2.12!
10402
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thus omitting configurations with negative energy. Under t
assumption, Eqs.~2.11! determine the value oflc and lc̄ ,
while still leavinglu ,lū arbitrary. The latter fact signals th
presence of two first-class fermionic constraints in the f
malism. The separation of the constraints into the first- a
second-class ones becomes more transparent after the s
redefinition

A→A85A1
1

~p02m!
piĀi . ~2.13!

In the new basis the full set of the canonical Poisson brac
between the basic constraints is as follows:

$A8,Ā8%52 i
1

~p02m!
~m22p0p01pipi !'0,

$A8,Ai%5$A8,Āi%5$Ā8,Ai%5$Ā 8,Āi%50,
~2.14!

$Ai ,Āk%5 i ~p02m!d ik, $Ai ,Ak%5$Āi ,Āk%50.

We see thatA8,Ā8,M are first class, whileAi ,Āi are second
class:

First class: A8'0, Ā8'0, M'0, ~2.15!

Second class:Ai'0, Āi'0. ~2.16!

With respect to the corresponding Dirac bracket the c
straintsA8,Ā8,M generate, respectively, the complexk sym-
metry andt reparametrizations. Such a bracket is easy
construct, but we postpone giving its explicit form until fix
ing a gauge with respect to thek symmetry.

In the next sections we shall quantize the theory in t
different ways, either eventually leading to the same sp
trum of physical states. One of them is the Gupta-Bleu
quantization which can be performed with all local symm
tries being kept manifest. Another one involves removin
prior to quantization, some irrelevant unphysical variables
fixing proper gauges with respect to the local symmetries
this case one should necessarily deal with Dirac brackets3 In
the rest of this section we describe the Hamiltonian form
ism along the lines of the second approach.

We impose the gauge conditions

3A quantization of the massless superparticle with the gauge-fi
k symmetry was accomplished in@27#.
3-3
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u50, ū50. ~2.17!

Conservation of the gauge fully specifies the value of
remaining independent Lagrange multipliers in Eqs.~2.8!,
~2.11!

lu5lū50. ~2.18!

As usual, the gauge-fixing conditions, together with t
former first-class constraintsA8,Ā8, should now be treated a
second-class constraints extending the set~2.16!. The Dirac
bracket then has to be used for the remaining variables.
the case at hand it is defined by

$B,C%D5$B,C%1
i

~p02m!
$B,u%M $ū,C%

1
i

~p02m!
$B,ū%M $u,C%2$B,u%$A8,C%1$B,ū%

3$Ā8,C%2$B,A8%$u,C%1$B,Ā8%$ū,C%

1
i

~p02m!
$B,Ai%$Āi ,C%1

i

~p02m!
$B,Āi%

3$Ai ,C%, ~2.19!

where M is defined in Eq.~2.10!. Being evaluated in the
coordinate sectors, Eq.~2.19! gives

$x0,c i%D52
1

2~p02m!
c i , $x0,c̄ i%D52

1

2~p02m!
c̄ i ,

~2.20!

$x0,p0%D51, $xi ,pj%D5d i j , $c i ,c̄ j%D52
i

~p02m!
d i j ,

with all other brackets vanishing.
Let us dwell on the issue of global supersymmetry in

reduced phase space which might give us an idea of w
type of symmetries one has to expect at the quantum leve
the chosen gauge, the equations of motion take their
form

ẋ052p0 , ẋi5pi , ṗ050, ṗi50, ċ i50.
~2.21!

Then, recalling the original transformation laws~2.3!–~2.5!,
one finds that six of the global supersymmetries are n
realized as

dc i5e i , dx052
i

2
e i c̄ i2

i

2
ē ic i , dxi50. ~2.22!

Two remaining supersymmetries~2.5! are now modified by a
compensatingk transformation~2.3! chosen so as to pre
serve the gauge~2.17!

dc i5
1

~p02m!
ēpi , dxi5 ic ie1 i c̄ i ē,
10402
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dx052
i

2~p02m!
pi~c ie1c̄ i ē !. ~2.23!

As a typical feature of the canonical formalism, the action
some symmetry generatorQi is defined via the Dirac brack
ets as follows:

dB5 i $B,Qi%De i1 i $B,Q̄i%Dē i . ~2.24!

Aiming at quantization of the system as the eventual go
we first diagonalize the brackets~2.20! by redefining the fer-
mionic fields

c i→c8 i5c iAp02m, c̄ i→c̄8 i5c̄ iAp02m,
~2.25!

$x0,p0%D51, $xi ,pj%D5d i
j , $c8 i,c̄8 j%D52 id i j ,

which makes the passage to a quantum description stra
forward. In the new basis the supersymmetry generators
the form ~hereafter, we omit primes on the new fields!

Qi5c̄ iAp02m, Q̄i5c iAp02m,
~2.26!

Q5
1

Ap02m
c i pi , Q̄5

1

Ap02m
c̄ i pi .

One should add to these generators also the generato
SO(3) rotations

Ji5e i jkxj pk2 i e i jk c̄ jck. ~2.27!

We can now write the full closed superalgebra at once in
quantum case, making the standard replacement of the D
brackets by the graded commutator

$ %D⇒2 i ~$ %, @ # !, ~2.28!

where the anticommutator is chosen for the bracket betw
two fermionic operators.

The full quantum algebra including Eq.~2.26! together
with the translation generatorsp052 i ]/]x0,pi52 i ]/]xi

and the generators ofSO(3) rotations~2.27! then reads

$Qi ,Q̄j%5~p02m!d i j ,

$Q,Q̄%5~p01m!1
1

~p02m!
~m22p0p01pipi !,

~2.29!
$Q,Qi%5pi , $Q̄,Q̄i%5pi ,

@Ji ,Jj #5 i e i jkJk, @Ji ,pj #5 i e i jkpk,

@Ji ,Qj #5 i e i jkQk, @Ji ,Q̄j #5 i e i jkQ̄k.

Other ~anti!commutators prove to vanish. One can direc
check that these generators, by the general rule~2.24! @with
the replacement~2.28!#, yield for the target superspace coo
dinates just the supersymmetry transformations~2.22!,
~2.23!, translations and standardSO(3) rotations.
3-4
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QUANTUM MECHANICS OF A SUPERPARTICLE WITH . . . PHYSICAL REVIEW D65 104023
Worth noting is the appearance of the constant cen
charge6m in the anticommutators$Q,Q̄% and$Qi ,Q̄j% and
the weakly vanishing term in the first anticommutator. T
latter property is typical for gauge-fixed theories. Recall t
the equation

M5m22p0p01pipi50 ~2.30!

is the only first-class constraint remaining in the formalis
Following Dirac’s method one should require it to vanish
physical states. When restricted to the physical subspace
algebra ~2.29! thus acquires its rigorous form. From th
structure of the algebra one can also infer that in the real
tion on the states the generatorsQi ,Q̄i should correspond to
the spontaneously broken symmetries~recall that by assump
tion p02mÞ0), while Q,Q̄ can be chosen to be unbroke
and so annihilating the vacuum. The appearance of the
stant central chargem with opposite signs in the anticommu
tators of broken and unbroken supersymmetries ens
evading the arguments of@20# against the possibility of par
tial breaking, in accord with the generic reasoning of Ref.@2#
~it is applicable to any superbrane theory!.

Finally, it is important to stress that it is the mass-sh
condition ~2.30! that allowed one to construct anN58 su-
persymmetry algebra out of the operators at hand, with
supersymmetries being broken. Similar to other superbra
like models, the partial breaking thus holds at the free the
level, without need to introduce a potential of a spec
shape, as it takes place in the standard nonrelativistic su
symmetric quantum mechanics@20,28,29#.

III. QUANTIZATION IN A FIXED GAUGE
AND THE VACUUM STRUCTURE

Let us proceed to the more detailed exposition of
quantization procedure. After replacing the Dirac brackets
~anti!commutators according to the rule~2.28! we represent
the fermionic coordinates by means of conventional creat
annihilation operators

c i→ai , c̄ i→ai 1, $ai ,aj 1%5d i j . ~3.1!

For the bosonic operators we keep the ordinary coordin
representation, with

p052 i
]

]x0
, pi52 i

]

]xi
. ~3.2!

Given a single pair of fermionic operators, a convenie
matrix representation is@28,30#

a5S 0 1

0 0D , a15S 0 0

1 0D , $a,a1%51. ~3.3!
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A representation space is trivially constructed and consist
a vacuum state and a single filled state

u0&5S 1

0D , u↑&5a1u0&5S 0

1D . ~3.4!

To construct a representation for the triplet~3.1!, it suffices
to find a matrix which anticommutes with botha and a1.
Such a matrix is readily constructed

t5@a,a1#5S 1 0

0 21D , t251, ~3.5!

and the sought representation is then given by 838 matrices

a15a312312 , a25t3a312 , a35t3t3a,

a1
15a1312312 , a2

15t3a1312 , a3
15t3t3a1.

~3.6!

It is noteworthy that the properties of thet operator allow
one to identify it with aZ2-grading operator~sometimes re-
ferred to as the Klein operator! acting in the Hilbert space
~see, e.g.@31,32#!. In particular, the eigenstates correspon
ing to the eigenvalue11 of this operator are identified with
bosonic states~for the simplest case of one pair of th
creation-annihilation operators there is only one such st
u0&), while those corresponding to the eigenvalue21 are
identified with fermions~in the simplest case the only ferm
onic state isu↑&).

In accord with the realization~3.6!, the representation
space of the full algebra is eight-dimensional4

4The direct products of the statesu0& andu↑& amount to the usua
eight component columns

u0&3u0&3u0&5S1

0

0

A
D, u↑&3u0&3u0&5S0

1

0

A
D, ••• ,

u↑&3u↑&3u↑&5SA

0

0

1

D.
3-5
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u0&3u0&3u0& ^ F~x!,

u↑&3u0&3u0& ^ C1~x!, u0&3u↑&3u0& ^ C2~x!, u0&3u0&3u↑& ^ C3~x!,
~3.7!

u0&3u↑&3u↑& ^ F1~x!, u↑&3u0&3u↑& ^ F2~x!, u↑&3u↑&3u0& ^ F3~x!,

u↑&3u↑&3u↑& ^ C~x!,
x
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with x5(x0,xi), and it is the direct sum of two comple
SU(2) singletsF, C and two complexSU(2) tripletsF i ,
C i ~total of 818 states!. It should be stressed that we do n
assign the Fermi statistics to any of thex-dependent func-
tions appearing above. The statistics of the states is defi
entirely with respect to theZ2-grading operatort3t3t.
Thus, we have a single boson in the first line of Eq.~3.7!, a
triplet of fermions in the second line, a triplet of bosons
the third line and a single fermion in the last line. Note th
this decomposition into fermionic and bosonic states is
some extent conventional. As theZ2-grading operator one
could equally take2t , with respect to which the bosoni
states become fermionic and vice versa. Similarly,
vacuum and filled states in Eq.~3.3!, as well as the creation
and annihilation operators, alternate their status. Without
of generality, in what follows we shall stick to the first gra
ing.

Of frequent use in the literature are also alternative rep
sentations which deal with either superfields or a more
stract Fock space~see, e.g,@28,29#!. In the next section we
shall present the superfield Gupta-Bleuler quantization of
same system and show that it yields an equivalent spec
of states.

At first glance, it seems somewhat surprising that a pi
part of the states~3.7! is described by purely bosonic func
tions. Observe, however, that the four levels in Eq.~3.7! are
in one-to-one correspondence with the space of differen
zero-, one-, two-, and three-forms on a manifold~the com-
ponents of a 2-form are defined asF i j 5e i jkFk while those
of a 3-form asC i jk5e i jkC). At this stage it seems relevan
to mention that thede Rhamcomplex of a~curved! manifold,
the space of allp-forms, can be described within the fram
work of supersymmetric quantum mechanics@21#. This cor-
respondence between fermionic states andp-forms is also
reminiscent of Ka¨hler’s geometric reformulation of spinor
and Dirac equation in terms of differential forms~for a com-
prehensive review and further references see Ref.@33#!.

Armed with these remarks, we now proceed to anal
the vacuum structure of the theory. Most elegantly this c
be done again in terms of differential forms and our disc
sion here parallels that of Ref.@21#. Because of the algebr
~2.29!, the vacuum state of the unbroken supersymmetry
fined by the conditions

Quvac&5Q̄uvac&50, ~3.8!

necessarily has minimal energy

p01m50,⇒M5pipi2p0p01m25pipi[2D. ~3.9!
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Then the supersymmetry chargesQ and Q̄ can be given a
natural geometric interpretation. When acting on a vacu
state they coincide with the exterior differentiationd and the
adjoint exterior differentiationd, respectively

Q̄;d, Q;d, dd1dd5
1

2m
D. ~3.10!

An immediate consequence of Eqs.~3.8!–~3.10! is that the
vacuum state of the unbroken supersymmetry necessaril
volves a harmonic form. Sinced increases the order of
form by one unit whiled decreases it by one unit, it suffice
to apply the operatorsQ andQ̄ directly to each level in Eq.
~3.7! ~to be more precise, one has to consider a linear co
bination of states at a given level! without need to conside
any linear combination of states belonging to different leve

On a manifold of trivial topology, which we assume
this work, one finds the following solution to Eq.~3.8! in
terms of 0-, or 3-forms@the first and the fourth levels in Eq
~3.7!#:

uvac& (B)
(0)5u0&3u0&3u0& ^ e2 imx0

a,
~3.11!

uvac& (F)
(0)5u↑&3u↑&3u↑& ^ e2 imx0

b,

wherea,b are some constants. These vacua are not too
teresting. Indeed, on them

pi uvac& (B)
(0)5pi uvac& (F)

(0)50, ~3.12!

and, as follows from the~anti!commutation relations~2.29!,
the (Q,Q̄,p01m) and (Qi ,Q̄i ,p02m) supersymmetries de
couple from each other. The first supersymmetry is unb
ken, while the second one is totally broken. The only Go
stone excitations are expected to be the complex Volk
Akulov @34# Goldstone fermions associated with th
generatorsQi , or Q̄i . The action of the latter on Eq.~3.11!
produces a ring of ground states, every state possessin
minimal energy~3.9! and being a singlet of theQ,Q̄ super-
symmetry. The holomorphic setQi annihilates uvac& (F)

(0) ,
while the conjugated set vanishes onuvac& (B)

(0) .
Thus these vacua and the related sector of the full sp

of states do not correspond to the symmetry structure of
1/4 PBGS superparticle of Ref.@18#. Indeed, in the latter
case the translationspi should also be necessarily broke
with the associated Goldstone excitations as the transv
superparticle coordinates.
3-6



io

n

ta

l’’

or
ay
t

er

ou
th
e
/4

.

s
a

hi

pe
o

ed

ce

g

ow
eat-
ld

res-
ec-

en-
a

q.

ch

tates
one-
y,
s.

QUANTUM MECHANICS OF A SUPERPARTICLE WITH . . . PHYSICAL REVIEW D65 104023
The vacua with the desirable properties arise as solut
of Eqs.~3.8! for the second and third levels in Eq.~3.7!. For
the 1-forms@the second level in Eq.~3.7!# Eqs.~3.8! amount
to

piC i50, ] [ iC j ]50→C i5e2 imx0
pi (~xW !, D(50,

~3.13!

and the general structure of the corresponding fermio
vacuum state is

uvac& (F)5ai 1u0&3u0&3u0& ^ pi e2 imx0
(~xW !, D(50.

~3.14!

For the 2-forms@the third level in Eq.~3.7!# Eqs.~3.8! can be
analyzed in the same spirit, yielding a bosonic vacuum s

uvac& (B)5ai 1aj 1e i jk u0&3u0&3u0&

^ pk e2 imx0
V~xW !, DV50. ~3.15!

We are led to neglect in((xW ), V(xW ) zero modes;xi , since
the corresponding pieces belong to the ring of ‘‘trivia
vacua~3.11!.

It is straightforward to check that none of the generat
Qi andQ̄i annihilate the vacuum states defined in this w
these generators rather produce one or another multiple
the unbrokenN52 supersymmetry. The resulting states c
tainly do not belong to the ring of vacua@i.e., do not obey
Eqs. ~3.8!# in view of the anticommutation relations~2.29!
and the important property

pi uvac& (F,B)Þ0. ~3.16!

In full agreement with the classical consideration@18#, one
concludes that these six supersymmetries are spontane
broken together with three transverse translations, i.e.,
vacuum structure and the associated sector of the spac
quantum states precisely match the ‘‘real slice’’ of the 1
PBGS superparticle of@18# with which we started in Sec. II

It remains to discuss the generators of theSO(3) rota-
tions. Making use of the explicit representation~2.27! one
can readily verify the relations

Ji uvac& (F)5aj 1u0&3u0&3u0& ^ e2 imx0
pjS i~xW !,

S i~xW !5e i jkxj pkS~xW !,

Ji uvac& (B)5aj 1ak1e jkl u0&3u0&3u0&

^ e2 imx0
plV i~xW !,

V i~xW !5e i jkxj pkV~xW !. ~3.17!

Since the operatorsJi do not annihilate these vacuum state
but rather produce new vacua of the same sort, generic
they are spontaneously broken. Note that they are vanis
on the ‘‘trivial’’ vacua ~3.11!, indicating thatSO(3) is un-
broken in the sector corresponding to two decoupled su
symmetries. However, it can be chosen unbroken in the c
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sidered ‘‘1/4 PBGS superparticle’’ sector as well, provid
one selects some subclass in the set of vacua~3.14!,~3.15!.
Indeed, the relations

( i5V i50 ~3.18!

hold on the spherically symmetric solutions of the Lapla
equation:

(~xW !5const11
1

uxW u
, V~xW !5const21

1

uxW u
~3.19!

@actually, const1 and const2 drop out from the correspondin
subset of the vacua~3.14! and ~3.15!#.

In the end of the next section we shall briefly discuss h
this vacuum PBGS structure is related to the standard tr
ment of the partial breaking of supersymmetry in the fie
theory models, and in which precise sense it implies the p
ence of the appropriate Goldstone excitations in the sp
trum.

Finally, let us comment on the structure of the repres
tation of theN52 unbroken supersymmetry which acts in
space of the ‘‘excited’’~i.e., with E52p0.m) states. Since
in this case

pW 25pipiÞ0, ~3.20!

for the fermionic states from the second line in Eq.~3.7! one
can use the decomposition

C i5S d i j 2
pipj

pW 2 D C j1
pipj

pW 2
C j[C'

i 1piY, piC'
i 50.

~3.21!

Analogously, the bosonic states from the third line in E
~3.7! can be represented as

F i5S d i j 2
pipj

pW 2 D F j1
pipj

pW 2
F j[F'

i 1piJ, piF'
i 50.

~3.22!

With a simple inspection one can further verify that at ea
level the states

u0&3u0&3u0& ^ F~x!, ai 1u0&3u0&3u0& ^ piY~x!,
~3.23!

ai 1aj 1e i jk u0&3u0&3u0& ^ F'
k ~x!,

ai 1u0&3u0&3u0& ^ C'
i ~x!, ~3.24!

ai 1aj 1e i jk u0&3u0&3u0& ^ pkJ~x!,

ai 1aj 1ak1e i jk u0&3u0&3u0& ^ C~x!, ~3.25!

form irreducible multiplets of the unbrokenN52 supersym-
metry. One thus concludes that the space of the excited s
is a direct sum of these three on-shell representations of
dimensionalN52 supersymmetry, involving, respectivel
(212), (414) and (212) independent real component
3-7
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The rest ofN58 supersymmetry generators,Qi ,Q̄i , mix
theseN52 multiplets with each other, combining them in
an irreducible on-shell multiplet of the full supersymmetr

IV. GUPTA-BLEULER QUANTIZATION

In the GB quantization~see, e.g.,@35#! one represents th
wave function by a complex superfieldw,

w5w~x0,xi ,u,ū,c i ,c̄ i !, ~4.1!

and imposes on it all the first-class constraints~2.15! and half
of the second-class constraints~2.16! ~without passing to
Dirac bracket!.

We shall enforce these constraints in two steps:
~1! Off-shell constraints:Aiw50, Ā 8w50;
~2! On-shell constraints:A8w50, (m22p0

21pipi)w50.
We replace the momenta by differential operators

pu→ i
]

]u
, p̄u→ i

]

]ū
, pc

i → i
]

]c i
, p̄ c

i → i
]

]c̄ i
,

~4.2!

after which the off-shell constraints take the form

Diw50, ~D̄1pi c̄ i !w50, ~4.3!

where

Di5
]

]c i
2

1

2
~p02m!c̄ i , D̄ i52

]

]c̄ i
1

1

2
~p02m!c i ,

~4.4!

D5
]

]u
2

1

2
~p01m!ū, D̄52

]

]ū
1

1

2
~p01m!u.

The solution of Eq.~4.3! reads

w5u1c̄ i r̄ i1c̄2i v̄ i1c̄3h̄1
1

2
~p02m!c i~ c̄ iu2e i jk c̄2 j r̄k

1c̄3v̄ i !2
1

4
~p02m!2c2i~ c̄2iu1c̄3!2

1

8
~p0

2m!3c3c̄ 3u. ~4.5!

Here

c2i[
1

2
e i jkc jck, c3[

1

6
e i jkc ic jck, ~4.6!

and thec̄ monomials are defined by the same formulas. T
superfields$u,r̄ i ,v̄ i ,h̄% depend only on$x0,xi ,u,ū% and obey
the constraints

D̄u50, D̄ r̄ i52piu, D̄ v̄ i5e i jkpj r̄k, D̄h̄52pi v̄ i .
~4.7!

In terms of the component fields, the solution of the off-sh
constraints reads
10402
e
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u5u01uj̄2
1

2
uū~p01m!u0 ,

r̄ i5 r̄0
i 1uf̄ i2 ū~piu0!1uūS pi j̄2

1

2
~p01m!r̄ 0

i D ,

~4.8!

v̄ i5 v̄ 0
i 1uz̄ i1 ūe i jkpj r̄0

k1uūS 2e i jkpj f̄k2
1

2
~p01m!v̄0

i D ,

h̄5h̄01uv̄2 ū~pi v̄0
i !1uūS pi z̄ i2

1

2
~p01m!h̄0D .

Thus, off shell we have 8 complex bosonic fields

u0 , f̄ i , v̄0
i , v̄ ~4.9!

and 8 complex fermions

j̄, r̄0
i , z̄ i , h̄0 . ~4.10!

Now we turn to solving the on-shell constraints which ha
the form

~D2pic i !w50, ~m22p0
21pipi !w50. ~4.11!

Being rewritten in terms ofN52 superfields$u,r̄ i ,v̄ i ,h̄%,
they read

Du5
1

p02m
pi r̄ i , D v̄ i5

1

p02m
pi h̄,

~4.12!

D r̄ i5
1

p02m
e i jkpj v̄k, Dh̄50.

These conditions put all the fields on the mass shell

~m22p0
21pipi !~all bosons!50,

~m22p0
21pipi !~all fermions!50 ~4.13!

and add the following constraints:
3-8
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Bosons: f̄ i5
1

p02m
e i jkpj v̄0

k , v̄50,

~4.14!

Fermions: j̄5
1

p02m
pi r̄0

i , z̄ i5
1

p02m
pi h̄0 .

Therefore on shell we have 4 complex bosons$u0 ,v̄0
i % and 4

complex fermions$r̄0
i ,h̄0%. This is in a nice agreement wit

the on-shell content found in the end of the previous sect
To see this in more detail, one should take into account t
as a consequence of Eqs.~4.3! and ~4.11!, the longitudinal
(;pi) parts of theN52 superfieldsr̄ i and v̄ i are expressed
as spinor derivatives ofu and h̄. Then the irreducible set o
on-shellN52 superfields atpipiÞ0 is as follows:

u5u01u
1

p02m
~pi r̄0

i !2
1

2
uū~p01m!u0 ,

r̄'
i 5 r̄0'

i 1u
1

p02m
e i jkpj v̄0'

k 2
1

2
uū~p01m!r̄0'

i ,

~4.15!

v̄'
i 5 v̄0'

i 1 ūe i jkpj r̄0'
k 1

1

2
uū~p01m!v̄0'

i ,

h̄5h̄02 ū~pi v̄0
i !1

1

2
uū~p01m!h̄0 .

One can readily establish the correspondence with the w
functions~3.23!–~3.25! ~up to factors containingp02m)

F;u0 , C;h̄0 , C'
i ;r̄0'

i ,

Y;~pi r̄0
i !,F'

i ; v̄0'
i , J;~pi v̄0

i !. ~4.16!

Note that the superfieldsr̄'
i andv̄'

i are not independent: the
describe the same on-shellN52 supermultiplet
r̄0'

i (x), v̄0'
i (x) and are related by

r̄'
i 5

1

pW 2
D̄~e ikl pkv̄'

l !, v̄'
i 52

~p02m!

pW 2
D~e ikl pkr̄'

l !.

It is worth noting that the superfield wave functio
w(x,u,c) could be chosen fermionic rather than boson
with the corresponding exchange of Grassmann parities
tween the component wave functions. This freedom is of
same kind as a freedom of choosing eithert or 2t as theZ2
grading operator in the fixed-gauge quantization. Also no
that one could putw into some nontrivial representation o
SO(3) by attaching an extraSO(3) index to it. In this way a
reacherSO(3) structure of the final wave functions can b
achieved.

Finally, it is instructive to consider the ‘‘vacuum’’ solutio
within the GB quantization framework. It is singled out b
the additional constraints

Qwvac5Q̄wvac50,
10402
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where

Q5
]

]u
1

1

2
~p01m!ū, Q̄5

]

]ū
1

1

2
~p01m!u,

$Q,Q̄%5p01m

@cf. Eq. ~3.8!#. It is straightforward to see that they imply, fo
all the component fields, the additional condition

~p01m!~all components!50,⇒D~all components!50.

Besides, they require all components in theu,ū expansions
in Eq. ~4.8!, except for the first ones, to vanish. The latt
requirement gives rise to the following relations and vacu
solutions:

~a! H piu050

pi h̄050
⇒H u05const3e2 imx0

h̄05const3e2 imx0

~4.17!

~b! H e i jkpj v̄0
k50, pi v̄0

i 50

e i jkpj r̄0
k50, pi r̄0

i 50

⇒H v̄0
i 5e2 imx0

piB~xW !, DB50

r̄0
i 5e2 imx0

piF~xW !, DF50.

The solutions~a! correspond to ‘‘trivial’’ vacua~3.11!, while
~b! to the vacua~3.15!,~3.14!.

Let us clarify the precise meaning of the PBGS pha
associated with these vacuum solutions.

Before quantization, the worldline action~2.1! in a
‘‘static’’ gauget5x0 and with thek symmetry fully fixed by
the gauge condition~2.17! ~implemented at the classica
level! can be considered as the minimal action of the Go
stoneN52 multipletxi(t),c i(t) corresponding to a nonlin
ear realization of thed51 PBGS optionN58→N52 @18#.
After quantization of the model associated with this act
we obtained, as the space of quantum states, the above
on-shellN52 multiplets which are combined into a linea
on-shellN58 multiplet. Thus, proceeding from a nonline
realization ofN58 supersymmetry in one dimension, w
have finally arrived at alinear realization of this supersym
metry on a set ofN52 superfields bearing dependence on
four target space bosonic coordinatesx0,xi .

An outcome of quantization of the 1/4 superparticle
question admits the standard interpretation as a fi
quantized free supersymmetric field theory model ind54.
The ‘‘1/4 Bogomol’nyi-Prasad-Sommerfield~BPS!’’ condi-
tions ~4.17! extract those classical solutions of the free eq
tions of motion which have a minimal energy and sponta
ously break some of the involved symmetries. After shifti
the superfields by the corresponding condensates, one
expect to find the relevant Goldstone excitations in the sp
trum as collective coordinates related to the spontaneo
broken generators. In particular, for the condensate~b! of Eq.
~4.17! one can expect to recover the original worldline Go
stone multiplet in a new setting, within alinear realization of
the original 1/4 PBGS option.

To see that this indeed occurs, let us restrict our atten
to the bosonic condensate in~b! of Eq. ~4.17! ~it is unclear
how to interpret the alternative Fermi condensate within
3-9
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field-theory framework; normally, the spontaneous sup
symmetry breaking is induced just by bosonic condensat!.
We pass to the new ‘‘shifted’’N52 superfieldv̂ i(x,u)

v̂ i[ v̄ i2e2mx0
piB~xW !5 v̂0

i 1u
1

p02m
pi h̄01 ūe i jkpj r̄0

k

1uūS 1

2
~p01m!v̂0

i 2
1

p02m
pi~pkv̂0

k! D , ~4.18!

and observe that under the brokenpi translations~with the
parametersai) and Qi ,Q̄i supertranslations the fieldsv̂0

i (x)

and h̄0(x) are transformed as

dav̂0
i ~x!5 iakpkv̂0

i ~x!1 iakpkpiB~xW !e2 imx0
,

~4.19!
deh̄0~x!52me2 imx0

ekpkB~xW !1•••,

where dots stand for terms which are linear in fields a
vanish under restriction to the condensateB(xW ). These trans-
formation laws directly stem from theQi ,Q̄i transformation
of w(x,u,c),

dew5~e iQi1 ē i Q̄i !w,

Qi5
]

]c i
1

1

2
~p02m!c̄ i1upi ,

Q̄i5
]

]c̄ i
1

1

2
~p02m!c i1 ūpi ,

rewritten in terms ofN52 superfields~4.8! while taking
account of the on-shell relations~4.14!. The inhomogeneous
transformation laws~4.19! suggest the following decompos
tion:

v̂0
i ~x!5 iyk~x0!e2 imx0

pkpiB1•••,

1

p02m
h̄0~x!52lk~x0!e2 imx0

pkB1•••,

~4.20!

with

dayi~x0!5ai , del
i~x0!5e i1•••, ~4.21!

where the ellipses in Eq.~4.21! stand for terms vanishing
upon restriction to the condensate and those in Eq.~4.20! for
the homogeneously transforming parts of the fields. T
bosonic and fermionic collective coordinatesyi(x0), l i(x0)
form a closed multiplet of the unbrokenN52 supersymme-
try,

dyi52el i , dl i5
1

2
ēp0yi . ~4.22!
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It is a linear realization counterpart of the above mention
Goldstone multipletxi(t),c i(t) of the original 1/4 PBGS
model.

It should be pointed out that this consideration is pur
kinematical, since we deal with a freed54 superfield theory.
In realistic models of linear realizations of PBGS the vacu
condensate should arise dynamically as a sort of solito
solution to self-interacting theory, with the Laplace equati
in Eq. ~4.17! being replaced by some nonlinear equation.
such models, the branelike Lagrangians of collective Go
stone modes appear as the leading low-energy approxima
of the full nonlinear Lagrangian~see, e.g.,@23,36#!. In order
to gain an interacting superfield theory as the result of qu
tization, we should start from a generalization of the wor
line action ~2.1! containing couplings to an external bac
ground and, perhaps, some potential terms.

V. CONCLUDING REMARKS

To summarize, in this paper we examined quantum m
chanics of a massive superparticle model with 1/4 par
breaking of global supersymmetry which propagates in fo
dimensional flat space-time. The spectrum was shown
contain a finite number of quantum states. This is in contr
with the massless twistor superparticle example realizin
3/4 PBGS option@17# where infinitely many~massless! ex-
citations are known to arise. Although the mass-shell con
tion is held in the model, the spectrum resembles very m
the nonrelativistic supersymmetric quantum mechanics.
particular, we found a connection between the states and
ferential forms on a manifold, similar to that given in Re
@21#. This connection implies a geometric interpretation f
the generators of the unbroken supersymmetry as exte
differentials. The vacuum states for the case at hand pro
to be related to the exact harmonic one- and two-forms
the x manifold.

It is worth noting that all the ingredients of our conside
ation here, in particular, the superalgebra~2.29!, admit a
straightforward extension to a supersymmetry containingn
11 complex superchargesQ,Qi and n11 real target
bosonic translation generatorsP0 ,Pi , i 51, . . . ,n, with
SO(n) being the only space-time symmetry group. In th
generic case we still have one complexk symmetry, and so it
corresponds to the 1/(n11) PBGS option. Another mode
which would be of interest to quantize along the lines of t
present paper is the secondN58→N52 model of Ref.@18#.
As distinct from the system considered here, this alterna
1/4 PBGS model does not admit a straightforward gener
zation to higher-dimensional supersymmetry. As a first st
one has to construct the relevant worldlinek-invariant action
which is still missing.

As for other possible developments, a generalization
manifolds of nontrivial topology and curved manifolds,
well as the construction of couplings to external backgrou
~super!fields would be natural next tasks. A generalization
the branes is also an obvious tempting point. In particu
there remains the problem of finding out explicit links wi
intersecting branes.
3-10
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