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Collapse of large extra dimensions
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~Received 11 December 2001; published 3 May 2002!

In models of spacetime that are the product of a four-dimensional spacetime with an ‘‘extra’’ dimension,
there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether
this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic
censorship conjecture, that—at least in the case when the extra dimension is homogeneous—such a collapse
will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in
which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely
avoided.
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I. INTRODUCTION

The idea that we live in a universe with more than t
four dimensions we observe has been around for some t
Models of the universe with five or more dimensions, ori
nally proposed by Kaluza and Klein@1,2,23# as an attempt to
unify electromagnetism and general relativity, have be
commonplace in string theory for many years. In such th
ries the extra dimensions typically have a ‘‘size’’ compara
to the Planck length and thus remain unseen since exp
ments that would reveal their presence require as-
unattainable energies. Furthermore, questions about the
lution and stability of the extra dimensions have been larg
ignored since at this scale quantum gravity effects are
sumably important and it is difficult to extract prediction
from any current candidate theory of quantum gravity.

Recently, however, there has been a great deal of inte
in models wherein the size of the extra dimensions is m
larger than the Planck length@3–5#. Current experimenta
results involving tests of the inverse square law~see, e.g.,
Hoyle et al. @6#! do not rule out extra dimensions even
large as a tenth of a millimeter.1 It is now important to con-
sider the evolution of the extra dimensions since the
served strength of the gravitational force is directly dep
dent on the size of the extra dimensions.2 Furthermore, since

1In order that the extra dimensions remain unobserved, one im
ines that the standard model fields are confined to a fo
dimensional submanifold, known as the ‘‘brane,’’ which compris
the observable universe. In what follows we ignore the existenc
the brane. There have been some attempts to model the brane
theoretically reasonable way as a distributional stress-energy@7,8#,
albeit with a noncompact extra dimension, but we shall assume
the stress-energy of the brane can be ignored in comparison t
stress-energy in the full spacetime.

2Indeed, it is for this reason that these models were propose
the first place: by fixing the gravitational field strength approp
ately, one can arrange for the actual Planck energy to be compa
to the electroweak scale yet explain the size of the observed Pl
energy by this weakening of the observed gravitational fi
strength on the brane. It was suggested that one thereby explain
surprising weakness of gravity compared to the other forces,
though to some extent the problem has merely been transferre
explaining the size of the extra dimensions.
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the curvature of spacetime is now much larger than Plan
ian scales it ought to be possible to study the evolution
such spacetimes within the framework of classical gene
relativity.

As an example, consider a spacetime whose manifol
the product of four-dimensional Minkowski spacetime with
single extra dimension of topologyS1 and whose metric is

ds25hmndxmdxn1b~ t !2dc2.

Herehmn is the metric of Minkowski spacetime,xm are the
coordinates in ‘‘usual’’ dimensions,c is the coordinate in the
fifth dimension, andb(t) is the scale of the extra dimension
It is clear that this metric is a solution to Einstein’s equati
whenb(t) is constant, sayb(t)5b0, since the spacetime i
then flat. However, it is easy to check that a solution is a
obtained by settingb(t)5b01at, with a a constant. Ifa
is negative, then clearly the extra dimensions will collap
to zero size—and the whole spacetime will becom
singular—in finite time. Although this model is rather unr
alistic in that the scale factor of the extra dimension is
same, and evolving in the same manner, throughout the
tire space, we shall show in Sec. III that it is possible
construct more realistic examples in which the collapse h
pens locally~i.e., within some compact spatial region! and is
guaranteed to produce a singularity.

There do exist models in which the size of the extra
mensions is stabilized, at least under small perturbations
the addition of suitable matter@7,9–12#. However, it is still
not clear whether any of these models would describe
universe if extra-dimensional models were taken seriou
Thus one must be concerned about the possibility of sin
larity formation in the fashion described above and the
ture of the singularity so formed. It would be disastrous,
example, if a singularity, once formed, were to propag
outwards from its origin, destroying the spacetime.

Nonetheless, we shall argue that, under reasonable
sumptions, a space that is the metric product of a thr
dimensional space and a homogeneous, one-dimens
manifold, in which the scale factor of the extra dimension
collapsing to zero in some region, will evolve to a ‘‘blac
string,’’ that is, a spacetime that is the metric product
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JAMES GEDDES PHYSICAL REVIEW D 65 104015
a four-dimensional black-hole spacetime with the ext
dimensional manifold. That is, even if a singularity is form
by extra-dimensional collapse, it will be hidden within a
event horizon. To give some insight into the mechanism
which this occurs, we also give an explicit example of
collapsing spacetime and try to make plausible its sub
quent evolution into a black string.

Our argument relies on the cosmic censorship conjec
in four space-time dimensions. This conjecture asse
roughly, that all singularities are hidden inside an event
rizon rather than being ‘‘naked,’’ i.e., visible to distant o
servers; or, in other words, that black holes are the gen
final states of gravitational collapse. Although it has not be
proven, the cosmic censorship conjecture is widely belie
to be true for generic initial conditions.3

Ten years ago, Gregory and Laflamme@15# showed that
black strings are, in fact, unstable to linear perturbations
least when the scale of the extra dimensions is large eno
If this instability is a true, nonlinear instability, the questio
then arises as to what the final state will be. Gregory a
Laflamme suggested that the black string would ‘‘fragme
into a chain of black holes, although, since this would
quire the event horizon to bifurcate~a process that is forbid
den if five-dimensional cosmic censorship holds!, a naked
singularity would result. Thus there is something of a puz
as to what the final state actually is: if one imposes the s
metry constraint that we do, the final state appears to b
black string; if one does not, then a naked singularity appe
to be possible. It has also been suggested@16# that the insta-
bility will not lead to a bifurcation of the event horizon an
that, instead, the spacetime evolves to a stable solution
does not have translational symmetry in the extra dimens

The outline of this paper is as follows. In Sec. II w
describe the cosmic censorship conjecture and the condi
under which it is believed to hold. We then rewrite Einstein
equation for the five-dimensional spacetime as a fo
dimensional theory with an effective matter content a
show that this effective matter content does indeed sat
the conditions of the cosmic censorship conjecture. In S
III we show how it is in principle possible to construct initia
data that is guaranteed to form a singularity and then g
explicitly, a class of such initial data. By considering a pla
sible scenario for the evolution of this data, we illustrate h
the black string likely arises.

II. A GENERAL ARGUMENT FROM THE COSMIC
CENSORSHIP CONJECTURE

In the Introduction we gave a simple example of a spa
time possessing an extra dimension in which the extra
mension collapses to zero size everywhere on a spac
surface and the worldline of every observer ends on the
gularity in finite proper time. In this section we argue th

3It is possible to construct nonsingular initial data for which t
subsequent evolution contains a naked singularity; however,
lytic and numerical studies@13,14# strongly suggest that such initia
data is in some sense nongeneric.
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such a catastrophic fate will not befall more realistic e
amples and that even a naked singularity will not occur, p
vided that the extra dimension is homogeneous.

In order to proceed, we shall make the simplifying a
sumption that the spacetime is the product of a fo
dimensional manifold,M, with S1 ~though it makes no dif-
ference to our argument if the extra dimension has
topology of R) and that the metric of the full spacetime
(5)gAB , can be written in the form

ds25 (5)gABdxAdxB5gab~x!dxadxb1e2A2/3b(x)dc2,
~1!

where the xa are coordinates in the ‘‘ordinary,’’ four-
dimensional, spacetime,c the coordinate in the extra dimen
sion, and we shall use uppercase Roman letters to de
indices in the full, five-dimensional spacetime but lowerca
Roman letters for indices in the four-dimensional spacetim

The four-dimensional metricgab , and the scale facto
b(x), do not depend uponc but are otherwise completel
general. That is, we consider only spacetimes in which
extra dimension is homogeneous. This form of the metric
typical of many models considered in the literature4 and is
similar to the original Kaluza-Klein ansatz except that w
disallow off-diagonal terms in the metric.

Einstein’s equation in the full spacetime, in geomet
units ~whereG5c51), is

(5)GAB58p (5)TAB , ~2!

where (5)GAB is the five-dimensional Einstein tenso
and(5)TAB the five-dimensional stress-energy tensor. N
that to be consistent with the form of(5)gAB given above we
must impose the condition(5)Tac50 on the stress-energy.

Our approach will be to show that this equation may
rewritten as the equations describing four-dimensional re
tivity with the addition of a scalar field, and hence to arg
that the four-dimensional cosmic censorship conjecture p
cludes the existence of either a naked singularity o
spacetime-destroying one. This ‘‘dimensional reduction’’
usually carried out in a Lagrangian formulation~see, for ex-
ample, the survey article by Overduin and Wesson@17# and
references therein! but we shall instead directly rewrite Ein
stein’s equation to arrive at a four-dimensional theory w
some effective stress-energy tensor. Rewriting Einste
equation in this way has the benefit that it is more straig
forward to determine the effective stress-energy tenso
particularly when the matter content does not have a
grangian formulation—and, furthermore, one can be sure
obtaining all the equations of motion.5

a-

4There are exceptions, notably those with a nonfactoriza
‘‘warped’’ metric @7,8#.

5If one substitutes a metric ansatz@such as Eq.~1!# into an action,
subsequent variation of the action will not necessarily give rise
all the equations of motion.
5-2



he

d

e

th
he
g

re
ca
re

in

e
tter
rs;
s.
.
by

a,
ar-
n-
.
he

he
e
of

g,

in

en
s
’’
n-
te-
o

-
gu-

ly
ld

le,

ne
y-
the

hus

COLLAPSE OF LARGE EXTRA DIMENSIONS PHYSICAL REVIEW D65 104015
A. Dimensional reduction

From our metric ansatz, Eq.~1!, we can rewrite the five-
dimensional tensors appearing in the theory in terms of t
four-dimensional counterparts. We find

(5)Rab5Rab@gab#2
2

3
DabDbb2A2

3
DaDbb,

(5)Rcc52e2A2/3 bS 2

3
DabDab1A2

3
DaDab D .

~3!

Here (5)Rab is the five-dimensional Ricci tensor projecte
into the four-dimensional space andRab@gab# is the Ricci
tensor associated with the four-dimensional part of the m
ric, gab . ~The mixed-index terms,(5)Rac , are zero.! Finally,
Da is the derivative operator associated withgab . Using the
above we can rewrite the Einstein tensor:

(5)Gab5 (5)Rab2
1

2
(5)R (5)gab

5Gab2F2

3
DabDab1A2

3
DaDabG

1F2

3
DabDab1A2

3
DaDabGgab ,

~4!

(5)Gcc52
1

2
Re2A2/3b,

whereR5Rabg
ab andGab5Rab2 1

2 Rgab .
One could at this point equate the right-hand side of

first equation above to the four-dimensional part of t
stress-energy tensor and consider the expression involvinb
as part of an effective stress-energy. However, this exp
sion is not recognizable as the stress-energy of, say, a s
field. To rewrite the equation so that the stress-energy is
ognizable, we make the conformal transformation

gab5e2A2/3bg̃ab . ~5!

The Ricci tensor and scalar then become

Rab5R̃ab@ g̃ab#1
1

3
D̃abD̃bb1A2

3
D̃aD̃bb

1
1

2 FA2

3
D̃cD̃cb2

2

3
D̃cbD̃cbG g̃ab ,

R5eA2/3bF R̃13A2

3
D̃cD̃cb2D̃cbD̃cbG , ~6!

where nowD̃a is the derivative operator associated withg̃ab

and indices are raised and lowered withg̃ab . Finally, we
substitute this expression forRab into Eq. ~4! and also re-
placeDa by D̃a there, to obtain
10401
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(5)Gab5G̃ab2D̃abD̃bb1
1

2
~D̃cbD̃cb!g̃ab ,

(5)Gcc52
1

2
e3A2/3bF R̃13A2

3
D̃cD̃cb2D̃cbD̃cbG .

~7!

Thus, from Einstein’s equation in the full spacetime, Eq.~2!,
we have

G̃ab58p (5)Tab1D̃abD̃bb2
1

2
~D̃cbD̃cb!g̃ab ,

D̃aD̃ab52A2

3
e23A2/3b (5)Tcc1

1

A6
g̃ab (5)Tab .

~8!

One may interpret this as the theory of general relativity
four dimensions, with matter content described by(5)Tab ,
plus a massless scalar field,b, coupled to(5)Tab and (5)Tcc .

We now discuss the cosmic censorship conjecture.

B. The cosmic censorship conjecture

It is widely believed that in a four-dimensional spacetim
arising from reasonable initial data, with reasonable ma
content, no singularities will be visible to distant observe
that is, all singularities will be hidden within black hole
~See, e.g., Wald@18# for a survey of past and recent results!
Here we recall the precise statement of this conjecture
giving a meaning to the notion of ‘‘reasonable’’ initial dat
‘‘reasonable’’ matter, and ‘‘distant observers,’’ and hence
gue that the singularity formed by a collapsing extra dime
sion will likewise be hidden, given the results of Sec. II A

We first say what is meant by a distant observer. T
intuitive meaning is an observer located ‘‘far away, in t
future’’ where the spacetime ‘‘looks like’’ flat spacetime. Th
precise meaning for these terms is given by the notion
asymptotic flatness at future null infinity. Roughly speakin
future null infinity, I 1, is the ‘‘end point’’ of null geodesics
that propagate out to large distances.@The details of this
construction, which are not important here, can be found
advanced textbooks on general relativity~@19#, Chap. 11!.# If
the spacetime is asymptotically flat at future null infinity th
it ‘‘looks like’’ flat spacetime at sufficiently large distance
and late times;I 1 then represents ‘‘far away in the future.
The notion that a distant observer will be able to avoid ru
ning into a singularity is then captured by the precise sta
ment that future null infinity is complete. Furthermore, if n
past-directed causal curve fromI 1 terminates at a singular
ity, then distant observers will not be able to see the sin
larity.

Next we explain what sort of initial data we allow. Clear
no version of the cosmic censorship conjecture will ho
without some restriction on the initial data: for examp
the spacetime given in the Introductiondoes produce a
spacetime-destroying singularity. On the other hand, if o
lives in a spacetime that is not, initially, collapsing ever
where, one cannot create such initial collapse because
collapse is not confined to some compact region. We t
5-3
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JAMES GEDDES PHYSICAL REVIEW D 65 104015
wish to require that at large distances the initial data
proaches flat space. It turns out that a notion of asympt
flatness may be defined for initial data sets, analogou
asymptotic flatness at future null infinity for spacetimes, a
we will allow only asymptotically flat initial data.

Finally, for the purposes of the conjecture, the matter c
tent must be ‘‘well-behaved’’ in the following sense:

~1! The coupled Einstein-matter equations have a w
posed initial value formulation;

~2! the matter satisfies the dominant energy condition
that observers do not see negative energy densities or
perluminal’’ energy flow; and

~3! the matter is not of such a nature as to produce sin
larities in a fixed, nonsingular, background spacetime,
coupled from Einstein’s equation.

We now state one version of the cosmic censors
conjecture.6

Weak cosmic censorship conjecture.Consider asymptoti-
cally flat initial data for Einstein’s equation with suitab
matter, in the sense given above. Then, generically, the m
mal Cauchy evolution of this data is a spacetime that is
ymptotically flat at future null infinity, with completeI 1.

C. Application to extra-dimensional spacetimes

If the extra dimension collapses in the evolution of a fiv
dimensional spacetime whose metric is of the form~1! then a
singularity will be produced. In the conformally transforme
four-dimensional theory, this singularity appears as a div
gence of the scalar field and, in particular, a divergence
the stress-energy of the scalar field. Thus, there will also b
space-time singularity in the four-dimensional theory. Ho
ever, we are now in a position to argue that this singula
will be contained within a black hole.

Thus, consider a five-dimensional spacetime for which
five-dimensional matter content satisfies conditions~1!–~3!
above and such that the initial data for the equivalent fo
dimensional spacetime is asymptotically flat; then, assum
that the cosmic censorship conjecture is true, we claim
the singularity will be contained within a black hole~a black
string in the five dimensional theory!.

To see that this is true, let there be given initial data
the five-dimensional spacetime and hence, by the equ
lence described in Sec. II A, we obtain initial data for a fou
dimensional spacetime with matter content that include
scalar field. Now to show that the cosmic censorship con
ture applies to the four-dimensional initial data we mu
show that the four-dimensional matter content is well b
haved in the sense above. It is well known that a mass
scalar field is well behaved. Since, by assumption, the fi
dimensional equations have a well-posed initial value form
lation it is clear that the four-dimensional equations will als

6There are actually two closely related conjectures: the one
give is known as the weak cosmic censorship conjecture. The st
cosmic censorship conjecture says, roughly, that no one ever s
singularity—not even one who falls into a black hole—unless
runs into it.
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for they are just a rewriting of the five-dimensional equ
tions.

Likewise, note that the evolution of this matter from no
singular initial data in a fixed background with fixedb is
equivalent to that obtained by fixing the five-dimension
background spacetime and thus will not produce a singu
ity. To satisfy condition~3! above we should actually fix only
the four-dimensional spacetime whilst allowing both t
matter andb to evolve; but this is not equivalent, in th
five-dimensional view, to fixing the five-dimensional bac
ground spacetime. However, noting thatb is, on its own,
well behaved, we would expect that, were we also to allowb
to evolve, a singularity would not arise. Thus, it appea
highly plausible that condition~3! does hold for the effective
four-dimensional matter content.

It remains only to check that the four-dimensional stre
energy satisfies the dominant energy condition. To this e
let ja be any future-directed, timelike vector~future-directed

and timelike with respect tog̃ab). We must show that the

vector2jaTbcg̃
ab is future-directed timelike or null. But this

is true becauseja is future-directed and timelike with respe
to gab , and hence with respect to(5)gAB , and, by assump-
tion, the dominant energy condition holds with respect
(5)gAB .

Thus, if the four-dimensional cosmic censorship conje
ture holds, the singularity formed in the four-dimension

spacetime with metricg̃ab will be contained within a black
hole.

Now note that the projection of a curve in the fiv
dimensional spacetime that is timelike~or causal! with re-
spect to(5)gAB is a curve in the four-dimensional spacetim

that is timelike~or causal! with respect tog̃ab . Thus, a rea-
sonable definition of a ‘‘distant observer’’ in the five
dimensional spacetime would be one whose world line, wh
projected into the four-dimensional spacetime, is the wo
line of a distant observer there. Then, by the same reason
if a distant observer in the five-dimensional spacetime w
able to see the singularity, the observer in the fo
dimensional spacetime obtained by projecting his world l
would be able to see the singularity also. But we have
ready argued that the four-dimensional distant observers
not see the singularity and we therefore conclude that
singularity is not visible to distant observers in the fu
spacetime, either.

D. More than one extra dimension

To conclude this section, we comment briefly on an ob
ous generalization of this model to more than one extra
mension. It turns out that in this case the conclusion that
effective matter content satisfies the dominant energy co
tion does not necessarily hold.

Suppose that there are nown extra dimensions. Previ
ously we required that the scale factoreb(x) did not depend
on the coordinate of the extra dimension. Likewise here,
simplicity, we shall assume that the extra-dimensional ma
fold is a maximally symmetric space whose metric depe

e
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COLLAPSE OF LARGE EXTRA DIMENSIONS PHYSICAL REVIEW D65 104015
on position only through a scale factor that varies with po
tion in the ‘‘usual’’ dimensions. The metric then has the for

ds25gABdxAdxB1eA[2/n(n12)]bgmndymdyn, ~9!

where theym are the coordinates in then extra dimensions
and gmn is the metric of a maximally symmetric manifold
The action for general relativity in this model may be dime
sionally reduced in precisely the same way as shown ab
for the n51 case producing again an effective fou
dimensional theory containing a scalar field.~As in the case
of one extra dimension, this reduction is typically done in
Lagrangian picture@10,12,20#.! After dimensional reducing
the equations and making the conformal transformationgab

5e2A2n/(n12)bg̃ab the result for the effective stress energy

8pTab58p (41n)Tab1D̃abD̃bb2
1

2
~D̃cbD̃cb

2Rge2A[2(n12)/n]b!g̃ab , ~10!

where Rg is the Ricci scalar ofg i j and(41n)Tab the four-
dimensional projection of the (41n)-dimensional stress en
ergy. In contrast to the case of one extra dimension, the
lar field part of the stress-energy contains a ‘‘potential ter

V(b)52Rge2A2(n12)/nb. The scalar field will satisfy the
dominant energy condition if this potential is positive~that
is, if the manifold of extra dimensions is negatively curv
or flat! but will not do so if the potential is negative; tha
is, when the manifold of extra dimensions has posit
curvature.7 Typically, in models of extra-dimensional cos
mology, a matter term is included in the model~for instance
to stabilize the extra dimensions!. It may then be the cas
that the overall effective potential is positive even though
extra dimensions have positive curvature~this is so, for ex-
ample, in the ‘‘monopole’’ model@10,11#!.

III. A CONCRETE MODEL OF EXTRA-DIMENSIONAL
COLLAPSE

In Sec. II we concluded that local extra-dimensional c
lapse would not give rise to a spacetime-destroying singu
ity. In the Introduction we gave an example of a spaceti
whose extra-dimensional collapsedid destroy the universe
but in that example the collapse was not initially confined
some local region. In this section we turn the example of
Introduction into a more pertinent one by constructing a cl
of initial data for spacetimes in which the collapse does
cur locally. We then consider this initial data from the fou
dimensional point of view.

Under this interpretation the size of the extra dimens
appears as a scalar field, constant everywhere on the in
data surface but having nonzero time derivative in the in
region, where, moreover, its value becomes2` after finite

7There are some indications that the more interesting case is
when the curvature is non-negative, only then does there exist
tially homogeneous, static solutions to Einstein’s equation@10#.
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proper time. Thus, in this picture, the stress-energy in
inner region becomes infinite and hence a singularity form

Recall that an outer marginally trapped surface is a spa
like, two-dimensional submanifold that is the boundary o
three-dimensional closed region, such that the expansio
the family of outgoing null geodesics normal to the surface
nonpositive. The four-dimensional censorship conjecture
plies that any outer marginally trapped surface will be co
tained within, or coincident with, an event horizon. Th
event horizon of a stationary black hole, for instance, is
outer marginally trapped surface. From the arguments gi
in Sec. II, we would, therefore, expect that an outer marg
ally trapped surface will either exist in the initial data, or b
formed sufficiently early to enclose any singularity.

In this section we show how the choice of initial da
~within our class of models! that ensures extra-dimension
collapse, also leads one to the conclusion that an outer m
ginally trapped surface will surround the singularity. In doin
so, we gain some insight into the ‘‘mechanism’’ by which th
conclusions of Sec. II are enforced.

The idea of our construction is to give initial data tha
within some compact region, ‘‘looks like’’ the collapsing in
tial data given in the Introduction, but is then asymptotica
flat outside this region. Inside the region the spacetime d
not ‘‘know’’ that the rest of the spacetime has been chang
and the region will be made large enough that collapse
be guaranteed to occur at some point within it before inf
mation about that change propagates in. We now make
idea precise.

Let A be a compact subset of thet50 hypersurface of the
spacetime described in the Introduction.~The setA will be
the ‘‘region within which collapse occurs.’’! By the future
domain of dependenceof A we mean the collection of al
points p in the spacetime such that every past-direct
inextendible,8 causal curve throughp intersectsA. We denote
the future domain of dependence ofA by D1(A). The point
of this definition is that properties of the spacetime at so
point pPD1(A) ~such as the metric and any matter field!
depend only upon the initial data specified onA since an
observer atp cannot ‘‘see’’ any other part of the initial dat
set. Furthermore, if there is given new initial data havi
some regionA8 within which the data is the same as th
within A, then, in the resulting spacetimes, the two regio
D1(A) andD1(A8) will be isometric.

Hence, if the extra dimension collapses to zero size wit
D1(A) then collapse will also occur withinD1(A8), i.e., we
are guaranteed that the collapse will, in fact, occur in
spacetime resulting from the new initial data.

In the next section, we describe initial data having th
property. A schematic diagram of the resulting spacetime
shown in Fig. 1. The initial data surface is labeledS; there is
an inner region in which the space is flat but in which, ho
ever, the extra dimension is collapsing uniformly~this is the
region equivalent toA) where we have chosen the regio

at
a-

8For the definition of inextendible see Wald~@19#, Chap. 8!. One
can always find a curve fromp that does not intersectA by taking
one that does and letting it end before it reachesA. The technical
restriction of inextendibility prevents this kind of ‘‘cheating.’’
5-5
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large enough that we can be sure that the extra dimen
reaches zero size within its future domain of dependenc

It might appear that the construction of such initial da
would be almost trivial: one sets the metric to be Minkows
out near infinity; inside some region one sets the metric
be such that the extra dimension is collapsing and t
smoothly joins these two regions, allowing the matter co
tent of the spacetime to be determined by Einstein’s eq
tion. However, this procedure would likely result in ‘‘unre
sonable’’ matter, having negative energy densities
superluminal energy flow. We shall insist that the matter c
tent satisfy the dominant energy condition~see Sec. III C!
~this is the same condition as that used in Sec. II!.

The outline of the remainder of this section is as follow
In Sec. III A ~and the Appendix! we describe initial data
whose extra dimension will collapse to zero size. In Se
III B and III C we write down the conditions that the spac
time will collapse and that the matter does satisfy the do
nant energy condition and in Sec. III D we give the conditi
that an outer marginally trapped surface be present in
initial data. Finally, in Sec. III E we argue that, even in tho
cases where the initial data does not contain such a sur
there is good reason to believe that the future evolution
contain an event horizon that will prevent signals from t
singularity reaching infinity.

A. Initial data guaranteed to collapse

1. General considerations

In Sec. II we considered spacetimes whose manif
structure was the metric product of a four-dimensional ma
fold, M, with a circle, such that the metric did not depend
the circle coordinate. Here also we shall only consider spa
times with this property. Furthermore we suppose that
initial data, and hence the resultant spacetime, is spheric
symmetric.9 We now introduce a convenient coordinate sy
tem for such a spacetime.

9By spherically symmetric we mean that there exists an action
the group SO(3) as an isometry on the spacetime whose orbit
~spatial! 2-spheres.

FIG. 1. A schematic diagram of the spacetime described in
text. One ordinary spatial dimension and the extra dimension h
been suppressed. The initial data surface is labeledS. The initial
stress-energy is nonzero only in the shaded region.
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Since the spacetime is spherically symmetric we int
duce coordinatesr, u, andf in the usual way~so that for any
point whose radial coordinate isr, the area of the 2-sphere o
spherical symmetry containing that point is 4pr 2). The co-
ordinate in the extra dimension we again denote byc.

Assuming that the constant-r surfaces are timelike, the
spacetime can now be foliated by four-dimensional~‘‘con-
stant time’’! hypersurfacesS t such that¹ar is orthogonal to
¹at. ~That is, a surface invariant both under rotations a
translation in the extra dimension is a constant time surf
if the integral curves of¹ar lie within it.!

If the constant-r surfaces become null~e.g., ther 52M
surface in Schwarzschild! this construction is not valid since
the normal now lies in the surface and thet andr coordinates
become degenerate. Likewise this construction may also
where ¹ar 50 for then r no longer necessarily identifie
uniquely a single constant-r surface. However, in the regio
of the initial data surface that we give later, neither of the
problems arises.

It follows that in this coordinate system the metric may
written

ds25 (5)gABdxAdxB

52 f ~r ,t !2dt21g~r ,t !2dr21r 2dV21h~r ,t !2dc2.
~11!

Here dV25du21sin2udf2 is the spherical part of the met
ric. In Sec. III A 2 the functionsf (r ,t), g(r ,t), andh(r ,t)
will be restricted further by a choice of a class of initial da
sets.

Our initial data surface will beS5S0. The induced met-
ric on S is clearly

sABdxAdxB5g~r ,t !2dr21r 2dV21h~r ,t !2dc2. ~12!

Now, lettingnA52 f 21(]/]t)A be the field of unit, timelike
vectors orthogonal toS, so that sAB5 (5)gAB1nAnB , we
compute the extrinsic curvature ofS from the usual formula,

KAB5¹AnB . ~13!

Some algebra gives

KAB52
gġ

f
~dr !A~dr !B2

hḣ

f
~dc!A~dc!B , ~14!

where a dot denotes a derivative with respect tot.
We shall take the matter to be dust, for simplicity.10 Such

a choice has the advantage that the equation of state is tr

f
re

10It is possible for the evolution of dust from nonsingular initi
data in a fixed background to produce a singularity: dust does
satisfy the third of the conditions on the matter content in the c
mic censorship conjecture. However, our intent is not to illustrat
naked singularity but the formation of an outer marginally trapp
surface and the failure of dust to satisfy property~3! will not be
relevant to our considerations.

e
ve
5-6
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TABLE I. Initial data for the metric functions and matter content of the spacetime described in the

At t50 r ,r 1 r 1,r ,r 2 r .r 2

q(r ) 0
2M

r 2r 1

r 22r 1

2M

f (r ) (122M /r 2)1/2 (122M /r 2)1/2 (122M /r )1/2

h(r ) h0 h0 h0

ḣ(r ) 2v0 2v0

r 22r

r 22r 1

0

16pr(r ) 0 4M /@r 2(r 22r 1)# 0
8p j r(r ) 0

2
v0

h0
(122M /r 2)21/2(r 22r 1)21 0

8p(JaJa)1/258pg21 j r 0
2

v0

h0~r22r1!
F12

2M

r

r2r1

r22r1
G1/2S 12

2M

r 2
D 21/2 0
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~the pressure is zero! as is the equation of motion~the ‘‘dust
particles’’ follow geodesics!. The matter stress-energy is the
of the form

(5)TAB5suAuB ~15!

for some densitys and four-velocityuA; for consistency
with our metric ansatz, we must assumeuc50. ~We writes
for the energy density in the stress-energy of the dus
distinguish it from the initial-data energy density.!

The initial, five-dimensional, energy and current densiti
r5TABnAnB and JA52h A

CTCBjB are given by the same
expressions as in four dimensions~see, e.g., Wald@19#,
Chap. 10!:

16pr5RS1~K A
A!22KABKAB, ~16!

28pJA5DB~KAB2K C
ChAB!. ~17!

HereDA is the spatial derivative operator~i.e., the derivative
operator onS associated withsAB) andRS is the curvature
scalar for (S,sAB). Substituting in the equation above th
formula ~14! for the extrinsic curvature gives, after som
work,

16pr5
2

r 2

]

]r
@r ~12g22!#2

2

hgr2

]

]r S r 2h8

g D1
2ġḣ

f 2gh
,

~18!

8pJr5
ġ

f ghr2

]

]r
~r 2h!2

1

h

]

]r
S ḣ

f
D , ~19!

where a prime denotes a derivative with respect tor. ~The
radial component ofJA we have writtenJr ; all the other
components are zero.!

2. A particular class of models

We now construct initial data for a class of spacetim
whose extra dimension is collapsing. For some example
this class, the extra dimension will be guaranteed to colla
10401
to

,

s
in
se

and, by looking for outer marginally trapped surfaces,
shall gain some insight into how distant observers
shielded from the extra-dimensional collapse.

This initial data may be described as follows. The spac
spherically symmetric and is divided into three regions:
interior region,r ,r 1, in which the size of the extra dimen
sion is collapsing at a constant rate; a transition region,r 1
<r<r 2; and an outer region,r .r 2, that is the metric prod-
uct of the exterior of the Schwarzschild solution and t
extra dimension. In the transition region we shall choose
metric functions to interpolate in a simple way between th
values atr 1 and r 2.

The particular forms of the metric functions are given
Table I. As well asr 1 and r 2, three other parameters dete
mine the initial data:h0, the initial size of the extra dimen
sion ~which is everywhere the same!; v0, the initial speed of
the collapse of the extra dimension in the interior region; a
M, the mass per unit length.11 For convenience, we give
instead of the metric functiong(r ), a functionq(r ), where

g~r !5S 12
q~r !

r D 21/2

. ~20!

@When we do not write thet argument for the metric func
tions, we mean their initial values att50; thus q(r )
5q(r ,t50) and so forth.#

Note that the metric functions are continuous, though
smooth, across the boundaries atr 5r 1 and r 5r 2. In the
Appendix we show that the corners may be rounded off
that the metric is smooth everywhere, without affecting t
conclusions.

In the next two sections we describe the conditions
initial data is supposed to satisfy: that collapse of the ex
dimension be guaranteed to occur and that the matter con
satisfy the dominant energy condition. It turns out to be co

11That is, the exterior region is the metric product of th
Schwarzschild solution of massM with the extra dimension: this is
what is meant by ‘‘mass per unit length.’’
5-7



t t

e

in

t
o

i
in

ha
,

al

e

ll,
y
bl
on
in
lly
ive
xi

n-
r-
th

r

ter

m-

s

di-

c-

ar-

the

se
ere
ot,
u-
is,

rm
the

tion
s to
ce-
se-
the

lly
ndi-

n.
ns

by

JAMES GEDDES PHYSICAL REVIEW D 65 104015
venient to introduce a dimensionless measure of how fas
collapse of the extra dimension is occurring; namely,

g[v0r 1g0 /~h0f 0!. ~21!

Without loss of generality, one could also setr 151 ~though
we shall not do so! so that our class of spacetimes is d
scribed by just three parameters:M, r 2, andg.

B. Collapse

The collapse will be guaranteed if it occurs with
D1(A). The boundary ofD1(A) is defined by null rays
emitted from the edge of the inner region,r 5r 1, at coordi-
nate timet50, and these will reachr 50 at coordinate time
t5r 1 / f . Thus if the extra dimension reaches zero size ar
50 before this time it cannot be prevented; since the c
lapse occurs att5h0 /v0 we must have

h0

v0
,

r 1

f
, ~22!

or equivalently,

g.1. ~23!

@The collapse of the extra dimension might still occur even
this condition is not satisfied, it is just that it will not occur
D1(A) and thus cannot be guaranteed.#

C. Dominant energy condition

Recall that the dominant energy condition requires t
the stress-energy,Tab , be such that, for all future directed
timelike vectorsta, the vector2T a

btb is a future-directed
timelike or null vector. For dust, with five-dimension
stress-energy(5)Tab5suaub, this condition is equivalent to
requiring thats>0 and thatua is timelike which, in turn, is
equivalent tor2>JaJa. When applied to our initial data th
condition is

2M

r 2
>

g

r 1
F12S 2M

r 22r 1
D S r 2r 1

r D G1/2

, ~24!

and this must be true for allr in the ranger 1<r<r 2.

D. Trapped surfaces

Up to this point we have been working with the fu
five-dimensional spacetime, in part because it was eas
decide when collapse of the extra dimension was inevita
However, our arguments are based on the four-dimensi
cosmic censorship conjecture so, now, consider what the
tial data looks like in the dimensionally reduced, conforma
transformed picture described in Sec. II A. We now der
the condition that no outer marginally trapped surfaces e
in the initial data.

In fact, it is sufficient to consider only surfaces of co
stantr-coordinate for the following reason. If any outer ma
ginally trapped surfaces exist, consider the union of all
regions bounded by such surfaces. The boundary of this
10401
he

-

l-

f

t

to
e.
al
i-

st

e
e-

gion, which must be spherically symmetric, is also an ou
marginally trapped surface~@19#, Chap. 12!. Thus, if any
outer marginally trapped surface exists, a spherically sy
metric marginally trapped surface exists.

On a constant-r surface, the induced metric i
ṽabdxadxb5h(r )r 2dV2, where the factor ofh(r ) comes
from the conformal transformation. The outgoing, future
rected, null vector fieldja normal to the surface is

ja5h21/2f 21S ]

]t D
a

1h21/2g21S ]

]r D
a

. ~25!

Hence the expansion,u, of the geodesics tangent to this ve
tor field is

u5
1

2
ṽab£jṽab5h21/2S g21

2

r
1 f 21

ḣ

h
1g21

h8

h
D .

~26!

On substituting in our forms forf, g, and ḣ, and requiring
u.0, we find that the condition that there are no outer m
ginally trapped surfaces is

2

r F12S 2M

r 22r 1
D S r 2r 1

r D G1/2

.S g

r 1
D S r 22r

r 22r 1
D , ~27!

where the inequality must hold for allr such thatr 1<r
<r 2.

E. Visibility of the singularity

We now consider the question: are there any values of
parameters of our model for which conditions~23!, ~24!, and
~27! hold? That is, is there an example for which the collap
occurs, the dominant energy condition is satisfied, and th
are no outer marginally trapped surfaces? If there is n
these examples will illustrate very clearly how naked sing
larities are avoided in extra-dimensional collapse; if there
we shall consider whether such a surface is likely to fo
around the singularity in the subsequent evolution of
spacetime.

Consider these conditions whenr 5r 1. We requireg.1
to guarantee that the collapse occurs, whilst the condi
that there be no outer marginally trapped surfaces reduce
g,2. Thus, without even considering the rest of the spa
time, some of the parameters of the model are already
verely restricted by requiring that the collapse not cause
formation of an outer marginally trapped surface.

Next consider the conditions atr 5r 2. We obtain 2M /r 2
,1 from the condition that there be no outer margina
trapped surfaces, whereas from the dominant energy co
tion one can obtain 2M /r 2*0.6g2(r 2 /r 1)2. Thus there are
also severe restrictions on the size of the transition regio

Given that one obtains these fairly restrictive conditio
merely from considering the pointsr 5r 1 and r 5r 2, one
might imagine that one could rule out all possible models
considering the conditions at all values ofr. However, it
turns out that itis possible to choose parametersg, r 1 , r 2,
5-8



in
at
th
an
cu

In
a

ity
th
m
o
su

l
x

e

e
w

io

ce

all
ng

at

t
face

nal
tric
that
id-
nal
on-
ta
ned
to
uter
ata

a

sta-
’’
le
rily
on.
nal

-
ol-

that
the

e it

re-
uc-
s,
sor-
ic

ason
but
in

of
edi-
by
an

he
d
an

COLLAPSE OF LARGE EXTRA DIMENSIONS PHYSICAL REVIEW D65 104015
andM such that the three conditions are satisfied atall values
of r.

Nonetheless, the conditions are quite restrictive. Fix
r 1, for instance, it follows from the conditions above th
there must be a certain minimum amount of matter in
transition region and, furthermore, the transition region c
not be too large. Consider, also, the expression for the
rent density,j r , given in Table I: it is clear thatj r is always
negative, which implies that the matter must be infalling.
other words, there must be a certain amount of infalling m
ter contained in a region that is not too large.

To get some idea of how plausible it is that the singular
will be hidden, we now make a very crude estimate of
time at which an outer marginally trapped surface will for
and show that, according to this estimate, the singularity
curs later than and inside an outer marginally trapped
face.

In what follows we work in the full, five-dimensiona
spacetime where it is easier to see when collapse of the e
dimension occurs. A schematic diagram of the spacetim
shown in Fig. 2. Referring to the metric, Eq.~11!, and the
initial forms of the metric functions shown in Table I, on
can see that if the parameters describing the spacetime
chosen such thatr 252M then the surfacer 5r 2 would be an
outer marginally trapped surface and the exterior reg
would be that of a black string~for then the metric in the
exterior region would be the product of a black hole spa
time of massM with an extra dimension!.

We shall therefore assume that an outer margin
trapped surface is formed very roughly when the infalli
dust passesr 52M . The initial coordinate velocity of the
outer surface of the dust isv in5( f /g)(g21Jr /r)5gr 2

2(1
22M /r 2)/2M and so, very roughly, the dust will reachr
52M at a timetBH , where

tBH5
r 222M

v in
f 05

2Mr 1

gr 2
f 0 . ~28!

~This is the proper time as measured by an observerr
52M ; the factor of f 0 converts from coordinate timet to
proper time.!

FIG. 2. The future evolution of the initial data described in t
text. The shaded area is the region containing matter. It is argue
the text that the singularity will occur later than the formation of
outer marginally trapped surface and inside it.
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On the other hand, for an observer at constantr ,r 1, the
singularity will form at proper timetsing, where

tsing5
h0

v0
f 05

r 1

g
. ~29!

But now, noting that 2M /r 2,1 and f 0,1, we have

tBH,tsing. ~30!

It also follows from the dominant energy condition atr
5r 1 that 2M.r 1, i.e., the inner region is within the radius a
which we have assumed an outer marginally trapped sur
forms. ~This is also illustrated in Fig. 2.!

IV. CONCLUSION

For spacetimes that are the product of a four-dimensio
spacetime with an extra dimension, and for which the me
is independent of the extra dimension, we have argued
collapse of the extra dimension, though possible, will be h
den within a black string, assuming that the four-dimensio
cosmic censorship conjecture is true. We illustrated this c
clusion with a class of examples in which explicit initial da
was given such that the extra-dimensional collapse happe
locally. For this class of examples it was clear that ‘‘trying
make the collapse happen sooner’’ resulted either in o
marginally trapped surfaces being present in the initial d
or, at any rate, a plausible collapse of the initial data to
black string.

Presumably the resulting spacetime becomes nearly
tionary at late times. A well-known, black hole ‘‘no-hair
theorem@21,22# asserts that the only stationary, black-ho
solutions to the Einstein–scalar field equations necessa
have constant scalar field outside the black hole horiz
Thus, if there were no matter content to the five-dimensio
spacetime~e.g., if it were all to fall into the black hole or be
radiated away! this theorem would imply that the four
dimensional spacetime resulting from extra-dimensional c
lapse has constant scalar field; and this, in turn, implies
the five-dimensional spacetime is a black string for which
size of the extra dimension is constant.~If there is matter
present the scalar field is presumably not constant sinc
couples to the matter.!

But this is just the type of spacetime considered by G
gory and Laflamme and which, as mentioned in the Introd
tion, suffers from the linear instability found by them. Thu
although we have assumed four-dimensional cosmic cen
ship, the instability is evidence that five-dimensional cosm
censorship does not hold.12

Nonetheless, there does not seem to be any good re
why cosmic censorship should hold in four dimensions
not in five. If one wanted to retain cosmic censorship

12If the Gregory-Laflamme instability does lead to the violation
five-dimensional cosmic censorship one cannot thereby imm
ately obtain an example of a four-dimensional naked singularity
dimensional reduction since the instability does not arise for
homogeneous extra dimension.

in
5-9
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JAMES GEDDES PHYSICAL REVIEW D 65 104015
five dimensions then there seem to be two possible way
evading the dilemma. Perhaps the argument that ex
dimensional collapse produces a black string fails for in
mogeneous extra dimensions. Gregory and Laflamme h
suggested that the instability could set in before the bl
string forms, giving rise, presumably, to one or more bla
holes, without horizon bifurcation. It has also been argu
@16# that there is an inhomogeneous, stable black string
which the homogeneous black string will evolve.

On the other hand, perhaps the black string scenario is
best place to look for an explicit example of a~generic!
naked singularity, albeit in five dimensions. Such an exam
would presumably provide a great deal of insight into t
issue of cosmic censorship in four dimensions.
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APPENDIX: ROUNDING THE CORNERS

The metric functions described in Sec. III are smooth
the interior region,r ,r 1, in the transition region,r 1,r
,r 2, and in the exterior regionr .r 2 but have discontinuous
first derivatives atr 5r 1 and r 5r 2. The purpose of this ap
pendix is to ‘‘round off the corners,’’ giving everywher
smooth functions for which the existence of solutions to E
stein’s equation is guaranteed. Our smoothed functions
also have the property that the smoothed metric will be eq
to the original in the interior and exterior regions except
small neighborhoods ofr 1 and r 2, which means that the
extra-dimensional collapse is unaffected and the exte
space is still Schwarzschild.

Some of the metric functions specified in Table I are
ready smooth but the three that are not areq(r ), f (r ), and
ḣ(r ) @recall thatḣ(r ) is specified directly as initial data; it i
not calculated as the time derivative ofh#. Now, the only
form in which ḣ(r ) and f (r ) enter into the dominant energ
condition is asḣ(r )/ f (r ); thus it is convenient to define
s(r )5ḣ(r )/ f (r ) and to smooths(r ) instead.13

It is not hard to see that a piecewise smooth function m
always be smoothed out, in the sense that one can alw
find a smooth function that is uniformly close to the giv
one. However, it is also clear that the first derivative o
smooth approximation cannot be uniformly close to the fi
derivative of the original function, for the derivative of th
original is discontinuous. Since the stress-energy compu
from the metric involves the first derivative it is not at a
obvious, and in general not true, that the stress-energy c
puted from such a smoothed metric will satisfy the domin
energy condition. ~The collapse condition and the no

13Once we have obtained a smootheds(r ) one may smoothf (r )
by any naive method and then multiply it by the smootheds(r ) to

obtain a smoothedḣ(r ).
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trapped-surfaces condition will, however, be unaffected if
region of rounding is made small enough.!

Our problem may therefore be stated as follows. Giv
metric functionsq(r ) ands(r ), satisfying appropriate condi
tions, find smooth functionsq̃(r ) and s̃(r ) such that the as-
sociated stress-energy satisfies the dominant energy co
tion, which may be written as

1

r 2 S 12
q̃

r
D 21/2

dq̃

dr
>

ds̃

dr
. ~A1!

The method we use to smooth the metric functions is
convolve them with a smooth kernel. That is, letG(r ) be a
smooth, positive function with support in the region21<r
<1 and with total integral unity. For anye.0, define

Ge~r !5
G~r /e!

e
~A2!

@noting thatGe(r ) also has total integral one# and set

q̃e~r !5E
2`

`

q~r 8!Ge~r 82r !dr8,

s̃e~r !5E
2`

`

s~r 8!Ge~r 82r !dr8. ~A3!

We claim that, for sufficiently smalle, the functionsq̃e(r )
and s̃e(r ) satisfy the dominant energy condition, Eq.~A1!,
and, furthermore, forr ,r 12e and r .r 21e ~the interior
and exterior regions respectively! we haveq̃(r )5q(r ) and
s̃(r )5s(r ).14

To show this, we first define, for convenience,

F@q~r !,r #[
1

r 2 S 12
q

r D 21/2

, ~A4!

so that the dominant energy condition is

F@q~r !,r #
dq

dr
>

ds

dr
. ~A5!

Now from the fact thatq(r ) is uniformly continuous it fol-
lows that q̃e(r ) is uniformly approximated byq(r ), in the
sense that, givenk.0 there existse.0 such thatuq̃e(r )
2q(r )u,k for all r. From this and the boundedness ofq(r ),
it follows that for anyD.0 there existse.0 such that for
all r 8 such thatur 2r 8u,e,

uF@ q̃e~r !,r #2F@q~r 8!,r 8#u,D, ~A6!

14In the following, it may appear to be a problem that the met
functions are defined only forr>0, whereas we write all formulas
as if they were defined on the whole real line. However, the fu
tions to be smoothed are all constant forr ,r 1 so, if we choosee
,r 1, the smoothed functions will be unchanged nearr 50.
5-10



n

n
re

w

e
, so
ty.

COLLAPSE OF LARGE EXTRA DIMENSIONS PHYSICAL REVIEW D65 104015
and this bound is uniform inr. We shall use this estimate i
the dominant energy condition.

For our metric functions, the inequality in the domina
energy condition is saturated in the interior and exterior
gions, where both sides of the inequality are zero. Whenr 1
,r ,r 2, on the other hand, the difference between the t
sides is bounded away from zero. That is, there existsd.0
such that, forr 1,r ,r 2,

F@q~r !,r #
dq

dr
>

ds

dr
1d. ~A7!

ChooseD.0 such that

D
dq

dr
,d ~A8!

~which is possible sincedq/dr is bounded! so that, using Eq.
~A6!, we have

U E F@q~r 8!,r 8#
dq~r 8!

dr8
Ge~r 82r !dr8

2E F@ q̃e~r !,r #
dq~r 8!

dr8
Ge~r 82r !dr8U

,E D
dq~r 8!

dr8
Ge~r 82r !dr8

,dE Ge~r 82r !dr8, ~A9!

where the last line follows from Eq.~A8!.
Now convolve Eq.~A7! with Ge(r ), noting that both

sides are zero whenr ,r 1 and whenr .r 2. Using the esti-
mate above, we find

F@ q̃e~r !,r #E
r 1

r 2 dq~r 8!

dr8
Ge~r 82r !dr81dE

r 1

r 2
Ge~r 82r !dr8

>E
r 1

r 2 ds~r 8!

dr8
Ge~r 82r !dr81dE

r 1

r 2
Ge~r 82r !dr8.

~A10!
ath

B

li,

H.
e

10401
t
-

o

The terms involvingd then cancel, and the integrands in th
remaining terms are zero outside the region of integration
we may take the limits of those integrals back to infini
Thus,

F@ q̃e~r !,r #E dq~r 8!

dr8
Ge~r 82r !dr8>E ds~r 8!

dr8

3Ge~r 82r !dr8. ~A11!

Next, note a property of convolutions; namely, that

E dq~r 8!

dr8
Ge~r 82r !dr852E q~r 8!

d

dr8
Ge~r 82r !dr8

5E q~r 8!
d

dr
Ge~r 82r !dr8

5
d

drE q~r 8!Ge~r 82r !dr8

5
dq̃e~r !

dr
, ~A12!

where, in the first line, we have integrated by parts.
Thus we find the desired result,

F@ q̃e~r !,r #
dq̃e

dr
>

ds̃e

dr
. ~A13!

Finally, we note that, forr ,r 12e and r .r 21e, both
q(r ) and s(r ) are constant and henceq̃e(r )5q(r ) and
s̃e(r )5s(r ), as claimed.
d,
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