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Life in an energy eigenstate: Decoherent histories analysis of a model timeless universe

J. J. Halliwell and J. Thorwart
Theory Group, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 23 January 2002; published 29 April 2002!

Inspired by quantum cosmology, in which the wave function of the universe is annihilated by the total
Hamiltonian, we consider the internal dynamics of a simple particle system in an energy eigenstate. Such a
system does not possess a uniquely defined time parameter, and all physical questions about it must be posed
without reference to time. We consider in particular the following question: what is the probability that the
system’s trajectory passes through a set of regions of configuration space without reference to time? We first
consider the classical case, where the answer has a variety of forms in terms of a phase-space probability
distribution function. We then consider the quantum case, and we analyze this question using the decoherent
histories approach to quantum theory, adapted to questions which do not involve time. When the histories are
decoherent, the probabilities approximately coincide with the classical case, with the phase-space probability
distribution replaced by the Wigner function of the quantum state. For some initial states, decoherence requires
an environment, and we compute the required influence functional and examine some of its properties. Special
attention is given to the inner product used in the construction~the induced or Rieffel inner product!, the
construction of class operators describing the histories, and the extent to which reparametrization invariance is
respected. Our results indicate that simple systems without an explicit time parameter may be quantized using
the decoherent histories approach, with the expected classical limit extracted. The results support, for simple
models, the usual heuristic proposals for the probability distribution function associated with a semiclassical
wave function satisfying the Wheeler-DeWitt equation.

DOI: 10.1103/PhysRevD.65.104009 PACS number~s!: 04.60.Gw, 04.60.Kz, 98.80.Hw
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I. INTRODUCTION

There are a variety of interesting physical situations
which our classical view of the world inspires us to ask qu
tions that quantum theory does not easily answer. For
ample, classical mechanics concerns simultaneously sp
fied values of coordinates and momenta while quant
theory has to go through some contortions to say what
means operationally. Another important class of problems
this type are those that involve time in a nontrivial way. T
arrival time problem and tunneling time problem, for e
ample, have been the subject of considerable recent inte
@1#.

Perhaps more intriguing than these are questions in q
tum mechanics that do not involve time at all. Consider,
example, the following situation. Suppose we have a sys
of particles in a state of fixed total energy. It could, for e
ample, be a light particle orbiting a massive particle. Th
classically, we can ask whether the light particle pas
through a certain region of configuration space at any st
during its orbit. Or we can ask which of the possible classi
orbits the light particle follows. The important point here
that these sorts of questions do not involve time explici
Much experimental and observation data are in fact of
type. For example, astronomical observations yield plane
orbits, and particle physics experiments often yield a pho
graph of a track in a bubble chamber. We would like to a
the same question in quantum theory: given that the sys
is in an energy eigenstate, what is the probability that i
found in a certain region of configuration space, irrespec
of time?

The primary motive for considering this question is qua
tum cosmology@2#. There, in simple cosmological model
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the wave function of the system obeys the Wheeler-DeW
equation,

HC~x!50, ~1.1!

where H is the total Hamiltonian of the gravitational fiel
plus all matter sources in the universe. The most signific
feature of this equation is that it contains absolutely no r
erence to time whatsoever. It is usually argued that ‘‘time
or more precisely, the physical systems that we use to m
sure time, are contained already in the gravitational and m
ter fields@3–5#. While this is very plausible, it leaves us wit
the question as to how to extract interesting physical pre
tions from this wave function, given the absence of the ti
coordinate that plays such a central role in standard quan
theory. In quantum cosmology, heuristic methods~mainly the
‘‘WKB interpretation’’! have been used to extract useful pr
dictions @6#, but what we are concerned with here is ho
such heuristic ideas may be incorporated in a properly
fined interpretational framework for the quantum theory
timeless models. Furthermore, although simple~minisuper-
space! models are unlikely to be reasonable physical a
proximations to a full quantum gravity theory, it does see
likely that a quantum theory of gravity will center around
timeless equation of the form~1.1! ~the loop variable ap-
proach, for example, involves such an equation@7#!, hence it
remains important to understand the quantization and in
pretation of such systems at an elementary level.

Quantum cosmology, then, is our main motivation f
studying the internal dynamics of a closed system in an
ergy eigenstate. The question we shall focus on is this: gi
an energy eigenstate, what is the probability that the sys
enters a regionD of configuration space? Or similarly, sup
©2002 The American Physical Society09-1
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J. J. HALLIWELL AND J. THORWART PHYSICAL REVIEW D65 104009
posing the coordinates of the system arex5(x1 ,x2 ,...,xn),
what is the probability distribution of, say,x2 ,...,xn , given
the value ofx1? Classically, these questions may be a
swered reasonably easily. We look for all the phase-sp
initial data points whose classical trajectories pass througD,
and then the desired probability for enteringD is the prob-
ability measure on this subset of phase space. In quan
theory, the question is considerably more complicated, a
like the question of phase-space samplings, a variety of
ferent~generally inequivalent! approaches may be employe

It is perhaps of interest to spell out in more detail how t
absence of a time parameter affects these considerations
standard nonrelativistic particle theory, the variables of in
est are, for example, positions at a fixed moment of ti
x(t). Here, the timet is regarded as an observable physi
parameter. In a theory without time, by contrast, the qua
ties of interest are curves in configuration spacex(s) ~or
more generally, in phase space!. Here,s is not a physically
measurable time, but is simply a parameter labeling
points along the curve, and the curves are parametrize
this way for mathematical convenience. Furthermore, one
the characteristic features of genuinely timeless theorie
that none of the components ofx are monotonic ins. This
means that it is not possible to use one of the componen
x as a ‘‘time’’ parameter, except for local sections of t
curve. Despite these features, such classical theories
well-defined and predictive. Indeed, many classical cosm
logical models are of this type. For example, in the mass
scalar field cosmological model@for a positive curvature
Friedmann-Robertson-Walker~FRW! metric# @8#, the classi-
cal solutions go backwards and forwards in both the sc
factor a and the scalar fieldf. Therefore, the most genera
such classical theory is one in which there is a probabi
distribution on the set of classical trajectories, and this is a
well-defined ~subject to careful normalization! as we shall
see. Such probability distributions are of particular inter
for predicting, for example, the likelihood of the initial con
ditions for inflation@9#.

A closely related issue is the fact that a vanishing Ham
tonian@or in the quantum theory, Eq.~1.1!# is associated with
the symmetry of reparametrization invariance, which is
sentially the freedom to redefine the parameters labeling
points along a trajectory. Individual phase-space points
not reparametrization-invariant, since they are moved al
the classical trajectories by a reparametrization. But a us
invariant quantity is the entire classical trajectory, as we s
see later in more detail. This simple observation turns ou
be a useful focal point for what we do in this paper.

Turning now to the quantum theory, there are, as sta
many possible approaches to these systems, all of which
complicated by the absence of a time parameter. Howe
the aspects of the classical theory outlined above sugges
a particularly useful approach to quantization is the decoh
ent histories approach@10–12#. This is because it deals d
rectly with entire trajectories and obviously does not requ
a time coordinate. The aim of this paper is to show that
decoherent histories approach can be used to calculate p
abilities for histories in configuration space in simple tim
less models. In particular, we shall show that in the class
10400
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limit, the decoherent histories approach produces a se
classical trajectories with a probability measure on that s

The other significant approach to this problem that is c
rently being pursued involves constructing operators co
sponding to the questions posed above, and which comm
with the Hamiltonian, thus they are ‘‘observables’’@13–18#.
For a free particle in two dimensions, for example, the cl
sical trajectories have the form

x1~ t !5x11
p1t

m
, x2~ t !5x21

p2t

m
~1.2!

and we may eliminatet between them to write

x1~ t !5x11
p1

p2
@x2~ t !2x2#. ~1.3!

This is the classical answer to the question, what is the va
of x1 at a given value ofx2? It commutes with the free
particle Hamiltonian,

H5 1
2 ~p1

21p2
2!, ~1.4!

thus it is an observable and we may find states that are ei
states of both Eqs.~1.3! and ~1.4!, from which one may
begin to address the questions set out above. We will not
much about this approach here, but it is important to ment
because any other approach ought to make some kin
contact with it at some stage, and in particular, the decoh
ent histories approach must contain some notion corresp
ing to the notion of an observable in the operator approa
~See also Refs.@19,20# for some much earlier approaches
these issues.!

We begin Sec. II by describing the classical result. W
introduce a classical phase-space distribution funct
w(p,x) and compute the probability that a trajectory in co
figuration space passes through a regionD. Most of the key
ideas for this paper are in fact contained in this class
result. In particular, we discuss the reparametrization inv
ance of the system, and introduce observables correspon
to entire classical trajectories. We write the classical resul
a number of different forms, including a form in terms of
flux across a hypersurface, closely related to the heuri
WKB interpretation of quantum cosmology.

We begin the quantum case in Sec. III with the constr
tion of the decoherence functional for timeless models. T
has two important aspects. The first concerns the choic
inner product in the construction, since solutions to equati
of the form Eq.~1.1! are typically not normalizable in the
simple Schro¨dinger inner product. The appropriate choice
the induced~or Rieffel! inner product, which we describe
We also show how this inner product for the quantum c
implies a useful normalization for the classical phase-sp
distribution function. The second aspect is the construct
of the class operators, which, in this case, are propaga
describing coarse-grained sets of histories passing thro
restricted regions of configuration space.

In Sec. IV, we discuss the semiclassical limit of the dec
herence functional. A key step is the construction of cla
operators corresponding to restricted sets of histories en
9-2
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LIFE IN AN ENERGY EIGENSTATE: DECOHERENT . . . PHYSICAL REVIEW D 65 104009
ing the regionD. The obvious candidates for these class o
erators are not in fact compatible with the constraint eq
tion, and we therefore show how they may be appropria
modified. This turns out in fact to be the crucial step in t
construction of the decoherence functional. We then sh
that, for the special initial states for which the histories a
decoherent, the probabilities for the histories approxima
coincide with the classical case, with the phase-space di
bution function w(p,x) replaced by the Wigner function
W(p,x) of the quantum system.

In Sec. V, we consider the special case in which the s
tem is a collection of harmonic oscillators in a fixed ener
eigenstate. For this system it is possible to introduce a s
cial class of eigenstates of the Hamiltonian sometimes ca
‘‘timeless coherent states,’’ which have the property that th
are concentrated about an entire classical phase-space t
tory. We discuss the decoherence and probabilities assoc
with these states and obtain the intuitively expected phys
results for the probabilities of entering a regionD.

Since decoherence is only obtained for special ini
states, we consider, in Sec. VI, the addition of an envir
ment to produce decoherence for a wide variety of ini
states. We repeat the calculation of decoherence and p
abilities with intuitively expected results, in agreement w
classical expectations.

The calculations of Secs. IV and VI used initial stat
consisting of single WKB wave packets. In Sec. VII, w
therefore extend to the case of superpositions of such w
packets. This turns out in fact to be straightforward, and v
similar to earlier calculations performed with the reduc
density matrix. We easily find that the interference ter
between different WKB wave packets are very small. W
summarize and conclude in Sec. VIII.

Finally, we outline the relationship of the present paper
other works in the field. This paper is part of a program
apply the decoherent histories approach to quantum cos
ogy, or models of the type used in quantum cosmology,
ultimately to quantum gravity more generally. The decoh
ent histories approach~generally! and its applications to
quantum cosmology have been set out at length by Hartl
his 1992 Les Houches Lectures@21#, and more recent rel
evant aspects of this were discussed by Hartle and Ma
@22#. This formalism has been applied to particular models
three places, most recently by the present authors@23#, who
used it to construct in detail the decoherence functional
the relativistic particle and compute probabilities for cross
spacelike surfaces. The present paper is in some way
extension of that work. Whelan@24# has used the formalism
to compute probabilities on timelike surfaces for the relat
istic particle. Also, Craig and Hartle@25# have applied the
formalism to a Bianchi IX quantum cosmological mode
The last two papers use the Klein-Gordon inner produ
whereas here we use the positive-definite induced inner p
uct to construct the decoherence functional. There is a
some connection with the work on probabilities for no
trivial spacetime coarse grainings in nonrelativistic quant
mechanics@26#.

It is also perhaps worth mentioning that this paper is v
much in the spirit of Ref.@27#, which attempts to interpre
10400
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the Wheeler-DeWitt equation in terms of emergent trajec
ries by introducing model detectors into the Hamiltonia
This was inspired in turn by Barbour’s observations@28# on
the similarity between the Wheeler-DeWitt equation a
Mott’s calculation showing the emergence of a straight l
track from a spherical wave in alpha decay@29#, together
with some of Barbour’s more general observations about
Wheeler-DeWitt equation and timeless theories@28,30,31#.

II. THE CLASSICAL CASE

We are interested in the following question: ‘‘What is th
probability associated with a given region of configurati
space when the system is in an energy eigenstate?’’ We b
by analyzing the classical problem.

We will consider a classical system described by
2n-dimensional phase space, with coordinates and mom
(x,p)5(xk ,pk), and Hamiltonian

H5 (
k51

n pk
2

2M
1V~x!. ~2.1!

More generally, we are interested in a system for which
kinetic part of the Hamiltonian has the formgk j(x)pkpj ,
where gk j(x) is an inverse metric of hyperbolic signatur
Most minisuperspace models in quantum cosmology hav
Hamiltonian of this form. However, the focus of this paper
the timelessness of the system, and the form of the confi
ration space metric turns out to be unimportant. So for s
plicity, we will concentrate on the form Eq.~2.1!.

We assume that there is a classical phase-space dist
tion functionw(p,x), which is normalized according to

E dnp dnx w~p,x!51 ~2.2!

and obeys the evolution equation

]w

]t
5(

k
S 2

pk

M

]w

]xk
1

]V

]xk

]w

]pk
D5$H,w%, ~2.3!

where$ % denotes the Poisson brackets. The interesting c
is that in whichw is the classical analogue of an ener
eigenstate, in which case]w/]t50, so the evolution equa
tion is simply

$H,w%50. ~2.4!

It follows that

w„pcl~ t !,xcl~ t !…5w„p~0!,x~0!…, ~2.5!

wherepcl(t),xcl(t) are the classical solutions with initial dat
p(0),x(0), sow is constant along the classical orbits.~The
normalization ofw then becomes an issue if the classic
orbits are infinite, but we will return to this in the quantu
case discussed below.!

Given a set of classical solutions„pcl(t),xcl(t)… and a
phase-space distribution functionw, we are interested in the
probability that a classical solution will pass through a reg
9-3
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J. J. HALLIWELL AND J. THORWART PHYSICAL REVIEW D65 104009
D of configuration space. We construct this as follows. F
of all, we introduce the characteristic function of the regi
D,

f D~x!5H 1 if xPD

0 otherwise.
~2.6!

To see whether the classical trajectoryxcl(t) intersects this
region, consider the phase-space function

A~x,p0 ,x0!5E
2`

`

dt d~n!~x2xcl~ t !… ~2.7!

~in the case of periodic classical orbits, the range oft is taken
to be equal to the period!. This function is positive for points
x on the classical trajectory labeled byp0 ,x0 and zero oth-
erwise. Hence intersection of the classical trajectory with
regionD means

E dnx f D~x!E
2`

`

dt d~n!
„x2xcl~ t !….0, ~2.8!

or, equivalently, that

E
2`

`

dt fD„x~ t !….0. ~2.9!

This quantity is essentially the amount of parameter time
trajectory spends in the regionD. We may now write down
the probability for a classical trajectory entering the reg
D. It is

pD5E dnp0 dnx0 w~p0 ,x0!uS E
2`

`

dt fD„x
cl~ t !…2e D .

~2.10!

In this construction,e is a small positive number that is eve
tually set to zero, and is included to avoid possible ambi
ities in theu function at zero argument. Theu function en-
sures that the phase-space integral is over all initial d
whose corresponding classical trajectories spend a
greater thane in the regionD.

The classical solutionxcl(t) depends on some fiducial in
tial coordinates and momenta,x0 andp0 , say. In the case o
a free particle, for example,

xcl~ t !5x01
p0t

M
. ~2.11!

The construction is independent of the choice of fiducial i
tial points. If we shiftx0 ,p0 along the classical trajectories
the measure, phase-space distribution functionw, and theu
function are all invariant. Hence the integral overx0 ,p0 is
effectively a sum over classical trajectories. The shift alo
the classical trajectories may also be thought of as a repa
etrization, and the quantity ~2.10! is in fact a
reparametrization-invariant expression of the notion o
classical trajectory. This means that the probability~2.10! has
the form of a phase-space overlap of the ‘‘state’’ with
reparametrization-invariant operator.
10400
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It is useful also to write this result in a different form
which will be more relevant to the results we get in t
quantum theory case. In the quantum theory, we gener
deal with propagation between fixed points in configurat
space, rather than with the phase-space point. Therefor
the free-particle case, consider the change of variables f
x0 ,p0 to x0 ,xf , where

xf5x01
p0

M
t. ~2.12!

Hencexf is the position after evolution for starting fromx0
for parameter timet. The probability then becomes

pD5
M

t E dnxf dnx0 w~p0 ,x0!uS E
2`

`

dt fD„x0
f ~ t !…2e D ,

~2.13!

wherep05M (xf2x0)/t and

x0
f ~ t !5x01

~xf2x0!

t
t. ~2.14!

The parametert may in fact be scaled out of the whol
expression, hence the probability is independent of it.

The result now has the form of an integral over ‘‘initial
and ‘‘final’’ points, analogous to similar results in quantu
theory. The result is again essentially a sum over class
trajectories with the trajectories now labeled by any pair
points x0 ,xf along the trajectories, and is invariant und
shifting x0 or xf along those trajectories. Naively, one mig
have thought that the restriction to paths that pass througD
is imposed by summing over all finite length classical pa
which intersectD as they go from the ‘‘initial’’ pointx0 to
the ‘‘final’’ point xf , that is,D lies betweenthe initial and
final points. This is also what one might naively expect in t
quantum theory version. However, one can see from
above construction that the correct answer is in fact to s
overall classical paths~which can be of infinite length! pass-
ing throughx0 andxf that intersectD at any point along the
entire trajectory, even ifD does not lie between the tw
points~see Fig. 1!. This feature is related to the reparamet
zation invariance of the system.

The above point turns out to be quite crucial to wh
follows in the rest of this paper, so it is worth saying it in a
alternative form. Loosely speaking, the statement is that o
the entire classical path respects the reparametrization in
ance associated with the constraint equation. A section of
classical path does not. This may be expressed more
cisely in terms of the functionA(x,p0 ,x0) introduced in Eq.
~2.7!. This function is concentrated on the entire classi
trajectory, and is zero whenx is not on the trajectory. It is
easy to see that it has vanishing Poisson bracket with
HamiltonianH5H(p0 ,x0), since we have
9-4
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$H,A~x,p0 ,x0!%5E
2`

`

dt$H,d~n!
„x2xcl~ t !…%

52E
2`

`

dt
d

dt
d~n!

„x2xcl~ t !…

50. ~2.15!

This is the precise sense in which the entire trajectory
reparametrization-invariant, and the phase-space functioA
may be regarded as an observable—a quantity which c
mutes with the constraintH @16,17#. By way of comparison,
consider a second phase-space function similarly defined
on only a finite section of trajectory,

B~x,p0 ,x0!5E
0

t

dt d~n!
„x2xcl~ t !…. ~2.16!

It is easily seen that

$H,B~x,p0 ,x0!%52d„x2xcl~t!…1d„x2xcl~0!….
~2.17!

HenceB ‘‘almost’’ commutes withH, failing only at the end
points, and it is in this sense that a finite section of traject
does not fully respect reparametrization invariance.

A third version of the classical result is also useful. It is
interest to obtain an expression for the probability for int

FIG. 1. The rewritten classical probability Eq.~2.13! in terms of
a sum over initial and final pointsx0 andxf . The probability for not
enteringD is a sum over paths as in case~a!. The probability for
entering D includes a sum over classical paths in whichD lies
between the initial and final points, as in case~b!. But, to agree with
the phase-space form of the result Eq.~2.10!, it must also include a
sum over initial and final points for whichD does not lie between
them, as in case~c!. This figure also applies to the semiclassic
propagator Eq.~4.8! in the quantum case.
10400
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secting an (n21)-dimensional surfaceS. Since the result
~2.10! involves the parameter time spent in a finite volum
region D it does not apply immediately. However, suppo
that the set of trajectories contained in the probability dis
bution w intersect the (n21)-dimensional surfaceS only
once. Then we may consider a finite volume regionD ob-
tained by thickeningS along the direction of the classica
flow. If this thickening is by a small~positive! parameter
time Dt, then the quantity appearing in theu function in Eq.
~2.10! is

E dtE
D
dnx d~n!

„x2xcl~ t !…

5DtE dtE
S
dn21x n•

dxcl~ t !

dt
d~n!

„x2xcl~ t !…

5DtI @S,xcl~ t !#, ~2.18!

wheren is the normal toS, and we suppose that the norm
is chosen so thatn•dxcl/dt is positive. The quantity
I @S,xcl(t)#, in a more general context, is the intersecti
number of the curvexcl(t) with the surfaceS, and takes the
value 0 for no intersections, or61 ~depending on whethe
there is an even or odd number of intersections!. In this case
we have assumed that the trajectories intersect at most o
henceI 50 or 1. We then have

u~DtI 2e!5u~ I 2e8!5I ~2.19!

~wheree5Dte8! and the probability for intersectingS may
be written

pS5E dtE dnp0 dnx0 w~p0 ,x0!

3E
S
dn21x n•

dxcl~ t !

dt
d~n!

„x2xcl~ t !…. ~2.20!

At eacht, we may perform a change of variables fromp,x to
new variablesp85pcl(t), x85xcl(t), and using Eq.~2.5!, we
obtain the result

pS5
1

M E dtE
S
dnp8 dn21x8 n•p8w~p8,x8!. ~2.21!

Finally, the integrand is now in fact independent oft, so the
t integral leads to an overall factor.~This might be infinite
but is regularized as discussed below.! We therefore drop the
t integral.

This result is relevant for the following reason. In th
heuristic ‘‘WKB interpretation’’ of quantum cosmology, on
considers WKB solutions to the Wheeler-DeWitt equation
the form

C5CeiS. ~2.22!

It is usually asserted that this corresponds to a set of clas
trajectories with momentump5“S, and with a probability
of intersecting a surfaceS given in terms of the flux of the

l

9-5
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J. J. HALLIWELL AND J. THORWART PHYSICAL REVIEW D65 104009
wave function across the surface@6,9#. As we shall show,
from the decoherent histories analysis, the quantum the
gives a probability for crossing a surfaceS proportional to
Eq. ~2.21! with w replaced by the Wigner function of th
quantum theory. The Wigner function of the WKB wav
function is, approximately@32#,

W~p,x!5uC~x!u2d~p2¹S!. ~2.23!

Inserting in Eq.~2.21!, we therefore obtain, up to overa
factors, the probability distribution

pS5E
S
dn21x n•“SuC~x!u2. ~2.24!

We therefore have agreement with the usual heuristic an
sis.

III. THE QUANTUM CASE

A. Decoherent histories approach

The decoherent histories approach to quantum theor
described at length elsewhere@10–12#, so only the briefest
review will be given here. The central object of interest is t
decoherence functional,

D~aI ,aI 8!5Tr~CaI rCaI 8
†

!, ~3.1!

where the histories are characterized by the class oper
CaI , which satisfy

(
aI

CaI 51 ~3.2!

and therefore

(
aI ,aI 8

D~aI ,aI 8!5Tr r51. ~3.3!

In nonrelativistic quantum mechanics, the class operators
given by time-ordered sequences of projection operators

CaI 5Pan
~ tn!¯Pa1

~ t1! ~3.4!

~and by sums of terms of this form!, whereaI denotes the
string of alternativesa1 , a2¯an . The theory is, however
more general than this and we will exploit this general
here.

Intuitively, the decoherence functional is a measure of
interference between pairs of historiesaI , aI 8. When its real
part is zero foraI ÞaI 8, we say that the histories are cons
tent and probabilities

p~aI !5D~aI ,aI ! ~3.5!

obeying the usual probability sum rules may be assigne
them. Typical physical mechanisms which produce this s
ation usually cause both the real and imaginary part
D(aI ,aI 8) to vanish. This condition is usually called decohe
ence of histories, and is related to the existence of so-ca
generalized records@10,33#.
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In the nonrelativistic case, for histories characterized
projections onto configuration space, a path integral vers
of the decoherence functional is available, and can be v
useful. It has the form

D~aI ,aI 8!5E
aI
DxE

aI 8
Dy expS i

\
S@x~ t !#2

i

\
S@y~ t !# D

3r~x0 ,y0!, ~3.6!

where the sum is over pairs of pathsx(t),y(t) passing
through the pairs of regionsaI , aI 8. This is equivalent to the
form ~3.1! and~3.4!, when the histories are strings of proje
tions onto ranges of positions. Equation~3.6! is a useful
starting point for the generalization to timeless theories.

We would like to construct the decoherence functional
the situation in question, in which we have a system in
energy eigenstate, and we ask questions which do not ref
any way to time. Two new issues arise in this case. The
concerns the inner product through which the various pie
of the decoherence functional are put together. The sec
concerns the construction of the class operators. We
each in turn.

B. The induced inner product

For many situations, and especially for the analogous s
ation in quantum cosmology, the Hamiltonian has a conti
ous spectrum so the energy eigenstates are not normaliz
in the usual inner product,

^C1uC2&5E dnx C1* ~x!C2~x!. ~3.7!

A way to deal with this has been developed, and goes by
name of the induced inner product, or Rieffel inductio
@34,22#. Consider the eigenvalue equation

HuCEl&5EuCEl&, ~3.8!

wherel denotes the degeneracy. These eigenstates will t
cally satisfy

^CE8l8uCEl&5d~E2E8!dll8 ~3.9!

from which it is clear that the inner product diverges wh
E5E8. The induced inner product on a set of eigenstates
fixed E is defined, loosely speaking, by discarding thed
function d(E2E8). That is, the induced or physical inne
product is then defined by

^CEl8uCEl&phys5dll8 . ~3.10!

This procedure can be defined quite rigorously, and has b
discussed at some length in Refs.@34,22#. We will use it here
to construct the decoherence functional. A simple presc
tion for using it in the decoherence functional is to regular
each propagator and energy eigenstate by using a diffe
energy for each. The final answer will then involve a numb
of d functions in energy, as in Eq.~3.9!, which are simply
dropped.
9-6
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The induced inner product normalization for the wa
functions does in fact suggest a normalization scheme for
corresponding classical phase-space distribution funct
which, recall, is not normalizable in the case in which t
classical trajectories are infinite~since w is constant along
those trajectories!. The idea is to consider the normalizatio
of the Wigner function in the quantum case. This is defin
by

W~p,X!5
1

~2p!n E dnv e2 ip•vr~X1 1
2 v,X2 1

2 v!

~3.11!

with inverse

r~x,y!5E dnp eip•~x2y!WS p,
x1y

2 D ~3.12!

~see Refs.@35,36# for properties of the Wigner function!. For
an energy eigenstateuCE&, we first of all construct a regu
larized density operator,

rEE85uCE&^CE8u ~3.13!

which is normalized by

Tr~rEE8!5d~E2E8! ~3.14!

hence the corresponding Wigner function is normalized
cording to

E dnp dnx WEE8~p,x!5d~E2E8!. ~3.15!

Now notice that the density operator obeys the equation

@H,rEE8#5~E2E8!rEE8 . ~3.16!

Taking the Wigner transform of this equation, we obtain

LWEE85 i ~E2E8!WEE8 , ~3.17!

whereL is the phase-space operator

L5(
k

S 2
pk

M

]

]xk
1

]V

]xk

]

]pk
D1Lq . ~3.18!

It is a sum of the classical Liouville operator, plus a termLq
describing quantum modifications.

We may now see how to normalize the classical case.
take the classical distribution function to be described by
~3.17! with the quantum termLq set to zero. The Liouville
operator may then be written

L52
d

ds
~3.19!

for some parameters, and Eq.~3.17! may be solved, with the
result

wEE85e2 is~E2E8!wEE . ~3.20!
10400
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The exponential factor now effectively regularizes the pha
space distribution function.wEE is constant along the class
cal trajectories, butwEE8 is not, and, in the normalization
~3.15!, the part of the integral along the trajectories is
integral overs which produces thed function.

C. Construction of the decoherence functional

The next part of the construction of the decoherence fu
tional is the class operators,Ca . These are to describe his
tories of fixed energy which do or do not pass through
region D without regard to time, denoteda5D and a5D̄,
respectively. We follow Refs.@21,22#, in part.

Consider first the amplitude to go fromx0 at timet50 to
xf at time t5t passing through the regionD, or not, at any
time in between. This is given by

ga~xf ,tux,0!5E
a
Dx~ t !expS i

\
S@x~ t !# D , ~3.21!

where the sum is over all pathsx(t) with t in the range@0, t#
which pass throughD, or never pass throughD. It therefore
satisfies

(
a

ga5gD1gD̄5g, ~3.22!

whereg5g(xf ,tux0,0) is the unrestricted propagator. The
are many ways of constructing this sort of object more
plicitly ~see Refs.@23,37,38# for example!, but here it is use-
ful to exploit the construction used in the classical case. T
amplitude to pass throughD is therefore given by

gD~xf ,tux0,0!5E Dx~ t !exp„iS@x~ t !#…

3uS E
0

t

dt fD„x~ t !…2e D . ~3.23!

Here, theu function ensures that only pathsx(t) that spend a
time in excess ofe in D contribute to the sum.

The class operatorCaI is a propagator at fixed energy,E,
say, so this is given by

^xf uCaI ux0&5E
2`

`

dt e2 iEtga~xf ,tux0,0!. ~3.24!

When ga is replaced with an unrestricted propagator, w
require that Eq.~3.24! is annihilated byH2E, and this is
why we choose an infinite range fort, rather than a half-
infinite one@39–41#. ~As we shall see below, whenga is a
restricted propagator, we encounter some difficulties h
although the correct range fort is still the infinite one.! The
total ~regularized! decoherence functional is therefore give
by
9-7
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D~a,a8!5E dnxf dnx0 dnx08E
2`

`

dtE
2`

`

dt8 e2 iEteiE8t8

3ga~xf ,tux0,0!ga8
* ~xf ,t8ux08,0!

3CE0
~x0!CE

08
* ~x08!. ~3.25!

This may also be written as

D~a,a8!5E
2`

`

dtE
2`

`

dt8 e2 iEteiE8t8

3E
a
Dx~ t !E

a8
Dx8~ t !exp$ iS0

t@x~ t !#

2 iS0
t8@x8~ t !#%CE0

~x0!CE
08

* ~x08! ~3.26!

where note that the two actions in the path integral are o
different ranges of time. It is straightforward to show tha

(
a,a8

D~a,a8!5d~E2E0!d~E82E08!d~E02E08!.

~3.27!

In the induced inner product scheme, we therefore rep
the right-hand side by 1, verifying that the construction
correctly normalized.

D. Modified class operators

The basic scheme described above runs into an intere
difficulty in that the class operators defined by Eq.~3.24! do
not satisfy the constraint equation. We have, for example,
the class operator for paths that enter the regionD,

CD~xf ,x0!5E
2`

`

dt e2 iEtE Dx~ t !exp„iS@x~ t !#…

3uS E
0

t

dt fD„x~ t !…2e D . ~3.28!

It may be shown that this satisfies the constraint everywh
except on the boundaries of the regionD. That is, there is a
discontinuity as one of the end points crosses the boun
of D. This is an issue because a basic rule of the gam
constructing the decoherence functional for these system
that we only work with objects which satisfy the constra
equation~or operators which commute with it!. Mathemati-
cally, this is to ensure that the underlying symmetry, re
arametrization invariance, is fully respected~the induced in-
ner product, note, is defined only between objects wh
satisfy the constraint!. Physically, it is related to the fact tha
the universe is a closed system, and measurements of it~the
class operators are generalizations of the notions of meas
ment! must not displace its wave function.

Because of this difficulty, it is necessary to define a mo
fied class operatorCD8 which is as close as possible to th
10400
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path integral one, but satisfies the constraint equation ev
where @22#. A way to do this is to first compute the clas
operatorCD when one of the end points is insideD. This
defines a solution to the constraints for one end point ins
and the other outside. We thendefine CD8 to be the object
which satisfies the constraint everywhere and matches
expression for one end point inside and the other outside

An example of this difficulty was encountered and solv
in Ref. @23#, which concerned the decoherent histories ana
sis of the relativistic particle. Suppose one considers
class operator for propagating between spacetime pointsx0

m

and xf
m , with the restriction that the paths never cross t

spacelike surfacex05const. This object, denotedCr(xf ,x0),
is readily constructed using the free propagator together w
the method of images. However, it does not satisfy the c
straint everywhere: the constraint operating onCr gives ad
function on the spacelike surface. One can also see ph
cally why there might be problems here. Suppose for s
plicity that xf andx0 are timelike separated and consider t
trajectory of a classical particle passing through these
points. Such a trajectory, if extended beyond these poi
must crossevery surface of constantx0. Similarly, in the
quantum theory, there are no nontrivial solutions to t
Klein-Gordon equation that are zero on one side of a spa
like surface. Hence the only sensible possible answer for
class operator for this situation isCr50. This is indeed the
solution used in Ref.@23# and led to physically expecte
results.

This issue concerning the replacement of the origi
class operators with modified ones is related to the fact
in the original class operator~3.28!, the functions restricting
the paths to enter the regionD involve a time integral over a
finite interval @0, t#, whereas the classical result~2.13! in-
volves a similar restricting function but with a time integr
over an infinite range. If a finite range is used in the class
result, it is no longer reparametrization-invariant, as we s
in Sec. II. This is why we discussed the classical result
such length.

The construction of these modified class operators is c
cial to the construction of the decoherence functional
reparametrization-invariant theories. It is probably fair to s
that the method suggested above for constructing them
not at this stage been fully explored. We will show belo
that a physically plausible modified class operator is read
constructed in the semiclassical approximation, but a m
thorough investigation of this issue will be deferred to a la
publication. It should also be noted that reparametrizat
invariance can be rather subtle. For example, the p
integral constructed class operators Eq.~3.28! certainly ap-
pear to be reparametrization-invariant at the level of symm
try transformations at the Lagrangian level, yet do not qu
satisfy the constraint. Here, we have used the expres
‘‘reparametrization-invariant’’ to mean satisfying the co
straint everywhere~or having a zero Poisson bracket with th
Hamiltonian everywhere, in the classical case!. This issue is
related to the connections between Lagrangian and Ha
tonian symmetries, and between the path integral and D
quantizations. See Refs.@21,41# for further discussion.
9-8



is

ct

-
il
l
b

at

io

es
.

i
th
lu

tio

e

t
,

he

a

y

ive
va
ion

he

-

ap-
of

we
hat
tion

Eq.

for

n-
ed in
ed
ere,
the
e

n

call

,
las-
act

fied
ma-
tra-

rrect
of

LIFE IN AN ENERGY EIGENSTATE: DECOHERENT . . . PHYSICAL REVIEW D 65 104009
IV. THE SEMICLASSICAL APPROXIMATION TO THE
DECOHERENCE FUNCTIONAL AND PROBABILITIES

We may now compute the decoherence functional. It

D~a,a8!5E dnxf dnx0 dny0 Ca8 ~xf ,x0!

3Ca8* ~xf ,y0!C~x0!C* ~y0!. ~4.1!

~For convenience, here and in what follows we will in fa
drop the notation involving different values ofE to regular-
ize the expressions, unless necessary.! To see how the semi
classical approximation works out, in this section we w
assumedecoherence~for example, by restricting to specia
initial states! and concentrate on the construction of the pro
abilities that the system passes through the regionD. We will
return to the question of decoherence for general initial st
in Sec. VI.

We begin by computing the semiclassical approximat
to the modified class operatorCD8 (xf ,x0). Recall that it is
given by a suitable modification of the path integral expr
sion~3.28! with one end point insideD and the other outside
In the absence of any restrictions on the paths, the path
tegral will be dominated by the classical paths connecting
initial and final points. The classical paths will be the so
tions to the equations of motion

M ẍ1“V~x!50 ~4.2!

which satisfy the boundary conditions

x~0!5x0 , x~t!5xf . ~4.3!

In addition, these paths must satisfy the constraint equa

1
2 M ẋ21V~x!5E. ~4.4!

This equation determines the timet in terms ofx0 , xf , and
E, hence the final form of the extremizing paths has no r
erence to time. It is also useful to introduceA(xf ,x0), the
classical action fromx0 to xf . It obeys the time-independen
Hamilton-Jacobi equation with respect to each end point

1

2M
~“A!21V5E. ~4.5!

The initial and final momenta are given by derivatives of t
classical action,

pf5“ fA~xf ,x0!, p052“0A~xf ,x0!. ~4.6!

The semiclassical approximation to the unrestricted p
integral is given by a sum of terms each of the form

G~xf ,x0!5P~xf ,x0!eiA~xf ,x0!. ~4.7!

The quantityP is a prefactor, whose specific form is length
to calculate, but will not in fact be required.@For the case of
the time-dependent propagator, the prefactor would be g
in terms of the determinant of the matrix of second deri
tives of A(xf ,x0). Here, because of the constraint equat
10400
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~4.5!, this matrix is in fact singular and the expression for t
prefactor is more complicated@42,43#.#

The semiclassical form~4.7! satisfies the constraint equa
tion ~i.e., is annihilated byH2E! in the WKB approxima-
tion, as it should. If the classical trajectory fromx0 to xf is
unique, there will be just one term in the semiclassical
proximation. If there is more than one, there will be a sum
similar terms, one for each trajectory. For the moment
will assume that there is just one. We will also assume t
the extremizing classical solution is real, and thus the ac
A(xf ,x0) is real.

With the restriction that the paths must pass throughD,
we expect that the class operator will be given again by
~4.7! when the classical path passes throughD, and will be
zero when the classical path does not pass throughD. It is
then not difficult to see that the modified class operator
this case may therefore be written

CD8 ~xf ,x0!5uS E
2`

`

dt fD„x0
f ~ t !…2e D P~xf ,x0!eiA~xf ,x0!.

~4.8!

Theu function here is the same as in the~rewritten! classical
case Eq.~2.13! in terms of ‘‘initial’’ and ‘‘final’’ points,
wherex0

f (t) denotes the classical path fromx0 to xf . ~This is
exactly as in the classical case depicted in Fig. 1.! Note also
that

“A•“uS E
2`

`

dt fD„x0
f ~ t !…2e D 50 ~4.9!

as may be shown by shifting thet integration. It follows that
the modified class operator is a WKB solution to the co
straint equation, as required. We have therefore succeed
computing, in the semiclassical approximation, a modifi
class operator satisfying the constraint equation everywh
corresponding to the restriction to paths passing through
region D. This is a very simple result but turns out to b
crucial to the rest of the derivation.

It is important thatt is integrated over an infinite range i
the quantity inside theu function, otherwise the modified
class operator would not in fact satisfy the constraint. Re
that the originally defined class operator Eq.~3.24! contained
a similaru function, with a finite range of time integration
which one might have been tempted to use in the semic
sical approximation, but this class operator does not in f
satisfy the constraint.

Hence we see that the difference between the modi
and original class operators in the semiclassical approxi
tion is the difference between using the entire classical
jectory or using finite segments of it in theu functions. We
also see that these modified class operators are the co
ones to use in order to be consistent with the discussion
the classical case and Eq.~2.13!. There, we saw that it is
appropriate to sum over classical paths intersectingD even if
D does not lie on the segment of classical trajectorybetween
9-9
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x0 andxf . This feature therefore appears to be necessary
the particular type of reparametrization invariance used h
Only the entire trajectory is reparametrization-invariant n
tion. A finite section of trajectory is not.~See Ref.@41# for a
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further discussion of reparametrizations in this sort of co
text.!

The off-diagonal terms of the decoherence functional
now given in the semiclassical approximation by
ugh
e
e semi-

m
assuming
can be
D~D,D̄ !5E dnxf dnx0 dny0 uS E
2`

`

dt fD„x0
f ~ t !…2e D F12uS E

2`

`

dt fD„y0
f ~ t !…2e D G

3P~xf ,x0!P* ~xf ,y0!exp@ iA~xf ,x0!2 iA~xf ,y0!#r~x0 ,y0!. ~4.10!

It is now essentially a sum over pairs of classical paths, and theu functions restrict the paths to either pass or not pass thro
the regionD. We see also from the invariance property of theu functions, Eq.~4.9!, that they are invariant under shifting th
regionsDa along their classical trajectories. This is the expression of the idea that the decoherence functional, in th
classical approximation, knows only about entire trajectories.

It is now convenient to introduce the variables

X05 1
2 ~x01y0!, v5x02y0 ~4.11!

and thus

x05X01 1
2 v, y05X02 1

2 v ~4.12!

and we also rewrite the density operator in terms of the Wigner function Eq.~3.11!. We will discuss the detailed mechanis
of decoherence in the next section. For the moment, we will simply assume decoherence, which essentially means
that v is concentrated around zero, and work out the form of the probabilities. Although we note that this assumption
justified for initial statesr(x0 ,y0) which are approximately diagonal in position. We now setv50 in the prefactorsP and in
the u functions, and we obtain the probability

pD5E dnxf dnX0dnv dnp uS E
2`

`

dt fD„X0
f ~ t !…2e D uP~xf ,X0!u2exp@ iA~xf ,X01 1

2 v!2 iA~xf ,X02 1
2 v!1 ip•v#W~p,X0!.

~4.13!

Expanding the action terms to linear order inv ~decoherence again allows us to drop the higher-order terms!, the v integral
may be performed and we obtain

pD5E dnxfd
nX0dnp uS E

2`

`

dt fD„X0
f ~ t !…2e D uP~xf ,X0!u2d~n!

„p1“0A~xf ,X0!…W~p,X0!, ~4.14!
of
this
so
the

for
ider
ojec-
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rs

-
that
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where¹0 operates on the initial pointX0 . Finally, the inte-
gration overxf may be performed. Thed-function constraint
then means that the quantityX0

f (t) ~the classical path from
X0 to xf! is replaced byXcl(t) ~the classical path with initia
dataX0 , p0!. Although we have not worked out the explic
form of the prefactorP, we deduce that it must in fact dro
out when thexf integration is carried out, because the pro
ability must equal 1 when theu function is removed.@From
this we deduce thatuP(xf ,X0)u2 must be the Jacobian facto
in the change of integration variables fromxf to
“0A(xf ,X0).# We therefore obtain the final result

pD5E dnX0 dn uS E
2`

`

dt fD„X
cl~ t !…2e DW~p,X0!.

~4.15!

As expected, this is the classical result Eq.~2.10! with the
classical phase-space distribution function replaced by
Wigner function.
-

e

V. SYSTEMS OF HARMONIC OSCILLATORS

There is one simple system for which the discussion
decoherence and probabilities is particularly simple, and
is the case of a collection of harmonic oscillators. It al
enjoys the property that its spectrum is discrete, hence
induced inner product is not required for normalization.

In nonrelativistic quantum mechanics, in the search
emergent quasiclassical histories, it is of interest to cons
histories characterized by strings of phase-space quasipr
torsPG . These are positive Hermitian operators concentra
on a regionG of phase space, but are not quite projecto
since they only havePG

2'PG . Omnès has proved an impor
tant theorem about these projectors, which is essentially
they are approximately preserved in form under unitary e
lution and moreover approximately follow classical evol
tion @12#. That is,

e2 iHt PGeiHt'PG t
, ~5.1!
9-10
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whereG t is the classical evolution of the phase-space celG.
The approximation holds when the phase-space cells are
nificantly larger than a quantum-sized cell, and for times
so long that wave-packet spreading becomes significan
the special case of the harmonic oscillator, the approxima
holds for all time. This result allows one to show that, fir
histories of phase-space projectors are approximately d
herent for a wide variety of initial states, and second, t
their probabilities are peaked about classical evolution. D
ferently put, on sufficiently coarse-grained scales, quan
systems have an approximate determinism that ensures d
herence and approximate correspondence with clas
physics.

It seems reasonable to suppose that the timeless mo
considered here might have analogous properties. We
demonstrate this for a system of harmonic oscillators in
energy eigenstate. The Hamiltonian for a set ofN identical
harmonic oscillators is

H05 1
2 ~p21x2!2 1

2 N ~5.2!

~the factor of 1
2 N is included to subtract the vacuum sta

energy and avoid certain phase factors!. The standard coher
ent states~see Ref.@44# for example! are denotedup,x& and
they have the important property that they are preserve
form under unitary evolution,

e2 iH 0tup,x&5upt ,xt&, ~5.3!

wherept , xt are the classical solutions matchingp, x at t
50, hence they are strongly peaked about the classical p
In Ref. @27#, a set of states were introduced which are tim
less analogues of the usual coherent states. They are

ufpx&5d~H02E!up,x&

5E
0

2p dt

2p
e2 i ~H02E!tup,x&

5E
0

2p dt

2p
eiEtupt ,xt&. ~5.4!

These states were referred to in Ref.@27# as ‘‘timeless coher-
ent states’’~see also@14,45#!. They are exact eigenstates
the Hamiltonian,

H0ufpx&5Eufpx&. ~5.5!

Furthermore, since the coherent statesupt ,xt& are concen-
trated at a phase-space point for eacht, integratingt over a
whole period produces a state which is concentrated a
the entire classical trajectory. They are therefore the nat
analogues of the usual coherent states. Their properties
similar in many ways to the usual coherent states and
described in more detail in Ref.@27#.

Each state is labeled by a fiducial phase-space pointp, x
which determines the classical trajectory the state is pea
about. Under evolution of the fiducial pointp, x to another
point, ps , xs , say, along the same classical trajectory,
state changes by a phase,
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ufpx&→ufpsxs
&5eiEsufpx&. ~5.6!

Two timeless coherent states of different energy are exa
orthogonal. If they have the same energy, then they are
proximately orthogonal if they correspond to sufficiently d
tinct classical solutions. They also obey a completeness r
tion,

E dNp dNx

~2p!N ufpx&^fpxu5d~H02E!. ~5.7!

@Note that the notationd(H02E) is a rather loose one. Thi
object is really the projection operator onto the subspace
energy E, for which it is exactly true thatd(H02E)2

5d(H02E).# Sinced(H02E)uc&5uc& on any solution to
the eigenvalue equation (H02E)uc&50, this is essentially a
completeness relation on the set of solutions to the eig
value equation. We may therefore write any solutionuc& as a
superposition of timeless coherent states,

uc&5E dNp dNx

~2p!N ufpx&^fpxuc&. ~5.8!

Given these preliminaries, we may now discuss the de
herence functional. We will consider coarse grainings
which the paths in configuration space either pass or do
pass through a series of regions denotedD5D1 ,D2 ,... . We
will take D1 , D2 ,... to lie along a classical path. Hence w
need at least two such regions to fix a configuration sp
path.

The decoherence functional, in terms of the modifi
class operators, is, in the semiclassical approximation,

D~D,D̄ !5E dnxf dnx0 dny0 CD8 ~xf ,x0!

3CD̄
8* ~xf ,y0!C~x0!C* ~y0!. ~5.9!

The modified class operatorCD8 (xf ,x0) is given by Eq.~4.8!,
so it is equal to the unrestricted semiclassical propagatoG
whenxf or x0 lie on the classical path specified byD and is
zero otherwise. Also,C

D̄
8 5d(H02E)2CD8 .

We first consider the case in which the initial state is
timeless coherent state,ufpx&. It is then straightforward to
see that

CD8 ufpx&'ufpx& ~5.10!

when the trajectory labeled by the fiducial pointsp,x passes
through the regionsD, and

CD8 ufpx&'0 ~5.11!

otherwise. Also, since

d~H02E!ufpx&5ufpx&, ~5.12!

it follows that

C
D̄
8 ufpx&'0 ~5.13!
9-11
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when the trajectory labeled byp,x passes throughD. From
these results it is easy to see that the decoherence funct
is approximately diagonal. Furthermore, the probability
entering the regionsD is then approximately 1 or 0, depend
ing on whether the classical trajectory of the timeless coh
ent state passes throughD.

Now consider the case of a more general initial state.
expand it in timeless coherent states, as in Eq.~5.8!. Using
the above results, we therefore find

CD8 uc&'E
D

dNp dNx

~2p!N ufpx&^fpxuc&. ~5.14!

Here, D denotes the set of phase-space pointsp,x whose
classical trajectories pass through the regionsD in configu-
ration space. Similarly,

C
D̄
8 uc&'E

D̄

dNp dNx

~2p!N ufpx&^fpxuc&, ~5.15!

whereD̄ denotes the set of phase-space points whose cl
cal trajectories never pass throughD. Clearly we again have
approximate decoherence, because of the approximate d
minism. We may therefore assign a probability for pass
throughD,

pD'E
D

dNp dNx

~2p!N z^fpxuc& z2. ~5.16!

It is the integral over the phase-space regionD of the phase-
space distribution functionz^fpxuc& z2. Becauseuc& is an
eigenstate of the Hamiltonian, it is easy to see using
definition ~5.4! of the timeless coherent states that

^fpxuc&5^p,xuc& ~5.17!

and so the probability now is

pD'E
D

dNp dNx

~2p!N z^p,xuc& z2. ~5.18!

It is then a standard result that the integrand is in fac
smeared Wigner function,

z^pxuc& z25E dNp8dNx8

3e21/2~p2p8!221/2~x2x8!2
W~p8,x8!. ~5.19!

This object is positive even though the original Wigner fun
tion W of uc& is not @44#. Hence we obtain a result which i
essentially identical to the classically anticipated res
~2.10!, with a smeared Wigner function as the phase-sp
distribution function.

It is also of interest to note that the result for the pro
ability may be written in the form

pD5^cuPDuc&, ~5.20!

wherePD is the approximate projection operator
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PD5E
D

dNp dNx

~2p!N ufpx&^fpxu. ~5.21!

Moreover, since the timeless coherent statesufpx& are exact
eigenstates ofH0 , we have that

@PD ,H0#50. ~5.22!

Hence, we see that the result may be written in the stand
quantum-mechanical form for a probability, in terms of
operator which commutes with the constraint.

The result here, of approximate decoherence and sim
expressions for the probabilities, like the corresponding n
relativistic result is due to the approximate determinism c
tained in the quantum theory. It works only when we ask
the probabilities for approximately classical histories. To o
tain probabilities for more complicated histories, and for s
tems which are not harmonic oscillators~where there is wave
packet spreading!, we need an environment to produce dec
herence.

VI. DECOHERENCE THROUGH AN ENVIRONMENT

As stated above, the decoherence functional is typic
not diagonal for most initial states, and a physical mec
nism is required to produced decoherence. In this section
therefore consider the addition of an environment to prod
decoherence of histories. The results of this section there
simply justify the assumed decoherence of Sec. IV, and li
affect the final result of the probabilities, but it is importa
to see in detail how this works.

A. Semiclassical approximation to the decoherence functional
with environment

For what we will do here, the specific form of the env
ronment turns out not to be very important. But for definit
ness, we take the environment to be a large collection
harmonic oscillators with coordinates denotedqA , whereA
runs over a large number of values, with a linear coupling
the system. For notational simplicity, we will assume that
each system coordinatex in the n-dimensional configuration
space there is a set ofn oscillators with coordinateq for the
environment. The case of more oscillators is easily obtai
from this. The total action of the system is

S5S0@x#1SE @x,q# ~6.1!

and the corresponding Hamiltonian is

H5H0~x!1HE~x,q!. ~6.2!

We shall assume that the state of the whole system has
form

C~x,q!5c~x!x~x,q!. ~6.3!

This may be inserted into the Wheeler-DeWitt equationH
2E)C50 to obtain a perturbative solution about the so
tion with no environment. We will concentrate on the case
9-12
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which the wave function is of oscillatory form, so the bac
ground solution is of WKB form,

c~x!5C~x!eiS~x!, ~6.4!

whereS obeys the Hamilton-Jacobi equation

1
2 ~“S!21V~x!5E ~6.5!

andC obeys the equation

“

2C12“S•“C50. ~6.6!

The environment wave functions obey the Schro¨dinger equa-
tion

i“S•“x5HEx. ~6.7!

We will consider the case of a superposition of WKB sta
in Sec. VII.

The decoherence functional is now

D~a,a8!5E
2`

`

dtE
2`

`

dt8e2 iEteiE8t8

3E
a
Dx~ t !E

a8
Dy~ t !exp$ iS0

t@x~ t !#2 iS0
t8@y~ t !#%

3F@x~ t !,y~ t !,t,t8#cE0
~x0!cE

08
* ~y0! ~6.8!

~suspending for the moment the necessity to use mod
class operators!. Here S0

t denotes the action over the fixe
time range@0, t# ~and note that the time ranges are differe
on either side of the decoherence functional!. The influence
functionalF@x(t),y(t),t,t8# is given by

F@x~ t !,y~ t !,t,t8#5E Dq~ t !Dr ~ t !exp~ iSE
t @x,q#

2 iSE
t8@y,r # !x~x0 ,q0!

3x* ~y0 ,r0!. ~6.9!

It is different in form from the usual influence functional
two ways. First, the time ranges on either side are not
same, and secondly, the initial statex depends on the system
variablesx, with a different dependence on either side of t
influence functional. The functional integral is over all pa
of pathsq(t),r (t) which meet at the final point,

q~t!5r ~t8!, ~6.10!

and this point is summed over. The paths also match
initial values q0 ,r0 , which are then folded into the initia
state.

It is useful to go now to the semiclassical approximati
for the system variables. We also now recall that we must
modified class operators for the system variables~this does
not affect the environment dynamics at this level of appro
mation!. The off-diagonal terms of the decoherence fun
tional are now given by
10400
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D~D,D̄ !5E dnxf dnx0 dny0 uS E
2`

`

dt fD„x0
f ~ t !…2e D

3F12uS E
2`

`

dt fD„y0
f ~ t !…2e D G

3P~xf ,x0!P* ~xf ,y0!

3exp@ iA~xf ,x0!2 iA~xf ,y0!#

3F~xf ,x0 ,y0!c~x0!c* ~y0!. ~6.11!

Here,F(xf ,x0 ,y0) is the influence functional with the sem
classical approximation for the system variables insert
That is, forx(t) we insert the classical trajectory fromx0 to
xf in time t, and the value oft is then determined~in terms
of x0 and xf! by the constraint equation, and similarly fo
y(t). The decoherence functional is again essentially a s
over pairs of classical paths for the system variables, the p
from x0 to xf , and the path fromy0 to xf .

B. Calculation of the influence functional

We may now calculate the influence functional with t
semiclassical approximation for system variables inser
The influence functional may be written

F~xf ,x0 ,y0!5E dnqf f~qf ,xf ,x0!

3f* ~qf ,xf ,y0!, ~6.12!

where

f~qf ,xf ,x0!5E dnq0 g~qf ,xf ,q0 ,x0!x~q0 ,x0!.

~6.13!

Here, we have introduced the propagator for the environm
variables along the system classical trajectory fromx0 to xf ,

g~qf ,xf uq0 ,x0!5E Dq~ t !exp„iSE
t @x~ t !,q~ t !#….

~6.14!

The environment statex may be normalized according to

E dnqux~q,x!u251 ~6.15!

for all x. Sinceg propagatesx unitarily along a fixed system
trajectory, it follows that

E dnqf uf~qf ,xf ,x0!u251. ~6.16!

This means that the influence functional satisfies

uF~xf ,x0 ,y0!u2<1 ~6.17!

with equality whenx05y0 , indicating that the influence
functional is peaked aboutx05y0 , which is the decoherenc
effect we need.
9-13
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The influence functional is difficult to evaluate in gener
It can be evaluated exactly when bothg andx are Gaussian
It is also effectively Gaussian in form if we have a lar
number of oscillators in the environment, for then the ma
oscillator influence functional is essentially the original on
Eq. ~6.9!, raised to a high power. This strongly enhances
peaking aboutx05y0 . A simple and reasonably general for
for the influence functional may therefore be obtained
expanding aboutx05y0 , and assuming either a Gaussi
form or a large number of oscillators~or both!.

We again use the coordinatesX0 , v defined in Eq.~4.11!.
We have

f~qf ,xf ,x0!5f~qf ,xf ,X0!

1 1
2 va]af~qf ,xf ,X0!

1 1
8 vavb]a]bf~qf ,xf ,X0!1¯ ,

~6.18!

where]a5]/]X0
a . Inserting in the influence functional, an

also introducing the notationf05f(qf ,xf ,X0), we get

F511 1
2 vaE dnqf~f0* ]af02f0]af0* !

1 1
8 vavbE dnqf~f0* ]a]bf01f0]a]bf0*

22]af0]bf0* !1¯ . ~6.19!

By differentiating the normalization off, Eq. ~6.16!, we see
that

E dnqf f0]af0* 52E dnqf ]af0f0* ~6.20!

and

E dnqf~f0]a]bf0* 1f0* ]a]bf0!

52E dnqf~]af0]bf0* 1]bf0]af0* !. ~6.21!

Using these relations, we may now write the influence fu
tional as

F511 ivaGa2 1
2 vavbSab1¯

'exp@ ivaGa2 1
2 vavb~Sab2GaGb!#1¯ . ~6.22!

The coefficientsGa andSab are given by

Ga~xf ,X0!5
i

2 E dnqf~f0]af0* 2f0* ]af0!,

~6.23!

Sab~xf ,X0!5E dnqf]af0]bf0* .

The approximation of writingF as a Gaussian becomes exa
when g and x are Gaussian, and is also true approximat
10400
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when there are a large number of oscillators in the envir
ment. We have therefore obtained the influence functiona
required.

C. Reparametrization invariance in the influence functional

The form of the influence functional indicates, as e
pected, that there is a suppression of interference for p
with x0Þy0 . This is the usual decoherence effect. Howev
the situation in the reparametrization-invariant theory co
sidered here is not so simple. We expect that the decoher
functional depends, in some sense, only
reparametrization-invariant quantities, and in the semicla
cal approximation used here, this means it depends on e
classical paths~rather than individual points!. Differently
put, we do not expect~or need! the destruction of interfer-
ence for pointsx0 , y0 lying on thesameclassical path~con-
necting each toxf!, since these points are effectively equiv
lent. What we expect is that the influence functional will n
be exponentially small whenxf , x0 , y0 lie along a single
classical path. We must therefore see how reparametriza
invariance is expressed in the influence functional.

We first note that

f05E dnq0 g~qf ,xf uq0 ,X0!x~q0 ,X0!. ~6.24!

Let us see how this quantity varies withX0 . If this were the
usual nonrelativistic quantum mechanics, with propagat
from initial time t0 to final timet f , thenf0 would in fact be
independent oft0 . We expect a similar property here, that i
that f0 is constant~as a function ofX0! along a certain
vector field. The initial statex(q0 ,X0) obeys the Schro¨-
dinger equation

i“0S~X0!•“0x5H«~q0 ,xf ,X0!x. ~6.25!

The propagatorg, on the other hand, obeys Schro¨dinger
equations with respect to both the final and initial points,

i“ fA~xf ,X0!•“ fg5H«~qf ,xf ,X f !g, ~6.26!

i“0A~xf ,X0!•“0g5H«~q0 ,xf ,X0!g. ~6.27!

@Note that the expected minus sign in the Schro¨dinger equa-
tion with respect to the initial point is already containe
through the fact that¹0A is minusthe initial momentum, as
in Eq. ~4.6!.# Now the point is here thatg and x obey
different Schro¨dinger equations, so at this stage,f0 does
not obviously have any constant directions inX0—neither
“0S•“0f0 nor “0A•“0f0 are zero.

However, as we saw in Sec. IV~without environment!,
the path integral enforces the conditionp52“0A. We an-
ticipate that this condition is approximately enforced w
the environment in place. Furthermore, the initial Wign
function for a WKB state is of the approximate form

W~p,X0!5uC~X0!u2d„p2“0S~X0!…. ~6.28!

It follows that the sum over paths is dominated by config
rations for which
9-14
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“0A~xf ,X0!'2“0S. ~6.29!

This means that the trajectories ofS are the same as th
classical trajectories fromX0 to xf . From this it is then easy
to show that

“0S~X0!•“f0'0 ~6.30!

~essentially for the same reason that the analogous non
tivistic version is independent of the initial timet0!. In the
influence functional, two neighboring pointsx0 , y0 on the
same classical trajectory havev5x02y0 proportional to
“0S. It follows that
v

e

t
te
n
e

10400
la-

vaGa50, va(ab50, ~6.31!

which means that the influence functional does not supp
interference between points on the same trajectories, o
between points on different trajectories. That is, when
conditionp52“0A is true, we get the expected result th
the influence functional is a function only of entire traject
ries, and not of the individual points along those trajectori

D. Decoherence and the evaluation of the v integral

The off-diagonal terms of the decoherence functional m
now be written
D~D,D̄ !5E dnxf dnX0 dnv dnpuS E
2`

`

dt fD~x0
f ~ t !!2e D F12uS E

2`

`

dt fD~y0
f ~ t !!2e D GP~xf ,X01 1

2 v!P* ~xf ,X02 1
2 v!

3exp$ i @“0A~xf ,X0!1p#•v1O~v3!%W~p,X0!exp~ ivaGa2 1
2 vavbsab!, ~6.32!
c-

n
oes
es
the
-
f-
oxi-

may
where

sab5(ab2GaGb ~6.33!

and we have again introduced the variablesX0 , v in the
exponential part. The decoherence functional is a sum o
pairs of classical paths, one set of paths intersectingx0 , xf
and passing throughD at any stage along the path, the oth
set of paths intersectingy0 , xf and never passing throughD
at any stage along the path~see Fig. 1!. It is easily seen tha
for this particular coarse graining, in which we are interes
in paths that either pass or do not pass through the regioD,
we do not in fact encounter the situation discussed in S
er

r

d

c.

VI C, in which x0 , y0 , xf lie along the same classical traje
tory. That is, the coarse graining is such thatv is never pro-
portional to “0A, and the potentially singular situatio
~6.31! does not arise. The influence functional therefore d
its job of suppressing the contribution from nonzero valu
of v to a decoherence width determined by the inverse of
nonzero eigenvalues ofsab . If the size of the coarse
graining regionD is greater than this width, then the of
diagonal terms of the decoherence functional are appr
mately zero.

We therefore have approximate decoherence and we
examine the probability for passing throughD, which is
p~D!5E dnxf dnX0 dnv dnp uS E
2`

`

dt fD„X0
f ~ t !…2e D P~xf ,X01 1

2 v!P* ~xf ,X02 1
2 v!exp$ i @“0A~xf ,X0!1p#•v

1O~v3!%W~p,X0!exp~ ivaGa2 1
2 vavbsab!, ~6.34!

wherev has been set to zero in theu function. We are now summing over pairs of classical paths whichbothpass through the
regionD, so now we do have the possibility ofx0 , y0 , xf lying along the same path, and hence the matrixsab is potentially
singular, by Eq.~6.31!. This means that some care is necessary in thev integral.

If we formally carry out the integral overv, we get

pD5E dnxf dnX0 dnp uS E
2`

`

dt fD„X0
f ~ t !…2e D uP~xf ,X0!u2W~p,X0!

3exp$2 1
2 @“0A~xf ,X0!1p1G#asab

21@“0A~xf ,X0!1p1G#b%. ~6.35!
9-15
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Changing integration variables fromxf to p05
2“0A(xf ,X0). This is conveniently written

pD5E dnp0 dnX0 uS E
2`

`

dt fD„X
cl~ t !…2e D W̃~p0 ,X0!,

~6.36!

where we have defined the smeared Wigner function

W̃~p0 ,X0!5E dnp exp@2 1
2 ~p02p2G!a

3sab
21~p02p2G!b#W~p,X0!. ~6.37!

Again the prefactorsP drop out in the change of integratio
variables, as in Sec. IV. This smearing of the Wigner funct
represents environmentally induced fluctuations about
classical evolution, and the small additional termG in the
exponent represents the backreaction of the environmen
the classical equations of motion.

As stated, the results~6.31! suggest that the matrixsab is
singular, but it is easy to see the significance of this. Wh
the matrix is nonsingular, thev integral produces a Gaussia
peak aboutp05p1G, which, as we have seen, represe
fluctuations about classical evolution. If the matrix is sing
lar in a certain direction, it is easy to see from Eq.~6.34! that
the v integral in this direction will produce ad function,
instead of a Gaussian. It will still be peaked about the sa
configuration, but there are no fluctuations in that directio

The result for the probabilities therefore approximate
coincide with the classical result, Eq.~2.10!. We have con-
centrated on the case in whichD is a single region of con-
figuration space, but the result straightforwardly generali
to the case in whichD consists of a series of region
to
it
th
ly

i

i-
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D1 ,D2 ,... . Theabove result then shows that the probabil
is peaked when the series of regions lies along a class
path ~plus the environmental effects of a small backreact
and small fluctuations!.

VII. SUPERPOSITION STATES

The calculations of Secs. IV and VI concerned only sing
WKB states of the form~6.4!. It is therefore important to
reconsider the decoherence calculation of Sec. VI for
more general case of a superposition of WKB states,

C5C11C25C1eiS1x11C2eiS2x2 . ~7.1!

This turns out in fact to be quite straightforward, main
because similar calculations~involving the reduced density
matrix, not the decoherence functional! have already been
done.

Inserting Eq.~7.1! in the decoherence functional, we ob
tain a result of the form

D5D111D121D211D22, ~7.2!

where, in an obvious notation,D11 is the decoherence func
tional with initial density matrixuC1&^C1u, D12 is the deco-
herence functional with the operatoruC1&^C2u is the initial
state slot, and so on. Clearly the analysis ofD11 andD22 is
identical to the case considered already—we get decoher
and probabilities given in terms of the Wigner functions
C1 andC2 . Hence these two terms correspond to a stati
cal mixture of the two initial states.

The interesting terms areD12 and D21 (5D12* ), which
correspond to interferences between different WK
branches. From Sec. VI, we see that
D12~a,a8!5E
2`

`

dtE
2`

`

dt8 e2 iEteiE8t8E
a
Dx~ t !E

a8
Dy~ t !exp$ iS0

t@x~ t !#2 iS0
t@y~ t !#%

3F12@x~ t !,y~ t !,t,t8#C1~x0!eiS1~x0!C2* ~y0!e2 iS2~y0!, ~7.3!

where

F12@x~ t !,y~ t !,t,t8#5E Dq~ t !Dr ~ t !exp~ iSE
t @x,q#2 iSE

t8@y,r # !x1~x0 ,q0!x2* ~y0 ,r0! ~7.4!
ens
n-

ith
~as in Sec. VI A, we should then replace the class opera
with their modified version and go to the semiclassical lim!.
Now it is easy to see that the influence functional is
overlap of the two initial states, but with each unitari
evolved along two different trajectories. That is, in the sem
classical approximation for the system,

F125^x2~y0!uU†~xf ,y0!U~xf ,x0!ux1~x0!&, ~7.5!

whereU(xf ,x0) denotes the unitary evolution of the env
ronment states along the system classical trajectory fromx0
to xf .
rs

e

-

Clearly uF12u2<1, and becauseF12 is an overlap between
a pair of states it will typically be such thatF12 is strictly less
than 1. In this case, when raised to a high power, as happ
when we take a large number of oscillators in the enviro
ment, we will get a very strong suppression of terms w
x0Þy0 . In particular, even whenx05y0 , we get

F125^x2~x0!ux1~x0!&, ~7.6!

which will be less than 1, quite simply becausex1 andx2 are
different states. We therefore find thatD12 andD21 are much
9-16
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smaller than the diagonal termsD11, D22. This destruction
of interference between WKB states therefore comes ab
for essentially the same reason that the corresponding
diagonal terms of the density matrix are very small, as d
cussed previously@46–49#.

It should be noted that in Eq.~7.5!, it could in fact happen
thatF1251, as a result of a careful choice ofx1Þx2 together
with a suitable choice ofx0Þy0 , in particular, if

U~xf ,x0!ux1~x0!&5U~xf ,y0!ux2~y0!&. ~7.7!

The point here, however, is that this becomes very unlik
with a large environment. With a large collection of oscill
tors in the environment, the environment states are a te
product overA of statesux1

A(x0)&, for example, and then

F125)
A

^x2
A~y0!uU†~xf ,y0!U~xf ,x0!ux1

A~x0!&. ~7.8!

As the size of the environment goes to infinity, the possibi
of Eq. ~7.8! being exactly 1 becomes negligible.

It is also of interest to look at the special case in which
wave function Eq.~7.1! is real ~as is the case in the no
boundary wave function of Hartle and Hawking!, so that
C25C1* , andx25x1* . Whenx05y0 , we then have that

uF12u25U E dq0 x1
2~x0 ,q0!U2

. ~7.9!

Sincex1 is generally complex@it obeys the complex Schro¨-
dinger equation~6.7!#, the right-hand side of Eq.~7.9! will
again be less than 1, so the argument still goes through@49#.
The argument fails ifx1 is real. But then it would have to b
an eigenstate of the environment Hamiltonian for all valu
of x0 , and this would not lead to decoherence, so we m
disregard this case.

VIII. SUMMARY AND DISCUSSION

We have studied the quantization and interpretation
simple timeless models described by an equation of the
~1.1!. In particular, we studied the following question: wh
is the probability that the system passes through a regioD
of configuration space without reference to time?

We obtained the classical answer to this problem, in th
different forms, in terms of a classical phase-space distr
tion functionw(p,x), satisfying$H,w%50, the analogue of
Eq. ~1.1!. This function needs some care in normalizati
since it is constant along the~possibly infinite! classical or-
bits. A very useful step in the classical case was the in
duction of the phase-space quantity Eq.~2.7!, which is
d-function-peaked on the classical path and also has a
ishing Poisson bracket with the Hamiltonian, thus it is
observable. This quantity assists in understanding some
pects of the quantum theory.

We constructed the decoherence functional, following
general scheme of Refs.@21,22#, using the induced inne
product. Although the general scheme has been prese
previously, a key part of our contribution to this area is t
explicit identification~in the semiclassical approximation! of
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the class operator Eq.~4.8! satisfying the constraint every
wheredescribing histories restricted to pass through a reg
D of configuration space. Having made this identification
major part of our work was to show that the decoher
histories approach then reduces, approximately, to the co
sponding classical result, but with the classical phase-sp
distribution functionw(p,x) replaced by the Wigner function
W(p,x) of the quantum theory. We also explored the dec
herence and probabilities for a system of harmonic osci
tors using the timeless coherent states, in terms of which
analysis is particularly transparent and fully agrees with
tuitive expectations.

In brief, therefore, we have shown that heuristic clas
cally inspired notions of interpretation for simple timele
models may in fact be derived from the decoherent histo
analysis of such models. This result is by no means un
pected, but the key aspects of the derivation are the eluc
tion of the role of the constraint and the related reparame
zation invariance in the construction of both the classical a
quantum results. Furthermore, the complete absence
time parameter is not an obstruction to quantization.

There are a number of issues which the present work
generated and will be discussed in a later publication, but
mention them briefly below.

First of all, the main difficulty in computing the decohe
ence functional for our chosen coarse graining is the ca
lation of the modified class operators. Even before modifi
tion, class operators of the type Eq.~3.21! are difficult to
calculate~typically they can only be obtained exactly in th
very simple situations in which the method of images may
used!. The suggested scheme for constructing modified
erators obeying the constraint has not yet been explo
fully. Here, we have constructed physically plausible mo
fied class operators in the semiclassical approximation,
taining full agreement with the classical results. Some ex
modified class operators for simple coarse grainings of
relativistic particle have been constructed in Ref.@23#, but it
is not yet clear how general those results are. Hence a m
detailed investigation of these modified class operators
called for. @We note in passing that, from the simple e
amples in which the modified class operators have been
culated, their calculation does in fact appear to be consi
ably easier than the original ones, Eq.~3.21!.#

Second, we have assumed~except in Sec. V! that both the
initial states and the propagators are in the oscillatory
gime. This means in the propagator that we assume
dominant contribution comes from real configurations~rather
than Euclidean or complex ones!. Many interesting models
in quantum cosmology have a Euclidean region, correspo
ing, for example, to ‘‘tunneling from nothing.’’ It is not im-
mediately clear how the semiclassical calculation of Sec.
is modified to include this case, the main difficulty bein
understanding what the class operators are. This cas
therefore probably related to the question of a more gen
formula for the modified class operators.

Third, it is generally understood that decoherence of h
tories is related to the existence of ‘‘records’’@10,33#. This
means that it is possible to find a projection operatorRa
which is perfectly correlated with the class operatorsCa in
9-17
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terms of which the probabilities may be written,

p~aI !5Tr~CaI rCaI !5Tr~RaI r!. ~8.1!

In the case of a nonrelativistic model where decoherenc
produced by an environment, it is possible to explicitly ide
tify the environmental variables which store the informati
about the system@33#. It would be very desirable to do this i
the timeless case considered here. It seems likely that
variables are very similar to the case of Ref.@33#, but the
interesting question is the role of reparametrization inva
ance in this situation, and whether the records are clo
related to observables in the operator approach.

A fourth issue concerns the connection between the de
herent histories analysis considered here and the ma
p
D

,

C.

m

;

ce

s.

,
a

ra

-
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equation for the reduced density operator~in the case in
which decoherence is produced by an environment!. It would
be of interest to see if the discussion of decoherence
probabilities can be reexpressed in the simpler languag
the density operator, as it sometimes can in nonrelativi
decoherence models. This is currently under investiga
@50#.

These and related issues will be taken up in future pu
cations.
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