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Life in an energy eigenstate: Decoherent histories analysis of a model timeless universe
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Inspired by quantum cosmology, in which the wave function of the universe is annihilated by the total
Hamiltonian, we consider the internal dynamics of a simple particle system in an energy eigenstate. Such a
system does not possess a uniquely defined time parameter, and all physical questions about it must be posed
without reference to time. We consider in particular the following question: what is the probability that the
system’s trajectory passes through a set of regions of configuration space without reference to time? We first
consider the classical case, where the answer has a variety of forms in terms of a phase-space probability
distribution function. We then consider the quantum case, and we analyze this question using the decoherent
histories approach to quantum theory, adapted to questions which do not involve time. When the histories are
decoherent, the probabilities approximately coincide with the classical case, with the phase-space probability
distribution replaced by the Wigner function of the quantum state. For some initial states, decoherence requires
an environment, and we compute the required influence functional and examine some of its properties. Special
attention is given to the inner product used in the construdtiba induced or Rieffel inner prodyctthe
construction of class operators describing the histories, and the extent to which reparametrization invariance is
respected. Our results indicate that simple systems without an explicit time parameter may be quantized using
the decoherent histories approach, with the expected classical limit extracted. The results support, for simple
models, the usual heuristic proposals for the probability distribution function associated with a semiclassical
wave function satisfying the Wheeler-DeWitt equation.
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[. INTRODUCTION the wave function of the system obeys the Wheeler-DeWitt
equation,
There are a variety of interesting physical situations in
which our classical view of the world inspires us to ask ques- HW(x)=0, (1.1

tions that quantum theory does not easily answer. For ex-
ample, classical mechanics concerns simultaneously specithere H is the total Hamiltonian of the gravitational field
fied values of coordinates and momenta while quantunplus all matter sources in the universe. The most significant
theory has to go through some contortions to say what thifeature of this equation is that it contains absolutely no ref-
means operationally. Another important class of problems o&rence to time whatsoever. It is usually argued that “time,”
this type are those that involve time in a nontrivial way. Theor more precisely, the physical systems that we use to mea-
arrival time problem and tunneling time problem, for ex- sure time, are contained already in the gravitational and mat-
ample, have been the subject of considerable recent interetstr fields[3—5]. While this is very plausible, it leaves us with
[1]. the question as to how to extract interesting physical predic-
Perhaps more intriguing than these are questions in quartions from this wave function, given the absence of the time
tum mechanics that do not involve time at all. Consider, forcoordinate that plays such a central role in standard quantum
example, the following situation. Suppose we have a systertheory. In quantum cosmology, heuristic methéasinly the
of particles in a state of fixed total energy. It could, for ex- “WKB interpretation”) have been used to extract useful pre-
ample, be a light particle orbiting a massive particle. Therdictions [6], but what we are concerned with here is how
classically, we can ask whether the light particle passesuch heuristic ideas may be incorporated in a properly de-
through a certain region of configuration space at any stagéned interpretational framework for the quantum theory of
during its orbit. Or we can ask which of the possible classicatimeless models. Furthermore, although simtenisuper-
orbits the light particle follows. The important point here is spacé¢ models are unlikely to be reasonable physical ap-
that these sorts of questions do not involve time explicitly.proximations to a full quantum gravity theory, it does seem
Much experimental and observation data are in fact of thidikely that a quantum theory of gravity will center around a
type. For example, astronomical observations yield planetarfimeless equation of the forril.1) (the loop variable ap-
orbits, and particle physics experiments often yield a photoproach, for example, involves such an equafiéf, hence it
graph of a track in a bubble chamber. We would like to askremains important to understand the quantization and inter-
the same question in quantum theory: given that the systempretation of such systems at an elementary level.
is in an energy eigenstate, what is the probability that it is Quantum cosmology, then, is our main motivation for
found in a certain region of configuration space, irrespectivestudying the internal dynamics of a closed system in an en-
of time? ergy eigenstate. The question we shall focus on is this: given
The primary motive for considering this question is quan-an energy eigenstate, what is the probability that the system
tum cosmology{2]. There, in simple cosmological models, enters a regio of configuration space? Or similarly, sup-
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posing the coordinates of the system a&re(x;,Xs,....X,), limit, the decoherent histories approach produces a set of
what is the probability distribution of, say,,... x,, given  classical trajectories with a probability measure on that set.
the value ofx,? Classically, these questions may be an- The ot'her significant approach to this_problem that is cur-
swered reasonably easily. We look for all the phase-spacéntly being pursued involves constructing operators corre-
initial data points whose classical trajectories pass thraygh SPonding to the questions posed above, and which commute
and then the desired probability for enteriagis the prob-  With the Hamiltonian, thus they are “observableg’3-18.
ability measure on this subset of phase space. In quantufio" & free particle in two dimensions, for example, the clas-
theory, the question is considerably more complicated, anciic@l trajectories have the form
like the question of phase-space samplings, a variety of dif- Dyt Dot
ferent(generally inequivalentapproaches may be employed. X1(t)=Xq+ _1, Xo(1) =Xo+ 2 (1.2

It is perhaps of interest to spell out in more detail how the m m
absence of a time parameter affects these considerations. Inaﬁd we may eliminate between them to write
standard nonrelativistic particle theory, the variables of inter-
est are, for example, positions at a fixed moment of time P,
x(t). Here, the timé is regarded as an observable physical X1(1) =X+ —[Xx(t) —X5]. (1.3
parameter. In a theory without time, by contrast, the quanti- P2

ties of interest are curves in configuration spags) (or  Thjs is the classical answer to the question, what is the value
more generally, in phase spacélere,s is nota physically of x, at a given value ok,? It commutes with the free-
measurable time, but is simply a parameter labeling theyarticle Hamiltonian,

points along the curve, and the curves are parametrized in
this way for mathematical convenience. Furthermore, one of H=2(p2+p3), (1.4
the characteristic features of genuinely timeless theories is
that none of the components rfare monotonic irs. This  thus it is an observable and we may find states that are eigen-
means that it is not possible to use one of the components states of both Eqs(1.3) and (1.4), from which one may
X as a “time” parameter, except for local sections of the begin to address the questions set out above. We will not say
curve. Despite these features, such classical theories amuch about this approach here, but it is important to mention
well-defined and predictive. Indeed, many classical cosmobecause any other approach ought to make some kind of
logical models are of this type. For example, in the massiveontact with it at some stage, and in particular, the decoher-
scalar field cosmological modéfor a positive curvature ent histories approach must contain some notion correspond-
Friedmann-Robertson-Walk€FRW) metric] [8], the classi- ing to the notion of an observable in the operator approach.
cal solutions go backwards and forwards in both the scaléSee also Refd.19,20 for some much earlier approaches to
factor a and the scalar fields. Therefore, the most general these issues.
such classical theory is one in which there is a probability We begin Sec. Il by describing the classical result. We
distribution on the set of classical trajectories, and this is alsintroduce a classical phase-space distribution function
well-defined (subject to careful normalizatioras we shall  w(p,x) and compute the probability that a trajectory in con-
see. Such probability distributions are of particular interesfiguration space passes through a reglorMost of the key
for predicting, for example, the likelihood of the initial con- ideas for this paper are in fact contained in this classical
ditions for inflation[9]. result. In particular, we discuss the reparametrization invari-
A closely related issue is the fact that a vanishing Hamil-ance of the system, and introduce observables corresponding
tonian[or in the quantum theory, E@l.1)] is associated with  to entire classical trajectories. We write the classical result in
the symmetry of reparametrization invariance, which is esa number of different forms, including a form in terms of a
sentially the freedom to redefine the parametdabeling flux across a hypersurface, closely related to the heuristic
points along a trajectory. Individual phase-space points ar&VKB interpretation of quantum cosmology.
not reparametrization-invariant, since they are moved along We begin the quantum case in Sec. Il with the construc-
the classical trajectories by a reparametrization. But a usefulon of the decoherence functional for timeless models. This
invariant quantity is the entire classical trajectory, as we shalhas two important aspects. The first concerns the choice of
see later in more detail. This simple observation turns out ténner product in the construction, since solutions to equations
be a useful focal point for what we do in this paper. of the form Eq.(1.1) are typically not normalizable in the
Turning now to the quantum theory, there are, as statedsimple Schrdinger inner product. The appropriate choice is
many possible approaches to these systems, all of which atke induced(or Rieffel) inner product, which we describe.
complicated by the absence of a time parameter. Howeve¥Ve also show how this inner product for the quantum case
the aspects of the classical theory outlined above suggest thiatplies a useful normalization for the classical phase-space
a particularly useful approach to quantization is the decoherdistribution function. The second aspect is the construction
ent histories approacf10-12. This is because it deals di- of the class operators, which, in this case, are propagators
rectly with entire trajectories and obviously does not requiredescribing coarse-grained sets of histories passing through
a time coordinate. The aim of this paper is to show that theestricted regions of configuration space.
decoherent histories approach can be used to calculate prob- In Sec. IV, we discuss the semiclassical limit of the deco-
abilities for histories in configuration space in simple time-herence functional. A key step is the construction of class
less models. In particular, we shall show that in the classicabperators corresponding to restricted sets of histories enter-
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ing the regionA. The obvious candidates for these class opthe Wheeler-DeWitt equation in terms of emergent trajecto-
erators are not in fact compatible with the constraint equaries by introducing model detectors into the Hamiltonian.
tion, and we therefore show how they may be appropriatelyrhis was inspired in turn by Barbour’s observatig@s] on
modified. This turns out in fact to be the crucial step in thethe similarity between the Wheeler-DeWitt equation and
construction of the decoherence functional. We then showW/ott's calculation showing the emergence of a straight line
that, for the special initial states for which the histories aretrack from a spherical wave in alpha decig], together
decoherent, the probabilities for the histories approximatelyVith some of Barbour's more general observations about the
coincide with the classical case, with the phase-space distri/heeler-DeWitt equation and timeless theofi28,30,31.
bution functionw(p,x) replaced by the Wigner function

W(p,x) of the quantum system. Il. THE CLASSICAL CASE

In Sec. V., we consider the special case in which the sys- We are interested in the following question: “What is the
tem is a collection of harmonic oscillators in a fixed energy

grobability associated with a given region of configuration

eigenstate. For this system it is possible to introduce a sp ace when the system is in an energy eigenstate?” We begin

cial class of eigenstates of the Hamiltonian sometimes calle y analyzing the classical problem

“timeless coherent states,” which have the property that they We will consider a classical .system described by a

are concentrated about an entire classical phase-space traj%?f—dimensional phase space, with coordinates and momenta

tory. We discuss the decoherence and probabilities associat Q )= (x ), and Hamilton}an

with these states and obtain the intuitively expected physical’ P ko Pi),

results for the probabilities of entering a regian " p2
Since decoherence is only obtained for special initial H=S —X 4v(x). (2.1

states, we consider, in Sec. VI, the addition of an environ- k=12M

ment to produce decoherence for a wide variety of initial _ . .

states. We repeat the calculation of decoherence and proglore generally, we are interested in a system for which the

abilities with intuitively expected results, in agreement with inetic pk)art O_f the _Hamlltonlan _has the forgf(x)_pkp,,
classical expectations. where g“/(x) is an inverse metric of hyperbolic signature.

The calculations of Secs. IV and VI used initial statesMOSt minisuperspace models in quantum cosmology have a
consisting of single WKB wave packets. In Sec. VII, we Hamiltonian of this form. However, the focus of this paper is

therefore extend to the case of superpositions of such waJB€ timelessness of the system, and the form of the configu-
packets. This turns out in fact to be straightforward, and very&tion Space metric turns out to be unimportant. So for sim-
similar to earlier calculations performed with the reducedP!iCity; we will concentrate on the form E¢2.1). o
density matrix. We easily find that the interference terms, V& @ssume that there is a classical phase-space distribu-
between different WKB wave packets are very small. Welion functionw(p,x), which is normalized according to
summarize and conclude in Sec. VIII.

Finally, we outline the relationship of the present paper to f d"p d™x w(p,x)=1 (2.2
other works in the field. This paper is part of a program to
apply the decoherent histories approach to quantum cosmoél-nd obeys the evolution equation
ogy, or models of the type used in quantum cosmology, an
ultimately to quantum gravity more generally. The decoher- oW P oW AV gw
ent histories approaclkigenerally and its applications to —=E (— —_—t— —
guantum cosmology have been set out at length by Hartle in K M X X Py

his 1992 Les Houches Lectur¢81], and more recent rel- here{} denotes the Poisson brackets. The interesting case
evant aspects of this were discussed by Hartle and Marolf’ ! ; . ; : 9
Is that in whichw is the classical analogue of an energy

[22]. This formalism has been applied to particular models in™. . ; .
three places, most recently by tphpe presel?n autfeg who eigenstate, in which casaw/dt=0, so the evolution equa-
used it to construct in detail the decoherence functional fof©" 'S simply
the relativistic particle and compute probabilities for crossing {H,w}=0 (2.4
spacelike surfaces. The present paper is in some ways an ’ | '
extension of that work. Whelar24] has used the formalism |t follows that
to compute probabilities on timelike surfaces for the relativ-
istic particle. Also, Craig and Hartlg25] have applied the w(p®(t),x%(t))=w(p(0),x(0)), (2.5
formalism to a Bianchi IX quantum cosmological model.
The last two papers use the Klein-Gordon inner productwherep®(t),x%(t) are the classical solutions with initial data
whereas here we use the positive-definite induced inner prog{0),x(0), sow is constant along the classical orbit$he
uct to construct the decoherence functional. There is alsaormalization ofw then becomes an issue if the classical
some connection with the work on probabilities for non- orbits are infinite, but we will return to this in the quantum
trivial spacetime coarse grainings in nonrelativistic quantuncase discussed belgw.
mechanicg26]. Given a set of classical solution®®(t),x%(t)) and a

It is also perhaps worth mentioning that this paper is veryphase-space distribution function) we are interested in the
much in the spirit of Ref[27], which attempts to interpret probability that a classical solution will pass through a region

={Hw}, (2.3
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A of configuration space. We construct this as follows. First It is useful also to write this result in a different form,
of all, we introduce the characteristic function of the regionwhich will be more relevant to the results we get in the

A, quantum theory case. In the quantum theory, we generally
) deal with propagation between fixed points in configuration

‘ (x)=[1 if xeA 2.6 space, rather than with the phase-space point. Therefore, in

A 0 otherwise. ’ the free-particle case, consider the change of variables from

Xo,Po 10 Xg,X;, Where
To see whether the classical trajectoi(t) intersects this
region, consider the phase-space function

Po
o Xi=Xg+ — T. (2.12
A(x,po,x0>=f,md‘é*m(x—x”(t)) (2.7 TTwe

(in the case of periodic classical orbits, the rangeisftaken  Hencex; is the position after evolution for starting frory
to be equal to the perigdThis function is positive for points for parameter timer. The probability then becomes

x on the classical trajectory labeled py,x, and zero oth-

erwise. Hence intersection of the classical trajectory with the

: M %
region A means pa= | ', d'xg w(po,xow( | attaodion-e|.
f d“fo(x)f dt oM (x—x(1)>0, (2.8 (213
or, equivalently, that wherepy=M (X —Xo)/ 7 and
) dt f,(x(t))>0. (2.9 X¢— X
Lw alx( ) xH(t) =X+ gt. (2.14

This quantity is essentially the amount of parameter time the
trajectory spends in the regiah We may now write down

the probability for a classical trajectory entering the regionThe parameterr may in fact b? spa]ed out of the yvhole
A ltis expression, hence the probability is independent of it.

The result now has the form of an integral over “initial”
% and “final” points, analogous to similar results in quantum
DA=J d"po d"%g W(Po,Xo)ﬁ(f dt fA(XCI(t))_E)- theory. The result is again essentially a sum over classical
o (2.10 trajectories with the trajectories now labeled by any pair of
points Xq,X; along the trajectories, and is invariant under
In this constructione is a small positive number that is even- shifting X, or x; along those trajectories. Naively, one might
tually set to zero, and is included to avoid possible ambiguhave thought that the restriction to paths that pass thrdugh
ities in the # function at zero argument. Thefunction en-  is imposed by summing over all finite length classical paths
sures that the phase-space integral is over all initial datwhich intersectA as they go from the “initial” pointx, to
whose corresponding classical trajectories spend a timte “final” point x¢, that is, A lies betweenthe initial and
greater thare in the regionA. final points. This is also what one might naively expect in the
The classical solutior®(t) depends on some fiducial ini- quantum theory version. However, one can see from the
tial coordinates and moments, andp,, say. In the case of above construction that the correct answer is in fact to sum

a free particle, for example, overall classical pathéwhich can be of infinite lengihpass-
ing throughx, andx; that intersectA at any point along the
o pot entire trajectory, even ifA does not lie between the two
XO(t) =X+ —. (2.1)

points(see Fig. L This feature is related to the reparametri-
zation invariance of the system.

The construction is independent of the choice of fiducial ini- The above point turns out to be quite crucial to what
tial points. If we shiftxy,py along the classical trajectories, follows in the rest of this paper, so it is worth saying it in an
the measure, phase-space distribution functiprand thed  alternative form. Loosely speaking, the statement is that only
function are all invariant. Hence the integral ovey,p, is  the entire classical path respects the reparametrization invari-
effectively a sum over classical trajectories. The shift alongance associated with the constraint equation. A section of the
the classical trajectories may also be thought of as a reparamlassical path does not. This may be expressed more pre-
etrization, and the quantity(2.10 is in fact a cisely in terms of the functiod(x,py,Xo) introduced in Eq.
reparametrization-invariant expression of the notion of a2.7). This function is concentrated on the entire classical
classical trajectory. This means that the probabityl0 has trajectory, and is zero whex is not on the trajectory. It is
the form of a phase-space overlap of the “state” with aeasy to see that it has vanishing Poisson bracket with the
reparametrization-invariant operator. HamiltonianH=H(pgy,Xg), Since we have

M
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FIG. 1. The rewritten classical probability E®.13 in terms of
a sum over initial and final pointg, andx; . The probability for not
enteringA is a sum over paths as in ca&®. The probability for
entering A includes a sum over classical paths in whighlies
between the initial and final points, as in cdlse But, to agree with
the phase-space form of the result E210), it must also include a
sum over initial and final points for which does not lie between

them, as in caséc). This figure also applies to the semiclassical

propagator Eq(4.8) in the quantum case.

(H.AGBoxo) )= | dtfH, M x 1)

= d
=—Jloodta5< J(x—x°(t))

=0. (2.19

PHYSICAL REVIEW D 65 104009

secting an f—1)-dimensional surfac&.. Since the result
(2.10 involves the parameter time spent in a finite volume
region A it does not apply immediately. However, suppose
that the set of trajectories contained in the probability distri-
bution w intersect the 1f— 1)-dimensional surfac& only
once. Then we may consider a finite volume regibrob-
tained by thickening® along the direction of the classical
flow. If this thickening is by a smallpositive parameter
time At, then the quantity appearing in tlédunction in Eq.
(2.10 is

j dthd”x SM(x—x%(1))

dx?(t
=Atf dtf d" x n- ( )6<”)(x—xc'(t))
s dt

=At[S,x(1)], (2.18

wheren is the normal t@, and we suppose that the normal
is chosen so tham-dx®/dt is positive. The quantity
I[=,x°(t)], in a more general context, is the intersection
number of the curve®(t) with the surfaces, and takes the
value 0 for no intersections, at1 (depending on whether
there is an even or odd number of intersectjois this case
we have assumed that the trajectories intersect at most once,
hencel =0 or 1. We then have

O(Atl—e)=0(1—€")=1 (2.19
(wheree=Ate’) and the probability for intersecting may
be written

pz:j dtf dnpo anO W(pOyXO)

P G (S I .
XJEd X n. n sM(x—x%(t)). (2.20

At eacht, we may perform a change of variables from to

; 1 _ cl 1 — cl ;
This is the precise sense in which the entire trajectory (/€W variablep’ =pe(t), x’=x"(t), and using Eq(2.5), we
reparametrization-invariant, and the phase-space funétion Ptain the result

may be regarded as an observable—a quantity which com-

mutes with the constrairid [16,17]. By way of comparison,

consider a second phase-space function similarly defined, but

on only a finite section of trajectory,

B(X,Pg,Xg) = fordt S (x—x%(t)). (2.1

It is easily seen that

{H,B(X,pg,Xo)} = — 8(x—x°( 7))+ 8(x—x(0)).
(2.17)

HenceB “almost” commutes withH, failing only at the end

1
p2=MJ dthd”p’ d"Ix' n-p'w(p’,x"). (2.2

Finally, the integrand is now in fact independentto$o the

t integral leads to an overall factaiThis might be infinite

but is regularized as discussed belowe therefore drop the
t integral.

This result is relevant for the following reason. In the
heuristic “WKB interpretation” of quantum cosmology, one
considers WKB solutions to the Wheeler-DeWitt equation of
the form

¥ =CeS. (2.22

points, and it is in this sense that a finite section of trajectory

does not fully respect reparametrization invariance.

It is usually asserted that this corresponds to a set of classical

A third version of the classical result is also useful. It is of trajectories with momenturp=V'S, and with a probability
interest to obtain an expression for the probability for inter-of intersecting a surfac® given in terms of the flux of the
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wave function across the surfa¢e,9]. As we shall show, In the nonrelativistic case, for histories characterized by
from the decoherent histories analysis, the quantum theorprojections onto configuration space, a path integral version
gives a probability for crossing a surfageproportional to  of the decoherence functional is available, and can be very
Eqg. (2.2) with w replaced by the Wigner function of the useful. It has the form

guantum theory. The Wigner function of the WKB wave
function is, approximately32],

(a.a)= [ D[ pyen ;- sixtv1- ; Svio)

W(p,x)=|C(x)[*8(p—VS). (2.23
X b L 3-6
Inserting in EqQ.(2.21), we therefore obtain, up to overall p(Xo,Yo) 36
factors, the probability distribution where the sum is over pairs of pathst),y(t) passing
through the pairs of regions, «’. This is equivalent to the
Py = f d""x n-VS|C(x)|?. (2.24  form (3.1) and(3.4), when the histories are strings of projec-
Y tions onto ranges of positions. Equati¢®.6) is a useful

: . starting point for the generalization to timeless theories.
We therefore have agreement with the usual heuristic analy- \ye would like to construct the decoherence functional for
SIS. the situation in question, in which we have a system in an
energy eigenstate, and we ask questions which do not refer in
IIl. THE QUANTUM CASE any way to time. Two new issues arise in this case. The first
A. Decoherent histories approach concerns the inner product through which the various pieces

of the decoherence functional are put together. The second

The decoherent histories approach to quantum theory igoncerns the construction of the class operators. We take
described at length elsewhef#0-12, so only the briefest oach in turn.

review will be given here. The central object of interest is the
decoherence functional, B. The induced inner product
D(a,a')= Tr(C(_IpCZ,), (3.1 For many situations, and especially for the analogous situ-
o o ation in quantum cosmology, the Hamiltonian has a continu-
where the histories are characterized by the class operatogeis spectrum so the energy eigenstates are not normalizable

C,, which satisfy in the usual inner product,
S c,-1 32 Wilw) =[x wicow. @7
and therefore A way to deal with this has been developed, and goes by the
name of the induced inner product, or Rieffel induction
D(a,a')=Tr p=1. 3.3 [34,22. Consider the eigenvalue equation
o H[ Ve, ) =E|Pgy), (3.9

In nonrelativistic quantum mechanics, the class operators are
given by time-ordered sequences of projection operators Where\ denotes the degeneracy. These eigenstates will typi-
cally satisfy
Cz_z: Pan(tn)' o Pal(tl) (34)

(Ve | Ve =8E—E") (3.9
(and by sums of terms of this folmwhere @« denotes the
string of alternativesy;, a, - a,. The theory is, however, from which it is clear that the inner product diverges when
more general than this and we will exploit this generality E=E’. The induced inner product on a set of eigenstates of
here. fixed E is defined, loosely speaking, by discarding the

Intuitively, the decoherence functional is a measure of thdunction S(E—E’). That is, the induced or physical inner

interference between pairs of histories ¢’. When its real ~ product is then defined by
part is zero fora# ', we say that the histories are consis-
tent and probabilities (Wen [Ver)phys= e - (3.10

p(a)=D(a,a) (3.5  This procedure can be defined quite rigorously, and has been
discussed at some length in Rdf34,22. We will use it here

obeying the usual probability sum rules may be assigned tto construct the decoherence functional. A simple prescrip-
them. Typical physical mechanisms which produce this sitution for using it in the decoherence functional is to regularize
ation usually cause both the real and imaginary part okach propagator and energy eigenstate by using a different
D(a,a') to vanish. This condition is usually called decoher-energy for each. The final answer will then involve a number
ence of histories, and is related to the existence of so-calledf § functions in energy, as in Eq3.9), which are simply
generalized recordd 0,33 dropped.

104009-6



LIFE IN AN ENERGY EIGENSTATE: DECOHEREN . . . PHYSICAL REVIEW D 65 104009

The induced inner product normalization for the waveThe exponential factor now effectively regularizes the phase-
functions does in fact suggest a normalization scheme for thgpace distribution functionwgg is constant along the classi-
corresponding classical phase-space distribution functiorgal trajectories, butvggs is not, and, in the normalization
which, recall, is not normalizable in the case in which the(3.15, the part of the integral along the trajectories is an
classical trajectories are infinitesincew is constant along integral overs which produces the function.
those trajectorieés The idea is to consider the normalization

of the Wigner function in the quantum case. This is defined C. Construction of the decoherence functional

by
The next part of the construction of the decoherence func-
—ip. tional is the class operator§,,. These are to describe his-
— n ip-v 1 _1 a
W(p.X) (2m)" f dve pX+32V,X=3V) tories of fixed energy which do or do not pass through the
(3.11 region A without regard to time, denotedl=A anda=A,
with inverse respectively. We follow Refd.21,22, in part.
Consider first the amplitude to go frokg at timet=0 to
_ X+ X; at timet= 7 passing through the regiak, or not, at any
p(x,y)=f d"p €P- YW p, T) (3.12  time in between. This is given by
i
(see Refs[35,36 for properties of the Wigner functignFor ga(xf,¢|x,0)=f Dx(t)exp{ﬁS[x(t)] ,  (3.2)
an energy eigenstateV’ ), we first of all construct a regu- @

larized density operator,
where the sum is over all pattét) with t in the rangdO, 7|

peer=[Ve) (Ve (3.13 which pass through, or never pass through. It therefore
which is normalized by satisfies
Tr(pge’) = 6(E—E') (3.19
> 9,=0a+03=0, (3.22
hence the corresponding Wigner function is normalized ac- @

cording to
whereg=g(X;,7|Xo,0) is the unrestricted propagator. There
N AN _ Y are many ways of constructing this sort of object more ex-
f d’p ' Wee (p.x) = S(E—E"). (315 plicitly (see Refs[23,37,3§ for example, but here it is use-
_ _ _ ful to exploit the construction used in the classical case. The
Now notice that the density operator obeys the equation amplitude to pass through is therefore given by

[H.pee' ]=(E—E')peer - (3.16
Taking the Wigner transform of this equation, we obtain 9alXs 'T|X°’O):j Dx(t)expliS[x(t)])
LWee =i1(E-E)Wee, (317 % 0 f dth(x(t))—e>. (3.23
where L is the phase-space operator °
pk ¢ IV 49 Here, thed function ensures that only patkét) that spend a
£=§k: M x| oxg Ipn +Lg. (318  time in excess o in A contribute to the sum.

The class operatdC, is a propagator at fixed enerdy,

Itis a sum of the classical Liouville operator, plus a tefgn S, SO this is given by
describing quantum modifications.
We may now see how to normalize the classical case. We o _
take the classical distribution function to be described by Eq. (Xt Calx0) = f dre '®7g,(x;,71%0,0).  (3.24
(3.17) with the quantum ternC, set to zero. The Liouville o
operator may then be written
When g, is replaced with an unrestricted propagator, we
e da (3.19 require that Eq(3.24 is annihilated byH —E, and this is
' why we choose an infinite range for rather than a half-
infinite one[39-41]. (As we shall see below, whey, is a
for some parametes; and Eq.(3.17) may be solved, with the restricted propagator, we encounter some difficulties here,

result although the correct range faris still the infinite one. The
' ) total (regularized decoherence functional is therefore given
WEEr:e_Is(E_E )WEE' (32@ by
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o o o path integral one, but satisfies the constraint equation every-
D(a,a')ZJ d"x; d"xg anéJ_wde_xdT' e 'Felt T where[22]. A way to do this is to first compute the class
operatorC, when one of the end points is inside This
X JalXt, 7|X0,009%, (Xt , 7' [X5,0) defines a solution to the constraints for one end point inside
and the other outside. We thetfefine C, to be the object
X‘I’EO(Xo)‘I’Eé(Xé)- (3.25  which satisfies the constraint everywhere and matches this
expression for one end point inside and the other outside.
This may also be written as An example of this difficulty was encountered and solved

in Ref.[23], which concerned the decoherent histories analy-
w ® o sis of the relativistic particle. Suppose one considers the
D(C&OI')ZJ de dr’ e 'F7eE " class operator for propagating between spacetime paiits
T and x#, with the restriction that the paths never cross the
, . spacelike surface®=const. This object, denote@} (X;,X,),
X LDX(I)L,DX (DexpliSe[x(1)] is readily constructed using the free propagator together with
the method of images. However, it does not satisfy the con-
—iSS’[X’(t)]}‘I’EO(Xo)‘I’EI(Xé) (3.26  straint everywhere: the constraint operating@ngives aé
0 function on the spacelike surface. One can also see physi-
cally why there might be problems here. Suppose for sim-
e|5Iicity that Xy andx, are timelike separated and consider the
trajectory of a classical particle passing through these two
points. Such a trajectory, if extended beyond these points,
2 D(a,a')=68(E—Ey) 8(E'—E() 8(Eq—Ey). must crossevery surface of constanx®. Similarly, in the
aa’ quantum theory, there are no nontrivial solutions to the
(3.27 Klein-Gordon equation that are zero on one side of a space-
like surface. Hence the only sensible possible answer for the
In the induced inner product scheme, we therefore replacgliass operator for this situation &, = 0. This is indeed the
the right-hand side by 1, verifying that the construction issolution used in Ref[23] and led to physically expected

where note that the two actions in the path integral are ov
different ranges of time. It is straightforward to show that

correctly normalized. results.
This issue concerning the replacement of the original
D. Modified class operators class operators with modified ones is related to the fact that

_in the original class operatdB.28), the functions restricting

oo ; . e paths to enter the regidninvolve a time integral over a
difficulty in that the class operators defined by £824) do finiteF:) interval [0, 7], whe?eas the classical resgﬁ.li%) in-

not satisfy the constraint equation. We have, for example, fO{/olves a similar restricting function but with a time integral

the class operator for paths that enter the region over an infinite range. If a finite range is used in the classical
result, it is no longer reparametrization-invariant, as we saw

Ca(Xs ,xo)zf dre*‘ETJ’ Dx(t)expliS[x(t)]) in Sec. Il. This is why we discussed the classical result at
o such length.

- The construction of these modified class operators is cru-

X 6 f dt fA(x(t))—e). (3.28  cial to the construction of the decoherence functional for

0 reparametrization-invariant theories. It is probably fair to say

that the method suggested above for constructing them has

It may be shown that this satisfies the constraint everywheraot at this stage been fully explored. We will show below
except on the boundaries of the regidnThat is, there is a that a physically plausible modified class operator is readily
discontinuity as one of the end points crosses the boundaryonstructed in the semiclassical approximation, but a more
of A. This is an issue because a basic rule of the game ahorough investigation of this issue will be deferred to a later
constructing the decoherence functional for these systems fsublication. It should also be noted that reparametrization
that we only work with objects which satisfy the constraintinvariance can be rather subtle. For example, the path-
equation(or operators which commute with) itMathemati-  integral constructed class operators E2j28 certainly ap-
cally, this is to ensure that the underlying symmetry, rep-pearto be reparametrization-invariant at the level of symme-
arametrization invariance, is fully respect@hle induced in-  try transformations at the Lagrangian level, yet do not quite
ner product, note, is defined only between objects whiclsatisfy the constraint. Here, we have used the expression
satisfy the constraiit Physically, it is related to the fact that “reparametrization-invariant” to mean satisfying the con-
the universe is a closed system, and measurementgtbkit  straint everywheréor having a zero Poisson bracket with the
class operators are generalizations of the notions of measurglamiltonian everywhere, in the classical dagéhis issue is
men) must not displace its wave function. related to the connections between Lagrangian and Hamil-

Because of this difficulty, it is necessary to define a modi-tonian symmetries, and between the path integral and Dirac
fied class operato€, which is as close as possible to the quantizations. See Ref21,41] for further discussion.
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IV. THE SEMICLASSICAL APPROXIMATION TO THE (4.5), this matrix is in fact singular and the expression for the
DECOHERENCE FUNCTIONAL AND PROBABILITIES prefactor is more complicatdd2,43.]
The semiclassical form.7) satisfies the constraint equa-

We may now compute the decoherence functional. It is tion (i.e., is annihilated by — E) in the WKB approxima-

tion, as it should. If the classical trajectory froxp to X; is
D(a,a’)zf d"x; d"xg d"yq C.(Xs,Xg) unique, there will be just one term in the semiclassical ap-
proximation. If there is more than one, there will be a sum of
X CF(Xt,Yo) ¥ (X0) ¥* (Yo)- (4.1  similar terms, one for each trajectory. For the moment we

will assume that there is just one. We will also assume that

(For convenience, here and in what follows we will in fact the extremizing classical solution is real, and thus the action
drop the notation involving different values Bfto regular-  A(x;,Xg) is real.
ize the expressions, unless neces$dny.see how the semi- With the restriction that the paths must pass throdgh
classical approximation works out, in this section we will we expect that the class operator will be given again by Eq.
assumedecoherencéfor example, by restricting to special (4.7) when the classical path passes throdghand will be
initial stateg and concentrate on the construction of the prob-zero when the classical path does not pass thralgh is
abilities that the system passes through the regiowe will then not difficult to see that the modified class operator for
return to the question of decoherence for general initial statethis case may therefore be written
in Sec. VI.

We begin by computing the semiclassical approximation .
to the modifie_d class op_erat_@g(xf X)) Reqall that it is CA(Xq ,Xo)=0<f dt fA(X(f)(t))—e) P(X; ,Xg) €A X0)
given by a suitable modification of the path integral expres- —»
sion(3.28 with one end point insid& and the other outside. (4.9
In the absence of any restrictions on the paths, the path in-
tegral will be dominated by the classical paths connecting th
initial and final points. The classical paths will be the solu-
tions to the equations of motion

$he 6 function here is the same as in trewritten classical
case EQ.(2.13 in terms of “initial” and “final” points,
wherex{)(t) denotes the classical path frogto x; . (This is

M+ VV(x)=0 (4.2) '?ri(;t(:tly as in the classical case depicted in FigNbte also
which satisfy the boundary conditions
X(0)=%, X(r)=X:. @3 VA. va( J:dt N e) =0 (49
In addition, these paths must satisfy the constraint equation
M2+ V(x)=E. (4.4 as may be shown by shifting thentegration. It follows that

the modified class operator is a WKB solution to the con-
straint equation, as required. We have therefore succeeded in
‘computing, in the semiclassical approximation, a modified
class operator satisfying the constraint equation everywhere,
corresponding to the restriction to paths passing through the
region A. This is a very simple result but turns out to be

1 crucial to the rest of the derivation.

——(VA)?+V=E. (4.5 It is important that is integrated over an infinite range in
2M the quantity inside thed function, otherwise the modified

This equation determines the timdn terms ofx,, x;, and

E, hence the final form of the extremizing paths has no ref
erence to time. It is also useful to introduééx;,xg), the
classical action fronx, to x; . It obeys the time-independent
Hamilton-Jacobi equation with respect to each end point,

The initial and final momenta are aiven by derivatives of theclass operator would not in fact satisfy the constraint. Recall
classical action 9 y that the originally defined class operator E824) contained

a similar @ function, with a finite range of time integration,
=V AX; . Xo), — Vo A(X . X0). 46 WhICh one n’yght_ have bee_n tempted to use in the ser_nlclas—
P iAXr %), Po oA(Xr Xo) 49 sical approximation, but this class operator does not in fact

The semiclassical approximation to the unrestricted pati$atisfy the constraint.

integral is given by a sum of terms each of the form Hence we see that the difference between the modified
and original class operators in the semiclassical approxima-
G(Xs ,Xg) = P(X¢ ,X) €AX1 X0), (4.7  tion is the difference between using the entire classical tra-

jectory or using finite segments of it in thefunctions. We
The quantityP is a prefactor, whose specific form is lengthy also see that these modified class operators are the correct
to calculate, but will not in fact be requireffzor the case of ones to use in order to be consistent with the discussion of
the time-dependent propagator, the prefactor would be givethe classical case and E(2.13. There, we saw that it is
in terms of the determinant of the matrix of second deriva-appropriate to sum over classical paths intersechiryen if
tives of A(X;,Xg). Here, because of the constraint equationA does not lie on the segment of classical trajectoetween
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Xo andx . This feature therefore appears to be necessary fdtirther discussion of reparametrizations in this sort of con-
the particular type of reparametrization invariance used herdext.)

Only the entire trajectory is reparametrization-invariant no- The off-diagonal terms of the decoherence functional are
tion. A finite section of trajectory is nof{See Ref[41] fora  now given in the semiclassical approximation by

D(A,K):f d"x; d™x, d, 9( f dth(xg(t))—e)

1—0( fldth(yB(t))—e>

X P (Xt ,X0) P* (Xt ,Yo) eXH IA(Xs ,X0) —1A (Xt ,Y0)1p(X0,Yo0)- (4.10

It is now essentially a sum over pairs of classical paths, and thactions restrict the paths to either pass or not pass through
the regionA. We see also from the invariance property of thieinctions, Eq.(4.9), that they are invariant under shifting the
regionsA , along their classical trajectories. This is the expression of the idea that the decoherence functional, in the semi-
classical approximation, knows only about entire trajectories.

It is now convenient to introduce the variables

Xo=3(Xo+Yo), V=Xo—Yo (4.11)
and thus
Xo=Xo+ 3V, Yo=Xo—3V (4.12

and we also rewrite the density operator in terms of the Wigner functiof&&Hl). We will discuss the detailed mechanism

of decoherence in the next section. For the moment, we will simply assume decoherence, which essentially means assuming
thatv is concentrated around zero, and work out the form of the probabilities. Although we note that this assumption can be
justified for initial statesp(Xg,Yo) Which are approximately diagonal in position. We nowset0 in the prefactord® and in

the 6 functions, and we obtain the probability

pA:f d"x¢ d"Xod"w d"p e(f dt fA(X{J(t))_€)|P(Xf,Xo)|zeXF[iA(Xf,Xo+%V)_iA(Xf,Xo_%V)"“ip‘V]W(p,Xo)-
(4.13

Expanding the action terms to linear ordeniridecoherence again allows us to drop the higher-order jetimesy integral
may be performed and we obtain

pA:J d"x;d"Xod"p 9( f:dt fA(XB(t))—€>|P(Xf,Xo)|25(n)(p+VoA(Xf,Xo))W([lXo), (4.14

whereV, operates on the initial pointy. Finally, the inte- V. SYSTEMS OF HARMONIC OSCILLATORS
gration overx; may be performed. Thé-function constraint

then means that the quanti)%(t) (the classical path from de
X, to X¢) is replaced byx°(t) (the classical path with initial
dataXg, pg). Although we have not worked out the explicit
form of the prefactoiP, we deduce that it must in fact drop
out when thex; integration is carried out, because the prob-
ability must equal 1 when thé function is removed[From
this we deduce thaP(x;,X,)|? must be the Jacobian factor
in the change of integration variables from; to
VoA(X:,Xp).] We therefore obtain the final result

There is one simple system for which the discussion of
coherence and probabilities is particularly simple, and this
is the case of a collection of harmonic oscillators. It also
enjoys the property that its spectrum is discrete, hence the
induced inner product is not required for normalization.

In nonrelativistic quantum mechanics, in the search for
emergent quasiclassical histories, it is of interest to consider
histories characterized by strings of phase-space quasiprojec-
torsP-. These are positive Hermitian operators concentrated
on a regionl’ of phase space, but are not quite projectors

o since they only hav@%wPF. Omnes has proved an impor-
pA:f d"X, d" 0( f dt f(X°(t))— E)W(D,Xo)- tant theorem about these projectors, which is essentially that
o 4.1 they are approximately preserved in form under unitary evo-
: lution and moreover approximately follow classical evolu-
As expected, this is the classical result E2.10 with the  tion[12]. That is,
classical phase-space distribution function replaced by the . -
Wigner function. e MPreli~Pr, (5.9)
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wherel’; is the classical evolution of the phase-space kell |¢px)ﬁ|¢p ) =eEs| Do) (5.9

The approximation holds when the phase-space cells are sig- e

nificantly larger than a quantum-sized cell, and for times notTwo timeless coherent states of different energy are exactly

so long that wave-packet spreading becomes significant. lorthogonal. If they have the same energy, then they are ap-

the special case of the harmonic oscillator, the approximatioproximately orthogonal if they correspond to sufficiently dis-

holds for all time. This result allows one to show that, first, tinct classical solutions. They also obey a completeness rela-

histories of phase-space projectors are approximately decgion,

herent for a wide variety of initial states, and second, that

their probabilities are peaked about classical evolution. Dif- dNp dVx _

ferently put, on sufficiently coarse-grained scales, quantum f (2m)N | b (Ppx| = S(Ho—E). 5.7

systems have an approximate determinism that ensures deco-

herence and approximate correspondence with classiclNote that the notatiod(H,— E) is a rather loose one. This

physics. object is really the projection operator onto the subspace of
It seems reasonable to suppose that the timeless modetsergy E, for which it is exactly true thats(H,—E)?

considered here might have analogous properties. We wik= 8(Ho—E).] Since 8(Ho—E)|#)=|) on any solution to

demonstrate this for a system of harmonic oscillators in arthe eigenvalue equatiot—E)|¢) =0, this is essentially a

energy eigenstate. The Hamiltonian for a sefN\ofdentical ~completeness relation on the set of solutions to the eigen-

harmonic oscillators is value equation. We may therefore write any solutighas a

superposition of timeless coherent states,

Ho=13(p*+x%)—3N (5.2)
dVp dVx
(the factor of 3N is included to subtract the vacuum state [y = f W|¢p><><¢px| ). (5.9
energy and avoid certain phase facjofithe standard coher-
ent stategsee Ref[44] for example are denotedp,x) and Given these preliminaries, we may now discuss the deco-
they have the important property that they are preserved iherence functional. We will consider coarse grainings in
form under unitary evolution, which the paths in configuration space either pass or do not
. pass through a series of regions denaledA,A,,.... We
e~ "o p,x)=|p;,xy), (5.3 will take A;, A,,... to liealong a classical path. Hence we
) ) ) need at least two such regions to fix a configuration space
wherep;, X, are the classical solutions matchipgx at t ath.

=0, hence they are strongly peaked about the classical path. The decoherence functional, in terms of the modified

less analogues of the usual coherent states. They are

| ppx) = S(Ho—E)|p,x) D(A,K)=J d"¢ d"%o d"yo CA(Xt,Xo)
2n dt % *
- f S e o Bp XCE (X YW oW (o). (5.9)
0 v
2m dt The modified class operat@} (X ,Xo) is given by Eq.(4.8),
:f — &' p, ). (5.4) so it is equal to the unrestricted semiclassical propagator
o 2m whenx; or Xq lie on the classical path specified Byand is

zero otherwise. AlsoC = 8(Ho—E)—Cj}.

We first consider the case in which the initial state is a
timeless coherent statgp,). It is then straightforward to
see that

These states were referred to in H&f7] as “timeless coher-
ent states”(see alsd14,45). They are exact eigenstates of
the Hamiltonian,

H0|¢px>: E|¢PX>‘ (55) CA|¢px>%|¢pX> (5'1@

Furthermore, since the coherent stalps x,) areé concen-  \hen the trajectory labeled by the fiducial poiptg passes
trated at a phase-space point for eachmtegratingt over a through the regiona, and

whole period produces a state which is concentrated along
the entire classical trajectory. They are therefore the natural Cildpm) =0 (5.11)
analogues of the usual coherent states. Their properties are
similar in many ways to the usual coherent states and aretherwise. Also, since
described in more detail in Ref27].

Each state is labeled by a fiducial phase-space gmint S(Ho—E)[dp0) =1 dp) (5.12
which determines the classical trajectory the state is peaked
about. Under evolution of the fiducial poipt x to another it follows that
point, ps, X5, say, along the same classical trajectory, the ,
state changes by a phase, Clp)=0 (5.13
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when the trajectory labeled by, x passes throughA. From dVp dNx

these results it is easy to see that the decoherence functional Po=f W|¢px><¢px|- (5.21
is approximately diagonal. Furthermore, the probability for b

entering the regiona is then approximately 1 or 0, depend- Moreover, since the timeless coherent states) are exact

ing on whether the classical trajectory of the timeless COheréigenstates ofl,, we have that
ent state passes through

Now consider the case of a more general initial state. We [Pp,Ho]=0. (5.22
expand it in timeless coherent states, as in B@). Using
the above results, we therefore find Hence, we see that the result may be written in the standard
dNp dNx quantum-me_chanical form fqr a probability, in terms of an
CL|¢’>*J' | B Doxl ). (5.14  operator which commutes with the constraint.
p (2m) PR The result here, of approximate decoherence and simple

) expressions for the probabilities, like the corresponding non-
Here, D denotes the set of phase-space pomts whose relativistic result is due to the approximate determinism con-
classical trajectories pass through the regian® configu-  tained in the quantum theory. It works only when we ask for

ration space. Similarly, the probabilities for approximately classical histories. To ob-
dNp dNx tain prob_abilities for more cpmpligated histories, ar]d for sys-
CHy)~ f——N | o) Doxl 1), (5.15  tems which are not harmonic osm!latcﬁvshere there is wave
A p (2m) P P packet spreadingwe need an environment to produce deco-
herence.

whereD denotes the set of phase-space points whose classi-
cal trajectories never pass throughClearly we again have
approximate decoherence, because of the approximate deter-
minism. We may therefore assign a probability for passing As stated above, the decoherence functional is typically
throughA, not diagonal for most initial states, and a physical mecha-
N N nism is required to produced decoherence. In this section, we
Nf d"pd X| )P 51 therefore consider the addition of an environment to produce
Pa™ D (277)'N (Do DI". (5.16 decoherence of histories. The results of this section therefore
simply justify the assumed decoherence of Sec. IV, and little
It is the integral over the phase-space regloaf the phase- affect the final result of the probabilities, but it is important
space distribution functior ¢,/ #)|*. Because|y) is an  to see in detail how this works.
eigenstate of the Hamiltonian, it is easy to see using the

VI. DECOHERENCE THROUGH AN ENVIRONMENT

definition (5.4) of the timeless coherent states that A. Semiclassical approximation to the decoherence functional
<¢px| 1ﬁ>=(p,x|¢) (5.17) - with environment B -
For what we will do here, the specific form of the envi-
and so the probability now is ronment turns out not to be very important. But for definite-
ness, we take the environment to be a large collection of
_ d“p dx 2 harmonic oscillators with coordinates denotggd, whereA
Pa~ JD (2m)N Kp x| (5.18 runs over a large number of values, with a linear coupling to

the system. For notational simplicity, we will assume that for
It is then a standard result that the integrand is in fact @ach system coordinatein the n-dimensional configuration
smeared Wigner function, space there is a set afoscillators with coordinate for the
environment. The case of more oscillators is easily obtained
from this. The total action of the system is

(px] tlf>|2=f d"p’d"x’
S=S[ x]+ S¢ [x,0] (6.2)
X e~ V2AP=P) 2= 120X\ p! x'). (5.19
and the corresponding Hamiltonian is
This object is positive even though the original Wigner func-
tion W of |¢) is not[44]. Hence we obtain a result which is H=Ho(x) +H(x,q). (6.2
essentially identical to the classically anticipated result

(2.10, with a smeared Wigner function as the phase-spactVe shall assume that the state of the whole system has the

distribution function. form
It is also of interest to note that the result for the prob-
ability may be written in the form W (x,q)=¢(X) x(x,9). 6.3
pa={¢|Ppl| i), (5.20  This may be inserted into the Wheeler-DeWitt equatieh (
—E)W¥ =0 to obtain a perturbative solution about the solu-
wherePyp is the approximate projection operator tion with no environment. We will concentrate on the case in
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which the wave function is of oscillatory form, so the back- _ o ;
ground solution is of WKB form, D(A-A):f d"x; d"xo d"yg 9( J_wdt fA(Xo(t))_f)
#(x)=C(x)e'SX, (6.4) .
x| 1— a( J dt fA(yg(t))—e)
whereS obeys the Hamilton-Jacobi equation -
L(VS)2+V(x)=E (6.5 X P(X¢ ,X0) P* (Xt ,Yo)
andC obeys the equation X XA Xo) —IA(XsYo)]
X F (Xt ,X0,Yo0) ¥(Xo) ¥* (Vo). (6.11

V2C+2VS-VC=0. (6.6)
-~ Here,F(X;,Xq,Yp) is the influence functional with the semi-

The environment wave functions obey the Schinger equa-  classical approximation for the system variables inserted.
tion That is, forx(t) we insert the classical trajectory froxg to

. Xt in time 7, and the value of-is then determinedin terms

IVS-Vx=Hex. 6.7 of X, and x;) by the constraint equation, and similarly for
Sy(t). The decoherence functional is again essentially a sum
over pairs of classical paths for the system variables, the path
from x, to X, and the path frony, to x; .

We will consider the case of a superposition of WKB state
in Sec. VII.
The decoherence functional is now

o oo BB B. Calculation of the influence functional
D(a,a’ :f de dr'e 'F7e'= 7 . . .
( ) — —w We may now calculate the influence functional with the
semiclassical approximation for system variables inserted.

Xf Dx(t)f ,Dy(t)exp[isg[x(t)]—isgr[y(t)]} The influence functional may be written

— n
X F[X(t),y(t),T, T’]'ﬂEO(XO) ¢“’|;6(y0) (6.8) F(Xf 1X01y0)_ f d Qs ¢(qf 1 Xf 1X0)
X * 1X 1 ’ 6-1
(suspending for the moment the necessity to use modified ™ (4 i Yo) 612
class operatojs Here Sj denotes the action over the fixed where
time rangd 0, 7] (and note that the time ranges are different
on either side of the decoherence functign@he influence

— n
fUnCtionalF[X(t),y(t),T, 7_/] is given by ¢(qf W Xt 1XO)_I d Yo g(qf y Xt aq01X0)X(q01XO)'

(6.13

FIx(),y(t),7,7"]= f Dq(t)Dr(t)exp(iSg [x,q] Here, we have introduced the propagator for the environment
variables along the system classical trajectory fogno x; ,

—iSz [y,r]) x(Xo,00)

Xx*(Yo.To)- (6.9 g(qf’xf|q0’X0):f Dq(t)exp(iSg [x(1),a(t)]).

(6.149
It is different in form from the usual influence functional in ) ) )
two ways. First, the time ranges on either side are not thd "€ environment statg may be normalized according to
same, and secondly, the initial statelepends on the system

variablesx, with a different dependence on either side of the f d“q|X(q,x)|2= 1 (6.15
influence functional. The functional integral is over all pairs
of pathsq(t),r(t) which meet at the final point, for all x. Sinceg propagateg unitarily along a fixed system
, trajectory, it follows that
an=r(r), (6109 TN

and this point is summed over. The paths also match the f d"g¢| p(as X5, X0) 2= 1. (6.19
initial valuesqq,ro, which are then folded into the initial
state. _ _ _ . This means that the influence functional satisfies

It is useful to go now to the semiclassical approximation
for the system variables. We also now recall that we must use [F(X,%0,Y0)|?<1 (6.17

modified class operators for the system varialitess does

not affect the environment dynamics at this level of approxi-with equality whenxy=Yyq, indicating that the influence
mation. The off-diagonal terms of the decoherence func-functional is peaked about=Y,, which is the decoherence
tional are now given by effect we need.
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The influence functional is difficult to evaluate in general. when there are a large number of oscillators in the environ-
It can be evaluated exactly when baland y are Gaussian. ment. We have therefore obtained the influence functional, as
It is also effectively Gaussian in form if we have a large required.
number of oscillators in the environment, for then the many-
oscillator influence functional is essentially the original one, c. Reparametrization invariance in the influence functional
Eq. (6.9, raised to a high power. This strongly enhances the

peaking abouk,=y,. A simple and reasonably general form The form of the influence functional indicates, as ex-

for the influence functional may therefore be obtained by\?viﬁid;&that _':_T]?rei IStha supp:edssmrr]] Orf Lnterf(#erlczf(\)/\rl ;:\)/atrhs
expanding abouk,=Y,, and assuming either a Gaussian 07 Yo- 1NIS IS the usual deconerence etiect. However,

fom or a arge numoerofcsolatotor bot e TG e S
We again use the coordinat¥g, v defined in Eq(4.17). ) pie. P
functional depends, in some sense, only on

We have T . " ; . .
reparametrization-invariant quantities, and in the semiclassi-
(s, X¢ ,X0) = b X5, Xo) cal approximation used here, this means it depends on entire
classical pathdrather than individual poinjs Differently
+3029,0(qs ,Xs , Xo) put, we do not expedfor need the destruction of interfer-

ence for pointxg, Y, lying on thesameclassical patiicon-
necting each tas), since these points are effectively equiva-
(6.18 lent. What we expect is that the influence functional will not
be exponentially small wher;, Xq, Yq lie along a single
whered,=ad/9Xg. Inserting in the influence functional, and classical path. We must therefore see how reparametrization
also introducing the notatioth= ¢(ds ,Xt,Xo), we get invariance is expressed in the influence functional.
We first note that

+ 5020 00p B (s X, Xo) + 07,

F:1+%Uaf d"q( 5 dabo— Podaths)
¢o:f d"go 9(qs,X¢|do, Xo) X(0o,Xo).  (6.24
+labJ "At( bf dadpdo+ Podadndiy
50°v” | d0i(¢o dadobot Podadndo Let us see how this quantity varies wiky. If this were the
usual nonrelativistic quantum mechanics, with propagation

— * DY
20abodobp) T+ - (6.19 from initial time t, to final timet;, then¢y would in fact be
By differentiating the normalization ap, Eq. (6.16), we see mdepen_dent of. We expect a slmllar property here, tha_t 1S,
that that ¢ is constant(as a function ofXy) along a certain

vector field. The initial statey(qgg,X,) obeys the Schro
dinger equation

1VoS(Xo) - Vox=H,(do,Xs,Xp) x- (6.29

The propagatorg, on the other hand, obeys ScHiager
equations with respect to both the final and initial points,

f d"gy ¢of7a¢3:_f d"as dadodo (6.20

and

J d"( podadpd + o Iadpdo) )
iViA(Xs,Xo) - Vig=H_ (s , % ,X)Q, (6.26

=—f d"0¢(dabodndg + dpbodacy).  (6.21) IVoA(Xt,Xo) - Vog=H(0o.Xs,Xo)g- (6.27)

[Note that the expected minus sign in the Sclimger equa-
tion with respect to the initial point is already contained
through the fact thaVA is minusthe initial momentum, as
F=14i0%Ty— 202" g+ - in Eq. (4.6).]"Now the point is here thay and y obey
different Schrdinger equations, so at this stagg, does
~exgiv?l =30 (Sap—Talp)]+--. (6.22  not obviously have any constant directions Xg—neither
. , VoS- Voo nor VoA- Vg are zero.
The coefficientd’, andX,;, are given by However, as we saw in Sec. Ifvithout environment
i the path integral enforces the conditips — V A. We an-
T a(X,Xg) = _f d"q¢(Ppodadbts — bE dacho), ticipate that this condition is approximately enforced with
2 the environment in place. Furthermore, the initial Wigner
(6.23  function for a WKB state is of the approximate form

Using these relations, we may now write the influence func
tional as

a0 Xo) = | darducoinds. W(P.Xo)=|C(Xo)|28(p— VoS(Xo)).  (6.28

The approximation of writing- as a Gaussian becomes exactlt follows that the sum over paths is dominated by configu-
wheng and y are Gaussian, and is also true approximatelyrations for which
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VoA(X;  Xo)~ — VS. (6.29 va,=0, ©v23,,=0, (6.31)

This means that the trajectories 8fare the same as the , _ :
classical trajectories fron, to x; . From this it is then easy Which means that the influence functional does not suppress
to show that interference between points on the same trajectories, only

between points on different trajectories. That is, when the
conditionp= — VA is true, we get the expected result that
VS(Xo) - Vpo=0 (6.30 the influence functional is a function only of entire trajecto-

ries, and not of the individual points along those trajectories.
(essentially for the same reason that the analogous nonrela-

tivistic version is independent of the initial tintg). In the
influence functional, two neighboring pointg, yo, on the
same classical trajectory hawe=Xxy—Yyy proportional to The off-diagonal terms of the decoherence functional may
V,S. It follows that now be written

D. Decoherence and the evaluation of the v integral

D(A,K)=J d"x; d"Xo d"v d“p&( J, dth(xg(t))—e) P(Xt,Xo+3V)P* (¢, Xo— 3V)

1—0( fidtwy&(t))—e)

X exp(i[ VoA(Xs,Xo) +P]- v+ O(V3)}W(p, Xo)expliv T s = 3070 o), (6.32

where VIC, in which xq, Yg, X; lie along the same classical trajec-
tory. That is, the coarse graining is such tkds never pro-
Tap=2ap~ al'p (633 portional to V,A, and the potentially singular situation
and we have again introduced the variablgs, v in the  (6.31) does not arise. The influence functional therefore does
exponential part. The decoherence functional is a sum ovéfS job of suppressing the contribution from nonzero values
pairs of classical paths, one set of paths intersectygx; of v to a decoherence width determined by the inverse of the
and passing through at any stage along the path, the othernonzero eigenvalues ofr,,. If the size of the coarse-
set of paths intersecting,, X; and never passing through  graining regionA is greater than this width, then the off-
at any stage along the patbee Fig. L It is easily seen that diagonal terms of the decoherence functional are approxi-
for this particular coarse graining, in which we are interestednately zero.
in paths that either pass or do not pass through the refjion ~ We therefore have approximate decoherence and we may
we do not in fact encounter the situation discussed in Se@xamine the probability for passing through which is

p(A)=J d"x; d"X, d"v d"p 6(f dt fo(X5(1)— €| P(x¢,Xo+ 3V)P* (X, Xo— 2v)exp{i[ VoA(X ,Xo) +p]-V

+O(V3)}W(p,Xo)expivdT ,— 302 0,y), (6.39

wherev has been set to zero in tligunction. We are now summing over pairs of classical paths whbath pass through the
regionA, so now we do have the possibility &f, Yy, X; lying along the same path, and hence the mattjx is potentially
singular, by Eq(6.31). This means that some care is necessary irvthrgegral.

If we formally carry out the integral over, we get

pa= [ ano o of [ at 00— PO ol Awp. o

X exp{ — 5[ VoA(X;,Xo) +p+T 120, [ VoA(Xs , Xo) + p+T1°}. (6.35
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Changing integration variables fromx; to pg= A1,A,,.... Theabove result then shows that the probability
—VoA(Xs,Xp). This is conveniently written is peaked when the series of regions lies along a classical
path (plus the environmental effects of a small backreaction
pA:J d"po d"X, a(f dt £,(X° (1) — €| W(pg,Xo), and small fluctuations
(6.36 VIl. SUPERPOSITION STATES
where we have defined the smeared Wigner function The calculations of Secs. IV and VI concerned only single
WKB states of the form(6.4). It is therefore important to
~ _ n 1,0 Tha reconsider the decoherence calculation of Sec. VI for the
W(Po,Xo) f d"pexi —2(Po—pP~1) more general case of a superposition of WKB states,

X 05 (Po—P—T)°IW(p,Xo). (6.37) V=V, +W,=C,e'S1y,+C,e'S2y,. (7.2)

Again the prefactor® drop out in the change of integration This turns out in fact to be quite straightforward, mainly
variables, as in Sec. IV. This smearing of the Wigner functionpecause similar calculatior@volving the reduced density

represents environmentally induced fluctuations about thenatrix, not the decoherence function&lave already been
classical evolution, and the small additional tefmn the  done.

eXponent represents the backreaction of the environment on |nserting Eq(?]_) in the decoherence functionaL we ob-

the classical equations of motion. tain a result of the form
As stated, the resul{®.31) suggest that the matrix,, is
singular, but it is easy to see the significance of this. When D=D;+ Dyt Dy;+ Dy, (7.2

the matrix is nonsingular, the integral produces a Gaussian

peak aboutp,=p+TI', which, as we have seen, representswhere, in an obvious notatiol,; is the decoherence func-

fluctuations about classical evolution. If the matrix is singu-tional with initial density matriyW¥,)(¥,|, D, is the deco-

lar in a certain direction, it is easy to see from B34 that  herence functional with the operatol ,)(¥,| is the initial

the v integral in this direction will produce & function,  state slot, and so on. Clearly the analysisDaf andD; is

instead of a Gaussian. It will still be peaked about the samélentical to the case considered already—we get decoherence

configuration, but there are no fluctuations in that direction.and probabilities given in terms of the Wigner functions of
The result for the probabilities therefore approximately'V'; and¥,. Hence these two terms correspond to a statisti-

coincide with the classical result, E€2.10. We have con- cal mixture of the two initial states.

centrated on the case in whighis a single region of con- The interesting terms arB,, and D,; (=D7,), which

figuration space, but the result straightforwardly generalizesorrespond to interferences between different WKB

to the case in whichA consists of a series of regions branches. From Sec. VI, we see that

Dlz(a,a’)=fiod7'f_:d7’ e—iEfeiE’T'f Dx(t)f ‘Dy(t)exp{iSglx(t)]—iSgly(1)]}

XF 1 X(1),(1), 7,7 1C1(x0) €170/ C3 (yo) e 120, (7.3

where

Flz[x(t),y(t),r,r’]=f Dq(t)Dr(t)exp(iSg [X:Q]_ng’[y,r])Xl(Xo:%)X;(YOJO) (7.4

(as in Sec. VIA, we should then replace the class operators Clearly|F;,?°<1, and becausE, is an overlap between
with their modified version and go to the semiclassical [imit a pair of states it will typically be such thgt, is strictly less

Now it is easy to see that the influence functional is thethan 1. In this case, when raised to a high power, as happens
overlap of the two initial states, but with each unitarily when we take a large number of oscillators in the environ-
evolved along two different trajectories. That is, in the semi-ment, we will get a very strong suppression of terms with
classical approximation for the system, Xo#Yo. In particular, even whery,=y,, we get

F1o=(x2(¥o) [UT(X¢ ,Yo) U(X¢ ,X0) [ x1(X0)), (7.5

where U(X;,Xp) denotes the unitary evolution of the envi-
ronment states along the system classical trajectory ftggm which will be less than 1, quite simply becaysgandy, are
to X . different states. We therefore find tHag, andD,; are much

F12=(x2(X0)| x1(X0)), (7.6
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smaller than the diagonal ternis;;, D,,. This destruction the class operator E¢4.8) satisfying the constraint every-

of interference between WKB states therefore comes abowtheredescribing histories restricted to pass through a region

for essentially the same reason that the corresponding offA of configuration space. Having made this identification, a

diagonal terms of the density matrix are very small, as dismajor part of our work was to show that the decoherent

cussed previouslj46—49. histories approach then reduces, approximately, to the corre-
It should be noted that in E47.9), it could in fact happen  sponding classical result, but with the classical phase-space

thatF,=1, as a result of a careful choice pf# x, together  gistribution functionw(p,x) replaced by the Wigner function

with a suitable choice ofy# Yo, in particular, if W(p,x) of the quantum theory. We also explored the deco-
_ herence and probabilities for a system of harmonic oscilla-
U (¢ X0)[x2(%0)) = U (x¢ Yo) | x2(Yo))- D tors using the timeless coherent states, in terms of which the

The point here, however, is that this becomes very unlikel2Nlysis is particularly transparent and fully agrees with in-
with a large environment. With a large collection of oscilla- tUItlve €xpectations. o _
tors in the environment, the environment states are a tensor !N brief, therefore, we have shown that heuristic classi-

roduct overA of states|y*(x,)), for example, and then cally inspired_ notions of i_nterpretation for simple timeless
P x100)) P models may in fact be derived from the decoherent histories

A ; A analysis of such models. This result is by no means unex-
Fi=IT (X5(yo)|UT(x;, Yol U(xs ,%0)[x2(%0)). (7.8 pected, but the key aspects of the derivation are the elucida-
A tion of the role of the constraint and the related reparametri-

As the size of the environment goes to infinity, the possibilityzation invariance in the construction of both the classical and
of Eq. (7.8) being exactly 1 becomes negligit;le. quantum results. Furthermore, the complete absence of a

It is also of interest to look at the special case in which thd!M€ Parameter is not an obstruction to quantization.
wave function Eq.(7.1) is real (as is the case in the no- There are a number of issues which the present work has

boundary wave function of Hartle and Hawkingso that generated and will be discussed in a later publication, but we

V,=U* andy,=y* . W _ men_tion them briefly .below.
2= ¥ andxa= X henxo=Yo, we then have that First of all, the main difficulty in computing the decoher-

2 ence functional for our chosen coarse graining is the calcu-
. (7.9 lation of the modified class operators. Even before modifica-
tion, class operators of the type E@.21) are difficult to

Sincey; is generally complexit obeys the complex Schro calculate(typically they can only be obtained exactly in the
dinger equatior(6.7)], the right-hand side of Eq7.9) will very simple situations in which the method of images may be
again be less than 1, so the argument still goes thrpagh used. The suggested scheme for constructing modified op-
The argument fails if; is real. But then it would have to be €rators obeying the constraint has not yet been explored
an eigenstate of the environment Hamiltonian for all valuedully. Here, we have constructed physically plausible modi-

of X,, and this would not lead to decoherence, so we mayi€d class operators in the semiclassical approximation, ob-
disregard this case. taining full agreement with the classical results. Some exact

modified class operators for simple coarse grainings of the
relativistic particle have been constructed in R&8], but it
is not yet clear how general those results are. Hence a more

We have studied the quantization and interpretation ofletailed investigation of these modified class operators is
simple timeless models described by an equation of the typealled for.[We note in passing that, from the simple ex-
(1.1). In particular, we studied the following question: what amples in which the modified class operators have been cal-
is the probability that the system passes through a refjion culated, their calculation does in fact appear to be consider-
of configuration space without reference to time? ably easier than the original ones, Eg§.21).]

We obtained the classical answer to this problem, in three Second, we have assume@zkcept in Sec. Ythat both the
different forms, in terms of a classical phase-space distribuinitial states and the propagators are in the oscillatory re-
tion functionw(p,x), satisfying{H,w}=0, the analogue of gime. This means in the propagator that we assume the
Eq. (1.1). This function needs some care in normalizationdominant contribution comes from real configuratioraher
since it is constant along th@ossibly infinite classical or- than Euclidean or complex onesviany interesting models
bits. A very useful step in the classical case was the introin quantum cosmology have a Euclidean region, correspond-
duction of the phase-space quantity HQ®.7), which is ing, for example, to “tunneling from nothing.” It is not im-
Ssfunction-peaked on the classical path and also has a vamediately clear how the semiclassical calculation of Sec. IV
ishing Poisson bracket with the Hamiltonian, thus it is anis modified to include this case, the main difficulty being
observable. This quantity assists in understanding some asnderstanding what the class operators are. This case is
pects of the quantum theory. therefore probably related to the question of a more general

We constructed the decoherence functional, following thdormula for the modified class operators.
general scheme of Ref$21,22, using the induced inner Third, it is generally understood that decoherence of his-
product. Although the general scheme has been presentéeries is related to the existence of “record40,33. This
previously, a key part of our contribution to this area is themeans that it is possible to find a projection operd®yr
explicit identification(in the semiclassical approximatipaf ~ which is perfectly correlated with the class operatGisin

|F12|2=U ddo x3(X0,00)

VIIl. SUMMARY AND DISCUSSION
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terms of which the probabilities may be written, equation for the reduced density operator the case in
which decoherence is produced by an environméivould
be of interest to see if the discussion of decoherence and

In the case of a nonrelativistic model where decoherence i robabiliies can be reexpressed in the simpler language of
e density operator, as it sometimes can in nonrelativistic

produced by an enVIronmgnt, itis ppssmle to expllcnly Id(.:"n'decoherence models. This is currently under investigation
tify the environmental variables which store the mformatlon[so]

abou_t the systerf83]. It W.OUId be very desirable to do this in These and related issues will be taken up in future publi-
the timeless case considered here. It seems likely that thc(:aations
variables are very similar to the case of REg3], but the '
interesting question is the role of reparametrization invari-
ance in this situation, and whether the records are closely
related to observables in the operator approach. We are grateful to Jim Hartle, John Klauder, and Don
A fourth issue concerns the connection between the decdvlarolf for useful conversations. J.T. was funded by Evange-
herent histories analysis considered here and the masttsches Studienwerk.

P(a)=Tr(C,pC,)=Tr(R,p). (8.9
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