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It is known that Lorentzian wormholes must be threaded by matter that violates the null energy condition.
We phenomenologically characterize such exotic matter by a general class of microscopic scalar field
Lagrangians and formulate the necessary conditions that the existence of Lorentzian wormholes imposes on
them. Under rather general assumptions, these conditions turn out to be strongly restrictive. The most simple
Lagrangian that satisfies all of them describes a minimally coupled massless scalar field with a reversed sign
kinetic term. Exact, nonsingular, spherically symmetric solutions of Einstein’s equations sourced by such a
field indeed describe traversable wormhole geometries. These wormholes are characterized by two parameters:
their mass and charge. Among them, the zero mass ones are particularly simple, allowing us to analytically
prove their stability under arbitrary space-time dependent perturbations. We extend our arguments to nonzero
mass solutions and conclude that at least a nonzero measure set of these solutions is stable.
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I. INTRODUCTION AND SUMMARY Appendix A the stability of the Minkowski vacuum against
second order perturbations in such a theory, and our analysis
The study of Lorentzian wormhold4] in classical gen- has not shown any substantial difference to the Minkowski
eral relativity has suffered from the absence of conventionabacuum in the presence of a conventional massless scalar
microscopic descriptions of the matter that holds open thdield. In a certain sense, the opposite sign is preferable to the
throat of the wormhole. Indeed, it is known on one hand thatonventional one. It is known that all spherically symmetric
such matter has to violate the null energy condition, while onsolutions of Einstein’s field equations coupled to a massless
the other hand, most known classical matter forms do nokcalar field[5] have naked singularitieeadmittedly, these
[2]. Thus, many wormholes have been investigated in altersolutions are unstablgs]). However, if the massless scalar
native theories of gravity, such as Brans-Dicke theory, offield is coupled to gravity with the opposite sign, most of the
quantum effects have been invokgg]. However, in prin-  solutions are regular everywhere, and describe in fact worm-
ciple, classical general relativity admits stable wormhole soholes[7,8]. Even cosmological solutions are better-behaved.
lutions supported by simple matter forms. In this paper welnstead of running or originating at a big-bang singularity,
introduce a general class of matter Lagrangians and study thRe universe bounces at a finite value of the scalar factor in a
properties they have to satisfy in order to allow the existenceransition form contraction to expansion. Obviously, the non-
of wormholes. These matter forms necessarily violate someingular behavior of these solutions is linked to the violation
of the standard energy conditions, and hence, their study alssf the standard energy conditions by such a field.
offers the possibility to address the physical nature of these |ronically, in their quest of non-singular particle-like so-
conditions and their relation to issues, such as the stability aiitions in general relativity, Einstein and Rosgd] already
vacuum. pointed out in 1935 that by reversing the sign of the free
A phenomenological way of microscopically characteriz- Maxwell Lagrangian, one can obtain solutions free from sin-
ing an unknown form of matter is to describe it by a scalargularities, which may be in fact interpreted as charged par-
field. Whereas an ordinary scalar field always satisfies théicles. Scalar fields with the opposite sign of their kinetic
null energy condition, a scalar field with non-standard kineticterms have been also previously considered in the literature.
terms(different from the conventional squared gradjes#n  As mentioned, they have been already shown to allow worm-
violate any desired energy conditi¢gd]. In this paper we hole solutiong7,8,10, they appear in certain models of in-
assume that the matter that threads a wormhole consists off@tion [4], they have been proposed as dark energy candi-
scalar fielde whose Lagrangiamp is ana priori undeter- dates[11], and they also appear in certain unconventional
mined function of the squared gradier ¢). It turns out  supergravity theories which admit de Sitter solutifh]. In
that the existence of wormhole solutions in general relativitythis work we conclude on one hand that the existence of
essentially determines the form of this Lagrangian. It has tavormhole solutions forces such a negative kinetic term, but
describe a massless scalar field whose kinetic term has ths the other hand, we argue that although the physical sig-
opposite sign as conventionally assunigd=—3(Ve¢)2 in-  nificance and relevance of such a field is unclear, these
stead ofp=3(V ¢)?]. Although we must agree that the issue wormhole solutions are perfectly sensible. For instance, one
is yet unsettled, we have not discovered any inconsistency imay suspect that due to the unconventional form of the sca-
this choice and we are not aware of any physical principldar field Lagrangian, those wormhole solutions are unstable.
that forbids such a field. In particular, we have analyzed inWe have analyzed the stability of a particular class of solu-
tions, those of zero mass, against arbitrary linear perturba-
tions of the metric and the scalar field. These perturbations
*Electronic address: armen@oddjob.uchicago.edu can be decomposed into spherical harmonics of definite “an-
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regions joined by a “throat(see Fig. 1 Although it is also
possible to define a wormhole without requiring the exis-
tence of the two flat regior[4.3], for our purposes it is going

to be convenient to impose that condition. In that way, our
wormholes can be interpreted as isolated objects in an oth-
erwise flat space, like stars, black holes or even particles.
The first recognized example of a wormhole, the Einstein-
Rosen bridge[9], is part of the maximally extended
Schwarzschild solution of Einstein’s vacuum field equations.
In the former, the presence of an event horizon prevents ob-
servers from traveling between the two asymptotically flat
regions. By definition, traversable wormholes are wormhole
geometries that do not contain horizons, in such a way that
an observer may travel in both ways through the throat of the
wormhole. For simplicity, we shall consider only spherically
symmetric, static wormholes in this paper. Any static, spheri-
cally symmetric metric can be cast in the form

FIG. 1. A spatial sectiort=const of the wormholg1) (one
dimension suppressgdrhe coordinate labels the proper distance ds?=e?dt?—dI?~ r2(|) do?, (1)
to the throat along “radial” directions. Surfaces of consthhtve
area 4rr?(1) [shown here as circles of circumferencerZl)]. As  where dQ2=d#?+sint0d¢? is the line element on a unit
one approachels= +, the location of the two distinct asymptotic 2.sphere. The function/(l) determines the frequency of
infinities, the circumference of the circles approache$l §, and the freely propagating photons as measured by static observers,
geometry becomes flat. and it is hence called the redshift function. The varidbite

a proper distance coordinate and surfaces of conttaane

gular momentum’L, and the stability of each modecan be  areas equal to #r?(1). In order to describe a traversable
studied separately. We find that all modes are stable, provingiormhole, the metri¢1) has to satisfy the following condi-
this way that the zero mass solutions are stable against arkipns:
trary linear perturbations. Existence of two asymptotically flat regions

The paper is organized as follows. In Sec. Il we review The spatial sections of Eql) contain two different
the basic properties of wormholes and discuss how their exasymptotically flat infinities, if as— =+, the functionr?
istence constrains the forms of matter that may support thenépproache$2. These two different regions of spade;s o
In Sec. IlI this matter is characterized by arpriori unde-  and|— —, are connected by a “throat” if the functior(l)
termined scalar field Lagrangian. The requirements ofs regular everywhere. Without loss of generality, we can

asymptotic flatness and existence of a wormhole throat eghoose the wormhole throat, the-const surface of minimal
sentially fix the previously undetermined Lagrangian. Asgrea, to be at=0. Then, at the throat,

mentioned, it has to describe a minimally coupled scalar field
with a sign reversed kinetic term. Septlon_l\( discusses static, r'(0)=0 and r"(0)>0, )
spherically symmetric solutions of Einstein’s field equations

sourced by an ordinary massless scalar field. All of them o o )

contain naked singularities at the origin. By assuming théVhere a prime () means a derivative with respect koA
field to be purely imaginary, which is equivalent to assumingspat'al geometry that satisfies these conditions is shown in
that the kinetic term of the scalar field has the opposite sign'9- 1-

we rediscover the regular wormhole solutions[@f. They Absence of horizons
are parametrized by a mass and a charge, and Sec. V ad- S0 that no horizons prevent the passage between the two

dresses the stability of a subset of these wormholes, namel@Symptotically flat regions, the functicet” should be non-
those of zero mass. It is found that all solutions in this subsef€0- At the same time, observers should be able to travel
are stable, and that this stability can be also extended tBetWeen two arbitrary points in space in a finite time, imply-

sufficiently small values of the mass. Finally, Appendix A Ing thatw(l) should be finite everywhere.

illustrates the extent an unconventional sign in the massless !t turns out that the mere existence of a wormhole throat
scalar field Lagrangian affects the stability of Minkowski §everely constrains the properties of the matter that threads

space, and concludes that in any case even the MinkowsKi Let Tz be the stress-energy tensor of the matter that
vacuum in the presence of a conventional scalar field is in §UPPOrts the wormhole and let us denote its different compo-

certain sense gravitationally unstable. nents by

=T, =T, p=-T/=-T%,. 3
II. WORMHOLE GEOMETRIES P ! ! I P 0 ¢ ®

Roughly speaking, @Lorentzian wormhole is a space- Hence,p,7 andp are the energy density, the radial tension
time whose spatial sections contain two asymptotically flatand the “angular” pressure measured by a static observer.
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We work in units where #4G=1 and our metric signature is ian we are going to consider respects the arguably only

(+,—,—,—). The only non-trivial Einstein equations for the physically motivated energy condition: the requirement that
metric (1) are then the energy-momentum curreii ,u® measured by an ob-
server with arbitrary four velocity® be non-spacelik@.
r’ 1-r'? A k-field is a scalar fieldr- minimally coupled to Einstein
p== T+ 212 (48 gravity. By definition, its action is given by
Pt 12 4 R
vir' 1 HGap: @ thml= | XV =0 = 7 +p(X) |+ SnlGap ¥ml-
T=— + (4b)
r 2r? 7
1 vr +r” Here, thek-field Lagrangiarp(X) is an arbitrary function of
p= > v+ 2+ — | (4c)  the squared scalar field gradient,
L . . . 1
which in turn automatically imply what can be considered as = 59“’3%@%% (8)

the equation of motion of matter

!

v +2—
r

which for a static, spherically symmetric configuration is
(7+p)=0. (5)  negative,X=—3(¢")2. For simplicity we assume that the

k-field Lagrangiarp only depends on the squared gradignt
If one subtracts Eq(4b) from Eq. (46) and evaluates the and not on thek-field ) itself. Therefore, the theory is sym-

result at the throatl&0), one gets using the finitenessof ~Metric under constant shifts of the field— ¢+ e and the
and Eq.(2) corresponding current conservation yields the equation of

motion of thek-field,

T+

r//(o)
(p— 7')lthroat: - W<0- (6) V( p,xva(P) =0, 9

Recall thatr is a tension, i.e. a negative pressure. Hence, ag/herelx denotes a denvanvg with respect?KoThe action )
is well known[2], the matter that threads the throat of the (7) can be regarded as the simplest generic phenomenologi-

wormhole violates the nufl,the wea and the stroryen- €&l way of providing a microscopic description of the un-
ergy conditiond14]. We call such matter “exotic.” known matter that supports a wormhole. We assume that the

field only couples to Einstein gravity, and not to additional

matter fieldsy,,. Therefore, because the free dynamics of

the metric tensor is dictated by the Einstein-Hilbert action,
One can draw two different conclusions from the fact thatand all matter fields are minimally coupled to that metric

only exotic matter may be able to support a wormhole. If ongensor, we are dealing with standard general relativity.

assumes that all matter forms satisfy the above mentioned The energy-momentum tensor of tkdield is given by

energy conditions, then our previous result excludes wormfunctional differentiation of thé--field action

holes from general relativity. On the other hand, if one insists

upon the existence of wormholes, it follows that the matter _ 2 65 dp

that threads them has to be “exotic.” Let us point out that, to B~ g 59°F = ax Ve®VeP P Yap-

our knowledge, there is no reason why all matter forms

should satisfy the null, weak and strong energy conditions. Inf the scalar field gradient is space-likas is the case in a

fact, recent indications that the universe is currently accelerstatic field configurationit can be cast in the fornT,,

ating [15] directly imply that the strong energy condition is = (p— 1) n,Ng—p d.z, Wheren, is a spacelike unit vector

violated in nature, by what seems to be acting as a nompointing in the direction of the field gradient,

vanishing positive cosmological constant. The weak energy

condition is violated by a negative cosmological constant, dp

and the study of spaces with such a negative cosmological i ZXW—p (1)

constant has recently attracted significant attentgme ref-

erences t¢16]). Finally a scalar field with non-linear kinetic is the radial tensionp=—p is the energy density anpl is

terms, ak-field, can basically violate any desired energy con-the pressure as defined in E@®). Notice that, unlike in a

dition [4]. One of the purposes of this paper is to show thatsituation where the field gradient is time-liké], the energy-

at least in principle, a simplé&-field may indeed support momentum tensor doesot have perfect fluid form. Thé-

wormholes in general relativity. It turns out that the Lagrang-field equation of motion(9) can be derived both by func-
tional differentiation of thek-field action or by requiring the
energy momentum tensor to be covariantly conserved. For a

IIl. WORMHOLES SUPPORTED BY A k-FIELD

(10

o+ p=0 andp—=0.
2p=0, p+p=0 andp—7=0.
3p—1+2p=0, p+p=0 andp— 7=0. “This implies|p|=|p| and|p|=|7]|.
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static, spherically symmetric field configuration, the field P
equation is given by the “energy conservation” ld®@).
The different properties of a wormhole severely restrict |
the possible Lagrangiang(X) which may support it. Ac- !
cording to Eq.(6), the null energy condition has to be vio- :
lated at the throat of the wormhole. Using the properties of [
the k-field energy momentum tensor, one finds thatp : - \
should be positive at=0 and hence there should exist an |
X+, the value ofX at the throat, such that :
|
|
|
|

dp <0 12
ax 0 (12

T T .‘. + > X

On the other hand, the requirement of asymptotic flatness N
also yields important information about the form of the pres-
sure p at infinity. The gravitational field of any isolated
source in asymptotically flat spacetime can be expanded in FIG. 2. Possible forms of the Lagrangigm It must have a
multipole moments. If the source is static and sphericallyhegative slope aX;, and it must be linear around the origin but,
symmetric only monopole moments contribute to the gravibecause of Eq18), it cannot have local maxima or minima. Thois
tational field, and there exists then a coordinate systerhas to be a monotonically decreasing functiorXokith a negative
where the metric admits an asymptotic expansion of the fornslope at the origin.

[17]

Tx<0

Tx<0

POX.+AX)  px(X.)
1401, ~~)dt2—(1 Y1 _ Y2 ) TG AX)  Tx(Xa)

1. (16)

P, We will argue below that x should be nonzero betweéd,
X[dre+r°dQ°]. (13 andX;. Then, in order for Eq(16) to be satisfiedp x(X..)

of hek-field b idered locali dshouId also be different from zero. Therefore, it follows from
course, thek-field cannot be considered as a localize Eq. (15) thatX..= 0, and thus around the origin

(finite-size source. We assume that tkefield decays suffi-
ciently fast at infinity, in such a way that the expansi@B)

still applies. Plugging the above metric expansion coeffi-
cients into Einstein’s field equatiori@e shall not write them
down herg, one can derive analogous expansionsgf@nd

p=7~cC-X, (17)

where c is an arbitrary non-zero coefficient which can be
chosen to bet 1 by a field redefinition. Hence, up to a sign,

™ the k-field behaves at infinity as a massless scalar field. This
5 is consistent with the pressure decaying a$ i the limit
_ 3Y1+8i, +O(r79) r—oo, which corresponds to arlMdecay of the fieldy at
8r infinity. Finally, as pointed out above, a well defined field
equation of motion requires
2 2
— P1—y1 A4p1~8¢; 2¢1‘/’1+5¢1+8#’/2+O(r,5). P 0 for Xp=X=X,=0, 18

2r3 8r4

o . . ) . The reason is that the points wherg=0 are barriers over
Substituting these expansions into the field equation of MOy hich the field equation of motiofs) cannot be integrated,
tion in these coordinates, one findg =y (as appropriate g that a continuous field configuration interpolating between
for a mass termand 2$,= 1. Therefore, X andX., requiresr x to be nonzero within that interval.

Conditions(12), (17) and (18) essentially determine the

form of the Lagrangiam (as illustrated in Fig. 2 Around
the originp must be linear and, in addition, there must exist
a point Xt where the slope opf is negative. Suppose thpt

At infinity both pressure and radial tension vanish and in the~X around the origin. Then there must exist a local mini-
asymptotic limitr — the ratio of the pressure to the radial mum of X, betweenX; and X=0 wherep x=0. At the
tensor tends to 1. We conclude that there should exidt.an ~ minimum 7 (X, )=2X, p xx (X,) is negative, whereas at

the asymptotic value ok asl—c, where the origin 7y(0)=1 is positive. By continuity there is a
point X,, wherer 4 is zero, violating conditiori18). We are

P(X.)=0, 7(X.)=2X.-px(X.)=0 (150  forced to choos@~ — X aroundX..=0. An analogous argu-
ment implies that the functiop cannot have a local maxi-
and such that, aroun,. , mum, so we conclude that(X) should be a monotonically

3yi+8
p=——¢;+4¢2+(9(r_5):7-+(9(r_5). (19
r
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decreasing function which is linear at the origin. The sim- Inl/r
plest function which satisfies this criterion fis= — X. P

IV. WORMHOLE SOLUTIONS

Our previous analysis has determined that— X is the
simplest Lagrangian which may allow a wormhole solution. x/2
From now on, we shall concentrate on this form of the La-
grangian. Notice that for a conventional massless scalar field
p=X. Hence, the field we are considering is a massless field
with a reversed sign kinetic term. As long as the effect of the
field on gravity can be ignored, the overall sign of the matter
Lagrangian is a matter of convention. In particular, inany — — — — - - - - T T T T T T —
given gravitational background the equation of motion of
such a field is the same as the one of a conventional masslessFIG. 3. The form of| |/t as a function of the coordinate
scalar,V*V,¢=0. It is the way the field couples to gravity
that determines the sign of the Lagrangian. If the scalar field If #°=m?+q? itself is negative, the metri€21) is not
couples only to gravity, this sign can be chosen at will, asvell defined. Of coursey? can be negative only ifj is
long as this does not yield any inconsistency. purely imaginary(we assume the massto be real) This is
Static, spherically symmetric solutions of Einstein's equa-physically equivalent to a real scalar field whose kinetic term
tions minimally coupled to aonventionalmassless scalar has the opposite sign, which is precisely the coupling we are
field have been repeatedly discovered in the literaffile  interested in. In what follows, we assume that bgthand
Particularly useful for our purposes are the solutions as preq” are negative. By a change of radial coordinates, the metric

sented by Wymairisee alsd18)): (19) can be rewritten as
_ Y d=e 2" d?— 2™ dr?+ (>~ %) dQ?],  (22)
ds2= e~ 2Mi g2 _ eZm/r( 77—~> dr2
sinh(#/r) where the old coordinateis implicitly expressed in terms of
~ 2 the new coordinate by the relation
~ ylr ~
_eZm/r< - /~ ) erQZ, (19) | | )
sinh( /r -

Inh(7/r) sin2(~l>= —, (29

r r’—y

where7?=m?+q? andq is defined by the form of the scalar

field solution and the explicit functional dependencg) is determined by
the requirements of continuity and differentiability. The met-
ric (22) was first discovered in a different coordinate system
in [7] (see alsd8]), and classical scattering in such a geom-
etry has been studied [19].
These solutions are characterized by two integration con- Although we shall not cast Eq22) in proper distance
stants, a mass and a “charge’q. Because the scalar field coordinates, it is quite clear that it deszcrlbes a traversable
solution (20) is proportional tog and the energy-momentum Wormhole. Due to the presence of thes” term, the coor-
tensor(10) is quadratic ing, a realq describes a convention- dinater may take values in the rangew<r<c. The form
ally coupled scalar field, while a purely imaginagy is of | |/r as a function of is shown in Fig. 3. The function
equivalent to considering a field with a negative kinetic term.exp(—2mr) is finite everywhere and, in particular, the metric
For an ordinary couplingd?>0) the above solutions de- (22) does not contain any horizon. In the limit—oo,
scribe a spacetime with a naked singularity at0. In fact,  exp(—2mir)=1-2mr+0O(r ~2), and in the limitr— —o,
after a coordinate transformation, E49) can be cast in the exp(—2min)—exp(—2mm/|7)(1— 2m/r + O(r ~2)). Hence,
form the spatial sections of Eq422) contain two asymptotically
" — flat regions and the masses of the wormhole as observed in
42— ( 1— 2_77) di2— ( 1 277) those regions anm and —m exp(mnv| 7|) respectively. Notice
that the two masses have opposite sign. In addition, because

o= (20

=1 Q

PURPE the redshift function is not symmetric under reflections
_ ( 1— _’7) r2dQ2 (21) —r, clocks tick at different rates in both asymptotic regions
’ and a photon emitted at=cc will appear to be blue shifted
atr=—oo, Ther dependence of the scalar field also has the
where one sees that the would-be Schwarzschild horizon hdsrm of Fig. 3. The scalar field solution is proportionaldo
shrunk to a point at=27. If the charge vanisheg=0, Eq. and that is the reason why it can be interpreted as a scalar
(21) obviously reduces to the Schwarzschild metric. charge(this identification will be made more precise belpw.
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The zero mass wormhole solutions have a remarkablgufficiently fast at spatial infinity, which grow exponentially
simple form. Settingn=0 in Eq.(22) and using Eq(20) to  in time, our background solutions are unstable. The symme-

computep=—3(V ¢)? one gets tries of the background solution allow us to simplify the
analysis of its perturbations. Due to the staticity of the back-
ds?=dt*~dI*~(1°~g%) dQ?, (248 ground, we can decompose the perturbations into Fourier
modes proportional te'“t which do not couple to each other
1 —q? in the linear regime. Similarly, because the background is
P=7=35 m (24b) spherically symmetric, it is convenient to decompose the per-

turbations into spherical harmoni¥s (6, ¢) and its deriva-
Recall thatq? is negative for the solutions under consider- ives, and again, the symmetry under rotations makes it pos-
ation, that is, the pressure and radial tension are positive, ifible 0 consider —only perturbations with ~azimuthal
agreement with the fact that= — X>0. The reader can eas- eigenvaluem=0. Finally, the inversion symmetry of the
ily verify that, indeed, Eq(24) satisfy Einstein's field equa- Packground k—1,6—m—6, ¢—m+ $) allows us to con-
tions (4). The static metri¢24a has the wormhole fornl). sider perturbatlons (_)f definite pari under inversion. Per-
Its spatial sections=const contain two asymptotically flat turbations of “electric”(or even type haveP=(—1)" and
regions atl = ~oc. The minimal area of a=const surface Perturbations of “magnetic’(or odd type have parityP
occurs atl =0, and is given by-4mqg?. The redshift func- = (—1)""*. In linearized perturbation theory, perturbations
tion is constant everywhere, and in particular, there are n¥ith different “quantum numbers’», L and P decouple
tidal forces which could prevent the passage of a persoffom each other. _ _
through the wormhole ifq| is sufficiently big. The metric in In Regge-Wheeler gauge, the electric type metric pertur-
Eq. (24) is in fact the simplest traversable wormhole geom-bations[denoted by (e)are
etry one may think of.

Suppose that observers living in E4) were able to Ho(h)  Ha(h) 0 0
measure the value of the scalar field. They would realize that Hq(l) Hy(1) 0 0
it obeys the equatiom = (r2¢’)’=0. By computing the h(f;)a: 0 0 r2K(1) 0
flux of the field gradient through surfaces of constiarthey )
would conclude that this flux is independent of the valué of 0 0 0 r?K(l)sirfg
and is given by 4r|q|. If these observers did not have X P, (cosf)e . (25)

enough resolving power to explore lengths of digg they

would hence arrive at the conclusion that there is a scalafhe indicesa and 8 run over the coordinates!, 8 and ¢.
source of chargfy| sitting within| <. However, there is N0 The Legendre polynomiaP, is the m=0 spherical har-
scalar source present. In reality there is a sourceless incorgyonicy, ... As previously mentioned, the time and angular
ing flux which originates ati=—c, passes through the gependence of the perturbations has been explicitly separated
wormhole’s mouth at=0, and emerges again for0 asan  and hence only their dependence onlthariable remains to
outgoing flux reaching=c. This is one example of Wheel- pe determined. Similarly, the magnetic perturbatidds-

er’s “charge without chargef{20]. noted by the label (m)are
V. WORMHOLE STABILITY 0 0 0 hy(l)
One of the advantages of a microscopic description of the h(m) — 0 0 0 hy(l)
matter that threads a wormhole is that such a description ap 0 0 0 0
allows us to address issues which would not have been treat- ho(l) hy(l) O 0
0 1

able otherwise. The stability of wormholes is such an ex-

ample. In the following, we analyze in first order perturba- o d _

tion theory the stability of the wormhole solutions we have Xsint P (cosf)e'“", (26)
previously discussed. Because of their extreme simplicity,

we concentrate on the zero mass solutihy, although we  sq that there are 4 electric and 2 magnetic metric perturbation
shall later argue that solutions with sufficiently smallare  fnctions in total. The remaining 4 functions needed to com-
also stable. Our analysis closely resembles an analogous iBtete the most general metric perturbation are zero in Regge-
vestigation in21] (see alsd22] and[23]), although we will  \wheeler gauge. The scalar field perturbations are

not work in Schwarzschild coordinates but in the proper dis-

tance coordinate syste(t), where all metric coefficients are 5¢9=06¢0®(1)P (cosh)e' and 6p™=0, (27)
regular functions.

The strategy is the following. We introduce metric andand in particular, because a scalar field is a scalar under
field perturbationsg,s— 9.5+ h.s, ¢— ¢+ d¢ around the  parity transformations, there are no magnetic type field per-
background solutior(24). Linearizing Einstein's equations turbations. It turns out that both for electric and magnetic
one gets a closed system of equations for the metric and fielperturbations, one can derive an equation for a single pertur-
perturbations,éG 5= 6T,5. If these equations admit spa- bation variableQ(®™. The equation has the form of a Schro
tially well behaved solutions, that is, perturbations that decaylinger eigenvalue problem
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2

d
-2 QEMHVLQEM=0Qem, (28

where the potentiaV/; also depends on the angular momen-
tum L of the perturbations. Solutions of this equation with

PHYSICAL REVIEW D55 104010

negativew? correspond to exponentially growing and decay-
ing modes. Hence, our task consists in verifying whether Eq.
(28) admits spatially well behaved solutions of negative.
Because the potential goes to Olas * «, this is equivalent
to verifying whetherV, admits any bound state, that is, an
eigenfunction of negative energy.

(a) Electric perturbationsFor these perturbations, the rel-
evant linearized equations refdropping the(e) labell

[L(L+1)+2]Ho+2Hrr"+(L+2)(L—-1)K

V(1)

FIG. 4. TheL=1 potential for even perturbatiorfsontinuous
and its ground statédashedl

and Q®=r . For L=2 the potential is positive every-

—6K'rr’' —2K"r2 where. Because positive potentials do not admit bound states
(E<0), it is clear that all electric modes with=2 are
=4r%¢' 5¢’ (298  stable.
Although for L=1 the linearized equatiof29e identi-
L(L+1)Hy— 2i oKrr '+ 2i wHorr ' — 2i oK 'r2 cally vanishes, it is still possible to choose a gauge where
Ho=H,, sinceL=1 perturbations have fewer free functions
=diore’' s¢ (29p  thanL=2 perturbations. The potential is thus still given by
Eqg. (30), but in the latter case it has a negative minimum at
_ -~ I=0. The L=1 Schralinger equation(28) can be solved
ZHp~L(L+ DHot+(L+2)(L—DK exactly for w2=0. One solution is Meijer'sG function
+(2H)— 2K’ —diwH ) rr ' —202Kr? G3x(1—1%/9?|33 _2,) [24]. This solution is shown in Fig. 4.
) It is even, decays at infinity and it has no nodes. Hence it is
=—4r%¢’ 59’ (290  the ground state of the potentid} [25]. In particular there
are no spatially well-behaved solutions at infinity wiif
dP, , _ <0, and theL=1 mode is stable.
JcosglHor ~Har'—Hor +K'r+iwHyr] The most general metric perturbation for=0 (spheri-
cally symmetrig has fewer free functions than far=1. In
dp. | fact, it is possible to choose a gauge whiéreH;=0. Using
= _4dcosﬁr¢ S (29d  the linearized equatior@9a), (29b) and(29¢), Eq. (29f) can
be cast in the forn{28), where the potential is given by
" ” 2q4_3q2|2
d?P, Vo(l)= LIPS B L (31
d(com Ho7H2=0 (299 gy
The latter potential is positive everywhere, and hence Eg.
o L(L+1) (28) does not admit gny)2<0 solutions. Electric spherically
— 028p— 8¢" —2— ¢’ + S symmetric perturbations are also stable.
r r2 (b) Magnetic perturbationsThe only non-trivial linear-
L ized Einstein field equations it suffices to consider arexipe
- E(H(,)'F H,—2K'—2iwH,) ¢'=0, (29f) andl ¢ respe;';ll\:/)ely,
(hj—iwhg)————=0 (329
where the background equatiot®a), (4b), (4c) have been d(cost)
used. The casds=0, L=_1 andL=2 require separate treat- _ oy r (L+2)(L—1)
ment. IfL=2 Eq.(29¢ yieldsHy=H,. Then, Eq.(29d) can —w?h;—iwh{+ 2|wTh°+ ZThl+ ——
be used to express the metric perturbations of the linearized r
scalar field equatiori29f) in terms of the field perturbation =2¢'2h,. (32h)

d¢. The latter equation reduces to E@8), where the po-
tential is given by

L(L+1) r” L(L+1)I12—g?L?+L—-3)
VL('):(r—2_3_: (lz_qqz)z

(30
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There are no magnetic perturbations witk0. ForL=1
Eqg. (328 does not contain significant information and the
remaining equation, Eq.32b), provides a relation between

h, andhg that allows us to gauge these perturbations away.
For L=2 Eq. (329 yields the relationh;=iwhg, which
when substituted intd32b) allows us to put it in the form
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(28), whereQ™=h, /r and the potential is the same as for improving the original manuscript. The author has also ben-
electric per[urbationiBO)_ ThereforeL.=2 magnetic modes efited from many useful conversations over time with Slava
are also stable. Mukhanov. Some of the calculations in this paper have been
Up to now, our discussion has focused on the stability oferformed with theGRTENSORII package foMATHEMATICA.
the zero mass solutions. Because of that, we have only corfhis work has been supported by the U.S. DOE grant DE-
sidered time dependent perturbations, i.e., on nonzero valué$302-90ER40560. | would like to thank also G. Clement
of w. If one studies time-independeht=0 perturbations, and K. Bronnikov for kindly bringing to my attention Refs.
one has to recover nonzero mass soluti®® for suffi-  [7,8,10,19 after a first submission of the paper.
ciently small values ofn as time-independent perturbations
of the zero-mass solutions. Due to linearity, the time-
dependent perturbations around these nonzero mass solutions
satisfy, of course, the same perturbation equati@® and Our work has mainly focused on a massless scalar field
(82). Since these equations do not have any spatially welldescribed by a Lagrangigmwhose sign has been reversed.
behaved growing solution, we conclude that at least for suftn other words, we have considered a Lagrangian
ficiently small values ofm the solutiong22) are also stable.
This completes our wormhole stability analysis.
To some extent, the stability of the wormhole solutions p= fv e V% (A1)
we have considered was to be expected in the light of the 2
results of[26]. In that work, it is shown that the speed of

propagation of linear perturbations in a cosmological backynere « is —1 instead of+ 1. One of the main objections

APPENDIX: STABILITY OF MINKOWSKI SPACE

ground,cs, is given by against such an assumption is that for such a scalar field,
Minkowski space should be unstable. Indeed, on general
02:%_ (33) grounds one expects small scalar field fluctuations to radiate

S px positive energy in the form of gravitational waves, making

the negative energy density of the initial field fluctuations
If the squared speed happened to be negative, one woulslen more negative and leading to a complete instability of
anticipate instabilities of the wormhole associated with thethe vacuum. Let us verify whether one observes this kind of
exponential growth of short-wavelength modes. Becaifse behavior in perturbation theory. In order to establish the dif-
=1>0 in our model, there is no reason to expect thosderence with respect to an ordinary scalar field, we will keep
instabilities. However, this argument only addresses the issue as a free parameter. Consider perturbations of Minkowski
partially, since static, spherically symmetric solutions of Ein-space to second order,
stein’s equations coupled to @nonical field (c§:1) are
unstablg[6]. (In the latter case the instability appears in the
NSt mi[dl)( y app Gup=NapthD+h B+ ..,
VI. CONCLUSIONS where the notation sho_uld be obvious, and consider equally
second order perturbations of of a constant massless scalar
Noncanonical scalar field Lagrangians allow the existencdield,
of wormhole solutions in general relativity. The conditions of
asymptotic flatness and the existence of a wormhole throat
essentially force the noncanonical scalar field to be a mass-
less scalar field with a reversed sign Lagrangian. Zero mass
wormbhole solutions to Einstein’s equations coupled to such avhere 4,0(®)=0. To first order in perturbation theory, the
field turn out to be extremely simple and are useful as toyEinstein and Klein-Gordon equations are
models to explore different aspects of wormhole physics. As
a particular application, it is possible to show their stability 1
against linear perturbations analytically. The issue about the 77’”%(%( hfylﬁ)_ _%Bh(l)) =0, (A2)
physical viability of such a scalar field is yet unsettled, al- 2
though at the level of our investigation we have not discov-
ered any internal inconsistency. Rather, it turns out that be- a0 oM =0. (A3)
cause such a field violates some of the standard energy wev
conditions, cosmological and spherically symmetric solu-
tions of Einstein’s field equations are singularity-free. Upon gauge fixing, the first of the equations describes gravi-
tational waves propagating in Minkowski spacetime, while
the second one describes scalar field waves propagating in
the same background. Notice that these equations are the
It is a pleasure to thank Sean Carroll's group, Stefan Holsame regardless a&fin Eq. (Al). At this level, both signs are
lands, David Kutasov and Robert Wald for constructive criti-equally valid.
cism and discussions on the subject, and Jennifer Chen for Consider then the second order Einstein equations,

o= QD(O)+(P(1)+ (,0(2)+ -

ACKNOWLEDGMENTS

104010-8



ON A CLASS OF STABLE, TRAVERSABLE LORENTZIAN . .. PHYSICAL REVIEW [®5 104010

@ 1 ) cover whyx= +1 is essentially different from=—1 (asin
n*'d,d,| hyp— E%Bh( ) the “analogous” system of two coupled scalar fields, one
with a conventional, the other with an unconventional kinetic

W (D) 1 (D) 1y (1) term, At this point let us try a non-perturbative analysis and
=4K| 0@ 0pe = 5 Napdy@ e point out that even the conventional couplirg-1 leads to
instabilities. Consider for that purpose an homogeneous spa-
—2G@)(hD), (A4) ftially flat universe filled by a canonical scalar field,
The sign of the first term on the right-hand side is determined ds?=dt?—a(t)?[dr?+r2dQ?].

by the conventional or unconventional coupling of the mass-
less scalar field to gravity and the second term on the rightlt is known that the solution of Einstein and Klein-Gordon
hand side contains all terms of the Einstein tensor quadratigquations in such a spacetime is given by
in the first order perturbatioris’®). Thus the right-hand side 3
of the above equation describes how the first order scalar a(t)=[t]
field and gravitational waves respectively back react on the
background geometry. Whereas the gravitational wave back (d_‘P
reaction is the same for both signs of the scalar field cou- dt
pling, the scalar field wave back reaction on the metric does
depend to this order on the sign of the energy momentund his solution has two branches, related to each other by time
tensor, as expected. The Klein-Gordon equation to secon@versal. For positive times, the universe starts expanding at
order the big bang singularity a&=0, and approaches Minkowski
space at=oo (the Hubble parameteat loga/dt approaches
zerg. For negative times the universe starts from Minkowski
space at=— and contracts into a “pre-big-bang” singu-
larity att=0_. This latter branch implies that a canonical
describes how first order scalar and gravitational waves germassless scalar field in Minkowski space is “unstable” upon
erate second order field perturbations. For given perturbacontraction. As a matter of fact, this instability is one of the
tions, it is the same for both signs of the scalar field couideas behind the pre-big-bang scenario and reflects nothing
pling. else other than the gravitational instability upon collapse of
Suppose that we solve E@A4) in a given background of the scalar and gravitational waves around Minkowski space-
first order scalar wave@ssume for the sake of the argumenttime [27] we have previously encountered. Notice that an
that there are no gravitational waye$he solution is given analogous argument applies fpe=— X, though there is a
by the convolution of théknown) source terms in the right- crucial difference too. In the latter case, the scalar field has a
hand side with the appropriate retarded Green’s function. Imegative energy density, and the spatial sections of the uni-
particular, the solutions for both values efdiffer only by a  verse have to be negatively curved. Expanding solutions
sign. If the solution is well behaved far=1, it is also well  hence asymptotically approach the “Milne universe,” which
behaved forck=—1. Thus, at second order there is not yetis just a portion of Minkowski space. On the other hand,
any evidence thak=+1 is preferable tac=—1. It seems contracting solutionéthe time reversed expanding solutipns
that if we want to single ouk=1 as the preferred choice of originate from Minkowski space and instead of running into
the scalar field coupling, we have to go to higher orders. a singularity, bounce at a finite value afand expand again
Due to the structure of the perturbation equations, even ifnto Minkowski spacetiméthis is possible because our field
we proceeded to higher orders it would be difficult to dis-violates the null energy conditioi28]).

2 1
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1
7],U«valuﬁvcp(Z): -4, h(® aﬁaB(P(l)_ Eh(l)ﬂ‘l(p(l)
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