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Detection of negative energy: 4-dimensional examples
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We study the response of switched particle detectors to static negative energy densities and negative energy
fluxes. It is demonstrated how the switching leads to excitation even in the vacuum and how negative energy
can lead to a suppression of this excitation. We obtain quantum inequalities on the detection similar to those
obtained for the energy density by Ford and co-workers and in an “operational” context by Helfer. We
reexamine the question “Is there a quantum equivalence principle?” in terms of our model. Finally, we briefly
address the issue of negative energy and the second law of thermodynamics.
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[. INTRODUCTION is a “sampling function” with characteristic widtf. For
general\(t), Fewster and Evesofl3] proved the stronger
While in classical physics the energy density of a field isand more general bound
strictly positive, quantum field theory allows states contain-
ing regions of negative energy density or negative energy TR
fluxes [1]. The Casimir vacuum between two conducting le)‘ ()(p(t))dt=—
plates and squeezed states provide two familiar examples of
such states, both of which have been studied experimentallyhich was extended to static space-times by Fewster and Teo
In these regions of negative energy density the standard “lof14]. (Stronger, indeed optimal, results have been proved in
cal energy conditions” assumed in classical general relativityunbounded two-dimensional space-tifdé] but the physics
no longer hold. This gives rise to the possibility of avoiding of particle detection is very different in this case and we
the theorems of classical general relativity, such as the sirchoose to discuss it elsewhere.
gularity theorems and the Hawking black hole area increase Central to the issue of negative energy and the second law
theorem, thus allowing for black hole evaporation to occur.of thermodynamics is the question of how atoms respond to
Recent interest in these states has surrounded the appar@elgative energy fluxes. The issue is particularly subtle since
violation of cherished beliefs that such states might entail, byhe guantum inequalities indicate some restriction on the
appearing to allow the existence of traversable wormholesength of time for which a significant negative energy flux
and “time machines’2,3] and violations of cosmic censor- can be sustained. As a result one finds that in discussions of
ship[4,5] and the second law of thermodynami€s7]. the detection of negative energy fluxes one comes face to
One powerful approach that has evolved to prove that anyace with the infamous\EAt uncertainty principle: If one
such violations are limited to microscopic fluctuations andhas an unswitched detector then the effects of the negative
cannot produce any macroscopic effect is that of quanturénergy flux are swamped by the positive energy which must
inequalities constraining the magnitude and duration of negasurround it. If one tries to measure whether the detector is
tive energy region§6,8—13. An example of such a resultin excited or not while the flux is passing through then that
four-dimensional space-time is due to Ford and Roff#in  measurement must be made so fast that the switching itself
who showed that, for a free massless scalar field imecessarily excites the detector. These issues were bravely
Minkowski space-time, tackled by Grovd16]; however, his results are clouded by
the complications of his analysis, and by the non-standard
coupling that he chooses. The issues were further addressed
by Fordet al. [17] who studied the response of an array of
quantum-mechanical spih- particles to negative energy
fluxes. The role of thA EAt uncertainty principle was again
emphasized by Helfdi18] who formulated an “operational”
energy condition on the basis of it: “the energy of an isolated
device constructed to measure or trap the energy in a region,
T plus the energy it measures or traps, cannot be negative.”
A2(t)= — In this paper we shall examine the response of “particle
24+ T2 detectors” to negative energy fluxes. To be able to concen-
trate our measurements on periods of negative energy flux
we explicitly switch our detector on and off. This introduces
*Electronic address: ottewill@relativity.ucd.ie excitations even in the vacuum which we discuss in some
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ﬁc (\"(t)%dt, (1.2

f :A2<t><lv<t)>dt>— (1.1)

327274
where(p(t)) is the expectation value of the energy density
(in the frame of an arbitrary inertial observer whose time
coordinate ig) in an arbitrary quantum state, and
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detail. To isolate the effects of the negative energy we then If the field is initially in the statgA) then by standard
compare the response of a detector switched on and off dufirst-order perturbation theory we obtain the probability for a
ing a period of negative energy densityr negative energy transition between the two states of the detector as
flux) and that switched on and off in the vacuum. We show R
that, in line with Grove’s two-dimensional results, the nega- Pa(E1— E2)=|<E1|m(0)|E2)|2HA(E2— E) (2.2
tive energy can lead to a suppression of excitations that
would have occurred for the detector in the vacuum. How-Where
ever, we additionally show that there exists a quantum in- " -
equality limiting the size of this effect. HA(E)EJ de dr’ e E(r— T'))\(T))\(T’)
Our analysis also enables us to revisit the question of the e S
response of an inertial detector moving through the Rindler N - ,
vacuum. This situation was originally studied by Candelas X(Ale(x(7)e(X("))|A). (2.3

and Sciamd19]. The;e aythors conside(eq a pa.rticular I.imitThe prefactor in Eq(2.2) merely contains information about
where th_e observgtlon Flme went to infinity .Wh"? tr_\e'fmal the details of the detector, the real interest lies in the func-
acceleration remained fixed and found that, in this limit, thetion I1,(E), defined in Eq(2.3). We shall refer tdl ,(E) as
detector did not respond to the negative energy density of thfﬁe ,resApons,,e function. We éhéll be interested inAboth excita-
Rindler vacuum but instead responded just as if it were in th?ionsE>O and deexci.tationE<0
Minkowski vacuum. While our analysis confirms this result It is convenient to introduce tHe Fourier transform of the
it also shows that there are interesting effects of the Rindler .~ T } ) ]
negative energy which are simply lost in this limit. switching function,A(w), with conventions defined by the

In this paper we have concentrated purely on four-€duation
dimensional examples, leaving the many interesting two-
dimensional examples for a separate publication. The princi- X(w):f dre I\ (7). (2.9
pal reason for this is that in two dimensions there are
mathematical and physical reasons for preferring a couplin

to ¢ rather thanp (arising from the poor infrared behavior of equality that we shall use freely in the following. It is pos-

Fhe masslesg thec)p)as a_coupling tap is more conventional sible to isolate the dependence on the switching from that on
in the four-dimensional literature we prefer to use it here. Iy 4 siate by writing Eq(2.3) in the form

addition, as mentioned above, the quantum inequalities
which have been proved vary between two and four dimen- 1 (= 5 o 5
sions with much tighter results available in two-dimensional TIA(E)= _zj dw A(w)f do’' \* (0" )7maA(E;w,0")
space-timg 15]. Ame) e -

We seth=c=1 and use the space-time conventions of (2.9
[20].

%rom the reality of\ (7) it follows thatX* () =X (- w), an

where

Il. THE MODEL “ - : : "ot
W(E;w,w’)EJ‘ de dr’ e—l(E—w)T+I(E—w )T

We shall deal exclusively with a real scalar fielg, and
since the effects of negative energy are most pronounced for ~ ~ ,
massless fields we shall restrict ourselves to that case. Our X(Ale(x(n)e(x(1))IA) (26
model is a simple generalization of the standard monopolg; independent of the switching function().

detector in which we include an explicit switching factor.  \ve shall study the response under a range of switchings

Thus we shall write our interaction Lagrangian as but we choose them all to be functions of a single dimen-
sionless variable {— )/ T with the two parameters, and
f dr A (1)m(7) e(X(7)) (2.1 T determining the time of the peak and a measure of the
duration of the switching, respectively. We shall write

where 7 denotes proper time along the world line of the -1

detectorm(7) denotes the monopole moment of the detector A(T; To,T)=A< T ) (2.7
and A(7) is an real switching factor which we have intro-

duced so that we can make measurements over restrictegs 3 consequence we can write

time intervals. We assume that the evolution of the monopole

is determined by a time-independent HamiltoniB,, and Mw; 7o, T)=Te 0 (wT). (2.9
that the monopole has corresponding energy eigenstates, ) ) ) o

which we may denote byE;) and |E,). Working in the  For convenience we will also normalize our switching func-
interaction picture the monopole moment then evolves in théions so that their value aty is 1, that is\(7) =A(0)=1.

standard fashion It follows that as we lefT—o we recover the standard un-
) L I switched detector results, with (7)=1, V7 and X()
m(7)=€e"0"m(0)e Ho". =278(w).
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The simplest choice of switching is a sudden switch on We conclude this section by observing that one may at-

and off: tempt to generalize the analysis of Davies, Liu and Ottewill
[22], to relate the response of a switched particle detector to
1, lsl<1, the energy density it moves through. As in RE22] we
As(s)= 0 otherwise, (2.93 consider the difference in response between two different
states|A) and|B), on the space-time to avoid problems of
giving renormalization. For a general motion it is immediate from
_ Eq. (2.3 that
~ sinw
As(w)=27. (2.9b

J :mzm«m502(x<r>>|B>—<A|€oz(x< M)A}

As we shall see, the suddenness of this switching leads to

additional infinities, so it is also worth considering two 1 (=
smoother functions _EﬁwdE{HB(E)_HA(E)}' (214
A(S)= 1-s%, |s|<1 (2.108 Equation(2.14 shows the close relationship between the de-
W= o otherwise, ' tector response and the average valuéesh. In particular,

o as the left-hand side can be negative even w#enis the
giving vacuum state, so the right-hand side must be. In other words,

(sin cosw) if : denotes normal ordering with respect to the vacuum, then
sinw— w Cosw
4—

Aplw)= - , (2.10b on average the response of the detector in regions where
) (B:¢2|B) is negative will be less that it would be in the
vacuum. This is a clear four-dimensional analog of Grove’s
and conclusion for two-dimensional motion, appropriate for our
more conventional choice of coupling.
co§(zs), ls|<1 The relgtion to the energy (_1ens_ity is rather more tenuou_s.
Ay(s)= 2 (2.119  If we restrict ourselves to an inertial detector in Minkowski
0 otherwise space-time then following the methods of Rgf2] one can
show that
giving .
. dt N2(1){(B|p(t;X)|B) — (A|pe(t;X)|A
e » |” aoelhadis - albolan
H(w)—m- (2.11b .
. B
These choices are inspired by the theory of data windowing 27 )~ 4
and are based on the Welch and Hanning windows, respec-
tively [21] X {Tg(Eix) ~ TTA(EiX)} + lfw dt(AR —12)
We shall consider two further choices of switching which B A 2)

are not of finite duration but which still allow us to concen- L .
trate our measurement about one instant of time. The first is X{(B|o?(t;x)|B) — (A| 2(t;x)| A}, (2.19

Gaussian switching with R o _
wherep,= — T} is the energy density operatdrdenotes the

1, coupling to the scalar curvature and the overdot represents
Ag(s)=expg — 557/, (2128 (ifferentiation with respect to It is clear here that the rela-
tionship between the energy density and the detector re-
giving sponse depend@ot surprisingly on the rate at which the
switching is turned on and off. This statement and that relat-
< _ 1, ing to (¢?) above are, of course, strongly dependent on the
Aglw)= \/ﬂexr{ —2¢ ) ' (2129 particu<lar>choice of coupling we have made. To conclude we
simply note that in the case of Gaussian switching one does
The second is Cauchyr Lorentzian switching, correspond- obtain a somewhat closer relationship:
ing to the sampling considered by Fdi&l,

1 f T AOD{(BIp () [B)— (Alpe(X) A}
AC(S)I W’ (2.133 -
1 (= 1 1
with :Ef_de Ez_(f_z)vz_ ET_Z}
Ac(w)=me el (2.13b X{TTg(E;X) — TTA(E;X)}. (2.1
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H 25 The regionET>0 corresponds to excitation of the detector
from its ground state while the regidaT<<O corresponds to
W 20 deexcitation.

Having explicitly illustrated the effects of excitation due
to switching, from now on we shall consider the difference

» between the response in some given staétg containing

c negative energy density or a negative energy flux and the
10 vacuum|0):
G
s ATIA(E;X) =T A(E;x) ~ To(E; ). (3.5
. . § ATl will be finite even for sudden switching as the high
4 2 9 4 ET frequency divergence is independent of state.

To conclude this section we study the case of a static
FIG. 1. Vacuum response curves for switched detectors. Th‘hegative energy density before turning to negative energy
lettersG, C, W andH denote Gaussian switching, Cauchy switch- flxes in the next section. The simplest configuration to study
ing, Welch switching and Hanning switching, respectively. is the field in its vacuum staj€ag outside a single Casimir
plate z=0 on which the field is taken to vanish. For this
configuration

A crucial difference between leaving a detector switched 1
on for all time and introducing some form of switching is o2 — {0l o2 R ]
that switching itself will induce transitions. In particular, a (Cage™(2)]Ca3 ~(0l¢*(2)10) 16m°z°’ (30
switched static detector moving through a static space-time | . . .
in its natural vacuum state will become excited. This is theWhICh diverges to- as the plate is approached, and
effect we wish to study in this section. . . 1

In a static space-time we may introduce a complete nor-  (Cagp:(z)|Ca9—(0|ps(2)|0)=— W(l—Gf).

- - 6
malized set of mode functions of the form'&!f;(x) where 4 3.7)

Q=0Q(K) is positive. This set may be used to define a natu- . _ _
ral vacuum stat¢0). The corresponding vacuum Wightman In these equationg0) denotes the standard Minkowski

Ill. PURE VACUUM EFFECTS

function at equal spatial points is vacuum. A calculation from Eq3.2) gives
o 1 (= ~ 2s;ir|(2kz)
(Ole(tX&(t X|0y=3 e M2 (3.9 Mlewd €)= 1z | KRB T5E0
k
Inserting this form into Eq(2.5), we find that for a static -— —1;me dw|A (W+ET)|?
detector ax 4mJo
sin2w(z/T)]
- ~ 1 ol 12 — (3.9
o(E;x) =2 X[(—gw) 0 +E]Ffr(x)|%. (3.2 2w(2IT)
k

The response functioAHCa;E,i) is plotted for our range
For the Minkowski vacuum Eq3.2) takes the form of switching functions in Fig. 2. It is clear from this that
stimulated emission and absorption are reduced by the pres-
ence of the plate. This is a well known and experimentally
observed effect. Note that ag/T—0, Allc{E;z)—
—1II4(E) since in this case the detector cannot become ex-
cited as can also be seen from E82) on noting that in this

1 (=
HO(E)ZWL k dk| X\ (k+E)|?

1 [~ ~ o0 —
=—2f wdw|A (w+ET)| (3.3  case|fg(z=0)|=0. _ _
47 Jo As a check on our calculations we may consider the re-
sponse of an eternal detector by takid 7)=1Vr, so
In the case of sudden switching we have A(w)=2m8(w). In that case we find
I,(E) 1 J'w 4 sif(w+ET) 3.4 0, E>0,
= w dw . .
=)o (W+ET)? ATl dE;z)= 1 sin(2E2) (3.9
2#5(0)5—2 , E<O,

which diverges(logarithmically) at the upper limit. For the
other switchings introduced in Sec. Il the vacuum responsei agreement with the results of R¢R2] for the response
are finite; they are illustrated as functions BT in Fig. 1.  per unit timeon identifying 275(0) as the total time of the
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0 03 !,y and
Adpg)=A(Fy)
k| < .

G :V[ > nlcy|?+ (46— 1)Re| @ 120
0.1} n=0

S X 22 \/mc:_zcn” : (4.9

n:

020y wherep,= — T} andF .= T} are the energy density and right-

moving energy flux, respectively. All of these expressions
correspond to the standard normal-ordered expectation val-
ues. The cross-terms here enable these quanfivbich
would classically be positive definjtéo take either sign. The
frequency of these cross terms is double that of the funda-

s .mental mode highlighting the interference nature of negative
measurement. As expected, in this case energy conservation

o o ) T energy fluxes.
prohibits ex0|tat|or_1 while deexcitation is affected by the We now turn to our detector response. A straightforward
presence of the mirror.

calculation reveals

FIG. 2. Response curves for enerfyT=1 for a range of
switched detectors a distanezeabove a single Casimir plate. The
lettersG, SandH denote Gaussian switching, Sharp switching and
Hanning switching, respectively.

IV. GENERAL STATE WITH ONE MODE EXCITED
1 ~ ~
A state of sufficient generality to illustrate the reponse of AH\I,(E;X)=—[ [|A(KT+ET)|?+|A(kT—ET)|?]

our switched detectors to negative energy fluxes is that of the Zkv
most general state in which just a single mode of momentum o
k is excited. This may be written as X > nlcy|?+2Re| A(KT+ET)
n=0
|\I’>=nzo Cn|n>a 4.1 X]’\(kT_ E-l-)eizkxnz2 /n(n_l)C:_ZCn ]

where|n) denotes theth excited state of the particular cho- (4.5
sen mode an&;_|c,|?=1. For simplicity we shall use a
box normalization with box volum¥. Without loss of gen-

L There are a number of observations to make about£#).
erality we choos&=kx, then it is straightforward to calcu-

(@) AIly(E,X) is symmetric undelE— —E as follows

late that mathematically from the reality of the difference of the two
N “, - “, Wightman functions and physically from the relationship be-
(Ple(t,x)e(t",x")|¥)—(0]¢(t,x)(t",x")|0) tween stimulated emission and absorption. In particular, al-
% though Grove’s discussion is expressed purely in terms of
= Jcosk[(t—t")—(x—x)] >, nlcy|? absorption, the approach here is entirely consistent with his
kv n=0 results.
(b) It is easy to check that E42.14) holds for A(¢?) of
+mel @ K+ = (x+x")] Eqg. (4.3 andAlly, of Eq. (4.5 by virtue of Parseval’s theo-
rem.
o (c) For the special case of anparticle state ¢,=1, all
> 2 mcz_zcn ] (4.2 others zerpwe have
n=2
n .
whereRe denotes the real part. It follows that Anlm(E;x):mﬂA(ETJr kT)|?
. 1| < ~
Ae?) =151 2 nleql? +|R(ET-KT)[}. (4.6
kv n=0
_ “ That the response is proportionali@eassures us that in this
+MRe| e 12Kt 22 \/n(n—l)c’,ﬁzan, simple case at least our switched monopole is acting as a
"= particle detector.
(4.3 (d) Using the identity[ 8]
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(Ja?+181%) 2 nleq?+2%Re ap 2, Vn(n-1)c}_c,
=-|B% (4.7)

valid for arbitrary complex numbers, B8 andc, such that
S olcn?=1 we see that

M=y 8
kV .
and
Ally=— =— min(A(KT+ET)|2|A(KT-ET)|?).

2kV
4.9

Thus while either\( ?) or AT, may be negative there is a

limit as to how negative they can be. Equati@hg) is the
direct analogue fo({o'z) of the results obtained by Fof@]

for components ofp). An interesting insight into E¢4.9) is
given by noting that

1 . ~
AH,1>(E;x)=m{|A(ET+ kT)|?+|A(ET—KT)|?}

/2m min(AKT+ET)|?|A(kT—ET)|?),
(4.10

so that

1
AH\I,B—EAH“_)(E;X). (41])

This equation admits the following natural semiclassical in-
terpretation. The detector may be thought to respond to the

zero-point energy we have subtracted in formikBly ex-
actly as ann-particle state withn=3. If we allow for the

PHYSICAL REVIEW D65 104014

- 1 .
A<¢2>=W{S|nh2 r —sinhr coshr
X cog 2k(x—t)+ 6]}, (4.19
and
Adpe)=A(Fy)

k

:v{sinl“? r—(4&—1)sinhr coshr
X cog 2k(x—t)+ 4]}. (4.16

Thus for a fraction cosl(tanhr)/z of each cycle A(@?) is
negative; this is always less than half, tending to one-half as
r tends to infinity. The average value &f ¢?) over a cycle

is sintfr/(kV) which is, of course, positive. For minimal cou-
pling the energy density will be negative for an equal time
but will be out of phase withA(¢?). For other physical
choices of couplings (& ¢<1/6), the energy density may or
may not be negative, depending on the degree of squeezing
(magnitude ofr). Whenever it is, it will always be out of
phase withA(¢?). The minimum value of\(¢?) is

. 1 .
A(@Dmin=~ yil—e h (4.17)

which is, of course, consistent with the bouf@d8).
The detector response to a squeezed state is given by

ATTAE;x) == A[|A(KT+ET)|?

2kV
+|A(KT—ET)|?]sinr
— 2 sinhr coshr Re[A(KT+ET)

X A(KT—ET)g@x+aq, (4.18

vacuum fluctuations in this way the total response will al-or equivalently,

ways be positive:

AH\I,+AH|71/2>(E;X)>O, (412'

where ATT| 15 (E;X) |s understood to be formally defined

by Eq. (4.6 W|th n=—1.
A case of particular interest is that dfingle modeg
squeezed states defined for any complex nungbiey

|0). 4.13

1 .. 1 .
_ kN2 T T
|§>—exr{2§ a2~ S y(a"h?

This state may be written in the present form wétj+ 0 for
n odd and

[(2n)!]Y?

n!

1 ) n
=(coshr) ¥2—~2~—— ( Eé"tanhr , (4.19

whereZ=ré?. Correspondingly, we have

AII(E;x)= 2kV[|A(|<T+ ET)|?
+|A(KT—ET)|?]sinhr coshr
X {tanhr —tanhy cog 2kx+ 6+ ¢)},
(4.19
where

2|AKT+ET)||A(kT—ET)|

|A(KT+ET)|?+|A(kT—ET)|?
(4.20

tanhy(kT,ET)=

and ¢=Arg[A(KT+ET)A(kT—ET)]. For the switchings
of Sec. Il, which are all symmetric about= 75, we have
(,ZS: _2k7'0.
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r=3/4

1
V)= ————(|0 2)), 4.2
)= e 102 (423

where without loss of generality we have taketo be real.
Corresponding to Eqg4.3) and (4.4) we have

A(@?) =%/ %2{2624' V2ecos k(t—x)} (4.24

kT, and
_ . Apg)=(Fy)
FIG. 3. Response curves for squeezed states with squeezing fac-
torr=3%, r=1% andr=2 for a detector withy=1. K 1
=V 1z 62{262+ V2(4¢—1)ecos K(t—x)}.

It is clear from Eq.(4.19 that for fixedk T andET there
is a critical degree of squeezing, given by {¥|=r <y re-
quired for the squeezed state to produce a suppression
vacuum excitation. For fixel T andET the minimum value
attained byAll, occurs for = 1x, and in this case, one finds
that for suitably choser (or 7y) the lower bound4.1]) is
achieved. Figure 3 illustrates the responsexferl askr, is
varied forr=3%, r=1% andr=2.

For sharp, Hanning and Welch switching the behavior of Ally(E;X)=
tanhy(kT,ET) as a function ok T and ET is quite compli-
cated; for illustration, tang(1,ET) for sharp switching is +9e[ V2eA (KT+ET)A(KT—ET)d2k]}
plotted as a function okE in Fig. 4. For Gaussian and

(4.2

Bliearly for smalle both A(3?) and A{p,) can be negative
for approximately half the time, and, as before, for physical
choices of couplings (&¢<1/6) these times are out of
phase. Corresponding to E@.5 we have

l A ~
Tk A CURE K2R (E=K)[?]

Cauchy switching, tanj is a monotonic decreasing function 1 _ _
of kT andET. In the latter cases the explicit forms are suf- =———— 5 [|A(E+Kk)|?+|A(E—K)|?]
- . . 27k(1+€9)
ficiently simple to be worth noting, we have
€
tanhyg=secti2kET?), (4.22) X1 €2+ E tanhy cog2kx+¢) . (4.2
and . .
It is clear that for\2|e|<tanhy we will, as before, have
2ET). ET<kKT periods when the excitation i.s I.ess. that in.the vacuum,.
tanhyc= sech ) ’ (4.22 We should add that the similarity of this case to that of
secti2zkT), ET=KT. squeezed states is not accidental: if we work only to oeder

then the vacuum plus two particle state coincides with a
Another simple case in which there is a period of negativesqueezed state with= — \/2e.
energy flux, which has been of historical importance, is that
of the vacuum mixed with a two-particle state. In this case V. RINDLER SPACE
we have
Following Candelas and Sciam&9] and Grove[16], we
will now study the response of an inertial detector moving
through the Rindler vacuuniR), defined in the wedge
>|t| as illustrated in Fig. 5. The Rindler vacuum may be
thought of as the natural vacuum state in the gravitational
field of an infinite flat eartH25] and is analogous to the
Boulware vacuum of Schwarzschild space-time while the
Minkowski vacuum is analogous to Hartle-Hawking
vacuum. This scenario is thus related to the question posed
by the title of Candelas and Sciama’s papkd]: “Is there a
quantum equivalence principle?” in which the authors ad-
dressed the question of whether a detector falling freely in
kE Schwarzschild space-time could distinguish if it was moving
through the Hartle-Hawking vacuum or the Boulware
FIG. 4. tanhyg(KT,ET) for sharp switching plotted as a function vacuum.
of KE for kT=1. An inertial detector moving through the Rindler vacuum

1 2 3 4 5 6
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0 0.25 0.5 0.75 1
; 0 : : : T

FIG. 6. Detector response at eneifgy-1 for fixed X=1 asT
varies. T=1 corresponds to reaching the boundary of Rindler
space.

sult takingX fixed and independent df is plotted in Fig. 6.
That the response for fixel tends to—» asT— X is to be
expected on the basis of E@®.14) since we have

R B 1
A(QD (t)>_ 487T2772_ 487T2(X2—t2) (5.2

FIG. 5. The measurement time of an inertial detector in Rindler
spacex>|t| is limited by the presence of the boundary of Rindler and so
space(mirror) at x=t. Candelas and Sciama chose to consider the
limit (X,T)—oe in such a way that the final acceleratidv=(X? T - X+T
—T2)~12 remained constant as for the two trajectories marked fo dt A{e=(t))=— m'n X_T) (5.9
and X, here.

mustmake a finite time measurement as the detector willVhich diverges logarithmically te- asT—X.

reach the boundary of Rindler space in a finite proper time. Rather than consider the limit illustrated in Fig. 6, Can-

This boundary plays the role of a mirror in that the field 9€las and Sciama chose to consider the !Z'mfg)flfzo in

vanishes there; indeed the Rindler vacuum may be realizeg'ch @ way that the final acceleratién-= (X"—T%) ™ re-

as the natural vacuum above a uniformly accelerating mirrofaineéd constant. The numerically calculated detector re-

in the limit that the acceleration tends to infinity. sponseAllg, corresponding to this configuration is plotted
Without loss of generality we may take the detector to be Fig- 7. The fact that this response tends to zerd-as« is.

at fixedx, x=X say. Then expressing the Rindler Wightman the essence of the result obtained by Candelas and Sciama.

function in Minkowski coordinates we have Both Figs. 6 and 7 bear out the conclusion of Grove that
as a detector approaches the mirror the reduction in vacuum
(Rlo(t,X,y,2)@(t",X,y,2)|R) fluctuations near the mirror lead to a sharp reduction in the
1 2 3 4 5
nl 2 0 . ; - ! - T
_ 1 ’
- 2m2(n2— ;2)
(7= In? 1/ —(r—17")2 1
Y
= ! ! + 5.1
- 4m2(12—1'?) | X—t’ : X+t ®.D 2
N x=t) "X+t
where, as usual,= 7 sinh7 andx= n coshr. In Eq. (5.1 t 3
—t’ is understood to occur in the combinatibrt’ —ie

appropriate to its character as a distribution.

For simplicity, we consider a detector switched on sud- FIG. 7. Detector response at enerfy=1 asT varies with X
denly att=0 and off suddenly at=T<X. We have calcu- varying so that the final acceleratién= (X>—T?)"*?is held fixed
lated the corresponding respons&lr numerically. The re-  at 7.09(so X=1 whenT=0.99).
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level of excitation of the detector. This interesting effect isGiven the crudeness of the calculation the agreement with

lost in the limit taken by Candelas and Sciama. the exact result

In fact, as Candelas and Sciama did not subtract the infi- 5
nite vacuum excitation introduced by their switching they <R|'A2(T)'|R>~— A 5.9
were forced to consider the time derivative (B)tll(E). RN 4872 '

This provides a notion of the difference in response between
one ensemble of detectors switched on at time 0 and off d6 remarkable.
time T and a different ensemble switched on at time 0 and off

at time T+dT. Grove considered (dMg[IIx(E)—IIo(E)] VI. CONCLUSION
glL::ylncorrectly asserted that (F1o(E) =0 whereas in re With our particular choice of linear coupling we have
seen the very close link between detector response and re-
1 S . duced vacuum noise. The absence of vacuum fluctuations
grlldB)=5 | —F—+ ESI(ET)}, (5.4 leads to a reduction in the level of excitations of a switched
detector over that which would have occurred in the vacuum
where sik) is the sine integral defined Hp4] as a result of the switching. We may translate this into ther-
modynamic terms. We consider a hot ensemble of two-level
] x - sint atoms which is initially at inverse temperatygeand is then
Si(x)= | dt——. allowed to interact for a finite time with a stat&). The

ensemble will, of course, codlose entropy if it is placed
Equation(5.4) may be derived either from differentiating Eq. just in the vacuum so we consider the change in entropy
(3.4 or directly by deforming the contour of integration to relative to the change in the vacuum, which is given by
that used by Candelas and Sciama. Note that
BE

d E A5=—_E[Aﬂw(E)—e’BEAHq»(—E)]- (6.7)
Fllo(E)==5_6(-E) as T—x (55 1+e#

as required. Grove’s oversight does not in any case effect th(e:onsidering, for simplicity, states for whicthITy(E)
' =Ally(—E) (f I h
analysis of the divergence in (diilIgx(E) asT— X, since v(~E) (for example, squeezed statewe have

although (d/@)II4(E) is non-vanishing it is manifestly 1—e BE
regular in this limit. We shall work with d/H IIg(E) AS=BE — EAHW(E). (6.2
—1IIo(E)]=(d/dT)ATIIR(E) as this is more natural within 1+e”

our formalism.

Taking account of the foregoing comments, Candelas anfi€re the prefactor is manifestly positive so the ensemble
Sciama prove that which interacted with that statel’) will have cooled more

than an identical ensemble in the vacuum if and only if
1 In|2A%T/E| ) All(E)<O0.
grMR(E)~ -5 ——=F—— as |A“T/E| 0. The foregoing results serve to clarify the response of mat-
(5.6 terto pulses of negative energy flux of limited duration. They
are broadly in accordance with one’s intuition that negative
From Eqg.(2.14 we immediately obtain energy should have the effect of enhancing deexcitation, i.e.
to induce “cooling.” However, our results are necessarily
somewhat model dependent and for our standard monopole
model we find that there is not always a simple relationship
between the strength of the negative energy flux and the
We may follow Grove and use the asymptotic expressiorbehavior of matter.

- 1 (= _d
<R|:¢2(T):|R)=Z£xdEﬁAHR(E). (5.7

(5.6) of (d/dT)ATIR(E) for |E/(2A%T)|<O(1) and approxi- Considerable interest attaches to the thermodynamics of
mate it as zero fofE/(2A%T)|>(O(1). Then negative energy. If a sustained negative energy flux could be
directed at a hot bodyor a black holg¢ in such a way as to
iJ"” dEiAH (E) reduce its temperature, hence entropy, by a macroscopic
27w) . dT R amount there would appear to be a clear violation of the

second law of thermodynamics. There is a considerable lit-

1 f 0(2A%T) erature on this topic already. The results of this paper are a

dE In|E/(2A%T)|

16T — O(2A2T) first step to investigating the thermodynamics of negative
) energy. However, the “cooling” effects we have discussed
__ A O(l)dx Inx cannot be immediately used to draw thermodynamic conclu-
47> )o sions, because they have been restricted to first order in per-
5 turbation theory and, as shown by Gro\&8], a proper in-
__ A—O(l) (5.9 vestigation of the thermodynamic implications necessitates a
473 ' ' calculation to second order in perturbation thedst first
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order alone, it is not possible to determine whether the de- ACKNOWLEDGMENTS
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