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Maximum bounds on the surface redshift of anisotropic stars
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It is shown that for realistic anisotropic star models the surface redshift cannot exceed the values 3.842 or
5.211 when the tangential pressure satisfies the strong or the dominant energy condition, respectively. Both
values are higher than 2, the bound in the perfect fluid case.
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I. INTRODUCTION

It is well known that the surface redshifts for a static
perfect fluid sphere, whose density is positive and not
creasing outwards, is not larger thansm52 @1#. The bound
holds for the interior Schwarzschild solution with a consta
fluid densityr and infinite central pressure. It occurs befo
the appearance of a horizon.

Over the years, different arguments have been put fo
for the existence of anisotropy in star models. It may be d
to the presence of a solid core, phase transitions, a mixtur
two fluids, or slow rotation@2#. The idea that the tangentia
pressuret may be different from the radial pressurep was
suggested first by Lemaitre in 1933@3#. He discussed a
model sustained solely by tangential pressures and with
stant density. This model was generalized for variable d
sity by Florides@4# and was recently examined in Ref.@5#.
The application of anisotropic fluid models to neutron st
began with the pioneering work of Bowers and Liang@6# and
was done both analytically and numerically@7–15#. Some
recent work may be found in Refs.@16–20#.

In many papers it is stressed that arbitrarily big redsh
are obtained whent grows to infinity @5–7,10,12,16#. How-
ever, in realistic modelst should be finite, positive, and
should satisfy the dominant energy condition~DEC! t<r or
even the strong energy condition~SEC! 2t1p<r. These
may be written together ast<«r where«51 for DEC and
«51/2 for SEC~if the realistic condition for positivep in the
interior is accepted!.

The bounds ons in anisotropic models were studied
Ref. @21# in a more general setting which incorporates so
bubbles, monopoles and wormholes and the focus was th
horizon does not form. It generalized this result in the perf
fluid case@22# to anisotropic fluids. Similar conclusions we
reached in Ref.@23#.

In this paper we elaborate further on the method use
Ref. @21# and give concrete values for the maximum surfa
redshift when the tangential pressure satisfies either DEC
SEC.

In Sec. II the field equations are given in a convenie
form and the bound ont is implemented to derive an inequa
ity for the mass-radius ratio.

In Sec. III this inequality is used to obtain maximu
bounds on the surface redshift when SEC, DEC or a pseu
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isotropy condition is satisfied byt. Several realistic models
are discussed and it is shown that the bounds cannot be
rated.

Section IV contains a short discussion.

II. FIELD EQUATIONS AND THE MAIN INEQUALITY

The metric element in curvature coordinates is

ds25endt22eldr22r 2~du21sin2 udw2!, ~1!

wheren,l depend only on the radial coordinater. The Ein-
stein equations read@8#

kr5
e2l

r S l82
1

r D1
1

r 2
, ~2!

kp5
e2l

r S n81
1

r D2
1

r 2
, ~3!

kt5
1

2
e2lS n92

l8n8

2
1

n82

2
1

n82l8

r D , ~4!

where 8 means derivative with respect tor , k58pG/c4

and we use units withG5c51. Equation~2! integrates to

z[e2l512
2m

r
, m5

k

2E0

r

rr 2dr. ~5!

Herem is the mass function,m>0 and consequentlyz<1.
Equations~3!,~4! give a linear second-order equation fory
[en/2:

2r 2zy91~r 2z822rz!y81@2~12z!1rz822kDr 2#y50.
~6!

HereD5t2p is the anisotropy factor. Finally, Eq.~3! may
be written as

y85
12z1kpr2

2rz
y. ~7!

For stability reasonsp must be positive and hencey8.0.
Equation~6! has a more compact form

z1/2S z1/2y8

r D5Dy, D5S m

r 3D 8
1

kD

r
. ~8!
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It is convenient to introduce the average density

^r&5
3

r 3E0

r

rr 2dr5
6m

kr 3
. ~9!

Then Eqs.~5!, ~8!, ~9! give

D5
k

2r
~r2^r&12D!. ~10!

A realistic requirement is thatr should be finite and positive
It must decrease monotonically or stay constant for stab
reasons,r8<0. Then it is easily shown that^r&8<0 andr
<^r&. Written in another way

d ln m

d ln r
<3. ~11!

Now, let us divide Eqs.~7! and ~8!:

r S ln
z1/2y8

r D 8
5

r2^r&12D

p1^r&/3
. ~12!

There are two cases:D<0 everywhere andD.0 some-
where. In the first case the right-hand side~RHS! of Eq. ~12!
is bounded from above by zero. Perfect fluids (D50) form a
subcase of this case. Anisotropic fluids withD<0, which
have radially dominated pressure, form another subc
Even whenD.0 in some regions there is a third subca
with D<0. As was mentioned in the Introduction, a realis
t satisfies the inequalityt<«r. ThenD<t<«r and a suffi-
cient condition for nonpositiveD is

d ln m

d ln r
<

3

112«
. ~13!

When «50 we return to the isotropic case and Eq.~11!
although t5p instead of t<0. Equation ~13! shows that
when the slope ofm in a logarithmic scale is not stee
enough, no positiveD is able to ensureD.0. We shall show
in the following section that models withD<0 satisfy the
Buchdahl bound on the redshift, while models withD.0
can develop in principle bigger redshifts.

Anisotropic models are subjected to three field equati
but possess five characteristicsz,y,t,p,r. Therefore, two of
them or their combinations must be given explicitly. Equ
tion ~13! is important for models with a given density profil
This profile should break the criterion at least once in or
to possibly achieve redshifts bigger than 2. Another possi
ity is to satisfy directly the conditionD.0, which is more
general, but can be checked without solving the field eq
tions only whenD is the second given function.

When D.0 in some region, the following chain of in
equalities holds:

r2^r&12D

p1^r&/3
<

2~ t2p!

p1^r&/3
<

6t

^r&
<6«. ~14!
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The isotropic case is regained again when«50. Inserting the
bound from Eq.~14! into Eq. ~12! and integrating fromr to
the boundary of the fluid sphere atr 5R yields

y8>A~R!S r

RD 6« r

z1/2
, A~r !5

z1/2y8

r
. ~15!

At R the interior fluid solution should be matched to th
exterior Schwarzschild solution, which requiresz(R)51
22M /R. Here M[m(R) is the total mass of the fluid
sphere. Equation~9! provides the inequality

2m

r
>

2M

R3
r 2. ~16!

After these remarks, let us integrate Eq.~15! from the
center to the boundary and take into account thaty(0)>0.
The result reads

S 12
2M

R D 1/2

>
M

2R316«E0

R2 x3«dx

S 12
2M

R3
xD 1/2. ~17!

Equation~17! is a particular case of Eq.~66! from Ref.@21#.
In this paper polar Gaussian coordinates were used,
bound in Eq.~14! was assumed to hold for some positive«,
not connected in general witht, and the maximum of 2m/r
was not obliged to be on the surface of the configurati
Equation ~17! can be written as an inequality just fora
[2M /R:

4a3«~12a!1/2>E
0

a x3«dx

~12x!1/2
. ~18!

This is the main inequality to be used for finding redsh
bounds.

III. BOUNDS AND MODELS

Equation ~18! provides maximum values for the mas
radius ratioa and the surface redshift

s5~12a!21/221, ~19!

both of which depend on«. In the perfect fluid case formally
«50 and Eq.~18! becomes

3~12a!1/2>1. ~20!

This gives the values found by Buchdahl:am58/9 andsm
52. When anisotropy is present andt is untied fromp, «
.0 and there is possibility for higher redshifts. In gener
the integral on the RHS of Eq.~18! is expressed through th
hypergeometric function. When 3« is an integer it becomes
sum of different powers of 12a. Thus, when DEC holds for
t(«51) we have
1-2
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~12a!1/2Fa12a32
1

7
~12a!31

3

5
~12a!2G> 16

35
~21!

and the maximum bounds aream50.974 andsm55.211.
These values were found in Ref.@21#.

A useful relation which follows from the field equations
the Tolman-Oppenheimer-Volkoff~TOV! equation@6#

p852~r1p!
12z1kpr2

2rz
1

2D

r
. ~22!

It shows that for realistic and, hence, finite at the centerp,p8
we have D(0)50. Furthermore, the radial pressure
obliged to vanish at the boundary. If the more imperat
SEC holds for t, r>p12t gives t< 1

2 r and event(0)
< 1

3 r(0). Let usaccept the stronger bound, which holds
the interior of perfect fluids, and call this a pseudoisotro
case, witht,p being of the same magnitude, although n
equal. Then«51/3 and Eq.~18! becomes

~12a!1/2S 11
7

2
a D>1, ~23!

which yields am50.946 andsm53.310. These values ar
still above the Buchdahl ones.

The general value of« for SEC, however, is 1/2 and thi
case is the most realistic one. Now 3« is not an integer, but
the integral in Eq.~18! is once more expressed in terms
elementary functions and gives

4~12a!1/2a3/2>
2a31a223a

4Aa2a2
1

3

8
arcsin~2a21!1

3p

16
.

~24!

Computer calculations show thatam50.957 andsm53.842.
The last number is the main result of this paper. It shows
almost double increase in the Buchdahl bound when ani
ropy is allowed andt satisfies SEC. The other assumptio
made werer.0, p>0, r8<0 and the inevitablet>p. Of
course,D.0 should also be true, otherwise the bound c
lapses to Buchdahl’s one. Thus, realistic anisotropic
models can possess higher redshifts than the isotropic
but they are limited and never reach infinity.

It is said sometimes for perfect fluids that the Buchd
bound is optimal because there is a model which saturate
Equation~12! shows that for such a modelr5^r& which is
possible only for constantr. Thus we arrive at the Schwarzs
child incompressible sphere with the central pressure a
free parameter. Only the model withp(0)5` saturates the
bound. A possible explanation is thaty(0)>0 and the equal-
ity is required for saturation. This leads to a singular me
and it is probably induced only by singular central pressu
When the pressure is required to satisfy SEC one has
sm51/2 @13#. We leave aside the problem that constant d
sity leads to infinite speed of soundv5(dp/dr)1/2, while a
realistic speed of sound is bound by 1, the speed of ligh
our units. In conclusion, there is no realistic model saturat
the Buchdahl bound.
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What is the situation for anisotropic models? According
Eq. ~12! a saturating model must satisfy

r2^r&12D56«S p1
1

3
^r& D . ~25!

However, this is not possible at the center because there
LHS vanishes, while the RHS is positive. Again the exp
nation may be connected with the requirementp(0)5` be-
cause ofy(0)50. ThenD(0),0 andD(0),0 sincet(0) is
finite, but this contradicts the nature of the saturationD
.0).

One may ask for models which satisfy the limiting a
sumptions made during the derivation of Eq.~14!. Namely,
r5const5r0 , p50 andt5«r0. These are three condition
while only two of the fluid’s characteristics can be fixed b
forehand. If we take the first two conditions, we arrive at t
Lemaitre model@3–5#. Equation~22! then gives

t5
12z

4z
r0 . ~26!

Obviously t is not as required. Using the bound ont gives

a<
4«

114«
. ~27!

This inequality yieldsam50.8, sm51.236 for DEC and
am50.667, sm50.732 for SEC. These values are high
than the ones of the realistic Schwarzschild interior soluti
but far away from the absolute bounds derived above. T
models possessing the values when DEC holds were g
recently@17# ~models I and IV!.

Most successful is the Bondi model@13# which also has a
constant density, but the second given function is the c
stant ratio Q5(p12t)/r0. The region Q<1 is studied,
which is equivalent to SEC. The redshift increases withQ
and numerical simulation givessm51.352 forQ51. Close
to this result stands example 2 from Ref.@18# with s51.2. It
utilizes a nonlocal equation of state and a density pro
used in Refs.@4,9,14#.

Finally, the conformally flat anisotropic models are wor
mentioning@9#. The vanishing of the Weyl tensor implies

kD

r
522S m

r 3D 8
. ~28!

The two terms inD are of the same nature, but do not com
pensate each other. All characteristics of the solution dep
only on the density profile.D is definitely positive, however
already the Buchdahl bound is reached with infinite cen
radial pressure. This is analogous to the behavior of the
terior Schwarzschild solution which is the only conforma
flat solution in the perfect fluid case@24#.

IV. DISCUSSION

The bounds found in this paper generalize the Buchd
bound to anisotropic star models and show that claims
1-3
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arbitrarily large redshifts are not realistic. The bounds
absolute, i.e., numbers depending on a few simple real
requirements. They do not depend on the details of
mechanism generating anisotropy, equations of state, ce
density and so on. We have also not explored the con
quences of the condition 0<v<1, necessary for the caus
th
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behavior of the fluid. In the perfect fluid case a lower bou
sm50.854 was established heuristically when some of
above mentioned features are taken into account@25#. Prob-
ably, such a study can be performed in the anisotropic c
too. It may concern not only the surface redshift but also
maximum masses and moments of inertia of neutron sta
J.
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@19# T. Harko and M. K. Mak, gr-qc/0110103.
@20# M. K. Mak, P. N. Dobson, and T. Harko, Int. J. Mod. Phys.

11, 207 ~2002!.
@21# J. Guven and N. O´ . Murchadha, Phys. Rev. D60, 084020

~1999!.
@22# T. W. Baumgarte and A. D. Rendall, Class. Quantum Grav.10,

327 ~1993!.
@23# M. Mars, M. MercèMartı́n-Prats, and J. M. M. Senovilla

Phys. Lett. A218, 147 ~1996!.
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