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On a class of stable, traversable Lorentzian wormholes in classical general relativity
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It is known that Lorentzian wormholes must be threaded by matter that violates the null energy condition.
We phenomenologically characterize such exotic matter by a general class of microscopic scalar field
Lagrangians and formulate the necessary conditions that the existence of Lorentzian wormholes imposes on
them. Under rather general assumptions, these conditions turn out to be strongly restrictive. The most simple
Lagrangian that satisfies all of them describes a minimally coupled massless scalar field with a reversed sign
kinetic term. Exact, nonsingular, spherically symmetric solutions of Einstein’s equations sourced by such a
field indeed describe traversable wormhole geometries. These wormholes are characterized by two parameters:
their mass and charge. Among them, the zero mass ones are particularly simple, allowing us to analytically
prove their stability under arbitrary space-time dependent perturbations. We extend our arguments to nonzero
mass solutions and conclude that at least a nonzero measure set of these solutions is stable.
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I. INTRODUCTION AND SUMMARY

The study of Lorentzian wormholes@1# in classical gen-
eral relativity has suffered from the absence of conventio
microscopic descriptions of the matter that holds open
throat of the wormhole. Indeed, it is known on one hand t
such matter has to violate the null energy condition, while
the other hand, most known classical matter forms do
@2#. Thus, many wormholes have been investigated in al
native theories of gravity, such as Brans-Dicke theory,
quantum effects have been invoked@3#. However, in prin-
ciple, classical general relativity admits stable wormhole
lutions supported by simple matter forms. In this paper
introduce a general class of matter Lagrangians and study
properties they have to satisfy in order to allow the existe
of wormholes. These matter forms necessarily violate so
of the standard energy conditions, and hence, their study
offers the possibility to address the physical nature of th
conditions and their relation to issues, such as the stabilit
vacuum.

A phenomenological way of microscopically character
ing an unknown form of matter is to describe it by a sca
field. Whereas an ordinary scalar field always satisfies
null energy condition, a scalar field with non-standard kine
terms~different from the conventional squared gradient! can
violate any desired energy condition@4#. In this paper we
assume that the matter that threads a wormhole consists
scalar fieldw whose Lagrangianp is an a priori undeter-
mined function of the squared gradient (¹w)2. It turns out
that the existence of wormhole solutions in general relativ
essentially determines the form of this Lagrangian. It has
describe a massless scalar field whose kinetic term has
opposite sign as conventionally assumed@p52 1

2 (¹w)2 in-
stead ofp5 1

2 (¹w)2#. Although we must agree that the issu
is yet unsettled, we have not discovered any inconsistenc
this choice and we are not aware of any physical princi
that forbids such a field. In particular, we have analyzed
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Appendix A the stability of the Minkowski vacuum again
second order perturbations in such a theory, and our ana
has not shown any substantial difference to the Minkow
vacuum in the presence of a conventional massless sc
field. In a certain sense, the opposite sign is preferable to
conventional one. It is known that all spherically symmet
solutions of Einstein’s field equations coupled to a mass
scalar field@5# have naked singularities~admittedly, these
solutions are unstable@6#!. However, if the massless scala
field is coupled to gravity with the opposite sign, most of t
solutions are regular everywhere, and describe in fact wo
holes@7,8#. Even cosmological solutions are better-behav
Instead of running or originating at a big-bang singulari
the universe bounces at a finite value of the scalar factor
transition form contraction to expansion. Obviously, the no
singular behavior of these solutions is linked to the violati
of the standard energy conditions by such a field.

Ironically, in their quest of non-singular particle-like so
lutions in general relativity, Einstein and Rosen@9# already
pointed out in 1935 that by reversing the sign of the fr
Maxwell Lagrangian, one can obtain solutions free from s
gularities, which may be in fact interpreted as charged p
ticles. Scalar fields with the opposite sign of their kine
terms have been also previously considered in the literat
As mentioned, they have been already shown to allow wo
hole solutions@7,8,10#, they appear in certain models of in
flation @4#, they have been proposed as dark energy ca
dates@11#, and they also appear in certain unconventio
supergravity theories which admit de Sitter solutions@12#. In
this work we conclude on one hand that the existence
wormhole solutions forces such a negative kinetic term,
on the other hand, we argue that although the physical
nificance and relevance of such a field is unclear, th
wormhole solutions are perfectly sensible. For instance,
may suspect that due to the unconventional form of the s
lar field Lagrangian, those wormhole solutions are unsta
We have analyzed the stability of a particular class of so
tions, those of zero mass, against arbitrary linear pertu
tions of the metric and the scalar field. These perturbati
can be decomposed into spherical harmonics of definite ‘‘
©2002 The American Physical Society10-1
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C. ARMENDÁRIZ-PICÓN PHYSICAL REVIEW D 65 104010
gular momentum’’L, and the stability of each modeL can be
studied separately. We find that all modes are stable, pro
this way that the zero mass solutions are stable against
trary linear perturbations.

The paper is organized as follows. In Sec. II we revi
the basic properties of wormholes and discuss how their
istence constrains the forms of matter that may support th
In Sec. III this matter is characterized by ana priori unde-
termined scalar field Lagrangian. The requirements
asymptotic flatness and existence of a wormhole throat
sentially fix the previously undetermined Lagrangian.
mentioned, it has to describe a minimally coupled scalar fi
with a sign reversed kinetic term. Section IV discusses sta
spherically symmetric solutions of Einstein’s field equatio
sourced by an ordinary massless scalar field. All of th
contain naked singularities at the origin. By assuming
field to be purely imaginary, which is equivalent to assum
that the kinetic term of the scalar field has the opposite s
we rediscover the regular wormhole solutions of@7#. They
are parametrized by a mass and a charge, and Sec. V
dresses the stability of a subset of these wormholes, nam
those of zero mass. It is found that all solutions in this sub
are stable, and that this stability can be also extende
sufficiently small values of the mass. Finally, Appendix
illustrates the extent an unconventional sign in the mass
scalar field Lagrangian affects the stability of Minkows
space, and concludes that in any case even the Minkow
vacuum in the presence of a conventional scalar field is
certain sense gravitationally unstable.

II. WORMHOLE GEOMETRIES

Roughly speaking, a~Lorentzian! wormhole is a space
time whose spatial sections contain two asymptotically

FIG. 1. A spatial sectiont5const of the wormhole~1! ~one
dimension suppressed!. The coordinatel labels the proper distanc
to the throat along ‘‘radial’’ directions. Surfaces of constantl have
area 4pr 2( l ) @shown here as circles of circumference 2pr ( l )#. As
one approachesl 56`, the location of the two distinct asymptoti
infinities, the circumference of the circles approaches 2pu l u, and the
geometry becomes flat.
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regions joined by a ‘‘throat’’~see Fig. 1!. Although it is also
possible to define a wormhole without requiring the ex
tence of the two flat regions@13#, for our purposes it is going
to be convenient to impose that condition. In that way, o
wormholes can be interpreted as isolated objects in an
erwise flat space, like stars, black holes or even partic
The first recognized example of a wormhole, the Einste
Rosen bridge @9#, is part of the maximally extended
Schwarzschild solution of Einstein’s vacuum field equatio
In the former, the presence of an event horizon prevents
servers from traveling between the two asymptotically fl
regions. By definition, traversable wormholes are wormh
geometries that do not contain horizons, in such a way
an observer may travel in both ways through the throat of
wormhole. For simplicity, we shall consider only spherica
symmetric, static wormholes in this paper. Any static, sphe
cally symmetric metric can be cast in the form

ds25e2n( l )dt22dl22r 2~ l ! dV2, ~1!

where dV25du21sin2u df2 is the line element on a uni
2-sphere. The functionn( l ) determines the frequency o
freely propagating photons as measured by static observ
and it is hence called the redshift function. The variablel is
a proper distance coordinate and surfaces of constantl have
areas equal to 4p r 2( l ). In order to describe a traversab
wormhole, the metric~1! has to satisfy the following condi
tions:

Existence of two asymptotically flat regions
The spatial sections of Eq.~1! contain two different

asymptotically flat infinities, if asl→6`, the functionr 2

approachesl 2. These two different regions of space,l→`
andl→2`, are connected by a ‘‘throat’’ if the functionr ( l )
is regular everywhere. Without loss of generality, we c
choose the wormhole throat, thel 5const surface of minima
area, to be atl 50. Then, at the throat,

r 8~0!50 and r 9~0!.0, ~2!

where a prime (8) means a derivative with respect tol. A
spatial geometry that satisfies these conditions is show
Fig. 1.

Absence of horizons
So that no horizons prevent the passage between the

asymptotically flat regions, the functione2n should be non-
zero. At the same time, observers should be able to tra
between two arbitrary points in space in a finite time, imp
ing thatn( l ) should be finite everywhere.

It turns out that the mere existence of a wormhole thr
severely constrains the properties of the matter that thre
it. Let Tab be the stress-energy tensor of the matter t
supports the wormhole and let us denote its different com
nents by

r[Tt
t , t[Tl

l , p[2Tu
u52Tf

f . ~3!

Hence,r,t and p are the energy density, the radial tensi
and the ‘‘angular’’ pressure measured by a static obser
0-2
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ON A CLASS OF STABLE, TRAVERSABLE LORENTZIAN . . . PHYSICAL REVIEW D65 104010
We work in units where 4pG51 and our metric signature i
(1,2,2,2). The only non-trivial Einstein equations for th
metric ~1! are then

r52
r 9

r
1

12r 82

2r 2
~4a!

t52
n8r 8

r
1

12r 82

2r 2
~4b!

p5
1

2 S n91n8 21
n8r 81r 9

r D , ~4c!

which in turn automatically imply what can be considered
the equation of motion of matter

t81S n812
r 8

r D ~t1p!50. ~5!

If one subtracts Eq.~4b! from Eq. ~4a! and evaluates the
result at the throat (l 50), one gets using the finiteness ofn
and Eq.~2!

~r2t!u throat52
r 9~0!

r ~0!
,0. ~6!

Recall thatt is a tension, i.e. a negative pressure. Hence
is well known @2#, the matter that threads the throat of t
wormhole violates the null,1 the weak2 and the strong3 en-
ergy conditions@14#. We call such matter ‘‘exotic.’’

III. WORMHOLES SUPPORTED BY A k-FIELD

One can draw two different conclusions from the fact th
only exotic matter may be able to support a wormhole. If o
assumes that all matter forms satisfy the above mentio
energy conditions, then our previous result excludes wo
holes from general relativity. On the other hand, if one ins
upon the existence of wormholes, it follows that the mat
that threads them has to be ‘‘exotic.’’ Let us point out that,
our knowledge, there is no reason why all matter for
should satisfy the null, weak and strong energy conditions
fact, recent indications that the universe is currently acce
ating @15# directly imply that the strong energy condition
violated in nature, by what seems to be acting as a n
vanishing positive cosmological constant. The weak ene
condition is violated by a negative cosmological consta
and the study of spaces with such a negative cosmolog
constant has recently attracted significant attention~see ref-
erences to@16#!. Finally a scalar field with non-linear kineti
terms, ak-field, can basically violate any desired energy co
dition @4#. One of the purposes of this paper is to show th
at least in principle, a simplek-field may indeed suppor
wormholes in general relativity. It turns out that the Lagran

1r1p>0 andr2t>0.
2r>0, r1p>0 andr2t>0.
3r2t12p>0, r1p>0 andr2t>0.
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ian we are going to consider respects the arguably o
physically motivated energy condition: the requirement t
the energy-momentum currentTb

aua measured by an ob
server with arbitrary four velocityua be non-spacelike.4

A k-field is a scalar fieldw minimally coupled to Einstein
gravity. By definition, its action is given by

S@gab ,w,cm#5E d4xA2gF2
R

4
1p~X!G1Sm@gab ,cm#.

~7!

Here, thek-field Lagrangianp(X) is an arbitrary function of
the squared scalar field gradient,

X[
1

2
gab¹aw¹bw, ~8!

which for a static, spherically symmetric configuration
negative,X52 1

2 (w8)2. For simplicity we assume that th
k-field Lagrangianp only depends on the squared gradientX
and not on thek-field w itself. Therefore, the theory is sym
metric under constant shifts of the fieldw→w1e and the
corresponding current conservation yields the equation
motion of thek-field,

¹a~p,X¹aw!50, ~9!

where , X denotes a derivative with respect toX. The action
~7! can be regarded as the simplest generic phenomeno
cal way of providing a microscopic description of the u
known matter that supports a wormhole. We assume that
field only couples to Einstein gravity, and not to addition
matter fieldscm . Therefore, because the free dynamics
the metric tensor is dictated by the Einstein-Hilbert actio
and all matter fields are minimally coupled to that met
tensor, we are dealing with standard general relativity.

The energy-momentum tensor of thek-field is given by
functional differentiation of thek--field action

Tab[
2

A2g

dS

dgab
5

dp

dX
¹aw¹bw2p gab . ~10!

If the scalar field gradient is space-like~as is the case in a
static field configuration! it can be cast in the formTab
5(r2t) nanb2p gab , wherena is a spacelike unit vecto
pointing in the direction of the field gradient,

t52X
dp

dX
2p ~11!

is the radial tension,r52p is the energy density andp is
the pressure as defined in Eq.~3!. Notice that, unlike in a
situation where the field gradient is time-like@4#, the energy-
momentum tensor doesnot have perfect fluid form. Thek-
field equation of motion~9! can be derived both by func
tional differentiation of thek-field action or by requiring the
energy momentum tensor to be covariantly conserved. F

4This impliesuru>upu and uru>utu.
0-3
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C. ARMENDÁRIZ-PICÓN PHYSICAL REVIEW D 65 104010
static, spherically symmetric field configuration, the fie
equation is given by the ‘‘energy conservation’’ law~5!.

The different properties of a wormhole severely restr
the possible Lagrangiansp(X) which may support it. Ac-
cording to Eq.~6!, the null energy condition has to be vio
lated at the throat of the wormhole. Using the properties
the k-field energy momentum tensor, one finds thatt1p
should be positive atl 50 and hence there should exist a
XT , the value ofX at the throat, such that

dp

dXU
XT

,0. ~12!

On the other hand, the requirement of asymptotic flatn
also yields important information about the form of the pre
sure p at infinity. The gravitational field of any isolate
source in asymptotically flat spacetime can be expande
multipole moments. If the source is static and spherica
symmetric only monopole moments contribute to the gra
tational field, and there exists then a coordinate sys
where the metric admits an asymptotic expansion of the fo
@17#

ds25S 11
f1

r
1

f2

r 2
1••• D dt22S 12

c1

r
2

c2

r 2
2••• D

3@dr21r 2dV2#. ~13!

Of course, thek-field cannot be considered as a localiz
~finite-size! source. We assume that thek- field decays suffi-
ciently fast at infinity, in such a way that the expansion~13!
still applies. Plugging the above metric expansion coe
cients into Einstein’s field equations~we shall not write them
down here!, one can derive analogous expansions forp and
t,

p52
3c1

218c2

8 r 4
1O~r 25!

t5
f12c1

2 r 3
2

4f1
228f222f1c115c1

218c2

8 r 4
1O~r 25!.

Substituting these expansions into the field equation of m
tion in these coordinates, one findsf15c1 ~as appropriate
for a mass term! and 2f25c1

2. Therefore,

p52
3c1

218c2

8 r 4
1O~r 25!5t1O~r 25!. ~14!

At infinity both pressure and radial tension vanish and in
asymptotic limitr→` the ratio of the pressure to the radi
tensor tends to 1. We conclude that there should exist anX` ,
the asymptotic value ofX as l→`, where

p~X`!50, t~X`!52X`•p,X~X`!50 ~15!

and such that, aroundX` ,
10401
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p~X`1DX!

t~X`1DX!
'

p,X~X`!

t ,X~X`!
51. ~16!

We will argue below thatt ,X should be nonzero betweenX`

andXT . Then, in order for Eq.~16! to be satisfied,p,X(X`)
should also be different from zero. Therefore, it follows fro
Eq. ~15! that X`50, and thus around the origin

p5t'c•X, ~17!

where c is an arbitrary non-zero coefficient which can b
chosen to be61 by a field redefinition. Hence, up to a sig
the k-field behaves at infinity as a massless scalar field. T
is consistent with the pressure decaying as 1/r 4 in the limit
r→`, which corresponds to a 1/r decay of the fieldw at
infinity. Finally, as pointed out above, a well defined fie
equation of motion requires

t ,XÞ0 for XT<X<X`50. ~18!

The reason is that the points wheret ,X50 are barriers over
which the field equation of motion~5! cannot be integrated
so that a continuous field configuration interpolating betwe
XT andX` requirest ,X to be nonzero within that interval.

Conditions~12!, ~17! and ~18! essentially determine the
form of the Lagrangianp ~as illustrated in Fig. 2!. Around
the originp must be linear and, in addition, there must ex
a pointXT where the slope ofp is negative. Suppose thatp
'X around the origin. Then there must exist a local mi
mum of X* betweenXT and X50 where p,X50. At the
minimum t ,X(X* )[2X* p,XX (X* ) is negative, whereas a
the origin t ,X(0)51 is positive. By continuity there is a
point X** wheret ,X is zero, violating condition~18!. We are
forced to choosep'2X aroundX`50. An analogous argu-
ment implies that the functionp cannot have a local maxi
mum, so we conclude thatp(X) should be a monotonically

FIG. 2. Possible forms of the Lagrangianp. It must have a
negative slope atXT , and it must be linear around the origin bu
because of Eq.~18!, it cannot have local maxima or minima. Thusp
has to be a monotonically decreasing function ofX with a negative
slope at the origin.
0-4
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ON A CLASS OF STABLE, TRAVERSABLE LORENTZIAN . . . PHYSICAL REVIEW D65 104010
decreasing function which is linear at the origin. The si
plest function which satisfies this criterion isp52X.

IV. WORMHOLE SOLUTIONS

Our previous analysis has determined thatp52X is the
simplest Lagrangian which may allow a wormhole solutio
From now on, we shall concentrate on this form of the L
grangian. Notice that for a conventional massless scalar
p5X. Hence, the field we are considering is a massless fi
with a reversed sign kinetic term. As long as the effect of
field on gravity can be ignored, the overall sign of the mat
Lagrangian is a matter of convention. In particular, in a
given gravitational background the equation of motion
such a field is the same as the one of a conventional mas
scalar,¹a¹aw50. It is the way the field couples to gravit
that determines the sign of the Lagrangian. If the scalar fi
couples only to gravity, this sign can be chosen at will,
long as this does not yield any inconsistency.

Static, spherically symmetric solutions of Einstein’s equ
tions minimally coupled to aconventionalmassless scala
field have been repeatedly discovered in the literature@5#.
Particularly useful for our purposes are the solutions as
sented by Wyman~see also@18#!:

ds25e22m/ r̃dt22e2m/ r̃S h/ r̃

sinh~h/ r̃ !
D 4

dr̃2

2e2m/ r̃S h/ r̃

sinh~h/ r̃ !
D 2

r̃ 2dV2, ~19!

whereh25m21q2 andq is defined by the form of the scala
field solution

w5
q

r̃
. ~20!

These solutions are characterized by two integration c
stants, a massm and a ‘‘charge’’q. Because the scalar fiel
solution~20! is proportional toq and the energy-momentum
tensor~10! is quadratic inw, a realq describes a convention
ally coupled scalar field, while a purely imaginaryq is
equivalent to considering a field with a negative kinetic ter
For an ordinary coupling (q2.0) the above solutions de
scribe a spacetime with a naked singularity atr̃ 50. In fact,
after a coordinate transformation, Eq.~19! can be cast in the
form

ds25S 12
2h

r D m/h

dt22S 12
2h

r D 2m/h

dr2

2S 12
2h

r D 12m/h

r 2dV2, ~21!

where one sees that the would-be Schwarzschild horizon
shrunk to a point atr 52h. If the charge vanishes,q50, Eq.
~21! obviously reduces to the Schwarzschild metric.
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If h25m21q2 itself is negative, the metric~21! is not
well defined. Of course,h2 can be negative only ifq is
purely imaginary~we assume the massm to be real.! This is
physically equivalent to a real scalar field whose kinetic te
has the opposite sign, which is precisely the coupling we
interested in. In what follows, we assume that bothh2 and
q2 are negative. By a change of radial coordinates, the me
~19! can be rewritten as

ds25e22m/ r̃dt22e2m/ r̃@dr21~r 22h2! dV2#, ~22!

where the old coordinater̃ is implicitly expressed in terms o
the new coordinater by the relation

sin2S uhu

r̃
D 5

2h2

r 22h2
, ~23!

and the explicit functional dependencer̃ (r ) is determined by
the requirements of continuity and differentiability. The me
ric ~22! was first discovered in a different coordinate syste
in @7# ~see also@8#!, and classical scattering in such a geo
etry has been studied in@19#.

Although we shall not cast Eq.~22! in proper distance
coordinates, it is quite clear that it describes a traversa
wormhole. Due to the presence of the2h2 term, the coor-
dinater may take values in the range2`<r<`. The form
of uhu/ r̃ as a function ofr is shown in Fig. 3. The function
exp(22m/r̃) is finite everywhere and, in particular, the metr
~22! does not contain any horizon. In the limitr→`,
exp(22m/r̃)5122m/r1O(r 22), and in the limit r→2`,
exp(22m/r̃)→exp(22pm/uhu)„122m/r 1O(r 22)…. Hence,
the spatial sections of Eq.~22! contain two asymptotically
flat regions and the masses of the wormhole as observe
those regions arem and2m exp(pm/uhu) respectively. Notice
that the two masses have opposite sign. In addition, bec
the redshift function is not symmetric under reflectionsr→
2r , clocks tick at different rates in both asymptotic regio
and a photon emitted atr 5` will appear to be blue shifted
at r 52`. The r dependence of the scalar field also has
form of Fig. 3. The scalar field solution is proportional toq
and that is the reason why it can be interpreted as a sc
charge~this identification will be made more precise below!

FIG. 3. The form ofuhu/ r̃ as a function of the coordinater.
0-5
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The zero mass wormhole solutions have a remarka
simple form. Settingm50 in Eq. ~22! and using Eq.~20! to
computep52 1

2 (¹w)2 one gets

ds25dt22dl22~ l 22q2! dV2, ~24a!

p5t5
1

2

2q2

~ l 22q2!2
. ~24b!

Recall thatq2 is negative for the solutions under conside
ation, that is, the pressure and radial tension are positive
agreement with the fact thatp52X.0. The reader can eas
ily verify that, indeed, Eq.~24! satisfy Einstein’s field equa
tions ~4!. The static metric~24a! has the wormhole form~1!.
Its spatial sectionst5const contain two asymptotically fla
regions atl 56`. The minimal area of al 5const surface
occurs atl 50, and is given by24pq2. The redshift func-
tion is constant everywhere, and in particular, there are
tidal forces which could prevent the passage of a per
through the wormhole ifuqu is sufficiently big. The metric in
Eq. ~24! is in fact the simplest traversable wormhole geo
etry one may think of.

Suppose that observers living in Eq.~24! were able to
measure the value of the scalar field. They would realize
it obeys the equationDw}(r 2w8)850. By computing the
flux of the field gradient through surfaces of constantl, they
would conclude that this flux is independent of the value ol
and is given by 4puqu. If these observers did not hav
enough resolving power to explore lengths of sizeuqu, they
would hence arrive at the conclusion that there is a sc
source of chargeuqu sitting within l ,q. However, there is no
scalar source present. In reality there is a sourceless inc
ing flux which originates atl 52`, passes through th
wormhole’s mouth atl 50, and emerges again forl .0 as an
outgoing flux reachingl 5`. This is one example of Wheel
er’s ‘‘charge without charge’’@20#.

V. WORMHOLE STABILITY

One of the advantages of a microscopic description of
matter that threads a wormhole is that such a descrip
allows us to address issues which would not have been t
able otherwise. The stability of wormholes is such an
ample. In the following, we analyze in first order perturb
tion theory the stability of the wormhole solutions we ha
previously discussed. Because of their extreme simplic
we concentrate on the zero mass solutions~24!, although we
shall later argue that solutions with sufficiently smallm are
also stable. Our analysis closely resembles an analogou
vestigation in@21# ~see also@22# and@23#!, although we will
not work in Schwarzschild coordinates but in the proper d
tance coordinate system~1!, where all metric coefficients ar
regular functions.

The strategy is the following. We introduce metric a
field perturbations,gab→gab1hab , w→w1dw around the
background solution~24!. Linearizing Einstein’s equation
one gets a closed system of equations for the metric and
perturbations,dGab5dTab . If these equations admit spa
tially well behaved solutions, that is, perturbations that de
10401
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sufficiently fast at spatial infinity, which grow exponential
in time, our background solutions are unstable. The sym
tries of the background solution allow us to simplify th
analysis of its perturbations. Due to the staticity of the ba
ground, we can decompose the perturbations into Fou
modes proportional toeivt which do not couple to each othe
in the linear regime. Similarly, because the background
spherically symmetric, it is convenient to decompose the p
turbations into spherical harmonicsYLm(u,f) and its deriva-
tives, and again, the symmetry under rotations makes it p
sible to consider only perturbations with azimuth
eigenvaluem50. Finally, the inversion symmetry of th
background (l→ l ,u→p2u, f→p1f) allows us to con-
sider perturbations of definite parityP under inversion. Per-
turbations of ‘‘electric’’ ~or even! type haveP5(21)L and
perturbations of ‘‘magnetic’’~or odd! type have parityP
5(21)L11. In linearized perturbation theory, perturbatio
with different ‘‘quantum numbers’’v, L and P decouple
from each other.

In Regge-Wheeler gauge, the electric type metric per
bations@denoted by (e)# are

hab
~e! 5S H0~ l ! H1~ l ! 0 0

H1~ l ! H2~ l ! 0 0

0 0 r 2K~ l ! 0

0 0 0 r 2K~ l !sin2u

D
3PL~cosu!eivt. ~25!

The indicesa and b run over the coordinatest,l ,u and f.
The Legendre polynomialPL is the m50 spherical har-
monic YL m . As previously mentioned, the time and angu
dependence of the perturbations has been explicitly separ
and hence only their dependence on thel variable remains to
be determined. Similarly, the magnetic perturbations@de-
noted by the label (m)# are

hab
~m!5S 0 0 0 h0~ l !

0 0 0 h1~ l !

0 0 0 0

h0~ l ! h1~ l ! 0 0

D
3sinu

d

du
PL~cosu!eivt, ~26!

so that there are 4 electric and 2 magnetic metric perturba
functions in total. The remaining 4 functions needed to co
plete the most general metric perturbation are zero in Reg
Wheeler gauge. The scalar field perturbations are

dw~e!5dw~e!~ l !PL~cosu!eivt and dw~m!50, ~27!

and in particular, because a scalar field is a scalar un
parity transformations, there are no magnetic type field p
turbations. It turns out that both for electric and magne
perturbations, one can derive an equation for a single pe
bation variableQ(e,m). The equation has the form of a Schr¨-
dinger eigenvalue problem
0-6
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2
d2

dl2
Q(e,m)1VL~ l !Q(e,m)5v2Q(e,m), ~28!

where the potentialVL also depends on the angular mome
tum L of the perturbations. Solutions of this equation w
negativev2 correspond to exponentially growing and deca
ing modes. Hence, our task consists in verifying whether
~28! admits spatially well behaved solutions of negativev2 .
Because the potential goes to 0 asl→6`, this is equivalent
to verifying whetherVL admits any bound state, that is, a
eigenfunction of negative energy.

~a! Electric perturbations.For these perturbations, the re
evant linearized equations read@dropping the~e! label#

@L~L11!12#H212H28rr 81~L12!~L21!K

26K8rr 822K9r 2

54r 2w8dw8 ~29a!

L~L11!H122ivKrr 812ivH2rr 822ivK8r 2

54ivr 2w8dw ~29b!

2H22L~L11!H01~L12!~L21!K

1~2H0822K824ivH1!rr 822v2Kr 2

524r 2w8dw8 ~29c!

dPL

d cosu
@H0r 82H2r 82H08r 1K8r 1 ivH1r #

524
dPL

dcosu
rw8dw ~29d!

d2PL

d~cosu!2
•~H02H2!50 ~29e!

2v2dw2dw922
r 8

r
dw81

L~L11!

r 2
dw

2
1

2
~H081H2822K822ivH1! w850, ~29f!

where the background equations~4a!, ~4b!, ~4c! have been
used. The casesL50, L51 andL>2 require separate trea
ment. If L>2 Eq.~29e! yieldsH05H2. Then, Eq.~29d! can
be used to express the metric perturbations of the linear
scalar field equation~29f! in terms of the field perturbation
dw. The latter equation reduces to Eq.~28!, where the po-
tential is given by

VL~ l !5
L~L11!

r 2
23

r 9

r
5

L~L11! l 22q2~L21L23!

~ l 22q2!2
,

~30!
10401
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and Q(e)[rdw. For L>2 the potential is positive every
where. Because positive potentials do not admit bound st
(E,0), it is clear that all electric modes withL>2 are
stable.

Although for L51 the linearized equation~29e! identi-
cally vanishes, it is still possible to choose a gauge wh
H05H2, sinceL51 perturbations have fewer free function
thanL>2 perturbations. The potential is thus still given b
Eq. ~30!, but in the latter case it has a negative minimum
l 50. The L51 Schrödinger equation~28! can be solved
exactly for v250. One solution is Meijer’sG function
G22

11(12 l 2/q2u3/2
1/2

21/2
2 ) @24#. This solution is shown in Fig. 4

It is even, decays at infinity and it has no nodes. Hence
the ground state of the potentialV1 @25#. In particular there
are no spatially well-behaved solutions at infinity withv2

,0, and theL51 mode is stable.
The most general metric perturbation forL50 ~spheri-

cally symmetric! has fewer free functions than forL>1. In
fact, it is possible to choose a gauge whereK5H150. Using
the linearized equations~29a!, ~29b! and~29c!, Eq. ~29f! can
be cast in the form~28!, where the potential is given by

V0~ l !5
r 9

r
12

r 9

rr 82
5

2q423q2l 2

l 2 ~ l 22q2!2
. ~31!

The latter potential is positive everywhere, and hence
~28! does not admit anyv2,0 solutions. Electric spherically
symmetric perturbations are also stable.

~b! Magnetic perturbations. The only non-trivial linear-
ized Einstein field equations it suffices to consider are thexf
and lf respectively,

~h182 ivh0!
d2PL

d~cosu!2
50 ~32a!

2v2h12 ivh0812iv
r 8

r
h012

r 9

r
h11

~L12!~L21!

r 2
h1

52 w8 2 h1 . ~32b!

There are no magnetic perturbations withL50. For L51
Eq. ~32a! does not contain significant information and th
remaining equation, Eq.~32b!, provides a relation betwee
h1 andh0 that allows us to gauge these perturbations aw
For L>2 Eq. ~32a! yields the relationh185 ivh0, which
when substituted into~32b! allows us to put it in the form

FIG. 4. TheL51 potential for even perturbations~continuous!
and its ground state~dashed!.
0-7
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C. ARMENDÁRIZ-PICÓN PHYSICAL REVIEW D 65 104010
~28!, whereQ(m)[h1 /r and the potential is the same as f
electric perturbations,~30!. Therefore,L>2 magnetic modes
are also stable.

Up to now, our discussion has focused on the stability
the zero mass solutions. Because of that, we have only
sidered time dependent perturbations, i.e., on nonzero va
of v. If one studies time-independentL50 perturbations,
one has to recover nonzero mass solutions~22! for suffi-
ciently small values ofm as time-independent perturbation
of the zero-mass solutions. Due to linearity, the tim
dependent perturbations around these nonzero mass solu
satisfy, of course, the same perturbation equations~29! and
~32!. Since these equations do not have any spatially w
behaved growing solution, we conclude that at least for s
ficiently small values ofm the solutions~22! are also stable
This completes our wormhole stability analysis.

To some extent, the stability of the wormhole solutio
we have considered was to be expected in the light of
results of@26#. In that work, it is shown that the speed
propagation of linear perturbations in a cosmological ba
ground,cs , is given by

cs
25

p,X

r ,X
. ~33!

If the squared speed happened to be negative, one w
anticipate instabilities of the wormhole associated with
exponential growth of short-wavelength modes. Becausecs

2

51.0 in our model, there is no reason to expect tho
instabilities. However, this argument only addresses the is
partially, since static, spherically symmetric solutions of E
stein’s equations coupled to acanonical field (cs

251) are
unstable@6#. ~In the latter case the instability appears in t
L50 mode.!

VI. CONCLUSIONS

Noncanonical scalar field Lagrangians allow the existe
of wormhole solutions in general relativity. The conditions
asymptotic flatness and the existence of a wormhole th
essentially force the noncanonical scalar field to be a m
less scalar field with a reversed sign Lagrangian. Zero m
wormhole solutions to Einstein’s equations coupled to suc
field turn out to be extremely simple and are useful as
models to explore different aspects of wormhole physics.
a particular application, it is possible to show their stabil
against linear perturbations analytically. The issue about
physical viability of such a scalar field is yet unsettled,
though at the level of our investigation we have not disc
ered any internal inconsistency. Rather, it turns out that
cause such a field violates some of the standard en
conditions, cosmological and spherically symmetric so
tions of Einstein’s field equations are singularity-free.
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APPENDIX: STABILITY OF MINKOWSKI SPACE

Our work has mainly focused on a massless scalar fi
described by a Lagrangianp whose sign has been reverse
In other words, we have considered a Lagrangian

p5
k

2
¹aw ¹aw ~A1!

wherek is 21 instead of11. One of the main objections
against such an assumption is that for such a scalar fi
Minkowski space should be unstable. Indeed, on gen
grounds one expects small scalar field fluctuations to rad
positive energy in the form of gravitational waves, maki
the negative energy density of the initial field fluctuatio
even more negative and leading to a complete instability
the vacuum. Let us verify whether one observes this kind
behavior in perturbation theory. In order to establish the d
ference with respect to an ordinary scalar field, we will ke
k as a free parameter. Consider perturbations of Minkow
space to second order,

gab5hab1hab
(1)1hab

(2)1•••,

where the notation should be obvious, and consider equ
second order perturbations of of a constant massless s
field,

w5w (0)1w (1)1w (2)1•••,

where ]aw (0)50. To first order in perturbation theory, th
Einstein and Klein-Gordon equations are

hmn]m]nS hab
(1)2

1

2
habh(1)D50, ~A2!

hmn]m]nw (1)50. ~A3!

Upon gauge fixing, the first of the equations describes gra
tational waves propagating in Minkowski spacetime, wh
the second one describes scalar field waves propagatin
the same background. Notice that these equations are
same regardless ofk in Eq. ~A1!. At this level, both signs are
equally valid.

Consider then the second order Einstein equations,
0-8
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hmn]m]nS hab
(2)2

1

2
habh(2)D

54kS ]aw (1)]bw (1)2
1

2
hab]gw (1)]gw (1)D

22G(2)~h(1)!. ~A4!

The sign of the first term on the right-hand side is determin
by the conventional or unconventional coupling of the ma
less scalar field to gravity and the second term on the rig
hand side contains all terms of the Einstein tensor quadr
in the first order perturbationsh(1). Thus the right-hand side
of the above equation describes how the first order sc
field and gravitational waves respectively back react on
background geometry. Whereas the gravitational wave b
reaction is the same for both signs of the scalar field c
pling, the scalar field wave back reaction on the metric d
depend to this order on the sign of the energy momen
tensor, as expected. The Klein-Gordon equation to sec
order

hmn]m]nw (2)52]aS h(1) ab]bw (1)2
1

2
h(1)]aw (1)D

describes how first order scalar and gravitational waves g
erate second order field perturbations. For given pertu
tions, it is the same for both signs of the scalar field co
pling.

Suppose that we solve Eq.~A4! in a given background o
first order scalar waves~assume for the sake of the argume
that there are no gravitational waves!. The solution is given
by the convolution of the~known! source terms in the right
hand side with the appropriate retarded Green’s function
particular, the solutions for both values ofk differ only by a
sign. If the solution is well behaved fork51, it is also well
behaved fork521. Thus, at second order there is not y
any evidence thatk511 is preferable tok521. It seems
that if we want to single outk51 as the preferred choice o
the scalar field coupling, we have to go to higher orders.

Due to the structure of the perturbation equations, eve
we proceeded to higher orders it would be difficult to d
g

s
,
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cover whyk511 is essentially different fromk521 ~as in
the ‘‘analogous’’ system of two coupled scalar fields, o
with a conventional, the other with an unconventional kine
term.! At this point let us try a non-perturbative analysis a
point out that even the conventional couplingk51 leads to
instabilities. Consider for that purpose an homogeneous
tially flat universe filled by a canonical scalar field,

ds25dt22a~ t !2@dr21r 2dV2#.

It is known that the solution of Einstein and Klein-Gordo
equations in such a spacetime is given by

a~ t !}utu1/3

S dw

dt D
2

}
1

t2
.

This solution has two branches, related to each other by t
reversal. For positive times, the universe starts expandin
the big bang singularity att501 and approaches Minkowsk
space att5` ~the Hubble parameterd loga/dt approaches
zero!. For negative times the universe starts from Minkows
space att52` and contracts into a ‘‘pre-big-bang’’ singu
larity at t502 . This latter branch implies that a canonic
massless scalar field in Minkowski space is ‘‘unstable’’ up
contraction. As a matter of fact, this instability is one of t
ideas behind the pre-big-bang scenario and reflects not
else other than the gravitational instability upon collapse
the scalar and gravitational waves around Minkowski spa
time @27# we have previously encountered. Notice that
analogous argument applies forp52X, though there is a
crucial difference too. In the latter case, the scalar field ha
negative energy density, and the spatial sections of the
verse have to be negatively curved. Expanding soluti
hence asymptotically approach the ‘‘Milne universe,’’ whic
is just a portion of Minkowski space. On the other han
contracting solutions~the time reversed expanding solution!
originate from Minkowski space and instead of running in
a singularity, bounce at a finite value ofa and expand again
into Minkowski spacetime~this is possible because our fie
violates the null energy condition@28#!.
.
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C. ARMENDÁRIZ-PICÓN PHYSICAL REVIEW D 65 104010
@18# A. Agnese and M. La Camera, Phys. Rev. D31, 1280~1985!.
@19# L. Chetouani and G. Clement, Gen. Relativ. Gravit.16, 111

~1984!.
@20# J. Wheeler,Geometrodynamics~Academic, New York, 1962!.
@21# T. Regge and J. Wheeler, Phys. Rev.108, 1063~1957!.
@22# C. Vishveshwara, Phys. Rev. D1, 2870~1970!.
@23# F. Zerilli, Phys. Rev. D2, 2141~1970!.
@24# I. Gradshteyn and I. Ryzhik,Table of Integrals, Series, an
10401
Products~Academic, New York, 1980!.
@25# P. Morse and H. Feshbach,Methods of Theoretical Physic

~McGraw-Hill, New York, 1953!.
@26# J. Garriga and V. Mukhanov, Phys. Lett. B458, 219 ~1999!.
@27# A. Buonanno, T. Damour, and G. Veneziano, Nucl. Ph

B543, 275 ~1999!.
@28# D. Hochberg, C. Molina-Paris, and M. Visser, Phys. Rev. D59,

044011~1999!.
0-10


