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Maximum bounds on the surface redshift of anisotropic stars
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It is shown that for realistic anisotropic star models the surface redshift cannot exceed the values 3.842 or
5.211 when the tangential pressure satisfies the strong or the dominant energy condition, respectively. Both
values are higher than 2, the bound in the perfect fluid case.
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[. INTRODUCTION isotropy condition is satisfied by Several realistic models
are discussed and it is shown that the bounds cannot be satu-
It is well known that the surface redshiétfor a static rated.
perfect fluid sphere, whose density is positive and not in- Section IV contains a short discussion.
creasing outwards, is not larger thag=2 [1]. The bound
holds for the interior Schwarzschild solution with a constant II. FIELD EQUATIONS AND THE MAIN INEQUALITY
fluid densityp and infinite central pressure. It occurs before
the appearance of a horizon.
f Over the years, dlﬁprent arguments have been put forth d=e"dr2— e dr2—r2(d 6%+ sir? 0d¢?), 1)
or the existence of anisotropy in star models. It may be due
to the presence of a solid core, phase transitions, a mixture @fhere »,\ depend only on the radial coordinateThe Ein-
two fluids, or slow rotatiorf2]. The idea that the tangential stein equations read]
pressuret may be different from the radial pressupewas
suggested first by Lemaitre in 1933]. He discussed a e M
model sustained solely by tangential pressures and with con- Kp=——
stant density. This model was generalized for variable den-
sity by Florides[4] and was recently examined in R¢E]. N
The application of anisotropic fluid models to neutron stars € ( n E
r

The metric element in curvature coordinates is

+—, (2

began with the pioneering work of Bowers and Lid6djand “P= T\

was done both analytically and numerically—15. Some

recent work may be found in Refgl6-20. 1
In many papers it is stressed that arbitrarily big redshifts Kt= P €

are obtained when grows to infinity[5-7,10,12,16 How-

ever, in realistic modelg should be finite, positive, and where ' means derivative with respect 19 «=87=G/c*
should satisfy the dominant energy conditi®@EC) t<p or  and we use units witks=c=1. Equation(2) integrates to
even the strong energy conditiqBEQ 2t+p<p. These

may be written together as<ep wheree=1 for DEC and L 2m k(T

e=1/2 for SEC(if the realistic condition for positive in the z=e "=1- o m= EJ’O predr. ®)
interior is accepted

The bounds ors in anisotropic models were studied in Herem is the mass functionn=0 and consequently=<1.
Ref.[21] in a more general setting which incorporates soafequations(3),(4) give a linear second-order equation fpr
bubbles, monopoles and wormholes and the focus was that=ag/2:
horizon does not form. It generalized this result in the perfect
fluid case[22] to anisotropic fluids. Similar conclusions were  2r2zy"+(r?z' —2rz)y’' +[2(1—2z)+rz' —2kAr?]y=0.
reached in Ref{23]. (6)

In this paper we elaborate further on the method used in , ) )

Ref.[21] and give concrete values for the maximum surface 1€r€ A=t—p is the anisotropy factor. Finally, E¢3) may
redshift when the tangential pressure satisfies either DEC di€ Written as
SEC.

In Sec. Il the field equations are given in a convenient y’
form and the bound ohis implemented to derive an inequal- 2rz
ity for the mass-radius ratio.

In Sec. lll this inequality is used to obtain maximum
bounds on the surface redshift when SEC, DEC or a pseud

M- +—+

1—z+kpr?
=—DsY. ()

For stability reasong must be positive and hengg >0.
(l;quation(G) has a more compact form

Zl/2yr
r

!

KA

m

r3

Z1/2

) = Dy, D =
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It is convenient to introduce the average density

_ 3" 2y, BM
<p>—r3f0pr dr= el 9
Then Egs(5), (8), (9) give
K
D=2 (p=(p)+24). (10

A realistic requirement is that should be finite and positive.
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The isotropic case is regained again whken0. Inserting the
bound from Eq.(14) into Eqg.(12) and integrating front to
the boundary of the fluid sphere &t R yields

Zl/Zyr

, r\6 r
y'=AR)| 5 7 A(r)=—

(15

At R the interior fluid solution should be matched to the
exterior Schwarzschild solution, which requirg$R)=1
—2M/R. Here M=m(R) is the total mass of the fluid
sphere. Equatio) provides the inequality

It must decrease monotonically or stay constant for stability

reasonsp’<0. Then it is easily shown thdp)’'<0 andp
<(p). Written in another way

dinm 3 11
- <
dinr ’ (11)

Now, let us divide Eqs(7) and(8):

r(lnzl’zy’)’: p—(p)+24
r p+{p)/3

12

There are two caseD =0 everywhere and>0 some-
where. In the first case the right-hand s{@&HS) of Eq. (12)
is bounded from above by zero. Perfect fluids<0) form a
subcase of this case. Anisotropic fluids with=0, which

T2
; =3 re. (16)
After these remarks, let us integrate E@5 from the
center to the boundary and take into account §{&)=0.
The result reads

2M 1’2> M R2 x%dx
" ®r /2R3+6sfo( YR

- —X

R3

Equation(17) is a particular case of E¢66) from Ref.[21].
In this paper polar Gaussian coordinates were used, the
bound in Eq.(14) was assumed to hold for some positive

have radially dominated pressure, form another subcas®0t connected in general with and the maximum of @/r
Even whenA>0 in some regions there is a third subcasewas not obliged to be on the surface of the configuration.
with D=<0. As was mentioned in the Introduction, a realistic Equation (17) can be written as an inequality just far

t satisfies the inequality<ep. ThenA<t=<egp and a suffi-
cient condition for nonpositiv® is

dinm 3
=
dinr 1+2¢°

(13

When e=0 we return to the isotropic case and H4l)
althought=p instead oft<0. Equation(13) shows that

when the slope ofm in a logarithmic scale is not steep

enough, no positiva is able to ensur®>0. We shall show
in the following section that models witB <0 satisfy the
Buchdahl bound on the redshift, while models with>0
can develop in principle bigger redshifts.

Anisotropic models are subjected to three field equations

but possess five characteristy,t,p,p. Therefore, two of

=2M/R:

o x3dx

40%%(1— a)Y?= f (18

0 (1_X)1/2'

This is the main inequality to be used for finding redshift
bounds.
IIl. BOUNDS AND MODELS

Equation (18) provides maximum values for the mass-
radius ratioa and the surface redshift

s=(1—a) Y21, (19

them or their combinations must be given explicitly. Equa-both of which depend oa. In the perfect fluid case formally
tion (13) is important for models with a given density profile. ¢=0 and Eq.(18) becomes

This profile should break the criterion at least once in order

to possibly achieve redshifts bigger than 2. Another possibil-

ity is to satisfy directly the conditio® >0, which is more

3(1—a)¥?=1. (20)

general, but can be checked without solving the field equathis gives the values found by Buchdall,=8/9 ands,

tions only whenA is the second given function.
When D >0 in some region, the following chain of in-
equalities holds:

p—(p)T2A _2(t-p) _ 6t
p+{(p)l3 ~ p+(p)3  (p)

<6s.

(14

=2. When anisotropy is present ahds untied fromp, ¢
>0 and there is possibility for higher redshifts. In general,
the integral on the RHS of Eq18) is expressed through the
hypergeometric function. Where3s an integer it becomes a
sum of different powers of + «. Thus, when DEC holds for
t(e=1) we have
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" . 1 5 3 ) 16 What is the situation for anisotropic models? According to
(1-a)™at2a’— 2 (1-a)’+ g(l—a) =35 Eq. (12) a saturating model must satisfy
(21) 1
and the maximum bounds awe,=0.974 ands,=5.211. p={p)T24=6c p+§(p>). (25

These values were found in R¢21].
A useful relation which follows from the field equations is However, this is not possible at the center because there the
the Tolman-Oppenheimer-VolkofTOV) equation[6] LHS vanishes, while the RHS is positive. Again the expla-
nation may be connected with the requiremp(®)=« be-

1—z+ kpr? . 2A cause ofy(0)=0. ThenA(0)<0 andD(0)<0 sincet(0) is

P'=—(ptP)—; PR (220 finite, but this contradicts the nature of the saturati@n (
>0).
It shows that for realistic and, hence, finite at the cepter One may ask for models which satisfy the limiting as-

we have A(0)=0. Furthermore, the radial pressure is sumptions made during the derivation of Ef4). Namely,
obliged to vanish at the boundary. If the more imperativep=const=p,, p=0 andt=¢p,. These are three conditions
SEC holds fort, p=p+2t gives t<3p and event(0) while only two of the fluid’'s characteristics can be fixed be-
<1p(0). Let usaccept the stronger bound, which holds in forehand. If we take the first two conditions, we arrive at the
the interior of perfect fluids, and call this a pseudoisotropicLemaitre mode[3-5|. Equation(22) then gives

case, witht,p being of the same magnitude, although not

equal. There=1/3 and Eq/(18) becomes 1-z
| 19 t="45 po. (26)
(1—a)*? l+za =1 (23 , : : : _
297 ™ Obviouslyt is not as required. Using the bound bgives
which yields «,,=0.946 ands,,=3.310. These values are _ 4e 5
still above the Buchdahl ones. =14 27

The general value of for SEC, however, is 1/2 and this
case is the most realistic one. Now & not an integer, but This inequality yieldsa,,=0.8, s,,=1.236 for DEC and
the integral in Eq(18) is once more expressed in terms of a,,=0.667, s,,=0.732 for SEC. These values are higher

elementary functions and gives than the ones of the realistic Schwarzschild interior solution,
but far away from the absolute bounds derived above. Two
1 ap. 20°+a?—3a 3 3 models possessing the values when DEC holds were given
41-a)™a”= Ve +garcsin2za—1)+ 7¢. recently[17] (models | and IV.
ara (24) Most successful is the Bondi moddl3] which also has a

constant density, but the second given function is the con-

Computer calculations show that,=0.957 ands,,=3.842.  stant ratio Q=(p+2t)/p,. The regionQ<1 is studied,

The last number is the main result of this paper. It shows atvhich is equivalent to SEC. The redshift increases v@h

almost double increase in the Buchdahl bound when anisognd numerical simulation gives,,=1.352 forQ=1. Close

ropy is allowed and satisfies SEC. The other assumptionsto this result stands example 2 from Rif8] with s=1.2. It

made werep>0, p=0, p'<0 and the inevitablée=p. Of  utilizes a nonlocal equation of state and a density profile

course,D>0 should also be true, otherwise the bound col-used in Refs[4,9,14.

lapses to Buchdahl's one. Thus, realistic anisotropic star Finally, the conformally flat anisotropic models are worth

models can possess higher redshifts than the isotropic on&entioning[9]. The vanishing of the Weyl tensor implies

but they are limited and never reach infinity. ,
It is said sometimes for perfect fluids that the Buchdahl ﬂ_ _ (m)

bound is optimal because there is a model which saturates it. ro 3 (28)

3
Equation(12) shows that for such a modgk (p) which is

pOSSible Only for ConStarpi. Thus we arrive at the Schwarzs- The two terms irD are of the same nature, but do not com-
child incompressible sphere with the central pressure as gensate each other. All characteristics of the solution depend
free parameter. Only the model wifi(0) = saturates the only on the density profileD is definitely positive, however,
bound. A possible explanation is tha{0)=0 and the equal- already the Buchdahl bound is reached with infinite central
ity is required for saturation. This leads to a singular metricradial pressure. This is analogous to the behavior of the in-
and it is probably induced only by singular central pressureterior Schwarzschild solution which is the only conformally
When the pressure is required to satisfy SEC one has onlifat solution in the perfect fluid cage4].

sm=1/2[13]. We leave aside the problem that constant den-
sity leads to infinite speed of soumd= (dp/dp)*?, while a
realistic speed of sound is bound by 1, the speed of light in
our units. In conclusion, there is no realistic model saturating The bounds found in this paper generalize the Buchdahl
the Buchdahl bound. bound to anisotropic star models and show that claims for

r

IV. DISCUSSION
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arbitrarily large redshifts are not realistic. The bounds arébehavior of the fluid. In the perfect fluid case a lower bound
absolute, i.e., numbers depending on a few simple realistis,,=0.854 was established heuristically when some of the
requirements. They do not depend on the details of the@bove mentioned features are taken into accp2iit Prob-
mechanism generating anisotropy, equations of state, centrably, such a study can be performed in the anisotropic case
density and so on. We have also not explored the conséeo. It may concern not only the surface redshift but also the

guences of the condition<®v <1, necessary for the causal

maximum masses and moments of inertia of neutron stars.
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