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Quantum mechanics of a superparticle with 14 supersymmetry breaking
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We study quantum mechanics of a massive superparticte=id which preserves 1/4 of the target space
supersymmetry with eight supercharges, and so corresponds to the partial bi¢alrgN=2. Its worldline
action contains a Wess-Zumino term, explicitly breaks4 Lorentz symmetry and exhibits one complex
fermionic k symmetry. We perform the Hamiltonian analysis of the model and quantize it in two different
ways: with gauge-fixed: symmetry and in the Gupta-Bleuler formalism. Both approaches give rise to the same
supermultiplet structure of the space of states. It contains three irredi¢ib2 multiplets with the total
number of (4+4) complex on-shell components. These states prove to be in one-to-one correspondence with
the de Rham complex gi-forms on a three-dimensional subspace of the taxgeanifold. We analyze the
vacuum structure of the model and find that the nontrivial vacua are given by the exact harmonic one- and
two-forms. Despite the explicit breaking di=4 Lorentz symmetry in the fermionic sector, the=4 mass-
shell condition is still valid in the model.

DOI: 10.1103/PhysRevD.65.104023 PACS nunider04.60.Ds, 11.30.Pb

[. INTRODUCTION 3/4, 1/4 or some further fractional PBGS options one has to
extend the standar@* superspace by new central charge
Nowadays, partial breaking of global supersymmetrybosonic coordinates. In one of the 1/4 PBGS massive super-
(PBGS [1,2] is widely understood to be an inborn feature of particle models of Ref[18] the target superspace RIS,
supersymmetric extended objedfsr a recent review, see The 1/4 breaking of the origin&l=8 supersymmetrydown
Ref. [3]). Exhibiting local kappa invariance, conventional to N=2 manifests itself in the presence of only one complex
p-brane models enjoy the feature of breaking half of the tar« symmetry in the corresponding worldline action. This is
get space global supersymmetry. Viewed differently, theachieved at cost of the explicit breaking of the target space
PBGS concept can be exploited to construct superbrane atorentz symmetry down t&Q(3) symmetry(in the fermi-
tions in a static gaugp4], the technical tool here being the onic sectoy.
method of nonlinear realizatior}§]. In the present paper we continue the analysis of R
Recently, there has been growing interest in PBGS opand study quantum aspects of this particilae 8—N=2
tions other than the 1/2 breaking—15]. This is essentially model as a typical example of massive superparticles with
due to the discovery of thé= 11 supergravity solutions pre- 1/4 PBGS. We first simplify the Lagrangian of R¢L8] by
serving 1/4 or 1/8 of thel=11 supersymmetrj7] and their  taking a real slice in the sector of bosonic variables. This
subsequent interpretation in terms of intersecting branesioes not change the structure of global and local symmetries,
Since branelike world volume effective actions which wouldwhile still provides us with an example of 1/4 PBGS in an
be capable of describing those solutions are still unknown, ibrdinary four-dimensional Minkowski space-tingeith R*8
seems interesting to study pointlike models that mimic theas the target superspace and explicitly broken Lorentz sym-
exotic supersymmetry breaking options inherent in the intermetry). Prior to quantization, Hamiltonian analysis is accom-
secting branes. Such models could share some characterisgitished in full detail. A subspace of physical variables is
features of the systems of intersecting branes, much like thspecified. The supersymmetry algebra is shown to acquire an
ordinary superparticle bears a similarity to the Green-extra constant central term which appears differently in the
Schwarz superstring. commutation relations of the broken and unbroken super-
In a series of recent papdrs6—19 superparticle models symmetry generators. This is typical of the superbranes in
exhibiting 3/4 or 1/4 PBGS have been constructed. In conthe PBGS approach and allows one to evade the no-go argu-
trast with the conventional superparticle which, like a singlement of[20] in the line of the general reasoning [&]. We
superbrane, preserves half of the target space supersymmetgyantize the model in two different ways: in a fixed gauge
these models reveal some new interesting peculiarities. Foknd using the Gupta-Bleuler method requiring no gauge fix-
lowing the argument of Ref$16,17,19, in order to realize ing. Both approaches perfectly match. We obtain a spectrum
of eight complex on-shell states, four bosons and four fermi-
ons, which prove to be in one-to-one correspondence with
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the x manifold. It is worth mentioning that a similar corre- Here,«(7) is a complex Grassmann parameter. The action is
spondence is known to hold in one of the versions of Wittenalso invariant under the rigig°,x' translations extended by
supersymmetric quantum mechari24]. The vacuum struc- the supertranslations with eight real parametersour com-
ture of the theory is elucidated and shown to be provided bylex onese', ¢):

exact harmonic one- and two-forms on the manifold. Finally,

we elaborate on the structure of the representations of the

unbrokenN=2 supersymmetry acting in a space of the ex- Si=é, X
cited states. This space is shown to contain 8 3) scalar '

and oneSQ(3) vector supermultiplets.

([
:_Eeldjl_zellpl,

Il. CLASSICAL HAMILTONIAN ANALYSIS X'=—i€eb—ie, (2.9

According to the original formulation of Ref18], a su- _ .
perparticle realizing thetN=8—N=2 PBGS mechanism _ o_ b = 1=
propagates irR’® superspace. The even part of the super- of=€, OX'=—7el-€b. 2.9
manifold is parametrized by seven bosonic coordinates

x%,x',x', i=1,2,3. The model exhibits aN=8 rigid space- The algebra of the corresponding quantum Noether genera-
time supersymmetry, as well as a logainvariance with one tors is given below in Eq(2.29. Besides, the actiof2.1)
complex parameter. It is noteworthy that, without spoilingenjoys a globalSQ(3) symmetry acting as rotations in the
the symmetry structure, one can reduce the model to the reakctor indexi. As distinct from the standard massive super-
subspaced =x', after which the bosonic coordinates can beparticles with a Wess-Zumino terfi2—24 corresponding to
regarded to parametrize the usual four-dimensional flal/2 PBGS, the fuld=4 Lorentz symmetry is explicitly bro-
Minkowski space. Since this reduction does not invalidatéken in Eq.(2.1) and is restored only in the limit of vanishing
the basic features of the problem we are dealing with, butermions. One more distinction is that the fermionic vari-
considerably simplifies the analysis, in the rest of the papegbles are split into a singlet and triplet of the grdsi(X3),
we shall concentrate just on this “real slice” of the original like x°x', while in the case of 1/2 superparticles they are in
model. Its dynamics is governed by the action functionala spinor representation of the space-time group. In this re-
with a Wess-Zumino term-m spect the considered model resembles a spinning particle
where both fermionic and bosonic fields are space-time vec-
tors. This analogy, however, is rather far-fetched, since no
S:f dT{i(_HOHO_i_HiHi)_ le mz+im(0'§— wiw) , manifest space-time supersymmetry is present in the spin-
2e 2 ning particle? It is also worth noting that the algebra of the
(2.1  Ylobal supersymmetr§2.4),(2.5) is a truncation of the most
general extension of the standaxd=2,d=4 (N=8,d=1)
where superalgebra by tensorial “central charge®5,14], with
Po,P; being combinations of the standadd-4 translation
T T S S generators and the central charge ori&3. One more sym-
5604- 500+ §¢'¢'+§¢' W, metry of Eq.(2.1) is the invariance under phasg1) trans-
formations of the fermionic variablds®) and ' have oppo-
site U(1) charge$
Hi:)'(iJriwipHEi; (2.2 It has to be stressed that, although the manifest Lorentz
covariance is missing in the model under consideration, we
can still treat the variable® as a time coordinate in the target
space. The corresponding momentum then specifies the en-

o=x%+

and 6,4 are four complex fermions parametrizing the odd
sector of the model.

Apart from conventionalr reparametrizations, the action ergy
(2.1) is invariant under the locat transformations

po=—p°=—E, (2.6)
's6

S0=k, X=—igs60—iys0, Sp=——,
%+ me

with 7,,=diag (—,+,+,+). In support of this assertion,
the mass shell condition still holds in the mofi&8] [see Eq.
(2.10 below]. The Lorentz invariance gets broken in the
i i T T sector of Fermi variables only. Curiously enough, the situa-
oxO=—=080— -050—= ' 54 — =y 6, (2.3)  tion resembles what happens in thNe=2 string theory,
2 2 2 2 where theU(1) current of theN=2 superconformal algebra

Se= w_ 2An interplay between d=4 spinning particle and one of the 1/4
I1°+me PBGS models of Ref.18] was studied irf19].
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is constructed out of fermionic fields, which is known to thus omitting configurations with negative energy. Under this
break the full Lorentz grou®O(2,2) down to the subgroup assumption, Eq92.11) determine the value of , and\,,
U(1,1) [26]. while still leaving\ ,,\ g arbitrary. The latter fact signals the

As is well known, the presence of local symmetries ispresence of two first-class fermionic constraints in the for-
characteristic of a constrained dynamical system which remalism. The separation of the constraints into the first- and
quires special care in quantization. Following Dirac’s recipe second-class ones becomes more transparent after the simple
in the Hamiltonian framework one finds five primary con- redefinition

straints
A=p —i—(po+m)5—ip‘¢‘=0 ALA AL — T oA 213
"2 ' (po—m) P '
_ i -
A==Pot 5 (Potm) 6+ p'¥'=0, In the new basis the full set of the canonical Poisson brackets
(2.7) between the basic constraints is as follows:
i _
Ai=pyi— E(po_m)(//i=0,
. A" A"} =—i————(m?—pypo+p'p)~0,
_ (AL A== = (M= Popot P'PY)
Ai=—pyt E(po—m)zﬂi:O, Pe=0,
while the complete canonical Hamiltonian reads {A’,Ai}:{A’,N}:{K’,Ai}z{ﬁ’,ﬁ}:o,

. (2.14
H=pehe+ AN j— ANG+ Ai)\iw—ﬁ)\ifrze(mz— PoPo

+pip. 28 {ALAY =i(po—m) 8%, {ALAY={AlAY}=0.

Here (0y,Po,Pi,Pyi,Pe) Stand for the momenta canonically - ) I
conjugate to the variables9(x°, x',#',e) and\, etc. are We see thafA’,A’,M are first class, whil&,; ,A; are second

the Lagrange multipliers. The canonical brackets read class:
{X°po}={e.pet=1, {x,p}=25% B
o Firstclass: A’~0, A’~0, M=~0, (2.15
{py,0}={py.0}=1, (2.9 -
[Py ¥ =1py =~ Second class:AI~0, AI~0, (2.16

Given the Hamiltonian(2.8), conservation of the primary
constraints implies one secondary constraint With respect to the corresponding Dirac bracket the con-

straintsA’,A’,M generate, respectively, the complexsym-

—m?2 i —
M=m"=popo+p'p'=0, (210 metry andr reparametrizations. Such a bracket is easy to
and specifies some of the Lagrange multipliers construct, but we postpone giving its explicit form until fix-
ing a gauge with respect to thesymmetry.
(Po— M)A\ yi+PiAg=0, (Po—M)Ayi+pPiAs=0, In the next sections we shall quantize the theory in two
_ . (2.1  different ways, either eventually leading to the same spec-
(Po+ M\ ,+ pl)\'azo, (Po+M)\g+p'\},=0. trum of physical states. One of them is the Gupta-Bleuler

guantization which can be performed with all local symme-
Hereafter, we eliminate the canonically conjugate pair oftries being kept manifest. Another one involves removing,
nondynamical variableg, ande from the consideration in a Prior to quantization, some irrelevant unphysical variables by
standard wayby fixing the gaugee= const, after which the fixing proper gauges with respect to the local symmetries. In
Constraintpe becomes second class apg can be removed this case one should necessarily deal with Dirac brackets.
a|together by passing to the appropriate Dirac bragkets the rest of this section we describe the Hamiltonian formal-

Aiming at the construction of a quantum mechanical deism along the lines of the second approach.
scription of the system at hand, in the following we shall \We impose the gauge conditions
restrict ourselves to the upper shell of the massive hyperbo-
loid (2.10:
3A quantization of the massless superparticle with the gauge-fixed
p°=E=m, or po=—m,=p,—m#0, (2.12  « symmetry was accomplished ja7].
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= 9= i B
=0, 0=0. (217 0= — ——p'(Jet+ ye). (2.23
i o 2(po—m)
Conservation of the gauge fully specifies the value of the
remaining independent Lagrange multipliers in EGs8),  As atypical feature of the canonical formalism, the action of
(2.11 some symmetry generat@' is defined via the Dirac brack-

ets as follows:
Ng=Np=0. (2.18

N N _ SB=i{B,Q'}pe +i{B,Q'}pe" (2.24
As usual, the gauge-fixing conditions, together with the
former first-class constraints’,A’, should now be treated as Aiming at quantization of the system as the eventual goal,

second-class constraints extending the(8et6. The Dirac ~ We first diagonalize the bracke(®.20 by redefining the fer-
bracket then has to be used for the remaining variables. Fdnionic fields

the case at hand it is defined by ) . — —
Y=g '=dNpo—m, Py =y \po—m,

i (2.295
{B C}D {B C}+ ){B 9}M{(9 C} {XoypO}D:la {Xiypj}D:(Sij , {w'i,afj}D:_iaij,

i — ) — which makes the passage to a quantum description straight-
——{B.0}M{6,C}—{B,0{A".C} +{B.0}  forward. In the new basis the supersymmetry generators take
(Po—m) L .
the form (hereafter, we omit primes on the new fields

=¢'Jpo—m, Q'=y\po—m,

+

x{Kf,C}—{B,A’}{e,cH{B,K'}{EC}

i
* po=m) ){B AHA; ,C}+ ){B A . (2.26
Q= ==/’ Q=—=—==p
x{A;,C}, (2.19 Po—M Po—m
where M is defined in Eq.(2.10. Being evaluated in the One should add to these generators also the generators of
coordinate sectors, EqR.19 gives SQ(3) rotations

Ji= €xX pR—i e gk, (2.27)

We can now write the full closed superalgebra at once in the
(2.20 quantum case, making the standard replacement of the Dirac
ij brackets by the graded commutator

with all other brackets vanishing.
Let us dwell on the issue of global supersymmetry in thewhere the anticommutator is chosen for the bracket between

reduced phase space which might give us an idea of whdwo fermionic operators.
type of symmetries one has to expect at the quantum level. In The full quantum algebra including Elﬂ2 26 together

[ R
o= g m Ve T e

. - L — |
0Cpofo=L, (X.pho=8", {# Who=— o

the chosen gauge, the equations of motion take their fre@ith the translation generatongy=—id/dx°,p;=—id/dx’
form and the generators &(Q(3) rotations(2.27) then reads
X’=—po, x'=p', po=0, p'=0, ¥=0. {Q.Q'}=(po—m) 4",
(2.21 1
- - .
Then, recalling the original transformation laWa3)—(2.5), {Q.QF=(pot+m)+ (Po—m) (= PoPo + PP,
one finds that six of the global supersymmetries are now (2.29
realized as {Q.Q}=p', {Q.Q}=p,
Spi=é, ox0=-— %Giﬁ_ %?lﬁi, SX=0. (2.22 [3i.3]]=iepd  [3i.p]=iepp

J.,Qi1=i€ Q% [J;,Qi]1=i€ Q.
Two remaining supersymmetri¢s.5) are now modified by a i Q1=len@ [9Qi=TenQ
compensating« transformation(2.3) chosen so as to pre- QOther (antjcommutators prove to vanish. One can directly

serve the gauge?.17) check that these generators, by the general (@i24) [with
the replacemen2.28)], yield for the target superspace coor-
i i P S dinates just the supersymmetry transformatiof¥s22),
o4 (po—m)Ep o X=Ietige (2.23, translations and standa®l(3) rotations.
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Worth noting is the appearance of the constant centrah representation space is trivially constructed and consists of

charge=m in the anticommutatorsQ,Q} and{Q;,Q;} and & vacuum state and a single filled state
the weakly vanishing term in the first anticommutator. The
latter property is typical for gauge-fixed theories. Recall that
the equation

1 0
|0>=(0), |T>=a*|0>=<1)- (3.4
M =m?—popo+p'p'=0 (2.30

is the only first-class constraint remaining in the formalism.To construct a representation for the trip(8t1), it suffices
Following Dirac’'s method one should require it to vanish onto find a matrix which anticommutes with bothanda™.
physical states. When restricted to the physical subspace, ti8ch a matrix is readily constructed

algebra(2.29 thus acquires its rigorous form. From the

structure of the algebra one can also infer that in the realiza-

tion on the states the genera’mﬁfsai should correspond to 1 0
the spontaneously broken symmetriescall that by assump- r=[a,a*]= ( ) . 2=1, (3.5

tion po—m=+#0), while Q,Q can be chosen to be unbroken 0 -1
and so annihilating the vacuum. The appearance of the con-
stant central charge with opposite signs in the anticommu- o ) ,
tators of brokengand ungrpoken sSpersymmetries ensurédd the sought representation is then given bygdmatrices
evading the arguments §20] against the possibility of par-
tial breaking, in accord with the generic reasoning of R2&f.
(it is applicable to any superbrane thepry

Finally, it is important to stress that it is the mass-shel
condition (2.30 that allowed one to construct at=8 su-
persymmetry algebra out of the operators at hand, with six
supersymmetries being broken. Similar to other superbrane- - . . . .
like models, the partial breaking thus holds at the free theory@r =@  X1,X1;, a, =7xXa’"xX1;, ag=7X7Xa" .
level, without need to introduce a potential of a specific (3.9
shape, as it takes place in the standard nonrelativistic super-
symmetric quantum mechanif20,28,29.

| a1=a><12><12, a2:T><a><12, a3:T><T><a,

It is noteworthy that the properties of theoperator allow
one to identify it with aZ,-grading operatofsometimes re-
ferred to as the Klein operafoacting in the Hilbert space
(see, e.g[31,32). In particular, the eigenstates correspond-
ing to the eigenvaluer1 of this operator are identified with
bosonic stategfor the simplest case of one pair of the
Let us proceed to the more detailed exposition of thecreation—_annihilation operators there is or_lly one such state,

quantization procedure. After replacing the Dirac brackets by0)), While those corresponding to the eigenvalud. are
(ant)commutators according to the ru(@.28 we represent identified with fermiong(in the simplest case the only fermi-

the fermionic coordinates by means of conventional creation®iC state igT)). o _
annihilation operators In accord with the realizatior{3.6), the representation

space of the full algebra is eight-dimensidhal

III. QUANTIZATION IN A FIXED GAUGE
AND THE VACUUM STRUCTURE

J—a', y'—at, {aat}=6". (3.2
“The direct products of the stati®) and|1) amount to the usual
For the bosonic operators we keep the ordinary coordinateight component columns
representation, with

1
oxioxio=| || Inxioxio=|
J J X X = , X X = , cee
=—i—, p=—i—. (3.2 0 0
pO (?XO pl (9)('
Given a single pair of fermionic operators, a convenient
matrix representation 28,30 0
mxInxin=|
0 1 . (00 . 1
a=\gy o] @ =1 ol {a,a”}=1. (3.3
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0)x[0)x[0)@d(x),
[Tyx10)x[0)yeW1(x), [0)x[1)x[0)@W,(X), |0)x[0)X|T)eW;(X),
[0y < [1)X[Tyedy(x), [1)X|0)X[T)@Py(x), [1)X[T)x|0)@D5(X),
XX W (x),

(3.7

with X:(XO,XI), and it is the direct sum of two CompIeX Then the supersymmetry Charg@sanda can be given a
SU(2) singlets®, ¥ and two complexSU(2) triplets®;,  natural geometric interpretation. When acting on a vacuum
W, (total of 8+ 8 states It should be stressed that we do not state they coincide with the exterior differentiatidmnd the
assign the Fermi statistics to any of tkelependent func-  adjoint exterior differentiations, respectively

tions appearing above. The statistics of the states is defined

entirely with respect to th&,-grading operatorrX 7X 7. _ 1

Thus, we have a single boson in the first line of B17), a Q~d, Q~4, dé+dd= %A- (3.10
triplet of fermions in the second line, a triplet of bosons in

the third line and a single fermion in the last line. Note thata immediate consequence of Eq8.8—(3.10 is that the

this decomposition |n.to fermionic and bpsomc states is tQ,5cuum state of the unbroken supersymmetry necessarily in-
some extent conventional. As th&-grading operator one yglves a harmonic form. Since increases the order of a
could equally take- 7 , with respect to which the bosonic 5ym py one unit whiles decreases it by one unit, it suffices

states become fermionic and vice versa. Similarly, the[ v th 40 directl h level i
d filled states in EB.3 well as the creation © apply the operator@_ andQ directly to each level in Eq.
vacuum an ed states -9, as well as tne crealio %3.7) (to be more precise, one has to consider a linear com-

and annihilation operators, alternate their status. Without los ination of states at a given leyakithout need to consider

i?]f generality, in what follows we shall stick to the first grad- any linear combination of states belonging to different levels.
9. . . . On a manifold of trivial topology, which we assume in
Of frequent use in the literature are also alternative repre;, . . : . :
. i L i this work, one finds the following solution to E¢B.8) in
sentations which deal with either superfields or a more ab: : .
. terms of 0-, or 3-formgthe first and the fourth levels in Eq.
stract Fock spacésee, €.9[28,29). In the next section we 3.7
shall present the superfield Gupta-Bleuler quantization of thé U

same system and show that it yields an equivalent spectrum

_i 0
of states. |vac>%g;:|0>x|o>x|0>®e im e,
At first glance, it seems somewhat surprising that a pithy - (3.11)
part of the state$3.7) is described by purely bosonic func- |vac>§2§:|T>X|T>X|T>®e—|mx 3,

tions. Observe, however, that the four levels in E37) are

in one-to-one correspondence with the space of differentialvhere a, 8 are some constants. These vacua are not too in-
zero-, one-, two-, and three-forms on a manif@ide com- teresting. Indeed, on them

ponents of a 2-form are defined ds; = eijk(I)" while those _ _

of a 3-form as¥;;, = ;). At this stage it seems relevant p'lvag (R =p'|vag{y=0, (3.12

to mention that thele Rhantomplex of a(curved manifold,

the space of alp-forms, can be described within the frame- and, as follows from thé€anticommutation relation$2.29),
work of supersymmetric quantum mechani24]. This cor-  the (Q,Q,p,+m) and @',Q',p,—m) supersymmetries de-
respondence between fermionic states grfdrms is also  coyple from each other. The first supersymmetry is unbro-
reminiscent of Kaler's geometric reformulation of spinors ken, while the second one is totally broken. The only Gold-
and Dirac equation in terms of differential forrffer a com-  stone excitations are expected to be the complex Volkov-
prehensive review and further references see R&j). Akulov [34] Goldstone fermions associated with the

Armed with these remarks, we now proceed to analyz%eneratorsQ‘, or a The action of the latter on Eq3.11

the vacuum structure of the_ theory_. Most elegantly th!s “ahroduces a ring of ground states, every state possessing the
be done again in terms of differential forms and our discus-

sion here parallels that of ReR21]. Because of the algebra Minimal energy(3.9) and being a siinglet of th@,Q su(%t)ar—
(2.29, the vacuum state of the unbroken supersymmetry deSymmetry. The holomorphic se®' annihilates|vacyg],

fined by the conditions while the conjugated set vanishes (o) () .
Thus these vacua and the related sector of the full space
Q|vac>=6|vac>=0, (3.8)  of states do not correspond to the symmetry structure of the
1/4 PBGS superparticle of Ref18]. Indeed, in the latter
necessarily has minimal energy case the translationg' should also be necessarily broken,

. o with the associated Goldstone excitations as the transverse
po+m=0=M=p'p'—p°p°+m?=p'p'=—A. (3.9  superparticle coordinates.
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The vacua with the desirable properties arise as solutionsidered “1/4 PBGS superparticle” sector as well, provided
of Egs.(3.8) for the second and third levels in E@.7). For  one selects some subclass in the set of vddukd),(3.15.
the 1-formgthe second level in Eq3.7)] Egs.(3.8) amount  Indeed, the relations
to

i — liagri] — i o im0 v _

p=0, FWH=0-w=e P20, A2(301’3 hold on the spherically symmetric solutions of the Laplace

' equation:
and the general structure of the corresponding fermionic L L
vacuum state is 2(§)=cons§+ ﬁ Q()?):cons§+ ﬁ (3.19
. o - X X

lvaggy=a'"]0)x[0)x[0)®p' e ™ 3(x), AS=0.
(3.19 [actually, constand const drop out from the corresponding
) ) subset of the vacués.14 and(3.15)].
For the 2-formgthe third level in Eq(3.7)] Egs.(3.8) can be In the end of the next section we shall briefly discuss how
analyzed in the same spirit, yielding a bosonic vacuum statg,js yacuum PBGS structure is related to the standard treat-
i ment of the partial breaking of supersymmetry in the field
—altajt
lvac)g)=a'"al * €, |0) x|0) < |0) theory models, and in which precise sense it implies the pres-
®pk o= imX° Qx), AQ=0. (3.15 terrJ(r:r(]a of the appropriate Goldstone excitations in the spec-
Finally, let us comment on the structure of the represen-
» tation of theN=2 unbroken supersymmetry which acts in a
space of the “excitedTi.e., withE= —py>m) states. Since
é'n this case

We are led to neglect il(x), Q(x) zero modes-x', since
the corresponding pieces belong to the ring of “trivial
vacua(3.11).

It is straightforward to check that none of the generator
Q' andQ' annihilate the vacuum states defined in this way; B2=pip %0, (3.20
these generators rather produce one or another multiplet of
the unbrokerN=2 supersymmetry. The resulting states cer-for the fermionic states from the second line in E2}7) one
tainly do not belong to the ring of vacyae., do not obey can use the decomposition
Egs. (3.8)] in view of the anticommutation relation®.29

and the important property . Pty o Pt . o
! wi=| 8= 2w P yicyi spiy, piw -0
p'[vag) e g)#0. (3.1 P P

(3.21

alogously, the bosonic states from the third line in Eq.
.7) can be represented as

In full agreement with the classical consideratidi8], one
concludes that these six supersymmetries are spontaneou
broken together with three transverse translations, i.e., thi

vacuum structure and the associated sector of the space of i i
quantum states _precisely r_natch .the “real slice’_’ of the 1/4 @i:( Si— % o+ pag dl=d| +p'E, p'®| =0.
PBGS superparticle d¢fL8] with which we started in Sec. II. p p

It remains to discuss the generators of B1€(3) rota- (3.22
tions. Making use of the explicit representatit27) one

can readily verify the relations With a simple inspection one can further verify that at each

level the states

. . 0 -

Jilvag(r=al"|0)x|0)x|0)@e ™ pZi(x), 10)X|0)x|0)y@®(x), a*]0)x|0)x|0)@pY(x),
- ‘ - (3.23
3(x) = €, X PR (x), o

. a'*al ™ €;,|0) x[0) X |0) @ D (x),

Jilvag) g =al"a " €[0)x|0)x|0)
1+ I

®e“mx0p'Qi(>Z), a'*]0yx|0)x|0)® W' (x), (3.29

. . . a'"al " €0y x[0) X [0)® p*E(X),

Qi(x)= € X P*Q(X). (3.17) -
a"al"a" €;,]0) x|0) X |0)@ V¥ (x), (3.25

Since the operatord do not annihilate these vacuum states,
but rather produce new vacua of the same sort, genericalljorm irreducible multiplets of the unbrokés=2 supersym-
they are spontaneously broken. Note that they are vanishingetry. One thus concludes that the space of the excited states
on the “trivial” vacua (3.11), indicating thatSQ(3) is un- is a direct sum of these three on-shell representations of one-
broken in the sector corresponding to two decoupled supedimensionalN=2 supersymmetry, involving, respectively,
symmetries. However, it can be chosen unbroken in the con2+2), (4+4) and (2+2) independent real components.
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The rest of N=8 supersymmetry generatorQ‘,ai, mix
theseN=2 multiplets with each other, combining them into
an irreducible on-shell multiplet of the full supersymmetry.

— 1 _
U=ug+ 60— 566(p0+ m)ug,

IV. GUPTA-BLEULER QUANTIZATION . . 1 —
p'=pot 0¢'—0(p'ug) + 05( p'é—5(Pot m)pb) :

In the GB quantizatiorisee, e.g.[35]) one represents the 4.9
wave function by a complex superfielgl

e=0(x°X,0,0,4', 4, (4.1) v'=vb+0§'+06”kp1?5+05(—e”kqubk—E(po+m)v'o),

and imposes on it all the first-class constrai245 and half

of the second-class constrain{®.16) (without passing to

Dirac brackek - = = = 5 — 1 —
We shall enforce these constraints in two steps: 7="n0+ 0= 6(plvg)+ 66| p'd'— E(p0+m) 70|
(1) Off-shell constraintsA'¢=0, A’ ¢=0;
(2) On-shell constraintsA’ ¢=0, (m>—pa+p'p') ¢=0.

We replace the momenta by differential operators Thus, off shell we have 8 complex bosonic fields
9 - P d — .9 -
Pe—’lﬁ, pe—”&—;, p,/,—”a—dli, p./,—”a—ﬁ, Up, ¢, vp, 4.9
(4.2
after which the off-shell constraints take the form and 8 complex fermions
Di¢=0, (D+p'y)e=0, (4.3 o
where & po. LW 7o (4.10
J 1 - = g 1 Now we turn to solving the on-shell constraints which have
= — : = 4 — .
DI (9(//' 2 (pO m)‘rlll ’ DI ﬂl//l 2(p0 m) wl ’ the form
(4.4
g _1 - o g 1 i/ 2 2. Lini
Dzﬁ—z(p(frm)a, D=—5+§(po+m)0. (D=p'y)e=0, (M —pgtp'pHe=0. (4.11

The solution of Eq(4.3) reads . i ) . -
Being rewritten in terms oN=2 superfields{u,p',v', 7},

- . 1 g R they read
e=u+yp'+ v+ gyt S (po— M)y (ylu— ey p
)~ 7 (o= M)A P+ )~ 2 (p Du=——pipl, Do’=——p'7,
470 g\"o Ppo—m" "’ Ppo—m~ "
— (4.12
—m)*yPycu. (4.9
Here Dp = elkpivk  Dy=0.

Po—m

1 i ..
2i— — _ijk,/j K 3— T _ijk ik
T A e L A C X B .
These conditions put all the fields on the mass shell
and theZ mon_om_iaE are defined by the same_formulas. The
superfielddu,p',v', 7} depend only ofx°,x', 9,6} and obey (m2— p2+p'p') (all bosons=0
the constraints 0 '

S0 Do— i Doi— dkai kK Doe i o
Du=0, Dp'=—pu, Du=eTp'p’, D7 pv(;l.?) (m?—p3+p'p)(all fermiong =0 (4.13

In terms of the component fields, the solution of the off-shell
constraints reads and add the following constraints:

104023-8
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where

— 1 S —
Bosons: ¢':p—me"kp15{§, w=0,
0~ g 1 — — 4d 1

(4.19 Q=5+ 5(Potmé, Q:a_§+§(p0+m)0'

p'po. ?:—po— —P'70.

Fermions: Ezp — B
0 {QvQ} = p0+ m

Therefore on shell we have 4 complex bosfag,vpt and 4 [cf. Eq.(3.9)]. It is straightforward to see that they imply, for
complex fermiong pl, 70}. This is in a nice agreement with all the component fields, the additional condition

the on-shell content found in the end of the previous section. (po+m)(all components=0,= A(all components=0.

To see this in more detail, one should take into account that, B

as a consequence of Eq4.3) and (4.11), the longitudinal  Besides, they require all components in #@® expansions
(~p') parts of theN=2 superfieldy' andv' are expressed in Eq. (4.8), except for the first ones, to vanish. The latter
as spinor derivatives af and;. Then the irreducible set of eduirement gives rise to the following relations and vacuum

on-shellN=2 superfields ap'p'#0 is as follows: solutions:
1 P'Us=0 [uy=constxe ™’
= i Y a — ={__ ‘
U=Uo+ 05— (P'po) —3 06(Po* M) o, @ P'70=0 | o=conste ™’
N - (4.17
— 3 0 ik K 105 — ( e'Jkp';rSIO, plvlozo
=poL T -5 +m , o o
PL=po T O e P'vo, — 506(potm)po, Gk =0, PO

(4.195

e - vh=e ™pIB(x), AB=0
oL o+ B Ik, 4 0(po+ i, :»[ e o

po=e ™pIF(x), AF=0.

- — ~..1 = - The solutionga) correspond to “trivial” vacua(3.11), while
7= 10~ 0(P'vo) +5 06(po+m) 7. (b) to the vacua3.15),(3.14).

Let us clarify the precise meaning of the PBGS phases
One can readily establish the correspondence with the wa@ssociated with these vacuum solutions.

functions(3.23—(3.25 (up to factors containing,—m) Before quantizgtion, the worldline actiof2.1) in a
“static” gauge 7= x" and with thex symmetry fully fixed by

the gauge condition2.17) (implemented at the classical
level) can be considered as the minimal action of the Gold-
T T _ — stoneN=2 multipletx'(7),¢'(7) corresponding to a nonlin-
Y~(p'po), @ ~vp,, E~(p'vg). (416 ear realization of thel=1 PBGS optiorN=8—N=2 [18].
_ _ After quantization of the model associated with this action
Note that the superfielgs, andv! are notindependent: they we obtained, as the space of quantum states, the above set of
describe the same on-shellN=2 supermultiplet on-shellN=2 multiplets which are combined into a linear
po.(X), v, (X) and are related by on-shellN=8 multiplet. Thus, proceeding from a nonlinear
realization of N=8 supersymmetry in one dimension, we
1 - (Po— M) _ have finally arrived at dinear realizatio_n of this supersym-
P Z»—ZD(G'klpk;D, v =— _)—ZD(e'klpk;rl)_ metry on a set oN= 2 superfields bearing dependence on all
four target space bosonic coordinaisx'.
) ) ) ) An outcome of quantization of the 1/4 superparticle in
It is worth noting that the superfield wave function question admits the standard interpretation as a first-
@(x,6,4) could be chosen fermionic rather than bosonic,quantized free supersymmetric field theory modetin4.
with the corresponding exchange of Grassmann parities bé&rhe “1/4 Bogomol'nyi-Prasad-SommerfieldPS” condi-
tween the component wave functions. This freedom is of theions (4.17) extract those classical solutions of the free equa-
same kind as a freedom of choosing either — 7 as theZ,  tions of motion which have a minimal energy and spontane-
grading operator in the fixed-gauge quantization. Also noticeusly break some of the involved symmetries. After shifting
that one could putp into some nontrivial representation of the superfields by the corresponding condensates, one can
SQO(3) by attaching an extra(3) index to it. In thisway a  €xpect to find the relevant Goldstone excitations in the spec-
reacherSO(3) structure of the final wave functions can be trum as collective coordinates related to the spontaneously
achieved. broken generators. In particular, for the condengaltef Eq.
Finally, it is instructive to consider the “vacuum” solution (4-17) one can expect to recover the original worldline Gold-

within the GB quantization framework. It is singled out by stone multiplet in a new setting, withinliaear realization of
- : the original 1/4 PBGS option.
the additional constraints . . .
To see that this indeed occurs, let us restrict our attention

= ~0 to the bosonic condensate (h) of Eq. (4.17) (it is unclear
Qevac=Q¢uac=0, how to interpret the alternative Fermi condensate within the

d~u, ‘I’Ngo, \I,iJ_NFIOJ_ )

104023-9
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field-theory framework; normally, the spontaneous superit is a linear realization counterpart of the above mentioned
symmetry breaking is induced just by bosonic condengatesGoldstone multipletx'(7),#'(7) of the original 1/4 PBGS
We pass to the new “shiftedN=2 superfieldo'(x, ) model.
It should be pointed out that this consideration is purely
N @iy o A 1 ik kinematical, since we deal with a free=4 superfield theory.
v'i=v'—e " p'B(X)=vot 6 oo—mP 7o+ 0e’ppg In realistic models of linear realizations of PBGS the vacuum
1 . condensate should arise dynamically as a sort of solitonic
~j i KK solution to self-interacting theory, with the Laplace equation
00 E(p0+m)vo— po—mp (P'vo) |, (419 in Eq. (4.17) being replaced by some nonlinear equation. In
. such models, the branelike Lagrangians of collective Gold-
and observe that under the brokghtranslations(with the  stone modes appear as the leading low-energy approximation
parameters') andQ',Q' supertranslations the fieldg,(x) ~ of the full nonlinear Lagrangiatsee, e.g.[23,36)). In order
and;o(x) are transformed as tp gain an interacting superfield theory as the result of quan-
tization, we should start from a generalization of the world-
line action (2.1) containing couplings to an external back-
ground and, perhaps, some potential terms.

S,0h(x) =iakp ol (x) +iakpkp' B(x)e ™,
B (4.19
8. 1o(x)=2me ™ ekpkB(x)+ - - -,

. . L V. CONCLUDING REMARKS
where dots stand for terms which are linear in fields and

vanish under restriction to the condensﬁ(&). These trans-
formation laws directly stem from th@',Q' transformation

To summarize, in this paper we examined quantum me-
chanics of a massive superparticle model with 1/4 partial
; breaking of global supersymmetry which propagates in four-
of ¢(x,6.4), dimensional flat space-time. The spectrum was shown to

. S— contain a finite number of quantum states. This is in contrast
Sep=(€Qi+€Qe, with the massless twistor superparticle example realizing a
3/4 PBGS optior{17] where infinitely many(masslessex-

Jg 1 — citations are known to arise. Although the mass-shell condi-
Qi :F+ E(Do— m) ¢+ 6p; tion is held in the model, the spectrum resembles very much
4 the nonrelativistic supersymmetric quantum mechanics. In

particular, we found a connection between the states and dif-
Q-:—+E( —m)d/-+§ ' ferential forms on a manifold, similar to that given in Ref.
' a@ 2 Po i P [21]. This connection implies a geometric interpretation for
the generators of the unbroken supersymmetry as external
rewritten in terms ofN=2 superfields(4.8) while taking differentials. The vacuum states for the case at hand proved

account of the on-shell relatiorté.14). The innomogeneous © be related to the exact harmonic one- and two-forms on

transformation law$4.19 suggest the following decomposi- thex manifold. _ , _
tion: It is worth noting that all the ingredients of our consider-

ation here, in particular, the superalgelga29, admit a
straightforward extension to a supersymmetry contaimng
+1 complex supercharge®,Q' and n+1 real target
bosonic translation generatoB,,P;, i=1,...,n, with
;O(X):_)\k(XO)e—imxopkB+ e SO(n)_ being the qnly space-time symmetry group. In 'Fhis
Po—Mm generic case we still have one complesymmetry, and so it
(4.20 corresponds to the 1/(nl) PBGS option. Another model
which would be of interest to quantize along the lines of the
present paper is the secoNd=8— N=2 model of Ref[18].
O on i oo As distinct from the system considered here, this alternative
Say' (X)=al, SN (X)=€+---, (42D 1/4 PBGS model does not admit a straightforward generali-
) ) o zation to higher-dimensional supersymmetry. As a first step,
where the ellipses in Eq4.21) stand for terms vanishing ,ne has to construct the relevant worldlieénvariant action
upon restriction to the condensate and those in(EQQ for  \yhich is still missing.
the homogeneously transforming parts of trge fie'dg- The As for other possible developments, a generalization to
bosonic and fermionic collective coordinatg$x™), N'(X")  manifolds of nontrivial topology and curved manifolds, as
form a closed multiplet of the unbroké=2 supersymme- \yg|| as the construction of couplings to external background
try, (supeifields would be natural next tasks. A generalization to
the branes is also an obvious tempting point. In particular,
there remains the problem of finding out explicit links with
intersecting branes.

oh(x) =iy (x%)e ™ pkpiB+ - .-,

with

) ) Y
Sy'=—e\', 5)\'=§6p0y'. (4.22

104023-10



QUANTUM MECHANICS OF A SUPERPARTICLE WITH . .. PHYSICAL REVIEW 15 104023

ACKNOWLEDGMENTS tract HPRN-CT-2000-00131 *“Quantum Spacetime,” the

Fondo Affari Internazionali Convenzione Particellare INFN-

E.l. thanks A. Pashnev for an enlightening corresponJINR, grants RFBR 99-02-18417, RFBR-CNRS 98-02-

dence. This work was supported in part by the Europear22034, INTAS-00-0254, NATO Grant PST.CLG 974874 and
Community’s Human Potential Programme under the conPICS Project No. 593.

[1] J. Bagger and J. Wess, Phys. Laf88B, 105(1984). [16] I. Bandos and J. Lukierski, Mod. Phys. Lett. 24, 1257
[2] J. Hughes, J. Liu, and J. Polchinski, Phys. Lett18&0, 370 (1999.
(1986; J. Hughes and J. Polchinski, Nucl. Ph@278 147 [17] 1. Bandos, J. Lukierski, and D. Sorokin, Phys. Rev.6D
(1986. 045002(2000.
[3] E. Ivanov, talk at 14th Max Born Symposium, hep-th/0002204;[18] F. Delduc, E. lvanov, and S. Krivonos, Nucl. Phig&76, 196
S. Bellucci, E. Ivanov, and S. Krivonos, Nucl. Phys(Broc. (2000.
Suppl) 102 26 (2002. [19] S. Fedoruk and V. Zima, Mod. Phys. Lett.15, 2281(2000.
[4] E. Ivanov and S. Krivonos, Phys. Lett. 463 237(1999; S. [20] E. Witten, Nucl. PhysB188 513(1981).
Bellucci, E. Ivanov, and S. Krivonoshid. 482, 233(2000. [21] E. Witten, Nucl. PhysB202, 253(1982.
[5] S. Coleman, J. Wess, and B. Zumino, Phys. R, 2239  [22] J.A. de AzCaraga and J. Lukierski, Phys. Let113B, 170
(1969; C. Callan, S. Coleman, J. Wess, and B. Zumiiba. (1982; Phys. Rev. D28, 1337(1983.

177, 2247(1969; D.V. Volkov, Sov. J. Part. NucH, 3 (1973; [23] P.K. Townsend, Phys. Lett. B02 53 (1988.
V.. Ogievetsky, Proceedings of Xth Winter School of Theoret- [24] J.M. Evans, Nucl. Phys8331, 711(1990.

ical Physics in Karpacz, Wroclaw, 1974, \Vol. 1, p. 227. [25] S. Ferrara and M. Porrati, Phys. Lett.423 255(1998.

[6] J.A. Harvey and A. Strominger, Phys. Rev. Lef6, 549  [26] N. Marcus, “A tour throughN=2 strings,” hep-th/9211059.
(199)). [27] 3.M. Evans, Class. Quantum Gr&y.699 (1990.

[7] R. Gueven, Phys. Lett. B76, 49 (1992. [28] S. Fubini and E. Rabinovici, Nucl. PhyB245, 17 (1984.

[8] G. Papadopoulos and P.K. Townsend, Phys. Letd8B 273 [29] E. lvanov, S. Krivonos, and A. Pashneyv, Class. Quantum Grav.
(1996. 8, 19(1991.

[9] A.A. Tseytlin, Nucl. PhysB475 149 (1996. [30] I.K. Affleck, Phys. Lett.121B, 245 (1983.

[10] J.P. Gauntlett, D.A. Kastor, and J. Traschen, Nucl. PBY3.38 [31] L.E. Gendenshtein and I.V. Krive, Sov. Phys. U8, 645
544 (1996). (1985.

[11] M. Berkooz, M. Douglas, and R. Leigh, Nucl. Phy180, 265 [32] M. Plyushchay, Ann. PhygN.Y.) 245 339(1996.
(1996. [33] P. Becher and H. Joos, Z. Phys.16, 343(1982.

[12] N. Ohta and P.K. Townsend, Phys. Lett4B8 77 (1998. [34] D.V. Volkov and V.P. Akulov, Phys. Let46B, 109 (1973.

[13] J.P. Gauntlett, N.D. Lambert, and P.C. West, Adv. Theor. Math[35] R. Casalbuoni, Nuovo Cimento &3, 389 (1976; A. Fry-
Phys.3, 91 (1999; Commun. Math. Phys202, 571 (1999. dryszak, Phys. Rev. B0, 2172(1984; J.A. de Azcaraga and

[14] J.P. Gauntlett and C.M. Hull, J. High Energy Phgd, 004 J. Lukierski,ibid. 38, 509 (1988; S. Bellucci and A. Galajin-
(2000. sky, Phys. Lett. B423 274(1998; 432 103(1998.

[15] J.P. Gauntlett, G.W. Gibbons, C.M. Hull, and P.K. Townsend,[36] E.A. Ivanov and A.A. Kapustnikov, Phys. Lett. B52 212
Commun. Math. Phys216, 431(2001). (1990.

104023-11



