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Detection of negative energy: 4-dimensional examples
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We study the response of switched particle detectors to static negative energy densities and negative energy
fluxes. It is demonstrated how the switching leads to excitation even in the vacuum and how negative energy
can lead to a suppression of this excitation. We obtain quantum inequalities on the detection similar to those
obtained for the energy density by Ford and co-workers and in an ‘‘operational’’ context by Helfer. We
reexamine the question ‘‘Is there a quantum equivalence principle?’’ in terms of our model. Finally, we briefly
address the issue of negative energy and the second law of thermodynamics.
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I. INTRODUCTION

While in classical physics the energy density of a field
strictly positive, quantum field theory allows states conta
ing regions of negative energy density or negative ene
fluxes @1#. The Casimir vacuum between two conducti
plates and squeezed states provide two familiar example
such states, both of which have been studied experiment
In these regions of negative energy density the standard
cal energy conditions’’ assumed in classical general relati
no longer hold. This gives rise to the possibility of avoidin
the theorems of classical general relativity, such as the
gularity theorems and the Hawking black hole area incre
theorem, thus allowing for black hole evaporation to occ
Recent interest in these states has surrounded the app
violation of cherished beliefs that such states might entail
appearing to allow the existence of traversable wormho
and ‘‘time machines’’@2,3# and violations of cosmic censor
ship @4,5# and the second law of thermodynamics@6,7#.

One powerful approach that has evolved to prove that
such violations are limited to microscopic fluctuations a
cannot produce any macroscopic effect is that of quan
inequalities constraining the magnitude and duration of ne
tive energy regions@6,8–13#. An example of such a result in
four-dimensional space-time is due to Ford and Roman@9#
who showed that, for a free massless scalar field
Minkowski space-time,

E
2`

`

l2~ t !^r̂~ t !&dt>2
3

32p2T4
~1.1!

where^r̂(t)& is the expectation value of the energy dens
~in the frame of an arbitrary inertial observer whose tim
coordinate ist) in an arbitrary quantum state, and

l2~ t !5
T

p

1

t21T2
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is a ‘‘sampling function’’ with characteristic widthT. For
generall(t), Fewster and Eveson@13# proved the stronger
and more general bound

E
2`

`

l2~ t !^r̂~ t !&dt>2
1

16p2E2`

`

„l9~ t !…2 dt, ~1.2!

which was extended to static space-times by Fewster and
@14#. ~Stronger, indeed optimal, results have been proved
unbounded two-dimensional space-time@15# but the physics
of particle detection is very different in this case and w
choose to discuss it elsewhere.!

Central to the issue of negative energy and the second
of thermodynamics is the question of how atoms respond
negative energy fluxes. The issue is particularly subtle si
the quantum inequalities indicate some restriction on
length of time for which a significant negative energy flu
can be sustained. As a result one finds that in discussion
the detection of negative energy fluxes one comes fac
face with the infamousDEDt uncertainty principle: If one
has an unswitched detector then the effects of the nega
energy flux are swamped by the positive energy which m
surround it. If one tries to measure whether the detecto
excited or not while the flux is passing through then th
measurement must be made so fast that the switching i
necessarily excites the detector. These issues were bra
tackled by Grove@16#; however, his results are clouded b
the complications of his analysis, and by the non-stand
coupling that he chooses. The issues were further addre
by Ford et al. @17# who studied the response of an array
quantum-mechanical spin-1

2 particles to negative energ
fluxes. The role of theDEDt uncertainty principle was again
emphasized by Helfer@18# who formulated an ‘‘operational’’
energy condition on the basis of it: ‘‘the energy of an isolat
device constructed to measure or trap the energy in a reg
plus the energy it measures or traps, cannot be negative

In this paper we shall examine the response of ‘‘parti
detectors’’ to negative energy fluxes. To be able to conc
trate our measurements on periods of negative energy
we explicitly switch our detector on and off. This introduc
excitations even in the vacuum which we discuss in so
©2002 The American Physical Society14-1
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detail. To isolate the effects of the negative energy we t
compare the response of a detector switched on and off
ing a period of negative energy density~or negative energy
flux! and that switched on and off in the vacuum. We sh
that, in line with Grove’s two-dimensional results, the neg
tive energy can lead to a suppression of excitations
would have occurred for the detector in the vacuum. Ho
ever, we additionally show that there exists a quantum
equality limiting the size of this effect.

Our analysis also enables us to revisit the question of
response of an inertial detector moving through the Rind
vacuum. This situation was originally studied by Cande
and Sciama@19#. These authors considered a particular lim
where the observation time went to infinity while the fin
acceleration remained fixed and found that, in this limit,
detector did not respond to the negative energy density of
Rindler vacuum but instead responded just as if it were in
Minkowski vacuum. While our analysis confirms this res
it also shows that there are interesting effects of the Rin
negative energy which are simply lost in this limit.

In this paper we have concentrated purely on fo
dimensional examples, leaving the many interesting tw
dimensional examples for a separate publication. The pri
pal reason for this is that in two dimensions there
mathematical and physical reasons for preferring a coup
to ẇ rather thanw ~arising from the poor infrared behavior o
the massless theory!; as a coupling tow is more conventiona
in the four-dimensional literature we prefer to use it here.
addition, as mentioned above, the quantum inequali
which have been proved vary between two and four dim
sions with much tighter results available in two-dimensio
space-time@15#.

We set\5c51 and use the space-time conventions
@20#.

II. THE MODEL

We shall deal exclusively with a real scalar field,w, and
since the effects of negative energy are most pronounced
massless fields we shall restrict ourselves to that case.
model is a simple generalization of the standard monop
detector in which we include an explicit switching facto
Thus we shall write our interaction Lagrangian as

E dt l~t!m~t!w„x~t!… ~2.1!

where t denotes proper time along the world line of th
detector,m(t) denotes the monopole moment of the detec
and l(t) is an real switching factor which we have intro
duced so that we can make measurements over restr
time intervals. We assume that the evolution of the monop
is determined by a time-independent Hamiltonian,ĤD , and
that the monopole has corresponding energy eigenst
which we may denote byuE1& and uE2&. Working in the
interaction picture the monopole moment then evolves in
standard fashion

m̂~t!5eiĤ Dtm̂~0!e2 iĤ Dt.
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If the field is initially in the stateuA& then by standard
first-order perturbation theory we obtain the probability fo
transition between the two states of the detector as

PA~E1→E2!5 z^E1um̂~0!uE2& z2PA~E22E1! ~2.2!

where

PA~E![E
2`

`

dtE
2`

`

dt8 e2 iE(t2t8)l~t!l~t8!

3^Auŵ„x~t!…ŵ„x~t8!…uA&. ~2.3!

The prefactor in Eq.~2.2! merely contains information abou
the details of the detector, the real interest lies in the fu
tion, PA(E), defined in Eq.~2.3!. We shall refer toPA(E) as
the response function. We shall be interested in both exc
tions E.0 and deexcitationsE,0.

It is convenient to introduce the Fourier transform of t
switching function,l̃(v), with conventions defined by the
equation

l̃~v!5E dt e2 ivtl~t!. ~2.4!

From the reality ofl(t) it follows that l̃* (v)5l̃(2v), an
equality that we shall use freely in the following. It is po
sible to isolate the dependence on the switching from tha
the state by writing Eq.~2.3! in the form

PA~E!5
1

4p2E2`

`

dv l̃~v!E
2`

`

dv8 l̃* ~v8!pA~E;v,v8!

~2.5!

where

p~E;v,v8![E
2`

`

dtE
2`

`

dt8 e2 i (E2v)t1 i (E2v8)t8

3^Auŵ„x~t!…ŵ„x~t8!…uA& ~2.6!

is independent of the switching function,l(t).
We shall study the response under a range of switchi

but we choose them all to be functions of a single dime
sionless variable (t2t0)/T with the two parameterst0 and
T determining the time of the peak and a measure of
duration of the switching, respectively. We shall write

l~t;t0 ,T!5LS t2t0

T D . ~2.7!

As a consequence we can write

l̃~v;t0 ,T!5Te2 ivt0L̃~vT!. ~2.8!

For convenience we will also normalize our switching fun
tions so that their value att0 is 1, that is,l(t0)5L(0)51.
It follows that as we letT→` we recover the standard un
switched detector results, withl(t)51, ;t and l̃(v)
52pd(v).
4-2
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DETECTION OF NEGATIVE ENERGY: 4- . . . PHYSICAL REVIEW D 65 104014
The simplest choice of switching is a sudden switch
and off:

LS~s!5H 1, usu,1,

0 otherwise,
~2.9a!

giving

L̃S~v!52
sinv

v
. ~2.9b!

As we shall see, the suddenness of this switching lead
additional infinities, so it is also worth considering tw
smoother functions

LW~s!5H 12s2, usu,1

0 otherwise,
~2.10a!

giving

L̃W~v!54
~sinv2v cosv!

v3
, ~2.10b!

and

LH~s!5H cos2S p

2
sD , usu,1

0 otherwise

~2.11a!

giving

L̃H~v!5
p2sinv

v~p22v2!
. ~2.11b!

These choices are inspired by the theory of data window
and are based on the Welch and Hanning windows, res
tively @21#.

We shall consider two further choices of switching whi
are not of finite duration but which still allow us to conce
trate our measurement about one instant of time. The fir
Gaussian switching with

LG~s!5expS 2
1

2
s2D , ~2.12a!

giving

L̃G~v!5A2p expS 2
1

2
v2D . ~2.12b!

The second is Cauchy~or Lorentzian! switching, correspond-
ing to the sampling considered by Ford@8#,

LC~s!5
1

11s2 , ~2.13a!

with

L̃C~v!5pe2uvu. ~2.13b!
10401
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We conclude this section by observing that one may
tempt to generalize the analysis of Davies, Liu and Ottew
@22#, to relate the response of a switched particle detecto
the energy density it moves through. As in Ref.@22# we
consider the difference in response between two differ
states,uA& and uB&, on the space-time to avoid problems
renormalization. For a general motion it is immediate fro
Eq. ~2.3! that

E
2`

`

dt l2~t!$^Buŵ2
„x~t!…uB&2^Auŵ2

„x~t!…uA&%

5
1

2pE2`

`

dE$PB~E!2PA~E!%. ~2.14!

Equation~2.14! shows the close relationship between the d
tector response and the average value of^ŵ2&. In particular,
as the left-hand side can be negative even whenuA& is the
vacuum state, so the right-hand side must be. In other wo
if : denotes normal ordering with respect to the vacuum, th
on average the response of the detector in regions w

^Bu:ŵ2:uB& is negative will be less that it would be in th
vacuum. This is a clear four-dimensional analog of Grov
conclusion for two-dimensional motion, appropriate for o
more conventional choice of coupling.

The relation to the energy density is rather more tenuo
If we restrict ourselves to an inertial detector in Minkows
space-time then following the methods of Ref.@22# one can
show that

E
2`

`

dt l2~ t !$^Bur̂j~ t;xW !uB&2^Aur̂j~ t;xW !uA&%

5
1

2pE2`

`

dEFE22S j2
1

4D¹2G
3$PB~E;xW !2PA~E;xW !%1

1

2E2`

`

dt~ll̈2l̇2!

3$^Buŵ2~ t;xW !uB&2^Auŵ2~ t;xW !uA&%, ~2.15!

wherer̂j52T̂t
t is the energy density operator,j denotes the

coupling to the scalar curvature and the overdot repres
differentiation with respect tot. It is clear here that the rela
tionship between the energy density and the detector
sponse depends~not surprisingly! on the rate at which the
switching is turned on and off. This statement and that re
ing to ^ŵ2& above are, of course, strongly dependent on
particular choice of coupling we have made. To conclude
simply note that in the case of Gaussian switching one d
obtain a somewhat closer relationship:

E
2`

`

dt l2~ t !$^Bur̂j~xW !uB&2^Aur̂j~xW !uA&%

5
1

2pE2`

`

dEFE22S j2
1

4D¹22
1

2
T22G

3$PB~E;xW !2PA~E;xW !%. ~2.16!
4-3
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III. PURE VACUUM EFFECTS

A crucial difference between leaving a detector switch
on for all time and introducing some form of switching
that switching itself will induce transitions. In particular,
switched static detector moving through a static space-t
in its natural vacuum state will become excited. This is
effect we wish to study in this section.

In a static space-time we may introduce a complete n
malized set of mode functions of the form e2 iVt f kW(xW ) where
V5V(kW ) is positive. This set may be used to define a na
ral vacuum stateu0&. The corresponding vacuum Wightma
function at equal spatial points is

^0uŵ~ t,xW !ŵ~ t8,xW !u0&5(
kW

e2 iV(t2t8)u f kW~xW !u2. ~3.1!

Inserting this form into Eq.~2.5!, we find that for a static
detector atxW

P0~E;xW !5(
kW

ul̃@~2gtt!
21/2V1E#u2u f kW~xW !u2. ~3.2!

For the Minkowski vacuum Eq.~3.2! takes the form

P0~E!5
1

4p2E
0

`

k dkul̃~k1E!u2

5
1

4p2E
0

`

w dwuL̃~w1ET!u2. ~3.3!

In the case of sudden switching we have

P0~E!5
1

p2E
0

`

w dw
sin2~w1ET!

~w1ET!2 ~3.4!

which diverges~logarithmically! at the upper limit. For the
other switchings introduced in Sec. II the vacuum respon
are finite; they are illustrated as functions ofET in Fig. 1.

FIG. 1. Vacuum response curves for switched detectors.
lettersG, C, W andH denote Gaussian switching, Cauchy switc
ing, Welch switching and Hanning switching, respectively.
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The regionET.0 corresponds to excitation of the detect
from its ground state while the regionET,0 corresponds to
deexcitation.

Having explicitly illustrated the effects of excitation du
to switching, from now on we shall consider the differen
between the response in some given stateuA& containing
negative energy density or a negative energy flux and
vacuumu0&:

DPA~E;xW !5PA~E;xW !2P0~E;xW !. ~3.5!

DPA will be finite even for sudden switching as the hig
frequency divergence is independent of state.

To conclude this section we study the case of a st
negative energy density before turning to negative ene
fluxes in the next section. The simplest configuration to stu
is the field in its vacuum stateuCas& outside a single Casimi
plate z50 on which the field is taken to vanish. For th
configuration

^Casuŵ2~z!uCas&2^0uŵ2~z!u0&52
1

16p2z2 , ~3.6!

which diverges to2` as the plate is approached, and

^Casur̂j~z!uCas&2^0ur̂j~z!u0&52
1

16p2z4~126j!.

~3.7!

In these equationsu0& denotes the standard Minkowsk
vacuum. A calculation from Eq.~3.2! gives

DPCas~E;z!52
1

4p2E
0

`

k dkul̃~k1E!u2
sin~2kz!

2kz

52
1

4p2E
0

`

w dwuL̃~w1ET!u2

3
sin@2w~z/T!#

2w~z/T!
. ~3.8!

The response functionDPCas(E,xW ) is plotted for our range
of switching functions in Fig. 2. It is clear from this tha
stimulated emission and absorption are reduced by the p
ence of the plate. This is a well known and experimenta
observed effect. Note that asz/T→0, DPCas(E;z)→
2P0(E) since in this case the detector cannot become
cited as can also be seen from Eq.~3.2! on noting that in this
caseu f kW(z50)u50.

As a check on our calculations we may consider the
sponse of an eternal detector by takingL(t)51;t, so
L̃(v)52pd(v). In that case we find

DPCas~E;z!5H 0, E.0,

2pd~0!
1

4p

sin~2Ez!

z
, E,0,

~3.9!

in agreement with the results of Ref.@22# for the response
per unit timeon identifying 2pd(0) as the total time of the

e

4-4
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measurement. As expected, in this case energy conserv
prohibits excitation while deexcitation is affected by t
presence of the mirror.

IV. GENERAL STATE WITH ONE MODE EXCITED

A state of sufficient generality to illustrate the reponse
our switched detectors to negative energy fluxes is that of
most general state in which just a single mode of momen
kW is excited. This may be written as

uC&5 (
n50

`

cnun&, ~4.1!

whereun& denotes thenth excited state of the particular cho
sen mode and(n50

` ucnu251. For simplicity we shall use a
box normalization with box volumeV. Without loss of gen-
erality we choosekW5kx̂, then it is straightforward to calcu
late that

^Cuŵ~ t,x!ŵ~ t8,x8!uC&2^0uŵ~ t,x!ŵ~ t8,x8!u0&

5
1

kV H cosk@~ t2t8!2~x2x8!# (
n50

`

nucnu2

1ReFe2 ik[( t1t8)2(x1x8)]

3 (
n52

`

An~n21!cn22* cnG J , ~4.2!

whereRe denotes the real part. It follows that

D^ŵ2&5
1

kV H (
n50

`

nucnu2

1ReFe2 i2k(t2x) (
n52

`

An~n21!cn22* cnG J ,

~4.3!

FIG. 2. Response curves for energyET51 for a range of
switched detectors a distancez above a single Casimir plate. Th
lettersG, S andH denote Gaussian switching, Sharp switching a
Hanning switching, respectively.
10401
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D^r̂j&5D^F̂j&

5
k

V H (
n50

`

nucnu21~4j21!ReFe2 i2k(t2x)

3 (
n52

`

An~n21!cn22* cnG J , ~4.4!

wherer̂j52T̂t
t andF̂j5T̂t

x are the energy density and righ
moving energy flux, respectively. All of these expressio
correspond to the standard normal-ordered expectation
ues. The cross-terms here enable these quantities~which
would classically be positive definite! to take either sign. The
frequency of these cross terms is double that of the fun
mental mode highlighting the interference nature of nega
energy fluxes.

We now turn to our detector response. A straightforwa
calculation reveals

DPC~E;x!5
1

2kV H @ uL̃~kT1ET!u21uL̃~kT2ET!u2#

3 (
n50

`

nucnu212ReF L̃~kT1ET!

3L̃~kT2ET!ei2kx(
n52

`

An~n21!cn22* cnG J .

~4.5!

There are a number of observations to make about Eq.~4.5!.
~a! DPC(E,xW ) is symmetric underE→2E as follows

mathematically from the reality of the difference of the tw
Wightman functions and physically from the relationship b
tween stimulated emission and absorption. In particular,
though Grove’s discussion is expressed purely in terms
absorption, the approach here is entirely consistent with
results.

~b! It is easy to check that Eq.~2.14! holds forD^ŵ2& of
Eq. ~4.3! andDPC of Eq. ~4.5! by virtue of Parseval’s theo
rem.

~c! For the special case of ann particle state (cn51, all
others zero! we have

DP un&~E;x!5
n

2kV
$uL̃~ET1kT!u2

1uL̃~ET2kT!u2%. ~4.6!

That the response is proportional ton reassures us that in thi
simple case at least our switched monopole is acting a
particle detector.

~d! Using the identity@8#
4-5
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~ uau21ubu2! (
n50

`

nucnu212ReFab (
n52

`

An~n21!cn22* cnG
>2ubu2, ~4.7!

valid for arbitrary complex numbersa, b and cn such that
(n50

` ucnu251 we see that

D^ŵ2&>2
1

kV
~4.8!

and

DPC>2
1

2kV
min„uL̃~kT1ET!u2,uL̃~kT2ET!u2

….

~4.9!

Thus while eitherD^ŵ2& or DPC may be negative there is
limit as to how negative they can be. Equation~4.8! is the
direct analogue for̂ŵ2& of the results obtained by Ford@8#

for components of̂r̂&. An interesting insight into Eq~4.9! is
given by noting that

DP u1&~E;x!5
1

2kV
$uL̃~ET1kT!u21uL̃~ET2kT!u2%

>2
1

2kV
min„uL̃~kT1ET!u2,uL̃~kT2ET!u2…,

~4.10!

so that

DPC>2
1

2
DP u1&~E;x!. ~4.11!

This equation admits the following natural semiclassical
terpretation. The detector may be thought to respond to
zero-point energy we have subtracted in formingDPC ex-
actly as ann-particle state withn5 1

2 . If we allow for the
vacuum fluctuations in this way the total response will
ways be positive:

DPC1DP u21/2&~E;x!>0, ~4.12!

whereDP u21/2&(E;x) is understood to be formally define
by Eq. ~4.6! with n52 1

2 .
A case of particular interest is that of~single mode!

squeezed states defined for any complex numberz by

uz&5expF1

2
z* â22

1

2
z~ â†!2G u0&. ~4.13!

This state may be written in the present form withcn50 for
n odd and

c2n5~coshr !21/2
@~2n!! #1/2

n! S 2
1

2
eiu tanhr D n

, ~4.14!

wherez5reiu. Correspondingly, we have
10401
-
e

-

D^ŵ2&5
1

kV
$sinh2 r 2sinhr coshr

3cos@2k~x2t !1u#%, ~4.15!

and

D^r̂j&5D^F̂j&

5
k

V
$sinh2 r 2~4j21!sinhr coshr

3cos@2k~x2t !1u#%. ~4.16!

Thus for a fraction cos21(tanhr)/p of each cycle,D^ŵ2& is
negative; this is always less than half, tending to one-hal
r tends to infinity. The average value ofD^ŵ2& over a cycle
is sinh2r/(kV) which is, of course, positive. For minimal cou
pling the energy density will be negative for an equal tim
but will be out of phase withD^ŵ2&. For other physical
choices of couplings (0,j<1/6), the energy density may o
may not be negative, depending on the degree of squee
~magnitude ofr ). Whenever it is, it will always be out o
phase withD^ŵ2&. The minimum value ofD^ŵ2& is

D^ŵ2&min52
1

kV
$12e22r%, ~4.17!

which is, of course, consistent with the bound~4.8!.
The detector response to a squeezed state is given b

DPz~E;x!5
1

2kV
$@ uL̃~kT1ET!u2

1uL̃~kT2ET!u2#sinh2 r

22 sinhr coshr Re@L̃~kT1ET!

3L̃~kT2ET!ei (2kx1u)#%, ~4.18!

or, equivalently,

DPz~E;x!5
1

2kV
@ uL̃~kT1ET!u2

1uL̃~kT2ET!u2#sinhr coshr

3$tanhr 2tanhx cos~2kx1u1f!%,

~4.19!

where

tanhx~kT,ET![
2uL̃~kT1ET!uuL̃~kT2ET!u

uL̃~kT1ET!u21uL̃~kT2ET!u2

~4.20!

and f[Arg@L̃(kT1ET)L̃(kT2ET)#. For the switchings
of Sec. II, which are all symmetric aboutt5t0, we have
f522kt0.
4-6
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It is clear from Eq.~4.19! that for fixedkT andET there
is a critical degree of squeezing, given by 0,uzu5r ,x re-
quired for the squeezed state to produce a suppressio
vacuum excitation. For fixedkT andET the minimum value
attained byDPz occurs forr 5 1

2 x, and in this case, one find
that for suitably chosenx ~or t0) the lower bound~4.11! is
achieved. Figure 3 illustrates the response forx51 askt0 is
varied for r 5 1

4 , r 5 1
2 and r 5 3

4 .
For sharp, Hanning and Welch switching the behavior

tanhx(kT,ET) as a function ofkT and ET is quite compli-
cated; for illustration, tanhxS(1,ET) for sharp switching is
plotted as a function ofkE in Fig. 4. For Gaussian an
Cauchy switching, tanhx is a monotonic decreasing functio
of kT andET. In the latter cases the explicit forms are su
ficiently simple to be worth noting, we have

tanhxG5sech~2kET2!, ~4.21!

and

tanhxC5H sech~2ET!, ET,kT,

sech~2kT!, ET>kT.
~4.22!

Another simple case in which there is a period of negat
energy flux, which has been of historical importance, is t
of the vacuum mixed with a two-particle state. In this ca
we have

FIG. 3. Response curves for squeezed states with squeezing
tor r 5

1
4 , r 5

1
2 and r 5

3
4 for a detector withx51.

FIG. 4. tanhxS(kT,ET) for sharp switching plotted as a functio
of kE for kT51.
10401
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uC&5
1

A~11e2!
~ u0&1eu2&), ~4.23!

where without loss of generality we have takene to be real.
Corresponding to Eqs.~4.3! and ~4.4! we have

D^ŵ2&5
1

kV

1

11e2 $2e21A2e cos 2k~ t2x!% ~4.24!

and

D^r̂j&5^F̂j&

5
k

V

1

11e2 $2e21A2~4j21!e cos 2k~ t2x!%.

~4.25!

Clearly for smalle both D^ŵ2& and D^r̂j& can be negative
for approximately half the time, and, as before, for physi
choices of couplings (0<j<1/6) these times are out o
phase. Corresponding to Eq.~4.5! we have

DPC~E;x!5
1

2pk~11e2!
$e2@ uL̃~E1k!u21uL̃~E2k!u2#

1Re@A2eL̃~kT1ET!L̃~kT2ET!ei2kx#%

5
1

2pk~11e2!
@ uL̃~E1k!u21uL̃~E2k!u2#

3H e21
e

A2
tanhx cos~2kx1f!J . ~4.26!

It is clear that forA2ueu,tanhx we will, as before, have
periods when the excitation is less that in the vacuum.

We should add that the similarity of this case to that
squeezed states is not accidental: if we work only to ordee2

then the vacuum plus two particle state coincides with
squeezed state withz52A2e.

V. RINDLER SPACE

Following Candelas and Sciama@19# and Grove@16#, we
will now study the response of an inertial detector movi
through the Rindler vacuum,uR&, defined in the wedgex
.utu as illustrated in Fig. 5. The Rindler vacuum may
thought of as the natural vacuum state in the gravitatio
field of an infinite flat earth@25# and is analogous to the
Boulware vacuum of Schwarzschild space-time while
Minkowski vacuum is analogous to Hartle-Hawkin
vacuum. This scenario is thus related to the question po
by the title of Candelas and Sciama’s paper@19#: ‘‘Is there a
quantum equivalence principle?’’ in which the authors a
dressed the question of whether a detector falling freely
Schwarzschild space-time could distinguish if it was movi
through the Hartle-Hawking vacuum or the Boulwa
vacuum.

An inertial detector moving through the Rindler vacuu

ac-
4-7



wi
e

ld
iz
rro

b
an

d

n-

re-
d

ma.
hat
uum
the

le
ler
th

ler

P. C. W. DAVIES AND ADRIAN C. OTTEWILL PHYSICAL REVIEW D65 104014
must make a finite time measurement as the detector
reach the boundary of Rindler space in a finite proper tim
This boundary plays the role of a mirror in that the fie
vanishes there; indeed the Rindler vacuum may be real
as the natural vacuum above a uniformly accelerating mi
in the limit that the acceleration tends to infinity.

Without loss of generality we may take the detector to
at fixedx, x5X say. Then expressing the Rindler Wightm
function in Minkowski coordinates we have

^Ruŵ~ t,X,y,z!ŵ~ t8,X,y,z!uR&

5
1

2p2~h22h82!

lnS h

h8
D

F ln2S h

h8
D 2~t2t8!2G

5
1

4p2~ t22t82! F 1

lnS X2t8

X2t D 1
1

lnS X1t8

X1t D G , ~5.1!

where, as usual,t5h sinht and x5h cosht. In Eq. ~5.1! t
2t8 is understood to occur in the combinationt2t82 i e
appropriate to its character as a distribution.

For simplicity, we consider a detector switched on su
denly att50 and off suddenly att5T,X. We have calcu-
lated the corresponding responseDPR numerically. The re-

FIG. 5. The measurement time of an inertial detector in Rind
spacex.utu is limited by the presence of the boundary of Rind
space~mirror! at x5t. Candelas and Sciama chose to consider
limit ( X,T)→` in such a way that the final accelerationA5(X2

2T2)21/2 remained constant as for the two trajectories markedX1

andX2 here.
10401
ll
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ed
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sult takingX fixed and independent ofT is plotted in Fig. 6.
That the response for fixedE tends to2` asT→X is to be
expected on the basis of Eq.~2.14! since we have

D^ŵ2~ t !&52
1

48p2h2 52
1

48p2~X22t2!
~5.2!

and so

E
0

T

dt D^ŵ2~ t !&52
1

96p2X
lnS X1T

X2TD , ~5.3!

which diverges logarithmically to2` asT→X.
Rather than consider the limit illustrated in Fig. 6, Ca

delas and Sciama chose to consider the limit (X,T)→` in
such a way that the final accelerationA5(X22T2)21/2 re-
mained constant. The numerically calculated detector
sponse,DPR , corresponding to this configuration is plotte
in Fig. 7. The fact that this response tends to zero asT→` is
the essence of the result obtained by Candelas and Scia

Both Figs. 6 and 7 bear out the conclusion of Grove t
as a detector approaches the mirror the reduction in vac
fluctuations near the mirror lead to a sharp reduction in

r

e

FIG. 6. Detector response at energyE51 for fixed X51 asT
varies. T51 corresponds to reaching the boundary of Rind
space.

FIG. 7. Detector response at energyE51 asT varies withX
varying so that the final accelerationA5(X22T2)21/2 is held fixed
at 7.09~so X51 whenT50.99).
4-8
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level of excitation of the detector. This interesting effect
lost in the limit taken by Candelas and Sciama.

In fact, as Candelas and Sciama did not subtract the
nite vacuum excitation introduced by their switching th
were forced to consider the time derivative (d/dT)PR(E).
This provides a notion of the difference in response betw
one ensemble of detectors switched on at time 0 and o
time T and a different ensemble switched on at time 0 and
at time T1dT. Grove considered (d/dT)@PR(E)2P0(E)#
but incorrectly asserted that (d/dT)P0(E)50 whereas in re-
ality

d

dT
P0~E!5

1

2p2 FcosET

T
1Esi~ET!G , ~5.4!

where si(x) is the sine integral defined by@24#

si~x![ Èx

dt
sint

t
.

Equation~5.4! may be derived either from differentiating Eq
~3.4! or directly by deforming the contour of integration
that used by Candelas and Sciama. Note that

d

dT
P0~E!→2

E

2p
u~2E! as T→` ~5.5!

as required. Grove’s oversight does not in any case effec
analysis of the divergence in (d/dT)PR(E) as T→X, since
although (d/dT)P0(E) is non-vanishing it is manifestly
regular in this limit. We shall work with d/dT@PR(E)
2P0(E)#5(d/dT)DPR(E) as this is more natural within
our formalism.

Taking account of the foregoing comments, Candelas
Sciama prove that

d

dT
DPR~E!;2

1

8p2

lnu2A2T/Eu
T

as uA2T/Eu→`.

~5.6!

From Eq.~2.14! we immediately obtain

^Ru:ŵ2~T!:uR&5
1

2pE2`

`

dE
d

dT
DPR~E!. ~5.7!

We may follow Grove and use the asymptotic express
~5.6! of (d/dT)DPR(E) for uE/(2A2T)u<O(1) and approxi-
mate it as zero foruE/(2A2T)u.O(1). Then

1

2pE2`

`

dE
d

dT
DPR~E!

;2
1

16p3TE2O(2A2T)

O(2A2T)
dE lnuE/~2A2T!u

52
A2

4p3E
0

O(1)

dx ln x

52
A2

4p3O~1!. ~5.8!
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Given the crudeness of the calculation the agreement w
the exact result

^Ru:ŵ2~T!:uR&;2
A2

48p2 ~5.9!

is remarkable.

VI. CONCLUSION

With our particular choice of linear coupling we hav
seen the very close link between detector response and
duced vacuum noise. The absence of vacuum fluctuat
leads to a reduction in the level of excitations of a switch
detector over that which would have occurred in the vacu
as a result of the switching. We may translate this into th
modynamic terms. We consider a hot ensemble of two-le
atoms which is initially at inverse temperatureb and is then
allowed to interact for a finite time with a stateuC&. The
ensemble will, of course, cool~lose entropy! if it is placed
just in the vacuum so we consider the change in entr
relative to the change in the vacuum, which is given by

DS5
bE

11e2bE
@DPC~E!2e2bEDPC~2E!#. ~6.1!

Considering, for simplicity, states for whichDPC(E)
5DPC(2E) ~for example, squeezed states!, we have

DS5bE
12e2bE

11e2bE
DPC~E!. ~6.2!

Here the prefactor is manifestly positive so the ensem
which interacted with that stateuC& will have cooled more
than an identical ensemble in the vacuum if and only
DPC(E),0.

The foregoing results serve to clarify the response of m
ter to pulses of negative energy flux of limited duration. Th
are broadly in accordance with one’s intuition that negat
energy should have the effect of enhancing deexcitation,
to induce ‘‘cooling.’’ However, our results are necessar
somewhat model dependent and for our standard mono
model we find that there is not always a simple relations
between the strength of the negative energy flux and
behavior of matter.

Considerable interest attaches to the thermodynamic
negative energy. If a sustained negative energy flux could
directed at a hot body~or a black hole! in such a way as to
reduce its temperature, hence entropy, by a macrosc
amount there would appear to be a clear violation of
second law of thermodynamics. There is a considerable
erature on this topic already. The results of this paper a
first step to investigating the thermodynamics of negat
energy. However, the ‘‘cooling’’ effects we have discuss
cannot be immediately used to draw thermodynamic con
sions, because they have been restricted to first order in
turbation theory and, as shown by Grove@23#, a proper in-
vestigation of the thermodynamic implications necessitate
calculation to second order in perturbation theory.~At first
4-9
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P. C. W. DAVIES AND ADRIAN C. OTTEWILL PHYSICAL REVIEW D65 104014
order alone, it is not possible to determine whether the
excitation effects are merely due to the~small! violation of
energy conservation expected in any process in which a
eral quantum state collapses to an energy eigenstate
whether they pressage a systematic reduction in the en
of the matter which would have serious thermodynamic
plications.! We shall report on this further investigation in
separate paper.
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