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In models of spacetime that are the product of a four-dimensional spacetime with an “extra” dimension,
there is the possibility that the extra dimension will collapse to zero size, forming a singularity. We ask whether
this collapse is likely to destroy the spacetime. We argue, by an appeal to the four-dimensional cosmic
censorship conjecture, that—at least in the case when the extra dimension is homogeneous—such a collapse
will lead to a singularity hidden within a black string. We also construct explicit initial data for a spacetime in
which such a collapse is guaranteed to occur and show how the formation of a naked singularity is likely
avoided.
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[. INTRODUCTION the curvature of spacetime is now much larger than Planck-
. o . ) ian scales it ought to be possible to study the evolution of
The idea that we live in a universe with more than thegych spacetimes within the framework of classical general
four dimensions we observe has been around for some tim?elativity.
Models of the universe with five or more dimensions, Origi' AsS an examp'e] consider a Spacetime whose manifold is
nally proposed by Kaluza and Kleft,2,23 as an attempt to  the product of four-dimensional Minkowski spacetime with a
unify electromagnetism and general relativity, have beersingle extra dimension of topolog$* and whose metric is
commonplace in string theory for many years. In such theo-
ries the extra dimensions typically have a “size” comparable
to the Planck length and thus remain unseen since experi- ds?= 7,,dx4dx” + b(t)2dy?.
ments that would reveal their presence require as-yet-
unattainable energies. Furthermore, questions about the evo-
lution and stability of the extra dimensions have been largelyqere 7, IS the metric of Minkowski spacetime are the
ignored since at this scale quantum gravity effects are precoordinates in “usual” dimensionsy is the coordinate in the
sumably important and it is difficult to extract predictions fifth dimension, and(t) is the scale of the extra dimension.
from any current candidate theory of quantum gravity. It is clear that this metric is a solution to Einstein’s equation
~ Recently, however, there has been a great deal of interegfhen(t) is constant, sap(t)=b,, since the spacetime is
in models wherein the size of the extra dimensions is mMuchihen flat. However, it is easy to check that a solution is also
larger than the Planck lengff8—5]. Current experimental gptained by setting(t)=by+ at, with @ a constant. Ife
results involving tests of the inverse square ltsee, €.9., s negative, then clearly the extra dimensions will collapse
Hoyle et al. [6]) do not rule out extra dimensions even asty zero size—and the whole spacetime will become
large as a tenth of a millimetéit is now important to con-  gjngular—in finite time. Although this model is rather unre-
sider the evolution of the extra dimensions since the Obgjistic in that the scale factor of the extra dimension is the
served strength of the gravitational force is directly depensame, and evolving in the same manner, throughout the en-
dent on the size of the extra dimensidrBurthermore, since  tire space, we shall show in Sec. Ill that it is possible to
construct more realistic examples in which the collapse hap-
pens locally(i.e., within some compact spatial regjcend is
n order that the extra dimensions remain unobserved, one imanuaranteed to produce a singularity.
ines that the standard model fields are confined to a four- There do exist models in which the size of the extra di-
dimensional submanifold, known as the “brane,” which comprisesensions is stabilized, at least under small perturbations, by
the observable universe. In what follows we ignore the existence ofy,o 5qdition of suitable matté?,9-17. However, it is still
the brane. There have been some attempts to model the brane irh%t clear whether any of these models would describe our
theoretically reasonable way as a distributional stress-er@igy niverse if extra-dimensional models were taken seriously.
albeit with a noncompact extra dimension, but we shall assume thaLI{hus one must be concerned about the possibility of singu-
the stress-energy of the brane can be ignored in comparison to t'?glrity formation in the fashion described above and the na-
stess-energy in the full spacetime. fure of the singularity so formed. It would be disastrous, for

2Indeed, it is for this reason that these models were proposed i . . .
the first place: by fixing the gravitational field strength appropri- example, if a singularity, once formed, were to propagate

ately, one can arrange for the actual Planck energy to be comparab‘PémNards from its origin, destroying the spacetime.
to the electroweak scale yet explain the size of the observed Planck Nonetheless, we shall argue that, under reasonable as-

energy by this weakening of the observed gravitational fieldSUmptions, a space that is the metric product of a three-
strength on the brane. It was suggested that one thereby explains tﬁg‘ngnsmnal Space and a homogeneous, onef-dlme.nsu).nal
surprising weakness of gravity compared to the other forces, almanifold, in which the scale factor of the extra dimension is

though to some extent the problem has merely been transferred @ollapsing to zero in some region, will evolve to a “black
explaining the size of the extra dimensions. string,” that is, a spacetime that is the metric product of
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a four-dimensional black-hole spacetime with the extrasuch a catastrophic fate will not befall more realistic ex-

dimensional manifold. That is, even if a singularity is formed amples and that even a naked singularity will not occur, pro-

by extra-dimensional collapse, it will be hidden within an vided that the extra dimension is homogeneous.

event horizon. To give some insight into the mechanism by In order to proceed, we shall make the simplifying as-

which this occurs, we also give an explicit example of asumption that the spacetime is the product of a four-

collapsing spacetime and try to make plausible its subsedimensional manifoldM, with St (though it makes no dif-

guent evolution into a black string. ference to our argument if the extra dimension has the
Our argument relies on the cosmic censorship conjecturtopology of R) and that the metric of the full spacetime,

in four space-time dimensions. This conjecture asserts{®®g,g, can be written in the form

roughly, that all singularities are hidden inside an event ho-

rizon rather than being “naked,” i.e., visible to distant ob- —

servers; or, in other words, that black holes are the generic d5°= ®gapdx*dx®=gap(X)dx?dx°+ eV 2#Mdy?,

final states of gravitational collapse. Although it has not been (1)
proven, the cosmic censorship conjecture is widely believed
to be true for generic initial conditions. where the x are coordinates in the “ordinary,” four-

Ten years ago, Gregory and Laflamiiis] showed that  gimensional, spacetime; the coordinate in the extra dimen-
black strings are, in fact, unstable to linear perturbations, adjon, and we shall use uppercase Roman letters to denote
least when the scale of the extra dimensions is large enougthdices in the full, five-dimensional spacetime but lowercase
If this instability is a true, nonlinear instability, the question Roman letters for indices in the four-dimensional spacetime.
then arises as to what the final state will be. Gregory and The four-dimensional metrig,,, and the scale factor
Laflamme suggested that the black string would “fragment” g(x) do not depend upow but are otherwise completely
into a chain of black holes, although, since this would re-general. That is, we consider only spacetimes in which the
quire the event horizon to bifurcata process that is forbid-  extra dimension is homogeneous. This form of the metric is
den if five-dimensional cosmic censorship holds naked ypical of many models considered in the literatuamd is
singularity would result. Thus there is something of a puzzlesimilar to the original Kaluza-Klein ansatz except that we
as to what the final state actually is: if one imposes the symgjisallow off-diagonal terms in the metric.
metry constraint that we do, the final state appears to be a gjpgstein’s equation in the full spacetime, in geometric
black string; if one does not, then a naked singularity appeargits (whereG=c=1), is
to be possible. It has also been sugge$iéd that the insta-
bility will not lead to a bifurcation of the event horizon and
that, instead, the spacetime evolves to a stable solution that CIGpAg=87IT g, 2
does not have translational symmetry in the extra dimension.

The outline of this paper is as follows. In Sec. Il we where )G, is the five-dimensional Einstein tensor,

describe the cosmic censorship conjecture and the conditio (5) : ; ;
under which it is believed to hold. We then rewrite Einstein’sr}i%d Tas the _f|ve—d|m_enS|onaI stre)ss—engrgy tensor. Note
’ that to be consistent with the form &fg,g given above we

ensional theory an efiective matter content a Our approach will be to show that this equation may be

. X . ' that the four-dimensional cosmic censorship conjecture pre-
data that is guaranteed to form a singularity and then give P J P

explicitly, a class of such initial data. By considering a pIau-CIUdeS- the existence of elthgr a nake_d smgulanty or a
sible sce7nario for the evolution of thié data, we illustrate howspacetlme-Qestroylng one. Thls- “dlmenS|on.aI reduction” is
the black string likely arises ’ usually carried out in a Lagrangian f_ormulatlasee, for ex-
' ample, the survey article by Overduin and Wesgbr] and
references therejrbut we shall instead directly rewrite Ein-
Il A GENERAL ARGUMENT FROM THE COSMIC stein’s equat_ion to arrive at a four-dimension_a_tl theqry witr?
CENSORSHIP CONJECTURE some eﬁgctlvg stress-energy ten;or. Revyntmg Emstgms
equation in this way has the benefit that it is more straight-
In the Introduction we gave a simple example of a spaceforward to determine the effective stress-energy tensor—
time possessing an extra dimension in which the extra diparticularly when the matter content does not have a La-
mension collapses to zero size everywhere on a spacelikgrangian formulation—and, furthermore, one can be sure of
surface and the worldline of every observer ends on the sirebtaining all the equations of moticn.

gularity in finite proper time. In this section we argue that

“There are exceptions, notably those with a nonfactorizable,
3It is possible to construct nonsingular initial data for which the “warped” metric [7,8].
subsequent evolution contains a naked singularity; however, ana-°If one substitutes a metric ansdsuch as Eq(1)] into an action,
lytic and numerical studigfd 3,14 strongly suggest that such initial subsequent variation of the action will not necessarily give rise to
data is in some sense nongeneric. all the equations of motion.
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A. Dimensional reduction

PHYSICAL REVIEW 55 104015

~ ~ o~ 1. - -
(5) = _ ~ (¢
From our metric ansatz, E¢l), we can rewrite the five- Gap=Gap~DafDpB+ 75 (D"EDcB) G,
dimensional tensors appearing in the theory in terms of their

four-dimensional counterparts. We find

) 2 2
Rab=Rab[ Ganl — §Da,3Db,3_ §DanB,

- 2_ _ - -
R+3 \[gDCDCB— DegD. A

1
©)G,,= - Eeav 138

(7)
Thus, from Einstein’s equation in the full spacetime, B,
J— 2 we have
IR, =—e?2Rh 3D%BDaB+ \/3DDaB . ) o .
(3) GabZSW(S)Tab+ DaBDbB_E(DCBDcﬁ)gabv
Here ®)R,, is the five-dimensional Ricci tensor projected > 1
into the four—_dimens.ional space .arﬁq‘b[_gab] is the Ricci =ar B=— \ﬁES\/TBﬁ(S)T + _‘éab(S)T .
tensor associated with the four-dimensional part of the met- a 3 44 \/g a
fic, gap- (The mixed-index terms®'R,,,, are zero. Finally, ®)

D, is the derivative operator associated wgtl,. Using the

above we can rewrite the Einstein tensor:

(5)G, = OIR,,— %(S)R(s)gab

2 2
=Gap— [gDaﬁDaﬁ"' \@DaDaB}

J’_

2 2
§DaﬁDaIB+ \@DaDaﬁ} Jab >

1
GG, = — —Re2P8
Gyy=— SR,

whereR=R,,0%® and G,,=R,,— R 0ap -

One may interpret this as the theory of general relativity in
four dimensions, with matter content described BT,
plus a massless scalar fiefg, coupled to®)T,, and )T,

We now discuss the cosmic censorship conjecture.

B. The cosmic censorship conjecture

It is widely believed that in a four-dimensional spacetime
arising from reasonable initial data, with reasonable matter
content, no singularities will be visible to distant observers;
that is, all singularities will be hidden within black holes.
(See, e.g., Wal@l18] for a survey of past and recent resylts.

4 Here we recall the precise statement of this conjecture by

giving a meaning to the notion of “reasonable” initial data,
“reasonable” matter, and “distant observers,” and hence ar-
gue that the singularity formed by a collapsing extra dimen-
sion will likewise be hidden, given the results of Sec. Il A.

One could at this point equate the right-hand side of the We first say what is meant by a distant observer. The
first equation above to the four-dimensional part of theintuitive meaning is an observer located “far away, in the
stress-energy tensor and consider the expression invoB/ing future” where the spacetime “looks like” flat spacetime. The
as part of an effective stress-energy. However, this expresgrecise meaning for these terms is given by the notion of
sion is not recognizable as the stress-energy of, say, a scalasymptotic flatness at future null infinity. Roughly speaking,
field. To rewrite the equation so that the stress-energy is redquture null infinity, Z*, is the “end point” of null geodesics

ognizable, we make the conformal transformation
— a—V23
Jap=€ X ﬁéab-

The Ricci tensor and scalar then become
- o~ 1. - 2. -
Rap= Rab[gab] + §DaIBDb:3+ §Dan,B

"2

2. 2. o |~
\/;DCDCﬁ_ §DCBDCB} Jab >

R=e"2R8

- 2. o -
R+3\[§D°DCB—D°ﬁDCB

where nowD, is the derivative operator associated wath,

that propagate out to large distancgéEhe details of this
construction, which are not important here, can be found in

(5) advanced textbooks on general relativity9], Chap. 11.] If

the spacetime is asymptotically flat at future null infinity then
it “looks like” flat spacetime at sufficiently large distances
and late timesZ * then represents “far away in the future.”
The notion that a distant observer will be able to avoid run-
ning into a singularity is then captured by the precise state-
ment that future null infinity is complete. Furthermore, if no
past-directed causal curve frafi” terminates at a singular-
ity, then distant observers will not be able to see the singu-
larity.

Next we explain what sort of initial data we allow. Clearly

(6)  no version of the cosmic censorship conjecture will hold

without some restriction on the initial data: for example,
the spacetime given in the Introductiaitoes produce a
spacetime-destroying singularity. On the other hand, if one

and indices are raised and lowered wah,. Finally, we |iyes in a spacetime that is not, initially, collapsing every-
substitute this expression f@,;, into Eq. (4) and also re-  where, one cannot create such initial collapse because the

placeD, by D, there, to obtain

collapse is not confined to some compact region. We thus
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wish to require that at large distances the initial data apfor they are just a rewriting of the five-dimensional equa-
proaches flat space. It turns out that a notion of asymptotitions.
flatness may be defined for initial data sets, analogous to Likewise, note that the evolution of this matter from non-
asymptotic flatness at future null infinity for spacetimes, andsingular initial data in a fixed background with fixe®l is
we will allow only asymptotically flat initial data. equivalent to that obtained by fixing the five-dimensional
Finally, for the purposes of the conjecture, the matter conbackground spacetime and thus will not produce a singular-
tent must be “well-behaved” in the following sense: ity. To satisfy condition(3) above we should actually fix only
(1) The coupled Einstein-matter equations have a wellthe four-dimensional spacetime whilst allowing both the
posed initial value formulation; matter andgB to evolve; but this is not equivalent, in the
(2) the matter satisfies the dominant energy condition sdive-dimensional view, to fixing the five-dimensional back-
that observers do not see negative energy densities or “sground spacetime. However, noting thatis, on its own,
perluminal” energy flow; and well behaved, we would expect that, were we also to ajow
(3) the matter is not of such a nature as to produce singuto evolve, a singularity would not arise. Thus, it appears
larities in a fixed, nonsingular, background spacetime, unhighly plausible that conditiof8) does hold for the effective,

coupled from Einstein’s equation. four-dimensional matter content.
We now state one version of the cosmic censorship It remains only to check that the four-dimensional stress
conjecture® energy satisfies the dominant energy condition. To this end,

Weak cosmic censorship conjectu@onsider asymptoti- let £ be any future-directed, timelike vect@uture-directed

cally flat initial data for Einstein’s equation with suitable gnq timelike with respect t@,,). We must show that the

mzrtgé"l:]hees%Tsﬁoﬂvsfntﬁ.zoggiaTgeg’Sgeancirt'icrﬁgyiﬁgfing);\'_/'ector— §aTbC§ab is future-directed timelike or null. But this
wchy evolutl IS data sp " Is true becausé? is future-directed and timelike with respect
ymptotically flat at future null infinity, with complet& ™.

t0 g,p, and hence with respect t6'g,z, and, by assump-
I : : _ tion, the dominant energy condition holds with respect to
C. Application to extra-dimensional spacetimes (5)

If the extra dimension collapses in the evolution of a five-  Thus, if the four-dimensional cosmic censorship conjec-
dimensional spacetime whose metric is of the fginthen a  ture holds, the singularity formed in the four-dimensional

singul_arity Wi" be produced_. In _the cor_1forma||y transform_ed, spacetime with metri@ p Will be contained within a black
four-dimensional theory, this singularity appears as a d'ver'Pole @

gence of the scalar field and, in particular, a d|v<_argence Of " Now note that the projection of a curve in the five-
the stress-energy of the scalar field. Thus, there will also be gimensional spacetime that is timeliker causal with re-
space-time singularity in the four-dimensional theory. How- ) P . . ional :
ever, we are now in a position to argue that this singularity>PECt ©0°"9ag iS a curve in the four-dimensional spacetime
will be contained within a black hole. that is timelike(or causal with respect tay,,. Thus, a rea-
Thus, consider a five-dimensional spacetime for which thesonable definition of a “distant observer” in the five-
five-dimensional matter content satisfies conditiohs-(3) dimensional spacetime would be one whose world line, when
above and such that the initial data for the equivalent fourprojected into the four-dimensional spacetime, is the world
dimensional spacetime is asymptotically flat; then, assumingine of a distant observer there. Then, by the same reasoning,
that the cosmic censorship conjecture is true, we claim th&f a distant observer in the five-dimensional spacetime were
the singularity will be contained within a black hale black  able to see the singularity, the observer in the four-
string in the five dimensional theory dimensional spacetime obtained by projecting his world line
To see that this is true, let there be given initial data forwou|d be able to see the Singu|arity also. But we have al-
the five-dimensional spacetime and hence, by the equivaeady argued that the four-dimensional distant observers do
lence described in Sec. Il A, we obtain initial data for a four- 1ot see the singularity and we therefore conclude that the

dimensional spacetime with matter content that includes @jngularity is not visible to distant observers in the full
scalar field. Now to show that the cosmic censorship COnjeCspacetime, either.

ture applies to the four-dimensional initial data we must

show that the four-dimensional matter content is well be-

haved in the sense above. It is well known that a massless

scalar field is well behaved. Since, by assumption, the five- To conclude this section, we comment briefly on an obvi-

dimensional equations have a well-posed initial value formuous generalization of this model to more than one extra di-

lation it is clear that the four-dimensional equations will also,mension. It turns out that in this case the conclusion that the
effective matter content satisfies the dominant energy condi-
tion does not necessarily hold.

SThere are actually two closely related conjectures: the one we Suppose that there are nowextra dimensions. Previ-
give is known as the weak cosmic censorship conjecture. The stror@usly we required that the scale fac@t® did not depend
cosmic censorship conjecture says, roughly, that no one ever see98 the coordinate of the extra dimension. Likewise here, for
singularity—not even one who falls into a black hole—unless hesimplicity, we shall assume that the extra-dimensional mani-
runs into it. fold is a maximally symmetric space whose metric depends

D. More than one extra dimension
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on position only through a scale factor that varies with posiproper time. Thus, in this picture, the stress-energy in the
tion in the “usual” dimensions. The metric then has the forminner region becomes infinite and hence a singularity forms.
Recall that an outer marginally trapped surface is a space-

ds?=gapdx dxB+ e\ 12N+ 218y, dyrdy”, (9) like, two-dimensional submanifold that is the boundary of a
three-dimensional closed region, such that the expansion of

where they* are the coordinates in the extra dimensions the family of outgoing null geodesics normal to the surface is
and 'y/“/ iS the metric Of a maxima”y symmetric manifo'd_ nqnpOSItlve. The fOUr-dlmenSK)nal CenSOI’ShIp Conj_eCture im-
The action for general relativity in this model may be dimen-Plies that any outer marginally trapped surface will be con-

sionally reduced in precisely the same way as shown abov&ined within, or coincident with, an event horizon. The
for the n=1 case producing again an effective four- event horizon of a stationary black hole, for instance, is an

dimensional theory containing a scalar fields in the case outer marginally trapped surface. From the arguments given

of one extra dimension, this reduction is typically done in ag]llsterg II’e\:jvesx\;?alljcl:g’vt\/?lleréeitfﬁ(reer’e?()i(gei?\t ttr?gtir?iga(ln:jt:tramgrr%g-
Lagrangian picturd10,12,2Q.) After dimensional reducing y trapp '

. ! ) formed sufficiently early to enclose any singularity.
the equations and making the conformal transformagign In this sectionywe syhow how the g/hoicg of ir>1/itial data

=g V2n(n+2)Bg ., the result for the effective stress energy is (within our class of modejsthat ensures extra-dimensional
collapse, also leads one to the conclusion that an outer mar-
ginally trapped surface will surround the singularity. In doing
S0, we gain some insight into the “mechanism” by which the
_ conclusions of Sec. Il are enforced.
—R,e OFAME)G,, | (10 The idea of our construction is to give initial data that,
within some compact region, “looks like” the collapsing ini-
whereR, is the Ricci scalar ofy; and**™T,, the four-  tial data given in the Introduction, but is then asymptotically
dimensional projection of the (4n)-dimensional stress en- flat outside this region. Inside the region the spacetime does
ergy. In contrast to the case of one extra dimension, the scaot “know” that the rest of the spacetime has been changed,
lar field part of the stress-energy contains a “potential term”and the region will be made large enough that collapse will
V(B)=-R,e” v2(nt2)inf  The scalar field will satisfy the be guaranteed to occur at some point within it before infor-
dominant energy condition if this potential is positihat ~ mation about that change propagates in. We now make this
is, if the manifold of extra dimensions is negatively curvedidea precise.
or flat) but will not do so if the potential is negative; that  Let A be a compact subset of the:0 hypersurface of the
is, when the manifold of extra dimensions has positivespacetime described in the Introductidithe setA will be
curvature’ Typically, in models of extra-dimensional cos- the “region within which collapse occurs.”By the future
mology, a matter term is included in the modfar instance domain of dependencef A we mean the collection of all
to stabilize the extra dimensiondt may then be the case points p in the spacetime such that every past-directed,
that the overall effective potential is positive even though thenextendible? causal curve througp intersectsA. We denote
extra dimensions have positive curvatitiis is so, for ex- the future domain of dependenceAdby D *(A). The point
ample, in the “monopole” mode[10,11]). of this definition is that properties of the spacetime at some
point pe D (A) (such as the metric and any matter fi¢lds
Ill. A CONCRETE MODEL OF EXTRA-DIMENSIONAL depend only upon the initial data specified An;iljpe an
COLLAPSE observer ap cannot “see” any other part of the initial data
set. Furthermore, if there is given new initial data having
In Sec. Il we concluded that local extra-dimensional col-some regionA’ within which the data is the same as that
lapse would not give rise to a spacetime-destroying singulamwithin A, then, in the resulting spacetimes, the two regions
ity. In the Introduction we gave an example of a spacetimeD *(A) andD " (A’) will be isometric.
whose extra-dimensional collapskd destroy the universe Hence, if the extra dimension collapses to zero size within
but in that example the collapse was not initially confined toD * (A) then collapse will also occur withi * (A"), i.e., we
some local region. In this section we turn the example of theare guaranteed that the collapse will, in fact, occur in the
Introduction into a more pertinent one by constructing a classpacetime resulting from the new initial data.
of initial data for spacetimes in which the collapse does oc- In the next section, we describe initial data having this
cur locally. We then consider this initial data from the four- property. A schematic diagram of the resulting spacetime is
dimensional point of view. shown in Fig. 1. The initial data surface is labe®pthere is
Under this interpretation the size of the extra dimensioran inner region in which the space is flat but in which, how-
appears as a scalar field, constant everywhere on the initiaver, the extra dimension is collapsing unifornliis is the
data surface but having nonzero time derivative in the inneregion equivalent tcA) where we have chosen the region
region, where, moreover, its value becomes after finite

~ = 1. -
87 Tap=87 4"V Tp+ Doy~ 5(D°ADB

8For the definition of inextendible see Wa[dL9], Chap. 8. One

"There are some indications that the more interesting case is thaan always find a curve from that does not interse by taking

when the curvature is non-negative, only then does there exist spane that does and letting it end before it reacAeJhe technical
tially homogeneous, static solutions to Einstein’s equaftid. restriction of inextendibility prevents this kind of “cheating.”
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Extra dimension reaches Since the spacetime is spherically symmetric we intro-
zerg Sloethers duce coordinates 8, and¢ in the usual wayso that for any
. / point whose radial coordinate isthe area of the 2-sphere of
Time DA spherical symmetry containing that point isr#?). The co-
ordinate in the extra dimension we again denota/by
~— b Assuming that the constantsurfaces are timelike, the
yd Transition region spacetime can now be foliated by four-dimensio(iabn-
Inner re/gion’ e stant time”) hypersurface&.; such thatV,r is orthogonal to
(flat; extra dimension collapsing) V,t. (That is, a surface invariant both under rotations and
Outer region translation in the extra dimension is a constant time surface
(extra dimension not collapsing) if the integral curves oW,r lie within it.)

FIG. 1. A schematic diagram of the spacetime described in the If the'constan'r- surface; become pu(b..g., ther.:2M

text. One ordinary spatial dimension and the extra dimension hav@urface In SChW&_erS_ChﬂdhlS construction is not Val'_d since
been suppressed. The initial data surface is labBle@he initial  th€ normal now lies in the surface and trendr coordinates
stress-energy is nonzero only in the shaded region. become degenerate. Likewise this construction may also fail
where V,r=0 for thenr no longer necessarily identifies
uniquely a single constamtsurface. However, in the region
O the initial data surface that we give later, neither of these
problems arises.

large enough that we can be sure that the extra dimensi

reaches zero size within its future domain of dependence.
It might appear that the construction of such initial data It follows that in this coordinate system the metric may be

would be almost trivial: one sets the metric to be MinkowskiWritten

out near infinity; inside some region one sets the metric to

be such that the extra dimension is collapsing and theraszz(s)g dxPdxB

smoothly joins these two regions, allowing the matter con- AB

tent of the spacetime to be determined by Einstein’s equa-

tion. However, this procedure would likely result in “unrea-

sonable” matter, having negative energy densities or

superluminal energy flow. We shall insist that the matter ConHeredQZ=d02+sin26d¢2 is the spherical part of the met-

tent satisfy the dominant energy conditi¢gee Sec. Il ¢ ric. In Sec. Il A2 the functionsf(r,t), g(r.t), andh(r,t)

(this is the same condltlon as that u_sed N Sec I will be restricted further by a choice of a class of initial data
The outline of the remainder of this section is as fOIIOWS'SetS

In Sec. lllA (a}nd thg Appendb<we describe if““a' data Our initial data surface will b& =%,,. The induced met-
whose extra dimension will collapse to zero size. In SeCSric on’s is clearl 0
[l B and Ill C we write down the conditions that the space- y
time will collapse and that the matter does satisfy the domi- AqB_ 20021 2402 24,2

o . ; o = t +redQ“+h(r,t . (12
nant energy condition and in Sec. Il D we give the condition SagdXdx"=g(r,)%dr"+rd (r.%dy=. (12
that an outer marginally trapped surface be present in thg,, |etingnA= — £-1(4/5t)” be the field of unit, timelike
initial data. Finally, in Sec. Ill E we argue that, even in thosevectors orthogonal t&, so thatsyg= G)gagt NaNg, We

cases_where the initial da‘? does not contain such a_surfa_chmpute the extrinsic curvature Bffrom the usual formula,
there is good reason to believe that the future evolution will

contain an event horizon that will prevent signals from the _
singularity reaching infinity.

=—f(r,t)2dt®+g(r,t)2dr?+r2dQ2+h(r,t)%dy?.
(11

Some algebra gives
A. Initial data guaranteed to collapse

' hh
1. General considerations Kag=— %(dr)A(dr)B— T(d{//)A(dw)B ., (19

In Sec. Il we considered spacetimes whose manifold
structure was the metric product of a four-dimensional maniwhere a dot denotes a derivative with respect to
fold, M, with a circle, such that the metric did not depend on e shall take the matter to be dust, for simplicftySuch

the circle coordinate. Here also we shall only consider spacez choice has the advantage that the equation of state is trivial
times with this property. Furthermore we suppose that the

initial data, and hence the resultant spacetime, is spherically———

symmetric? We now introduce a convenient coordinate sys- 10 js possible for the evolution of dust from nonsingular initial

tem for such a spacetime. data in a fixed background to produce a singularity: dust does not
satisfy the third of the conditions on the matter content in the cos-
mic censorship conjecture. However, our intent is not to illustrate a

9By spherically symmetric we mean that there exists an action ohaked singularity but the formation of an outer marginally trapped
the group SO(3) as an isometry on the spacetime whose orbits aseirface and the failure of dust to satisfy prope®y will not be
(spatia) 2-spheres. relevant to our considerations.
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TABLE I. Initial data for the metric functions and matter content of the spacetime described in the text.

Att=0r<r, ri<r<r, r>r,
q(r) 0 r—r, oM
r2—ry
f(r) (1—2M/r,)*? (1—2M/r,)¥? (1—2M/r)¥2
h(r) ho ho hy
h(r) —vo ro—r 0
—vo
ra—ry
16mp(r) O AMI[r3(r,—r14)] 0
8mj,(r) 0 0
0 —z—z(l—ZM/rz)’l’z(rz—rl)’l
87(J2,)?=87g1j, 0 v [ _y r_rlrm(l_ ﬂ)uz 0
ho(ra—ry) rry—=r I

(the pressure is zeras is the equation of motiofthe “dust
particles” follow geodesics The matter stress-energy is then
of the form

CIT pg=oUaUg (19
for some densityo and four-velocityu”; for consistency
with our metric ansatz, we must assumg=0. (We write o
for the energy density in the stress-energy of the dust t
distinguish it from the initial-data energy densjty.

The initial, five-dimensional, energy and current densities

p=Tagn"nB and Jy=—h ,°Té® are given by the same
expressions as in four dimensiorisee, e.g., Wald19],
Chap. 10:

167p=Rg+ (K"4)2— K pgKAE, (16)

17

HereD, is the spatial derivative operatgre., the derivative
operator onX associated witls,g) andRg is the curvature
scalar for &,spg). Substituting in the equation above the
formula (14) for the extrinsic curvature gives, after some
work,

—8mIa= DB(KAB_ K CchAB)-

L6m a[ (1-g-3)] 2 9 (rzh’)Jr 2gh

= — — r — — —_— s

P= 2 ar g hgr?2dr\ g f2gh
(18

8mJ, = ’h Al 19

™= hrzﬁ(r )Tl 19

where a prime denotes a derivative with respect.t¢The
radial component ofl, we have writtenJ, ; all the other
components are zejo.

2. A particular class of models

and, by looking for outer marginally trapped surfaces, we
shall gain some insight into how distant observers are
shielded from the extra-dimensional collapse.

This initial data may be described as follows. The space is
spherically symmetric and is divided into three regions: An
interior region,r <r4, in which the size of the extra dimen-
sion is collapsing at a constant rate; a transition regign,
<r=r,; and an outer regiom,>r,, that is the metric prod-

Qct of the exterior of the Schwarzschild solution and the

extra dimension. In the transition region we shall choose the
metric functions to interpolate in a simple way between their
values atr, andr,.

The particular forms of the metric functions are given in
Table I. As well asr; andr,, three other parameters deter-
mine the initial datahg, the initial size of the extra dimen-
sion (which is everywhere the same , the initial speed of
the collapse of the extra dimension in the interior region; and
M, the mass per unit length.For convenience, we give,
instead of the metric functiog(r), a functionq(r), where

r
[When we do not write thé argument for the metric func-
tions, we mean their initial values at=0; thus q(r)
=q(r,t=0) and so forth,

Note that the metric functions are continuous, though not
smooth, across the boundariesratr, andr=r,. In the
Appendix we show that the corners may be rounded off so
that the metric is smooth everywhere, without affecting the
conclusions.

In the next two sections we describe the conditions our
initial data is supposed to satisfy: that collapse of the extra
dimension be guaranteed to occur and that the matter content
satisfy the dominant energy condition. It turns out to be con-

(20

We now construct initial data for a class of spacetimes 'That is, the exterior region is the metric product of the
whose extra dimension is collapsing. For some examples i8chwarzschild solution of ma$é with the extra dimension: this is
this class, the extra dimension will be guaranteed to collaps&hat is meant by “mass per unit length.”
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venient to introduce a dimensionless measure of how fast thgion, which must be spherically symmetric, is also an outer

collapse of the extra dimension is occurring; namely, marginally trapped surfacg19], Chap. 12. Thus, if any
outer marginally trapped surface exists, a spherically sym-
¥Y=vor190/(hofo). (21 metric marginally trapped surface exists.

On a constant- surface, the induced metric is
©,50X2dX°=h(r)r2dQ?, where the factor oh(r) comes
from the conformal transformation. The outgoing, future di-
rected, null vector field?® normal to the surface is

Without loss of generality, one could also sgt1 (though
we shall not do spso that our class of spacetimes is de-
scribed by just three parametel; r,, and y.

B. Collapse

a:h—1/2f—1 i : h—l/ -1 i : 2
& a g o] (25)

The collapse will be guaranteed if it occurs within
D*(A). The boundary oD"(A) is defined by null rays
emitted from the edge of the inner regiansr,, at coordi-  Hence the expansio, of the geodesics tangent to this vec-
nate timet=0, and these will reach=0 at coordinate time tor field is
t=r./f. Thus if the extra dimension reaches zero size at

=0 before this time it cannot be prevented; since the col- B B 2 h /

lapse occurs at=h, /v, we must have 6= Ewabfigwab:h‘l’z g_lF+f_1ﬁ+g_1F
ho r (26)
21 (22)
Uo f

On substituting in our forms fof, g, andh, and requiring
or equivalently, 6>0, we find that the condition that there are no outer mar-

ginally trapped surfaces is
1/2 fo—r
) e

2M r—rq
rz_rl r I’l rz_rl

where the inequality must hold for afl such thatr;<r
<r,.

yv>1. (23

) ) ) i ) 2
[The collapse of the extra dimension might still occur even if -1
this condition is not satisfied, it is just that it will not occur in r

D" (A) and thus cannot be guarantged.

C. Dominant energy condition

Recall that the dominant energy condition requires that
the stress-energyl .y, be such that, for all future directed,
timelike vectorst?, the vector—T2,t? is a future-directed We now consider the question: are there any values of the
timelike or null vector. For dust, with five-dimensional parameters of our model for which conditiof23), (24), and
stress-energy® T ,,= ou?u®, this condition is equivalent to (27) hold? That s, is there an example for which the collapse
requiring thate=0 and that? is timelike which, in turn, is ~ occurs, the dominant energy condition is satisfied, and there

equivalent top?=J,J2. When applied to our initial data the are no outer marginally trapped surfaces? If there is not,

E. Visibility of the singularity

condition is these examples will illustrate very clearly how naked singu-
larities are avoided in extra-dimensional collapse; if there is,
2M vy 2M |\ [r—r,\ ]2 we shall consider whether such a surface is likely to form
_2>r_ _(r T )( r ” ) (24) around the singularity in the subsequent evolution of the
r ! 2t spacetime.

Consider these conditions wher-r,. We requirey>1
to guarantee that the collapse occurs, whilst the condition
that there be no outer marginally trapped surfaces reduces to
v<2. Thus, without even considering the rest of the space-

Up to this point we have been working with the full, time, some of the parameters of the model are already se-
five-dimensional spacetime, in part because it was easy teerely restricted by requiring that the collapse not cause the
decide when collapse of the extra dimension was inevitablgormation of an outer marginally trapped surface.
However, our arguments are based on the four-dimensional Next consider the conditions atr,. We obtain M/r,
cosmic censorship conjecture so, now, consider what the ini<1 from the condition that there be no outer marginally
tial data looks like in the dimensionally reduced, conformallytrapped surfaces, whereas from the dominant energy condi-
transformed picture described in Sec. Il A. We now derivetion one can obtain ®/r,=0.6y?(r,/r,)2. Thus there are
the condition that no outer marginally trapped surfaces exisalso severe restrictions on the size of the transition region.
in the initial data. Given that one obtains these fairly restrictive conditions

In fact, it is sufficient to consider only surfaces of con- merely from considering the points=r, andr=r,, one
stantr-coordinate for the following reason. If any outer mar- might imagine that one could rule out all possible models by
ginally trapped surfaces exist, consider the union of all theconsidering the conditions at all values of However, it
regions bounded by such surfaces. The boundary of this reurns out that iis possible to choose parametersrq, r»,

and this must be true for atlin the ranger;<r=r,.

D. Trapped surfaces
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t On the other hand, for an observer at constant ;, the
singularity will form at proper timerg;,,, where
ho r
. . Tsing UOfO v (29
Slngulanty’,'
: But now, noting that #1/r,<1 andf,<1, we have
Infalling dust TBH Tsing: (30
/ It also follows from the dominant energy condition at
=rq that2M >r,, i.e., the inner region is within the radius at
I I, . which we have assumed an outer marginally trapped surface
=2m forms. (This is also illustrated in Fig. 2.

FIG. 2. The future evolution of the initial data described in the
text. The shaded area is the region containing matter. It is argued in

the text that the singularity will occur later than the formation of an For Spacetimes that are the product of a four-dimensional

IV. CONCLUSION

outer marginally trapped surface and inside it. spacetime with an extra dimension, and for which the metric
andM such that the three conditions are satisfiedliavalues 'S independent of the extra dimension, we have argued that
of r. collapse of the extra dimension, though possible, will be hid-

Nonetheless, the conditions are quite restrictive. Fixingden within a black string, assuming that the four-dimensional
r,, for instance, it follows from the conditions above that cosmic censorship conjecture is true. We illustrated this con-
there must be a certain minimum amount of matter in theclusion with a class of examples in which explicit initial data
transition region and, furthermore, the transition region canwas given such that the extra-dimensional collapse happened
not be too large. Consider, also, the expression for the cutocally. For this class of examples it was clear that “trying to
rent densityj, , given in Table I: it is clear thaf, is always make the collapse happen sooner” resulted either in outer
negative, which implies that the matter must be infalling. Inmarginally trapped surfaces being present in the initial data
other words, there must be a certain amount of infalling mator, at any rate, a plausible collapse of the initial data to a
ter contained in a region that is not too large. black string.

To get some idea of how plausible it is that the singularity ~Presumably the resulting spacetime becomes nearly sta-
will be hidden, we now make a very crude estimate of thetionary at late times. A well-known, black hole “no-hair”
time at which an outer marginally trapped surface will form, theorem[21,22 asserts that the only stationary, black-hole
and show that, according to this estimate, the singularity ocsolutions to the Einstein—scalar field equations necessarily
curs later than and inside an outer marginally trapped surhave constant scalar field outside the black hole horizon.
face. Thus, if there were no matter content to the five-dimensional

In what follows we work in the full, five-dimensional spacetimee.g., if it were all to fall into the black hole or be
spacetime where it is easier to see when collapse of the extradiated awal this theorem would imply that the four-
dimension occurs. A schematic diagram of the spacetime igimensional spacetime resulting from extra-dimensional col-
shown in Fig. 2. Referring to the metric, E(L1), and the lapse has constant scalar field; and this, in turn, implies that
initial forms of the metric functions shown in Table |, one the five-dimensional spacetime is a black string for which the
can see that if the parameters describing the spacetime wesize of the extra dimension is constafif. there is matter
chosen such that,=2M then the surface=r, would be an  present the scalar field is presumably not constant since it
outer marginally trapped surface and the exterior regioreouples to the matter.
would be that of a black stringfor then the metric in the But this is just the type of spacetime considered by Gre-
exterior region would be the product of a black hole spacegory and Laflamme and which, as mentioned in the Introduc-
time of massM with an extra dimension tion, suffers from the linear instability found by them. Thus,

We shall therefore assume that an outer marginallyalthough we have assumed four-dimensional cosmic censor-
trapped surface is formed very roughly when the infallingship, the instability is evidence that five-dimensional cosmic
dust passes=2M. The initial coordinate velocity of the censorship does not hold.

outer surface of the dust isy,=(f/g)(g~J,/p)=yri(1 Nonetheless, there does not seem to be any good reason
—2M/r,)/2M and so, very roughly, the dust will reach ~Why cosmic censorship should hold in four dimensions but
=2M at a timerg, where not in five. If one wanted to retain cosmic censorship in

r,—2M 2Mr 4
TBHT T, fo= Y, fo. (28) 12 the Gregory-Laflamme instability does lead to the violation of
five-dimensional cosmic censorship one cannot thereby immedi-
(This is the proper time as measured by an observer at ately obtain an example of a four-dimensional naked singularity by
=2M; the factor offy converts from coordinate timeto  dimensional reduction since the instability does not arise for an
proper time) homogeneous extra dimension.
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five dimensions then there seem to be two possible ways dfapped-surfaces condition will, however, be unaffected if the
evading the dilemma. Perhaps the argument that extraegion of rounding is made small enough.

dimensional collapse produces a black string fails for inho- Our problem may therefore be stated as follows. Given
mogeneous extra dimensions. Gregory and Laflamme haveetric functionsy(r) ands(r), satisfying appropriate condi-
Suggested that the |nStab|l|ty could set in before the bIaCIfionS, find smooth functiona(r) andg(r) such that the as-

string forms, giving rise, presumably, to one or more blacksociated stress-energy satisfies the dominant energy condi-
holes, without horizon bifurcation. It has also been arguedjon, which may be written as

[16] that there is an inhomogeneous, stable black string to

which the homogeneous black string will evolve. 1
On the other hand, perhaps the black string scenario is the -

best place to look for an explicit example of (generig

naked singularity, albeit in five dimensions. Such an example

would presumably provide a great deal of insight into the

issue of cosmic censorship in four dimensions.

~\—12 ~ o~
o} dgq ds

r
The method we use to smooth the metric functions is to
convolve them with a smooth kernel. That is, @&r) be a
smooth, positive function with support in the regieri<r

=<1 and with total integral unity. For ang>0, define
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APPENDIX: ROUNDING THE CORNERS q(r)= fw q(r')G(r'—rydr’,

The metric functions described in Sec. Ill are smooth in -
the interior region,r<r,, in the transition regiony,<r _ w
<r,, and in the exterior region>r, but have discontinuous Se(r)=f S(r')Ge(r’'—r)dr’. (A3)

first derivatives at =r, andr=r,. The purpose of this ap-
pendix is to “round off the corners,” giving everywhere ) . o~
smooth functions for which the existence of solutions to Ein- Ve claim that, for sufficiently smak, the functionsy(r)
stein's equation is guaranteed. Our smoothed functions wilknds.(r) satisfy the dominant energy condition, Hé1),
also have the property that the smoothed metric will be equadnd, furthermore, for<r,—e and r>r,+ e (the interior
to the original in the interior and exterior regions except forand exterior regions respectivelywe haveq(r)=q(r) and
small neighborhoods of, andr,, which means that the 3r)—g() 14

extra-dimensional collapse is unaffected and the exterior T4 show this, we first define, for convenience,

space is still Schwarzschild.

Some of the metric functions specified in Table | are al- 1 q| 2
ready smooth b_ut the three that are not q¢e), f(r), and Flq(r),r]= —2( 1- F) , (A4)
h(r) [recall thath(r) is specified directly as initial data; it is r
not calculated. as the time derivative bf. Now, the only so that the dominant energy condition is
form in whichh(r) andf(r) enter into the dominant energy
conditi_on is ash(r)/f(r); thus it is convenient to define Flq(r) r]ﬁad—s_ (A5)
s(r)=h(r)/f(r) and to smootfs(r) instead"? Todr o dr

It is not hard to see that a piecewise smooth function may ) ) ) )
always be smoothed out, in the sense that one can alwap¥ow from the fact thag(r) is uniformly continuous it fol-
find a smooth function that is uniformly close to the givenlows thatq.(r) is uniformly approximated by(r), in the
one. However, it is also clear that the first derivative of asense that, givem>0 there existse>0 such that/q.(r)
smooth approximation cannot be uniformly close to the first—q(r)| <« for all r. From this and the boundednessugf),

derivative of the original function, for the derivative of the it follows that for anyA>0 there exists>0 such that for
original is discontinuous. Since the stress-energy computegl| r’ such thafr —r'|<e,

from the metric involves the first derivative it is not at all

obvious, and in general not true, that the stress-energy com- IF[Qu(r),r1—=F[q(r’),r']|<A, (AB)
puted from such a smoothed metric will satisfy the dominant

energy condition.(The collapse condition and the no-

n the following, it may appear to be a problem that the metric
L _ functions are defined only far=0, whereas we write all formulas
%0nce we have obtained a smootted) one may smootfi(r) as if they were defined on the whole real line. However, the func-
by any naive method and then multiply it by the smootsed to  tions to be smoothed are all constant ferr, so, if we chooses
obtain a smoothed(r). <r4, the smoothed functions will be unchanged nea0.
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and this bound is uniform in. We shall use this estimate in The terms involvings then cancel, and the integrands in the

the dominant energy condition. remaining terms are zero outside the region of integration, so
For our metric functions, the inequality in the dominantwe may take the limits of those integrals back to infinity.

energy condition is saturated in the interior and exterior re-Thus,

gions, where both sides of the inequality are zero. Wihen

<r<r,, on the other hand, the difference between the two

sides is bounded away from zero. That is, there exist® ~ dq(r’) , ) ds(r’)
such that, for;<r<r, F[qe(r),r]fTGE(r —r)dr zf i
d ds ' '
F[q(r),r]—q>—+ S. (A7) XG(r'=r)dr’. (A11)
dr ™ dr

ChooseA >0 such that Next, note a property of convolutions; namely, that

A dq ) A8

ars (A8)

dq(r’ d
I | | [ 60 -nar=- [ ar e -nar
(which is possible sincdg/dr is boundegiso that, using Eq. dr’ dr’

(A6), we have

dq(r’) , ) d
’J F[q(r’)rr’] dr’ Ge(r —I’)dr :Jq(r/)mee(r/_r)dr/
- [ Faann = e -nar
r

d
:aJ q(r)G(r' ~r)dr’

dq(r’) L
<JA ar G (r'—r)dr )
_da(n)
<5f G (r'—nr)dr’, (A9) dr '’

(A12)

where the last line follows from E4AS8).

Now convolve Eq.(A7) with G.(r), noting that both
sides are zero when<r,; and whenr>r,. Using the esti-
mate above, we find

where, in the first line, we have integrated by parts.
Thus we find the desired result,

' ~ dg. ds
~ rodg(r r € 3
F[qs(r),r]fz q(,)GE(r’—r)dr’Jréf G(r'—r)dr’ Fla.n.rl4 =45 (AL3)
ro dr rq
BferS(r, )Ge(r’—r)dr’+6fr26€(r’—r)dr'_ Finally, we note that, for<r,—e anEI r>r,+e, both
o dr B q(r) and s(r) are constant and henag,(r)=q(r) and

(A10) s.(r)=s(r), as claimed.
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