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Post-Newtonian gravitational radiation and equations of motion via direct integration of the
relaxed Einstein equations. II. Two-body equations of motion to second post-Newtonian order,

and radiation reaction to 3.5 post-Newtonian order

Michael E. Pati and Clifford M. Will
McDonnell Center for the Space Sciences, Department of Physics, Washington University, St. Louis, Missouri 63130

~Received 21 January 2002; published 29 April 2002!

We derive the equations of motion for binary systems of compact bodies in the post-Newtonian~PN!
approximation to general relativity. Results are given through 2PN order@order (v/c)4 beyond Newtonian
theory#, and for gravitational radiation reaction effects at 2.5PN and 3.5PN orders. The method is based on a
framework for direct integration of the relaxed Einstein equations~DIRE! developed earlier, in which the
equations of motion through 3.5PN order can be expressed in terms of Poisson-like potentials that are gener-
alizations of the instantaneous Newtonian gravitational potential, and in terms of multipole moments of the
system and their time derivatives. All potentials are well defined and free of divergences associated with
integrating quantities over all space. Using a model of the bodies as spherical, non-rotating fluid balls whose
characteristic sizes is small compared to the bodies’ separationr, we develop a method for carefully extracting
only terms that are independent of the parameters, thereby ignoring tidal interactions, spin effects, and internal
self-gravity effects. Through 2.5PN order, the resulting equations agree completely with those obtained by
other methods; the new 3.5PN back-reaction results are shown to be consistent with the loss of energy and
angular momentum via radiation to infinity.

DOI: 10.1103/PhysRevD.65.104008 PACS number~s!: 04.30.2w, 04.25.Nx
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I. INTRODUCTION AND SUMMARY

This is the second in a series of papers which will tr
motion and gravitational radiation in the post-Newtonian a
proximation to general relativity. While this is a problem th
dates back to the beginnings of general relativity, it has
cently taken on added observational importance becaus
the need for extremely accurate theoretical gravitatio
waveform templates for the analysis of data taken by la
interferometric gravitational-wave detectors@1#. Specifically,
for waves from inspiraling binary systems of compact o
jects ~neutron stars or black holes!, equations of motion and
gravitational waveforms accurate to at leastthird post-
Newtonian order@order (v/c)6# beyond the initial Newton-
ian or quadrupole approximation are needed.

In Paper I@2#, we laid out the foundations of our metho
of direct integration of the relaxed Einstein equatio
~DIRE!. We rewrote the Einstein equations as a flat spa
time wave equation together with a harmonic gauge con
tion ~the ‘‘relaxed’’ Einstein equations!, and solved them for-
mally in terms of a retarded integral over the past null co
of the field point. Because the ‘‘source’’ contains both t
material stress-energy tensor and the stress-energy con
tions of the gravitational fields themselves, it was necess
to iterate the integrals repeatedly to obtain successiv
higher-order approximations to a solution in powers ofe
;(v/c)2;(Gm/rc2). Each power of e represents one
‘‘post-Newtonian’’ ~PN! order in the series (e1/2 represents
one-half, or 0.5PN orders!. Despite the fact that the field
contributions to the integrals extend over all spacetime,
demonstrated that no infinite or ill-defined integrals o
curred, even in slow-motion, multipole expansions, a
found a simple prescription for evaluating the finite cont
butions of all integrals. This was true for calculations of t
metric both in the near zone and in the far zone.
0556-2821/2002/65~10!/104008~21!/$20.00 65 1040
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To complete the solution of Einstein’s equations, o
needs equations of motion for the system. For this, one ne
the spacetime metric evaluated for field points within t
near zone, corresponding to a sphere of radiusR approxi-
mately one gravitational wavelength. In Paper I we e
pressed this near-zone metric explicitly through ordere7/2

beyond the Newtonian approximation, corresponding to
post-Newtonian ~PN! order, in terms of instantaneou
Poisson-like integrals and their generalizations, of the fo
for example,

P~ f ![
1

4pEM

f ~ t,x8!

ux2x8u
d3x8, ~1.1!

where the integration is confined to the near zoneM, and
only that part of the integral that is independent ofR is kept.

It is the purpose of this paper to evaluate these integ
explicitly for a binary system of non-spinning, spherical
symmetric bodies whose size is much smaller than th
separation. We will carry this evaluation through 2PN ord
and will also evaluate the leading radiation-reaction con
butions at 2.5PN order, together with the first po
Newtonian corrections to radiation reaction, at 3.5PN ord
The extremely lengthy derivation of the non-radiative 3P
contributions will be reserved for future publications. Th
resulting equations have the form

d2x

dt2
52

m

r 2 n1
m

r 2 @n~APN1A2PN1A3PN!

1 ṙv~BPN1B2PN1B3PN!#

1
8

5
h

m

r 2

m

r
@ ṙn~A2.5PN1A3.5PN!

2v~B2.5PN1B3.5PN!#, ~1.2!
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MICHAEL E. PATI AND CLIFFORD M. WILL PHYSICAL REVIEW D 65 104008
where x[x12x2 , r[uxu, n[x/r , m[m11m2 , h
[m1m2 /m2, v[v12v2, and ṙ 5dr/dt. We use units in
which G5c51. The leading term is Newtonian gravity. Th
other terms on the first and second lines are the ‘‘conse
tive’’ or non-dissipative terms, of even PN order, while tho
on the third and fourth lines are dissipative radiation-react
terms, of odd-half PN order. The coefficientsA and B are
given explicitly by

APN52~113h!v21
3

2
h ṙ 212~21h!m/r ,

BPN52~22h!, ~1.3a!

A2PN52h~324h!v41
1

2
h~1324h!v2m/r

1
3

2
h~324h!v2ṙ 21~2125h12h2! ṙ 2m/r

2
15

8
h~123h! ṙ 42

3

4
~12129h!~m/r !2,

B2PN5
1

2
h~1514h!v22

3

2
h~312h! ṙ 2

2
1

2
~4141h18h2!m/r , ~1.3b!

A2.5PN53v21
17

3
m/r ,

B2.5PN5v213m/r , ~1.3c!

A3.5PN52
3

28
~61170h!v42

1

42
~51921267h!v2m/r

1
15

4
~1912h!v2ṙ 22

1

4
~1471188h! ṙ 2m/r

270ṙ 42
23

14
~43114h!~m/r !2,

B3.5PN52
1

28
~313142h!v4

1
1

42
~2051777h!v2m/r

1
3

4
~11312h!v2ṙ 2

2
1

12
~2051424h! ṙ 2m/r 275ṙ 4

2
1

42
~13251546h!~m/r !2. ~1.3d!
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The 1PN coefficients are standard; the 2PN and 2.5
terms agree completely with results derived by Damour a
Deruelle @3,4#, Kopeiken and Grishchuk@5,6#, Blanchet
et al. @7#, and Itohet al. @8#. However, the 2.5PN terms diffe
from those derived, for example from a Burke-Thorn
type radiation-reaction potential given by FRR
52(1/5)xixjd5I ^ i j &/dt5, whereI ^ i j & is the system’s trace
free quadrupole moment~see, e.g. Sec. 36.11 of@9#!. Iyer
and Will @10,11# showed that there is a two-paramet
‘‘gauge’’ freedom in the radiation reaction equations
2.5PN order~and a six-parameter freedom at 3.5 PN orde!,
within which the different equations of motion yield identic
results for the net energy and angular momentum radia
The 2.5PN terms shown are thus observationally equiva
to the Burke-Thorne radiation reaction equations. The 3.5
terms are new; it can be shown that they correspond t
specific choice of the six Iyer-Will gauge parameters, a
thus automatically generate the proper post-Newtonian
rections to energy and angular momentum loss. Scha¨fer and
Jaranowski@12–14# also derived 2PN, 2.5PN, and 3.5P
contributions to the equations of motion in a Hamiltoni
formulation. The 3PN contributions to the equations of m
tion have also been reported by several groups@15–19#.

The remainder of this paper is devoted to the details s
porting these results. In Sec. II we review the basic equati
needed to find equations of motion to the order needed. S
tion III specializes in binary systems of spherical ‘‘pointlike
bodies, and derives the equations of motion for each b
correct to 2PN order. Section IV repeats the process for
2.5PN and 3.5PN terms. In Sec. V we transform to an eff
tive one-body relative equation of motion. Concluding r
marks are made in Sec. VI. Detailed points are reserved f
series of Appendixes.

Our conventions and notation generally follow those
@9,20#. Greek indices run over four spacetime values 0, 1
3, while latin indices run over three spatial values 1, 2,
commas denote partial derivatives with respect to a cho
coordinate system, while semicolons denote covariant
rivatives; repeated indices are summed over;hmn5hmn

5diag(21,1,1,1); g[det(gmn); a( i j )[(ai j 1aji )/2;
a[ i j ][(ai j 2aji )/2; e i jk is the totally antisymmetric Levi-
Civita symbol (e123511). We use a multi-index notation
for products of vector components and partial derivativ
and for multiple spatial indices:xi j . . . k[xixj . . . xk,
¹ i j . . . k[¹ i¹ j . . . ¹k, with a capital letter superscript deno
ing an abstract product of that dimensionality:xQ

[xi 1xi 2 . . . xi q and¹Q[¹ i 1¹ i 2 . . . ¹ i q. Also, for a tensor of
rank Q, f Q[ f i 1i 2 . . . i q. The notationf QgQ denotes a com-
plete contraction over theq indices. Spatial indices are freel
raised and lowered withd i j andd i j .

II. EQUATIONS OF MOTION OF COMPACT BINARY
SYSTEMS: BASIC EQUATIONS

A. Structure of the near-zone metric to 3.5PN order

We begin by reviewing key results from Paper I. We d
fined the ‘‘field’’ hab by

hab[hab2~2g!1/2gab, ~2.1!

wheregab is the spacetime metric. In deDonder or harmon
8-2
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POST-NEWTONIAN GRAVITATIONAL . . . . II. . . . PHYSICAL REVIEW D 65 104008
coordinates defined by the gauge conditionhab,b50, the
Einstein equations take the form

hhab5216ptab, ~2.2!

where h is the flat-spacetime wave operator, andtab is
made up of the material stress-energy tensorTab and the
contribution of all the non-linear terms in Einstein’s equ
tions. We defined a notation for specific components of
field hab:

N[h00;O~e!,

Ki[h0i;O~e3/2!,

Bi j [hi j ;O~e2!, ~2.3!

B[(
i

hii ;O~e2!,

where we show the leading-order dependence one in the
near zone. To the necessary orders for calculating the e
tions of motion to 3.5PN order, the components of the phy
cal metric are given in terms ofN, Ki , Bi j , andB by

g0052S 12
1

2
N1

3

8
N22

5

16
N31

35

128
N4D

1
1

2
BS 12

1

2
N1

3

8
N2D1

1

4 S Bi j Bi j 2
1

2
B2D

1
1

2
K jK j2

3

4
NKjK j1O~e5!,

g0i52Ki S 12
1

2
N2

1

2
B1

3

8
N2D2K jBi j 1O~e9/2!,

~2.4!

gi j 5d i j S 11
1

2
N2

1

8
N21

1

16
N32

1

4
NB1

1

2
KkKkD

1Bi j 2
1

2
Bd i j 2KiK j1

1

2
NBi j 1O~e4!,

~2g!511N2B2NB1KiKi1O~e4!.

The potentialsN, Ki , Bi j andB must also be expanded to a
appropriate order:

N5e~4Us1eN11e3/2N1.51e2N21e5/2N2.5

1e3N31e7/2N3.5!1O~e5!,

Ki5e3/2~4Vs
i 1eK2

i 1e3/2K2.5
i 1e2K3

i 1e5/2K3.5
i !

1O~e9/2!, ~2.5!

B5e2~B11e1/2B1.51eB21e3/2B2.51e2B3

1e5/2B3.5!1O~e5!,

Bi j 5e2~B2
i j 1e1/2B2.5

i j 1eB3
i j 1e3/2B3.5

i j !1O~e4!,
10400
-
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where the subscript on each term indicates the level~1PN,
2PN, 2.5PN, etc.! of its leading contribution to the equation
of motion. Notice that our separate treatment ofB and Bi j

leads to the slightly awkward notational circumstance th
for example,B2

i i 5B1. In Paper I we obtained explicit nea
zone expressions for each of the terms in Eq.~2.5! in terms
of Poisson-like potentials

P~ f ![
1

4pEM

f ~ t,x8!

ux2x8u
d3x8, ¹2P~ f !52 f ,

~2.6!

S~ f ![E
M

s~ t,x8! f ~ t,x8!

ux2x8u
d3x85P~4ps f !,

and various generalizations@for definitions, see Paper I, Eqs
~4.10!–~4.16!#, and in terms of source multipole moment
such asI i j [*Mt00xi j d3x @for definitions, see Paper I, Eqs
~2.14! and ~4.5!–~4.7!#. The integrations are over a consta
time hypersurfaceM that extends to a radiusR approxi-
mately one gravitational wavelength from the source. In P
per I we showed that, even for Poisson potentials where
function f does not have compact support, all contributions
the fieldhmn from the integration overM that depend onR
cancel corresponding contributions from that part of the fi
point’s past null cone that is outsideR, and thus that any
R-dependent terms that appear in a given integral can sim
be discarded.

The potentials given in Paper I were expressed in term
specific source densities given by

s[T001Tii ,

s i[T0i , ~2.7!

s i j [Ti j .

For example, in Eq.~2.5!,

Us[E
M

s~ t,x8!

ux2x8u
d3x85P~4ps!5S~1!,

~2.8!

Vs
i [E

M

s i~ t,x8!

ux2x8u
d3x85P~4ps i !5S i~1!.

Explicit expressions for the remaining terms in Eq.~2.5! can
be found in Paper I, Eqs.~5.2!, ~5.4!, ~5.8!, ~5.10!, ~6.2!, and
~6.4!.

B. Model of the material sources

We model the material sources in the binary system
perfect fluid, having stress-energy tensor

Tab[~r1p!uaub1pgab, ~2.9!
8-3
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MICHAEL E. PATI AND CLIFFORD M. WILL PHYSICAL REVIEW D 65 104008
wherer andp are the locally measured energy density a
pressure, respectively, andua is the four-velocity of an ele-
ment of fluid. We will assume the bodies to be non-rotat
~the effects of spin will be treated in future publications!,
spherically symmetric in their comoving rest frames, a
small compared to their separation, so that tidal distorti
can be ignored.

Our goal is to determine all contributions to the equatio
of motion that are independent of the internal structure, s
and shape of the bodies. We are less interested in for
rigor than in having a robust method that captures all
effects without missing any. One approach to this has bee
assume a ‘‘delta function’’ or distributional form for th
stress-energy tensor. This has been criticized because s
source is fundamentally incompatible with general relativ
and because it leads to divergences related to the infi
self-field of a point mass. A number of methods have be
developed in order to extract the finite part of such diverg
expressions, including the Hadamardpartie finie technique
~for a recent review, see@21#!. Another approach is related t
that of Einstein, Infeld and Hoffman~EIH! @22#: expand the
vacuum Einstein equations in a post-Newtonian expans
and match the solutions to fields representing the near-z
Schwarzschild-like field of a static, spherical body. The co
sistency conditions imposed by the matching lead to c
straints on the motion of the bodies that yield the equati
of motion. This has been carried out to 2.5PN order by I
et al. @23,8#, exploiting a ‘‘strong-field point particle’’ scaling
method of Futamase@24#.

A third approach is to treat the bodies realistically as flu
balls with internal energy, supported against their self grav
by pressure governed by an equation of state. In this case
mass of each body is composed of rest mass, internal en
and self-gravitational binding energy, and the center of m
is defined accordingly. However, at Newtonian and 1PN
der, when finite-size effects such as tidal interactions are
nored, it turns out that all vestiges of the internal struct
are ‘‘effaced,’’ in the language of Damour@4#, and the final
1PN equations of motion depend on one and only one m
as defined above. This procedure can be seen in detail
example, in@25#, Sec. VI B, where the calculation is actual
carried out in the parametrized post-Newtonian~PPN! frame-
work, which encompasses a class of metric theories of g
ity. In many alternative theories, such as scalar-tensor g
ity, the effacement is violated, and the equations of mot
depend on various masses, such as inertial massm, active
gravitational massmA , and passive gravitational massmP ,
which may differ by amounts depending on the bodi
gravitational binding energy. In GR, the PPN parameters
such that all three masses are identical.

In fact, the 1PN equations of motion derived from th
method are identical to those obtained from a ‘‘delta’’ fun
tion method in which one systematically throws away
terms that are singular when evaluated on each body’s w
line. At 1PN order, the results are in keeping with the id
that general relativity satisfies the strong equivalence p
ciple ~see Sec. III C of@25#!, part of which implies that the
motion of bound bodies is independent of their internal str
10400
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ture, provided that tidal effects can be ignored. Kopeikin@5#
extended this to 2PN order, with results consistent with
strong equivalence principle.

Our approach will be intermediate between the ‘‘del
function’’ model and the full equilibrium fluid ball method
We will neglect pressurep and internal energy density, an
treat the bodies as balls of baryons characterized by
‘‘conserved’’ baryon mass densityr* , given by

r* [mnA2gu0, ~2.10!

wherem is the rest mass per baryon,n is the baryon number
density, andg[det(gmn). From the conservation of baryo
number, expressed in covariant terms by (nua) ;a50
5(A2gnua) ,a , we see thatr* obeys the non-covariant, bu
exact, continuity equation

]r* /]t1¹•~r* v!50, ~2.11!

wherev i5ui /u0, and spatial gradients and dot products us
Cartesian metric. In terms ofr* , the stress-energy tenso
takes the form

Tab5r* ~2g!21/2u0vavb, ~2.12!

whereva5(1,v i). We define the baryon rest mass, center
baryonic mass, velocity and acceleration of each body by
formulas

mA[E
A
r* d3x,

xA[~1/mA!E
A
r* xid3x,

~2.13!

vA[dxA /dt5~1/mA!E
A
r* vid3x,

aA[dvA /dt5~1/mA!E
A
r* aid3x,

where we have used the general fact, implied by the equa
of continuity for r* , that

]

]tE r* ~ t,x8! f ~ t,x,x8!d3x8

5E r* ~ t,x8!S ]

]t
1v8•¹8D f ~ t,x,x8!d3x8. ~2.14!

C. Structure of the equations of motion to 3.5 PN order

The definition of the stress-energy tensor in terms ofr* ,
Eq. ~2.12!, together with the equation of continuity, Eq
~2.11!, and the fundamental equations of motion,Tab

;b50
can be shown to be equivalent to the geodesic equa
ubu;b

a 50 for each fluid element. In terms of ordinar
velocity v i5dxi /dt and harmonic coordinate timet, the geo-
desic equation takes the form
8-4
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ai[dv i /dt52Gab
i vavb1Gab

0 vavbv i , ~2.15!

whereGab
g are Christoffel symbols computed from the me

ric. According to our definitions of the baryonic center
mass, velocity and acceleration of each body, we can w
the coordinate acceleration of theAth body in the form

aA
i 5~1/mA!E

A
r* ~2Gab

i vavb1Gab
0 vavbv i !d3x.

~2.16!

Our task, therefore, is to determine the Christoffel symb
through a PN order sufficient for equations of motion va
through 3.5PN order using the 3.5PN accurate expression
the metric in Paper I~different components ofGab

g are need
to different accuracy, depending on the number of factors
10400
te

s

of

f

velocity which multiply them!; reexpress the Poisson pote
tials contained in the metric in terms ofr* , rather than in
terms of the ‘‘densities’’s, s i and s i j , substitute into Eq.
~2.16!, and integrate over theAth body, keeping only terms
that do not depend on the bodies’ finite size.

D. Christoffel symbols to 3.5PN order

The fundamental definition

Gmn
a [

1

2
gab~gbm,n1gbn,m2gmn,b!, ~2.17!

together with the form of the metric Eq.~2.4! and the expan-
sions of Eq.~2.5! give the Christoffel symbols expanded
the required order:
G00
0 52eU̇s2e2S 1

4
~Ṅ11Ḃ1!24UsU̇s24Vs

i Us
,i D2e5/2Ṅ1.52e3S 1

4
~Ṅ21Ḃ2!2N1U̇s2UsṄ12Vs

i ~N1
,i1B1

,i !2K2
i Us

,i

28Vs
i V̇s

i 116Us
2U̇s132UsVs

i Us
,i D2e7/2S 1

4
~Ṅ2.51Ḃ2.5!2N1.5U̇s2UsṄ1.52K2.5

i Us
,i D1O~e4!, ~2.18a!

G0i
0 52eUs

,i2e2S 1

4
~N1

,i1B1
,i !24UsUs

,i D2e3S 1

4
~N2

,i1B2
,i !2N1Us

,i2UsN1
,i14Vs

i U̇s18Vs
j Vs

i , j116Us
2Us

,i D
2e7/2S 1

4
~N2.5

,i 1B2.5
,i !2N1.5Us

,i D1O~e4!, ~2.18b!

G i j
0 5e2~4Vs

( i , j )1U̇sd i j !1e3S 1

4
~Ṅ12Ḃ1!d i j 1

1

2
Ḃ2

i j 1K2
( i , j )216Vs

( iUs
, j )14Vs

k Us
,kd i j D1e7/2S 1

2
Ḃ2.5

i j 1K2.5
( i , j )2

1

2
Ṅ1.5d

i j D
1O~e4!, ~2.18c!

G00
i 52Us

,i2eS 1

4
~N1

,i1B1
,i !14V̇s

i 28UsUs
,i D2e2S 1

4
~N2

,i1B2
,i !1K̇2

i 22N1Us
,i22UsN1

,i2UsB1
,i2B2

i j Us
, j24Vs

i U̇s

216UsV̇s
i 18Vs

j Vs
j ,i148Us

2Us
,i D2e5/2S 1

4
~N2.5

,i 1B2.5
,i !1K̇2.5

i 22N1.5Us
,i2B2.5

i j Us
, j D2e3S 1

4
~N3

,i1B3
,i !1K̇3

i

22N2Us
,i2Us~2N2

,i1B2
,i !24UsK̇2

i 2K2
i U̇s2

1

2
N1N1

,i2
1

4
N1B1

,i2Vs
i ~Ṅ11Ḃ1!24N1V̇s

i 12K2
j Vs

j ,i12Vs
j K2

j ,i

14Vs
j Ḃ2

i j 1
1

4
B2

jkB2
jk,i2B3

i j Us
, j2

1

4
B2

i j ~B1
, j1N1

, j !112Us
2N1

,i14Us
2B1

,i124UsN1Us
,i18UsUs

, jB2
i j 164Us

2V̇s
i

132UsU̇sVs
i 264UsVs

j Vs
j ,i232Vs

j Vs
j Us

,i2256Us
3Us

,i D2e7/2S 1

4
~N3.5

,i 1B3.5
,i !1K̇3.5

i 2
1

4
N1.5B1

,i2
1

2
N1.5N1

,i

22UsN2.5
,i 2UsB2.5

,i 22N2.5Us
,i12Vs

j K2.5
j ,i 12K2.5

j Vs
j ,i24UsK̇2.5

i 2K2.5
i U̇s24Vs

i Ṅ1.524N1.5V̇s
i 2Us

, jB3.5
i j 14Vs

j Ḃ2.5
i j

2
1

4
B2.5

i j ~N1
, j1B1

, j !1
1

4
B2.5

jk B2
jk,i124UsN1.5Us

,i18UsUs
, jB2.5

i j D1O~e4!, ~2.18d!
8-5
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G0 j
i 5e~U̇sd i j 24Vs

[ i , j ] !1e2S 1

4
~Ṅ12Ḃ1!d i j 2K2

[ i , j ]1
1

2
Ḃ2

i j 24UsU̇sd i j 24Vs
j Us

,i116UsVs
[ i , j ] D2e5/2S 1

2
Ṅ1.5d

i j 1K2.5
[ i , j ]

2
1

2
Ḃ2.5

i j D1e3S 1

4
~Ṅ22Ḃ2!d i j 2K3

[ i , j ]1
1

2
Ḃ3

i j 2~N1U̇s1UsṄ1!d i j 2K2
j Us

,i14UsK2
[ i , j ]216Vs

( i V̇s
j )18Vs

k V̇s
k d i j

2Vs
j ~N1

,i1B1
,i !14N1Vs

[ i , j ]14B2
ikVs

[k, j ]14Vs
k,[ iB2

j ]k24Vs
k B2

k[ i , j ]116Us
2U̇sd i j 132UsUs

,iVs
j 264Us

2Vs
[ i , j ] D

1e7/2S 1

4
~Ṅ2.52Ḃ2.5!d

i j 2K3.5
[ i , j ]1

1

2
Ḃ3.5

i j 2~N1.5U̇s1UsṄ1.5!d
i j 2K2.5

j Us
,i14UsK2.5

[ i , j ]14N1.5Vs
[ i , j ]14B2.5

ik Vs
[k, j ]

14Vs
k,[ iB2.5

j ]kD1O~e4!, ~2.18e!

G jk
i 5e0G jk

i ~Us!1e2S 1

4
0G jk

i ~N12B1!24Us
0G jk

i ~Us!1
1

2
~B2

i j ,k1B2
ik, j2B2

jk,i ! D1e3S 1

4
0G jk

i ~N22B2!1
1

2
~B3

i j ,k1B3
ik, j

2B3
jk,i !2N1

0G jk
i ~Us!1B2

i l Us
,ld jk2B2

jkUs
,i2Us

0G jk
i ~N1!116Us

2 0G jk
i ~Us!14Vs

i U̇sd jk14 0G jk
i ~Vs

l Vs
l !

216Vs
j Vs

[ i ,k]216Vs
k Vs

[ i , j ] D1e7/2S 1

4
0G jk

i ~N2.52B2.5!1
1

2
~B3.5

i j ,k1B3.5
ik, j2B3.5

jk,i !2N1.5
0G jk

i ~Us!1B2.5
i l Us

,ld jk

2B2.5
jk Us

,i D1O~e4!, ~2.18f!

where we define

0G jk
i ~ f ![ f ,kd i j 1 f , jd ik2 f ,id jk. ~2.19!

E. Conversion to the baryon densityr*

We must now convert all potentials from integrals overs, s i , ands i j to integrals over the conserved baryon densityr* ,
defined by Eq.~2.10!. From Eqs.~2.7! and ~2.12!, we find

s5r* u0~11v2!/A2g,

s i5r* u0v i /A2g, ~2.20!

s i j 5r* u0v iv j /A2g,

whereu05(2g0022g0iv
i2gi j v

iv j )21/2. Substituting the expansions for the metric, Eq.~2.4!, and for the metric potentials
Eq. ~2.5!, we obtain, to the order required for 3.5PN equations of motion,

s5r* F11eS 3

2
v22UsD1e2S 7

8
v41

1

2
v2Us24v jVs

j 2
1

4
N11

3

4
B11

5

2
Us

2 D12e5/2N1.51e3S 11

16
v61

33

8
v4Us210v2Vs

j v j

1
7

4
v2Us

21
1

8
v2N11

9

8
v2B11

1

2
B2

i j v iv j14UsVs
j v j2K2

j v j2
1

4
N21

3

4
B224Vs

i Vs
i 1

5

4
UsN12

3

4
UsB12

15

2
Us

3 D
1e7/2S 7

2
v2N1.51

1

2
B2.5

i j v iv j2K2.5
j v j2

1

4
N2.51

3

4
B2.52UsN1.5D1O~e4!G , ~2.21a!

s i5r* v iF11eS 1

2
v22UsD1e2S 3

8
v41

3

2
v2Us24Vs

j v j1
3

4
B12

1

4
N11

5

2
Us

2 D12e5/2N1.51O~e3!G , ~2.21b!

s i j 5r* v iv jF11eS 1

2
v22UsD1O~e2!G , ~2.21c!
104008-6
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s i i 5r* v2F11eS 1

2
v22UsD1e2S 3

8
v41

3

2
v2Us24Vs

j v j1
3

4
B12

1

4
N11

5

2
Us

2 D12e5/2N1.51O~e3!G . ~2.21d!

Substituting these formulas into the definitions forUs and the other potentials defined in Paper I, Eqs.~4.10!–~4.16!, and
iterating successively, we convert all such potentials into new potentials defined usingr* , plus PN corrections. For example
we find that

Us5U1eS 3

2
F12F2D1e2S 7

8
S~v4!1

1

2
S~v2U !24S~v jVj !1

5

2
S~F1!2S~F2!1

3

2
S~U2!2

1

2
S~Ẍ! D

2e5/2S 4

3
U I

~3! j j

~ t !D 1O~e3!, ~2.22!

where henceforth,U, Vj , F1 , F2 , S, and so on, are defined in terms ofr* ~see Appendix A!.

F. Final continuum equations of motion

Combining Eqs.~2.18! and ~2.15!, substituting the explicit forms of the potentialsN1 , K2
i , B2

i j , etc. from Paper I, Eqs
~5.2!, ~5.4!, ~5.8!, ~5.10!, ~6.2!, and~6.4!, and inserting the iterated forms of all potentials, we obtain the equation of mo
through 3.5PN order,

dv i /dt5U ,i1aPN
i 1a2PN

i 1a2.5PN
i 1a3PN

i 1a3.5PN
i , ~2.23!

where

aPN
i 5v2U ,i24v iv jU , j23v i U̇24UU ,i18v jV[ i , j ]14V̇i1

1

2
Ẍ,i1

3

2
F1

,i2F2
,i , ~2.24a!

a2PN
i 54v iv jvkVj ,k1v2v i U̇1v iv j~4F2

, j22F1
, j22Ẍ, j !2

1

2
v2~2F2

,i1F1
,i2Ẍ,i !1v jvk~2F1

jk,i24F1
i j ,k

12P2
jk,i24P2

i j ,k!1v iS 3Ḟ22
1

2
Ḟ12

3

2
X
~3!

14VkU ,kD 1v j@8V2
[ i , j ]216F2

[ i , j ]14Ẍ[ i , j ]132G7
[ i , j ]

216UV[ i , j ]24S ,[ i~v j ]v2!18ViU , j24Ḟ1
i j 24Ṗ2

i j #1
7

8
S ,i~v4!1

9

2
S ,i~v2U !24S ,i~v jVj !

2
3

2
S ,i~F1!26UF1

,i22F1U ,i24F1
i j U , j18VjVj ,i14ViU̇12Ṡ~v iv2!14UF2

,i14F2U ,i

18U2U ,i2S ,i~F2!1
3

2
S ,i~U2!22UẌ,i22ẌU ,i28UV̇i2

1

2
S ,i~Ẍ!1

3

4
Ẍ1

,i2
1

2
Ẍ2

,i12Xi
~3!

1
1

24
Y,i
~4!

14V̇2
i 28Ḟ2

i 26G1
,i24G2

,i18G3
,i18G4

,i24G6
,i116Ġ7

i 24P2
i j U , j24H ,i , ~2.24b!

a2.5PN
i 5

3

5
xj S Ii j

~5!

2
1

3
d i j Ikk

~5! D 12v j Ii j
~4!

12U , j Ii j
~3!

1
4

3
U ,iIkk

~3!

2X,i jk Ijk
~3!

2
2

15
Ii j j
~5!

1
2

3
eqi j Jq j

~4!

, ~2.24c!
104008-7
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a3.5PN
i 5

1

210
~13r 2xkd i j 24r 2xid jk2xixjxk! Ijk

~7!

1
1

30
@10r 2vkd i j 14~v•x!xkd i j 2r 2v id jk24xixjvk

13xjxkv i #Ijk
~6!

1
1

15
@10~v•x!vkd i j 2xkv2d i j 12~v•x!v id jk12xiv2d jk25xiv jvk14xjv ivk#Ijk

~5!

1
1

15
~5r 2U , j235xjU159X, j !Ii j

~5!

1
1

30
~5r 2U ,i130xiU234X,i26xjX,i j !Ikk

~5!

1
1

90
~15xjxkU ,i

26xjX,ik230xiX, jk215r 2X,i jk24Y,i jk15xlY,i jkl !Ijk
~5!

1
1

3
v i~v2d jk2v jvk!Ijk

~4!

2
1

3
~2xjU̇

122Vj214Ẋ, j212vkX, jk!Ii j
~4!

1
1

18
~24xjvkU ,i112v ixjU ,k112xjVk,i154v iX, jk272v jX,ik

112xj ẋ,ik160Xj ,ki272Xi , jk25Ẏ,i jk !Ijk
~4!

2
1

3
~6v iU28Vi22ẋ,i !Ikk

~4!

1~2v2U , j28UU , j

28vkVk, j13F1
, j22F2

, j1Ẍ, j !Ii j
~3!

1
1

3
~2v2U ,i28v iv jU , j224UU ,i26v i U̇18V̇i116v jV[ i , j ]

13F1
,i26F2

,i1Ẍ,i !Ikk
~3!

1
1

6
@48v jVk,i212v jvkU ,i26v2X,i jk124v iv lX, jkl224ẋi , jk29X1

,i jk

16X2
,i jk118v i ẋ, jk248v lX[ i ,l ] jk124UX,i jk124U ,iX, jk218F1

jk,i16S ,i~X, jk!2Ÿi jk #Ijk
~3!

1
1

630
~10xixjdkl225xkxld i j 29r 2d i j dkl!Ijkl

~7!

1
1

45
~4x[ iv j ]dkl22~v•x!d i j dkl210xkv ld i j !Ijkl~6!

2
1

45
~v2d i j dkl16v iv jdkl15vkv ld i j !Ijkl

~5!

1
1

9
~4Ud jk22xjU ,k1X, jk!Ii jk

~5!

1
1

45
~4X,i j 210xjU ,i !Ijkk

~5!

1
1

54
~6xjX,ikl2Y,i jkl !Ijkl

~5!

1
2

9
~U̇d i j 2v iU , j22v jU ,i2Vj ,i2 ẋ,i j !Ijkk

~4!

1
1

45
~3r 2eqik12xixjeq jk14xjxkeqi j !~6!

J qk

2
16

45
xjvkeq jkJ qi

~5!

1
2

45
@2~v•x!eqik22xiv jeq jk15xjv ieq jk

112xjvkeqi j14xkv jeqi j #J qk
~5!

2
2

9
~13Ueqik1xjU ,ieq jk22xjU ,keqi j2X,i j eq jk22X, jkeqi j

22xlX,i jkeql j !J qk
~4!

1
2

9
~4v jvkeqi j2v2eqik!J qk

~4!

2
4

9
xjU ,keq jkJ qi

~4!

2
4

9
U̇eqikJ qk

~3!

1
4

9
~v iU , j12v jU ,i1Vj ,i1 ẋ,i j !eq jkJ qk

~3!

2
1

840
xiJ j jkk

~7!

1
1

35
xjIi jkk

~7!

1
1

40
v iIj jkk

~6!

1
1

24
U ,iIj jkk

~5!

2
1

30
xjeqi jJ qkk

~6!

2
1

15
xjeqik~6!

J q jk

1
1

15
v j~eq jkJ qik

~5!

2eqikJ q jk
~5!

2eqi jJ qkk
~5!

!2
1

30
xiMkk j j

~5!

2
1

15
xjMkki j

~5!

2
1

6
v iMkk j j

~4!

1
2

3
v jMi jkk

~4!

1
1

6
U ,iMj jkk

~3!

1
2

3
U , jMi jkk

~3!

2
1

3
X,i jkMjkl l

~3!

2
23

4200
Ii j jkk

~7!

1
2

75
eqi jJ q jkk

~6!

1
1

30
Mkk j j i

~5!

. ~2.24d!
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Because of their length, we shall defer presentation of
3PN contributions to later publications when they will act
ally be needed for calculations.

III. TWO-BODY EQUATIONS OF MOTION TO 2PN
ORDER

A. General treatment of ‘‘spherical pointlike’’ masses

We must now integrate all potentials that appear in
equation of motion, as well as the equation of motion~2.24!
itself over the bodies in the binary system. We treat e
body as a non-rotating, spherically symmetric fluid ball~as
seen in its momentary rest frame!, whose characteristic sizes
is much smaller than the orbital separation. We shall disc
all terms in the resulting equations that are proportiona
positive powers ofs: these correspond to multipolar intera
tions and their relativistic corrections. The leading Newto
ian quadrupole effect is formally of order (s/r )2 relative to
the monopole gravitational potentialm/r , but for compact
objects such as neutron stars or black holes,s;m, soeffec-
tively this is comparable to a 2PN term. Furthermore, if t
quadrupole moment is the result of tidal interaction with t
companion, the size of the induced moment is of or
(s/r )3, so the net effect isO(s/r )5, or roughly 5PN order.
Such leading multipolar terms can be calculated straight
wardly, but here we ignore them.

We also discard all terms that are proportional to nega
powers ofs: these correspond to self-energy corrections
PN and higher order. We shall assume that all such cor
tions can be merged uniformly into a suitably renormaliz
mass for each body, in line with the strong equivalence p
ciple. This should be checked by direct calculation, but h
we ignore such terms.

We retain only terms that are proportional tos0. For the
most part, these are the expected terms that depend o
two masses, terms that one would have obtained from
‘‘delta-function’’ approach that discarded all divergent se
energy terms. However, at higher PN orders, another clas
s0 terms is possible, at least in principle. These are terms
arise from non-linear combinations of potentials. One co
imagine one potential being expanded in a multipolar exp
sion about the center of mass of one of the bodies in pos
powers ofs, multiplied by another potential which is a ‘‘self
energy’’ potential of that body, dependent upon negat
powers ofs. One could then end up with a term that has
piece that is independent of the scale sizes of the body, but
that still depends on its internal density distribution. We w
show that such terms cannot appear at 1PN order by a sim
symmetry argument. At 2PN order, terms of this kindcould
appear in certain non-linear potentials, but in fact van
identically by a subtler symmetry. At 3PN order, suchs0

terms definitely appear, but whether they survive in the fi
equations of motion is an open question at present. We
discuss these matters explicitly at each PN order. This
proach is, in some sense, a ‘‘quick and dirty’’ version of t
Hadamardpartie finie technique, but with the virtue tha
finite-size or structure-dependent terms can in principle
systematically kept and examined.
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Our assumption that the bodies are non-rotating will i
ply simply that every element of fluid in the body has t
same coordinate velocity, so thatv i can be pulled outside an
integral. This assumption can be easily modified in order
deal, for example, with rotating bodies.

Finally we assume that each body is suitably spherical.
this we mean that, in a local inertial frame comoving wi
the body and centered at its baryonic center of mass,
baryon density distribution is static and spherically symm
ric in the coordinates of that frame. In Appendix B we sho
that the transformation between our global harmonic coo
natesxi and the spatial coordinatesx̂i of this frame can be
written in the form

xi5xA
i 1 x̂ j$d j

i 1e~Aj
i 1Bjk

i x̂k!1O~e2!%, ~3.1!

where the subscriptA refers to theAth body andxA
j denotes

its baryonic center of mass. The coefficientsAj
i include the

effect of Lorentz boosts, and the coefficientsBjk
i depend on

the acceleration of the frame in the field of the compan
star. Then, in terms of the local coordinatesx̂i , we assume
that the baryon density is spherically symmetric and sta
so thatr* ( t̂ ,x̂)5rS( r̂ ). As a consequence, a finite-size mo
ing body will no longer appear spherical, in part because
the Lorentz-FitzGerald contraction. This will result in rel
tivistically induced multipole moments for the body, albeit
order e relative to the monopole moment. Ordinarily, the
would result in terms of positive powers ofs in the equations
of motion, which we ignore~in other words, as the body’s
size shrinks to zero, the flattening becomes irrelevant!; how-
ever, as before, in terms with products of potentials, we m
worry about the effect of self-potentials with negative po
ers ofs offsetting the positive powers from the flattening. W
show in the Appendixes, however that no such terms aris
the equations of motion at 2PN order, but that they will co
tribute in principle at 3PN order.

B. Newtonian and PN terms

We shall evaluate the acceleration consistently for bo
No. 1; the corresponding equation for body No. 2 can
obtained by interchange. At the end, we shall find the cen
of-mass and relative equations of motion.

The Newtonian acceleration is straightforward:

~a1
i !N52~1/m1!E

1
r* d3xE r* 8

~xi2xi8!

ux2x8u3 d3x8

52~1/m1!E
1
E

1
r* r* 8

~xi2xi8!

ux2x8u3 d3xd3x8

2~1/m1!E
1
r* d3xE

2
r* 8

~xi2xi8!

ux2x8u3 d3x8. ~3.2!

The first term vanishes by symmetry, irrespective of any re
tivistic flattening or any other effect~Newton’s third law!.
Substituting Eq.~3.1! for each body and expanding the se
ond term in powers ofx̂, using the general formula
8-9
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1

ux1yu
5 (

q50

`
yQ

q!
¹QS 1

r D , uyu,uxu5r , ~3.3!

we find that all contributions apart from the leading term a
of positive powers ins, including the effects of relativistic
flattening, and thus are dropped, with the result

~a1
i !N52m2ni /r 2, ~3.4!

where we definex5x12x2 , r 5uxu, n5x/r .
The 1PN terms are similarly straightforward. A term su

asv2U ,i is integrated over body No. 1 by settingv5v1 and
writing U5U11U2. With v2 pulled outside the integral, th
integration is equivalent to that of the Newtonian term~3.2!,
with the resultv2U ,i→2m2v1

2ni /r 2. Other 1PN terms in-

volving quadratic powers of velocity (v i U̇, v jV[ i , j ] , F1
,i and

the velocity-dependent parts ofV̇i and Ẍ,i) are treated simi-
larly. Relativistic flattening plays no role through 3PN ord

In the nonlinear termUU ,i , the term involvingU1U1
,i is of

order si /s4, wheresi represents a vector, like (x2x8) i that
resides entirely within the body. In Appendix B we argue th
relativistic flattening introduces corrections of ordere(A
1Bsk), e2(C1Dsk1Esksl), with the generic term scaling
asen(11s)n. The leading term (si /s4) vanishes by spherica
symmetry. Any contributions of overall orders22, s21 or
s1n are discarded. The only way to get a term of orders0 out
of si /s4 is to have a correction term of orders3, which is
automatically of ordere3, which results in a 4PN term. In th
two cross termsU1U2

,i andU2U1
,i , U1 andU1

,i are of order
1/s andsi /s3, respectively; expandingU2 about the center o
mass of body No. 1 using Eq.~3.3! yields only products of
vectorssQ, including the contributions from relativistic flat
tening. Thus the only terms in the product that vary ove
as s0 will have odd numbers of vectorssi , whose integral
over body No. 1 vanishes by spherical symmetry. Only
term fromU2U2

,i contributes, and relativistic flattening pro
duces only corrections of positive powers ofs. The result is
UU ,i→2m2

2ni /r 3.

In the termsV̇i and Ẍ,i , the accelerationdv i /dt appears.
Working to 1PN order, we must insert the Newtonian eq
tion of motion; but working to 2PN order~or higher!, we
must insert the 1PN~or higher! equations of motion; the 2PN
terms so generated will be discussed in the next subsec
For V̇i , the result using the Newtonian equation of motion

V̇i52E E r* 8

ux2x8u
r* 9~x82x9! i

ux82x9u
d3x8d3x9

1E r* 8v i 8v8•~x2x8!

ux2x8u3 d3x8. ~3.5!

The double integral is integrated over body No. 1 similarly
the termUU ,i , and the velocity-dependent term is integrat
similarly to the termv2U ,i . The general result of these con
siderations is that, at 1PN order, only terms are kept
which, in the quantityx2x8, the two vectors are evaluated
10400
e
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n

the baryonic center of mass of the two different bodies,
spectively, and never within the same body.

The resulting N and 1PN equation of motion is

a1(PN)
i 52

m2

r 2 ni1
m2

r 2 niF4
m2

r
15

m1

r
2v1

2

14v1•v222v2
21

3

2
~v2•n!2G

1
m2

r 2 ~v12v2! i~4v2•n23v1•n!,

a2(PN)
i 51
2. ~3.6!

Under the interchange 1
2, ni→2ni .

C. 2PN terms

Since we are only working to 2PN, 2.5PN and 3.5P
orders here, we may evaluate the 2PN terms without reg
to the effects of relativistic flattening, since the correctio
would be of 3PN or 4PN order or higher. We only need
expand any potentials about the centers of mass of the bo
to identify all possibles0 terms. The terms explicitly cubic in
v i @the first two terms in Eq.~2.24b!# are simplest to evalu-
ate, since the potentials involved already appeared
1PN order. Integrating over body No. 1, discarding ter
that are singular in s, we obtain a1

i ~112!52(m2 /
r 2)@4(v1•v2)(v1•n)2v1

2(v2•n)#v1
i . The next ten terms are

explicitly quadratic in velocities; the potentials are both li
ear and quadratic in the masses, and some involve time
rivatives that require substituting the Newtonian equation
motion. Pulling the velocities outside the integrals leaves
tentials similar to those that have already been integrate
1PN order. The potentialP2

i j also appears; unlike the
potentials encountered so far (U, Vi , X, F2 , . . . ),
which depend on the pairwise separation between poi
i.e., on the distancer AB5uxA2xBu, P2

i j and others like
it depend on the distances between points taken a
triplet, namely on the combinationD(ABC)[r AB1r AC

1r BC . We denoteP2
i j and similar potentials likeG1 , G2 etc.

as ‘‘triangle’’ potentials. Their evaluation is discussed in A
pendix C. From these terms only the obvious ‘‘point’’ ma
terms arise, while all others are proportional to either ne
tive or positive powers ofs. We obtain, for example,v2F2

,i

→2m1m2v1
2ni /r 3, v jvkF1

i j ,k→2m2v2
i (v1•v2)(v1•n)/r 2

and v jvkP2
i j ,k→m1m2$n

i@8(v1•n)223v1
2#25v1

i (v1•n)%/
4r 32m2

2$ni@4(v1•n)22v1
2#23v1

i (v1•n)%/4r 3.
The next 13 terms in Eq.~2.24b!, which are explicitly

linear in velocities, are quite similar, except that they invol
either an additional time derivative of potentials, or vect
like potentials (V2

i , F2
i , G7

i ). Triangle potentials appear in

several places (G7
i , Ṗ2

i j ). As before, expansion about th
centers of mass yields the normal point mass terms and te
of only positive and negative powers ofs.

Of the remaining 33 terms, many involve several impli
powers of velocity coupled to potential-type expressions;
tegration of these terms over body No. 1 is handled as
8-10
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fore. However, several terms do not involve velocity at a
and thus are cubically non-linear in masses. Examples
clude the termsU2U ,i , S ,i(F2), and the portions of the
termsẌU ,i , Ẍ1

,i , Y,0000i , where time derivatives have gene
ated accelerations, thence the Newtonian potential. In th
cases, the high degree of nonlinearity presents at leas
possibilityof new contributions at orders0. The termU2U ,i

illustrates the issue. WritingU5U11U2, we have (U1
2

12U1U21U2
2)(U1

,i1U2
,i), to be integrated over body No. 1

Consider the termU1
2U2

,i . ExpandingU2 about the center o
mass of body No. 1 using Eq.~3.3! and integrating over body
No. 1, we obtain

m2

m1
E

1
r* d3x̄E

1

r* 8d3x̄8

ux̄2 x̄8u
E

1

r* 9d3x̄9

ux̄2 x̄9u
(

q

x̄Q

q!
¹Q¹ i S 1

r D ,

~3.7!

where the ‘‘barred’’ coordinates are all defined relative to
center of mass of body No. 1, andr 5ux12x2u. Only the term
with q52 can produce a contribution of overall orders0.
Using the spherical symmetry of body No. 1, the result is

1

6

m2

m1
S E

1
r* r̄ 2U1

2d3x̄D d jk¹ i jk S 1

r D}¹ i¹2S 1

r D50.

~3.8!

Note that the integral in Eq.~3.8! scales ass0 for a fixedm1,
yet depends on the internal structure of the body. Never
less, the term vanishes via a combination of the sphe
symmetry of the body, and the fact that¹2(1/r )50. Other
possibles0 terms also vanish by symmetry, with the fin
result that U2U ,i→2m2

3ni /r 4. Similarly, for example
S ,i(F2)→2m1m2

2ni /r 4.
10400
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Additional cubically nonlinear terms areP2
i j U , j , and the

acceleration-generated terms inG2
,i , G5

,i andĠ7
i . Since these

involve the triangle potentials, they will be discussed in A
pendix C; they generate nos0 terms, again because of sym
metry combined with ¹2(1/r )50. The term H ,i

5¹ ,i P(U , jkP2
jk) involves a still more complicated ‘‘quad

rangle’’ potential, which is a function of four points. In Ap
pendix C we show that it likewise generates nos0 terms,
with the result

~1/m1!E
1
r* H ,id3x5

m2ni

r 4 S 2m1m21
m2

2

4 D . ~3.9!

Working to 2PN order, we must also include terms ge
erated by substituting the 1PN equations of motion into
celerations generated by time derivatives acting on veloci
in 1PN potentials, specifically the terms 4V̇i1Ẍ,i /2. This
leads to the integral

1

m1
E

1
r* d3xE r* 8d3x8

ux2x8u S 7

2
d i j 1

1

2
ñi ñ j DaPN

j ~ t,x8!,

~3.10!

where ñi5(x2x8) i /ux2x8u, and we substitute Eq.~2.24a!
for aPN

j (t,x8). Evaluation of these terms follows the sam
method already outlined for normal, non-triangle, 2PN p
tentials.

The resulting 2PN contributions to the one-body equat
of motion are
.

a1(2PN)
i 5

m2

r 2
niFm2

r
@4v2

228v1•v212~v1•n!224~v1•n!~v2•n!26~v2•n!2#1
m1

r S 5

4
v2

22
5

2
v1•v22

15

4
v1

21
39

2
~v1•n!2

239~v1•n!~v2•n!1
17

2
~v2•n!2D2

57

4

m1
2

r 2
2

69

2

m1m2

r 2
29

m2
2

r 2
22v2

414v2
2~v1•v2!22~v1•v2!21

3

2
v1

2~v2•n!2

26~v1•v2!~v2•n!21
9

2
v2

2~v2•n!22
15

8
~v2•n!4G1

m2

r 2
~v1

i 2v2
i !Fm1

4r
@55~v2•n!263~v1•n!#2

2m2

r
@~v1•n!

1~v2•n!#1v1
2~v2•n!14v2

2~v1•n!25v2
2~v2•n!26~v1•n!~v2•n!224~v1•n!~v1•v2!14~v2•n!~v1•v2!

1
9

2
~v2•n!3G ,

a2(2PN)
i 51
2. ~3.11!

These agree completely with other results@3,5–8#.

IV. RADIATION REACTION TO 2.5PN AND 3.5PN ORDER

Since the multipole moments are strictly functions of time, integrating the 2.5 PN and 3.5 PN terms in Eq.~2.24! over body
No.1 is straightforward. The 2.5 PN terms are either trivial, involvingxi or v i , or are similar to integrating the Newtonian term
The result is
8-11
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a1 (2.5PN)
i 5

3

5
x1

j S Ii j
~5!

2
1

3
d i j Ikk

~5! D 12v1
j Ii j

~4!

2
1

3

m2

r 2 niIkk
~3!

23
m2

r 2 ninjnkIjk
~3!

2
2

15
Ii j j
~5!

1
2

3
eqi jJq j

~4!

,

~4.1!
a2 (2.5PN)

i 51
2.

Likewise, the 3.5 PN terms are either trivial, or involve integrating Newtonian or 1PN-like potentials. To keep the exp
for the 3.5 PN terms simple, we assume that, to lowest order,m1x11m2x250 ~see Sec. V A for discussion!, so that we can
write, in the 3.5 PN term only,x1

i 5(m2 /m)xi andx2
i 52(m1 /m)xi . Defininga2[m2 /m, we obtain

a1 (3.5PN)
i 5

1

210
a2

3r 3~13nkd i j 24nid jk2ninjnk!Ijk
~7!

1
1

30
a2

3r 2~10vkd i j 14ṙ nkd i j 2v id jk24ninjvk13njnkv i !Ijk
~6!

1
1

15
a2

3r ~10ṙvkd i j 2nkv2d i j 12ṙv id jk12niv2d jk25niv jvk14njv ivk! Ii
~5!

1
1

15
m2$~55236a2!nkd i j

2~19210a2!nid jk1~216a2210a2
2!ninjnk%Ijk

~5!

1
1

3
a2

3v i~v2d jk2v jvk!Ijk
~4!

1
1

6

m2

r
$42~12a2!vkd i j

26~31a2! ṙ nkd i j 1~72a2!v id jk1~12a2! ṙ nid jk2~1913a2!v injnk12~1523a224a2
2!v jnink

23~529a214a2
2! ṙ ninjnk%Ijk

~4!

1
1

2

m2

r 2 H 16~11a2!
m

r
ninjnk1~22a2

2!ni~4v jvk26v2njnk!

1~31a2!nk~6ṙv inj24v iv j !13~12a2!2nink~5ṙ 2nj24ṙv j !J Ijk
~3!

2
1

6

m2

r 2 H 8~12a2!
m

r
ni22~22a2

2!v2ni

12~31a2! ṙv i13~12a2!2ṙ 2ni J Ikk
~3!

1
1

630
a2

2r 2~10ninjdkl225nknld i j 29d i j dkl!Ijkl
~7!

1
1

45
a2

2r ~4n[ iv j ]dkl

22ṙd i j dkl210nkv ld i j !Ijkl
~6!

2
1

45
a2

2~v2d i j dkl16v iv jdkl15vkv ld i j !Ijkl
~5!

1
1

90

m2

r
$~43dkl15nknl !d i j

1~7110a2!ninjdkl215~122a2!ninjnknl%Ijkl
~5!

1
2

9

m2

r 2 $v inj12a2v jni23~12a2! ṙ ninj%Ijkk
~4!

1
1

45
a2

2r 2~3eqik12ninjeq jk14njnkeqi j !J qk
~6!

2
16

45
a2

2rn jvkeq jkJqi
~5!

1
2

45
a2

2r ~2ṙ eqik22niv jeq jk15njv ieq jk

112njvkeqi j14nkv jeqi j !J qk
~5!

1
2

9
a2

2~4v jvkeqi j2v2eqik!J qk
~4!

2
2

9

m2

r
$~11a2!ninjeq jk110eqik12njnkeqi j%Jqk

~4!

2
4

9

m2

r 2 $v inj12a2v jni23~12a2! ṙ ninj%eq jkJqk
~3!

2
1

840
a2rniIj jkk

~7!

1
1

35
a2rn jIi jkk

~7!

1
1

40
a2v iIj jkk

~6!

2
1

24

m2

r 2 niIj jkk
~5!

2
1

30
a2rn jeqi jJqkk

~6!

2
1

15
a2rn jeqikJ q jk

~6!

2
1

15
a2v j~2eq[ i ukJ qu j ]k

~5!

1eqi jJ qkk
~5!

!2
1

30
a2rniMkk j j

~5!

2
1

15
a2rn jMkki j

~5!

2
1

6
a2v iMkk j j

~4!

1
2

3
a2v jMi jkk

~4!

1
1

6

m2

r 2 ni~Mj jkk
~3!

26njnkMjkl l
~3!

!2
23

4200
I i j jkk

~7!

1
2

75
eqi jJq jkk

~6!

1
1

30
Mkk j j i

~5!

,

a2 (3.5PN)
i 51
2. ~4.2!
104008-12
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V. RELATIVE EQUATIONS OF MOTION

A. System center of mass and the transformation to relative
coordinates

It is useful to note that the 1PN equations~3.6!, including
the 2.5 PN terms~4.1!, admit a first integral that correspond
to uniform motion of a ‘‘center of mass’’ quantity: namely

m1v1
i S 11

1

2
v1

2D1m2v2
i S 11

1

2
v2

2D
2

1

2

m1m2

r
~v1

j 1v2
j !~d i j 1ninj !2mV̇ i5Ci , ~5.1!

where

V i[2S 2

15
Ii j j
~3!

2
2

3
eqikIqk

~2! D , ~5.2!

Ci is a constant, and where we have assumed that, to N
tonian order,m1x1

i 1m2x2
i 50. The 2PN corrections to thi

first integral will not be needed here. Equation~5.1! can also
be obtained by calculating the system dipole momentI i to
the corresponding order~see Appendix D 2!. Choosing the
coordinates so thatCi50, we obtain the transformation from
individual to relative coordinates and velocities, to 1PN a
2.5PN order,

x1
i 5

m2

m
xi1

1

2
h

dm

m S v22
m

r D xi1V i ,

x2
i 52

m1

m
xi1

1

2
h

dm

m S v22
m

r D xi1V i ,

~5.3!

v1
i 5

m2

m
v i1

1

2
h

dm

m F S v22
m

r D v i2
m

r 2ṙ xi G1V̇ i ,

v2
i 52

m1

m
v i1

1

2
h

dm

m F S v22
m

r D v i2
m

r 2ṙ xi G1V̇ i ,

wheredm[m12m2. These transformations do not affect th
Newtonian term, of course. However, the 1PN and 2.5
corrections in Eqs.~5.3! will generate 2PN and 3.5PN term
respectively, when we transform the 1PN terms in the eq
tion of motion to relative coordinates. The multipole m
ments that appear in the 2.5PN terms in the equation of
tion ~4.1! must also be converted to relative coordinat
keeping any PN corrections generated by Eqs.~5.3!; this is
treated in Appendix D 1 . In addition, in the 2.5PN term
multiple time derivatives of the multipole moments will ge
erate accelerations, for which the 1PN relative equation
motion must be substituted; in the explicitly 3.5PN terms,
Newtonian equation of motion suffices.

Calculating a1
i 2a2

i using Eqs.~3.6!, ~3.11!, ~4.1! and
~4.2!, substituting Eqs.~5.3! and the time derivatives of th
multipole moments~D2!, we obtain the final relative equa
tion of motion through 2.5PN order, plus 3.5PN terms
given in Eqs.~1.2! and ~1.3!.
10400
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B. 3.5PN radiation reaction and energy-angular-momentum
balance

A useful check of our radiation-reaction terms at 2.5P
and 3.5PN order is to verify that the resulting energy a
angular momentum loss in the orbital motion is identical
previously derived energy and angular momentum flux
pressions, accurate to 1PN order beyond the quadrupole
proximation. In fact, Iyer and Will@10,11# approached this
from the opposite direction, beginning with the 1PN accur
flux expressions@26–28#, and deriving the most genera
form of a two-body relative equation of motion at 2.5PN a
3.5PN order required by energy and angular momentum
ance. Writing the radiation-reaction terms in the equation
motion ~1.2! in the general form

A2.5PN5a1v21a2m/r 1a3ṙ 2,

B2.5PN5b1v21b2m/r 1b3ṙ 2,

A3.5PN5c1v41c2v2m/r 1c3v2ṙ 21c4ṙ 2m/r

1c5ṙ 41c6~m/r !2, ~5.4!

B3.5PN5d1v41d2v2m/r 1d3v2ṙ 21d4ṙ 2m/r

1d5ṙ 41d6~m/r !2,

they showed that energy and angular momentum bala
would hold if and only if the coefficientsai , bi , ci and di
satisfied the following equations:

a15313b, a2523/312a23b, a3525b,
~5.5!

b1521a, b2522a, b352323a,

for the 2.5PN coefficients, and

c15
1

28
~1171132h!2

3

2
b~123h!13d223d6 ,

c252
1

42
~2972310h!23a~124h!2

3

2
b~7113h!

22d123d213d513d6 ,

c35
5

28
~19272h!1

5

2
b~123h!25d215d415d6 ,

c452
1

28
~6872368h!26ah1

1

2
b~54117h!

22d225d426d5 ,

c5527d4 ,

c652
1

21
~15331498h!2a~1419h!13b~714h!

22d323d5 ,

~5.6!
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d152
3

2
~21a!~123h!2d1 ,

d252
1

84
~1391768h!2

1

2
a~5117h!1d12d3 ,

d35
1

28
~3692624h!1

3

2
~3a12b!~123h!

13d123d6 ,

d45
1

42
~2952335h!1

1

2
a~38211h!23b~123h!

12d114d313d6 ,

d55
5

28
~19272h!25b~123h!15d6 ,

d652
1

21
~634266h!1a~713h!1d3 ,

for the 3.5PN coefficients. The two degrees of freed
(a,b) at 2.5PN order and the six (d i) at 3.5PN order corre-
spond to gauge or coordinate freedom, and have no phy
consequences. For example, at 2.5PN order, the valuesa5
21, b50 correspond to the gauge used by Damour a
Deruelle@3#, while the valuesa54, b55 correspond to the
so-called Burke-Thorne gauge~see, for example, Sec. 36.1
of @9#!, also used by Blanchet@29#.

It is then a non-trivial check of our result to verify that th
18 coefficients in our 2.5PN and 3.5PN terms, Eqs.~1.3c!
and ~1.3d! yield a unique, self-consistent solution for th
eight gauge coefficients. The result is

a521, b50,

d15
271

28
16h, d252

77

4
2

3

2
h,

d35
79

14
2

92

7
h,

~5.7!

d4510, d55
5

42
1

242

21
h,

d652
439

28
1

18

7
h.

VI. CONCLUDING REMARKS

We have successfully used DIRE to derive equations
motion for compact binary systems through 2.5PN and
3.5PN order, with results consistent with other methods.
stead of using formal delta-function, matching, or regulari
tion techniques to treat the bodies, we modeled them as
balls, considered to be suitably spherical and non-rotat
and small compared to their separation, and carried out
10400
al
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plicit integrations over them. We then used a techniq
whereby we could identify those contributions to the equ
tion of motion that are independent of the scale size of
bodies ~for given masses!. This method can be extende
straightforwardly to the complicated 3PN contributions,
spinning bodies, and to bodies with tidal interactions. We c
also consider the effects at higher PN order of internal s
gravity ~contributions of orders2n). These are the subject
of ongoing research.
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APPENDIX A: KEY FORMULAS USED IN THE
EQUATIONS OF MOTION

Here we summarize some of the key formulas from Pa
I @2# that will be needed here. The potentials that appea
the equations of motion are all Poisson-like potentials a
their generalizations, namely a superpotential and a su
duperpotential:

P~ f ![
1

4pEM

f ~ t,x8!

ux2x8u
d3x8, ¹2P~ f !52 f ,

S~ f ![
1

4pEM
f ~ t,x8!ux2x8ud3x8,

¹2S~ f !52P~ f !,

SD~ f ![
1

4pEM
f ~ t,x8!ux2x8u3 d3x8,

¹2SD~ f !512S~ f !. ~A1!

Note that, in evaluating Poisson potentials and superpo
tials of sources that do not have compact support, our rul
to evaluate them on the finite, constant time hypersurf
M, and to discard all terms that depend on the radius of
near zoneR. Unlike Paper I, we now define all potentials
terms of the conserved baryon densityr* :

S~ f ![E
M

r* ~ t,x8! f ~ t,x8!

ux2x8u
d3x85P~4pr* f !,

X~ f ![E
M

r* ~ t,x8! f ~ t,x8!ux2x8ud3x85S~4pr* f !,

~A2!

Y~ f ![E
M

r* ~ t,x8! f ~ t,x8!ux2x8u3d3x8

5SD~4pr* f !.
8-14
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The specific potentials used in the 2PN, 2.5PN and 3.5
equations of motion are then given by

U[S~1!, Vi[S~v i !, F1
i j [S~v iv j !,

F1[S~v2!, F2[S~U !, X[X~1!,

V2
i [S~v iU !, F2

i [S~Vi !, Y[Y~1!,

Xi[X~v i !, X1[X~v2!, X2[X~U !,
~A3!

P2
i j [P~U ,iU , j !, P2[P2

i i 5F22
1

2
U2,

G1[P~U̇2!, G2[P~UÜ !,

G3[2P~U̇ ,kVk!, G4[P~Vi , jVj ,i !,

G5[2P~V̇kU ,k!, G6[P~U ,i j F1
i j !,

G7
i [P~U ,kVk,i !1

3

4
P~U ,i U̇ !, H[P~U ,i j P2

i j !.

The multipole moments that appear in 2.5PN and 3.5
terms are defined by

Pm[E
M

tm0d3x,

I Q[E
M

t00xQd3x,

~A4!

J iQ[e iabE
M

t0bxaQd3x,

Mi jQ[E
M

t i j xQd3x.

To the order needed for our purposes,

t005s2s i i 14sUs2
7

8p
¹Us

2 ,

t0i5s i14s iUs1
2

p
Us

, jVs
[ j ,i ]1

3

4p
U̇sUs

,i ,

~A5!

t i j 5s i j 1
1

4p S Us
,iUs

, j2
1

2
d i j ¹Us

2 D .

APPENDIX B: TREATMENT OF ‘‘SPHERICAL’’ BODIES
IN PN EXPANSIONS

We define our bodies to be spherical in a suitably cho
comoving frame. For a given bodyA, we choose a frame tha
momentarily has the same coordinate velocityv relative to
the global PN frame as bodyA. Also, in the limitmA→0, the
frame is locally Lorentzian with its origin atxA , i.e. the
10400
N

N

n

frame is a local, freely falling frame in the field of the oth
body. In that frame, with coordinates (t̂ ,x̂i), the conserved
baryon density distribution of bodyA is taken to be spheri-
cally symmetric and static, i.e.,r* ( t̂ ,x̂i)[rS(ux̂u). We define
the baryonic mass, center of mass and velocity of bodA
according to Eqs.~2.13!.

Our goal is to calculate PN potentials and to integr
them over one of the bodies using the fact thatr* is
spherical and static in the local ‘‘hatted’’ coordinates. T
general form of the integrals to be evaluated
**r* (t,x)r* (t,x8) f (x,x8)d3xd3x8. First we note that the
quantity r* (t,x)d3x5r(t,x)umA(2g)d3Sm is a scalar, i.e.
is the same at a given event in any coordinate system. T
we only need a transformation of the integration variablex
andx8 in f (x,x8) to the hatted coordinates. Notice thatx and
x8 are taken at the same global coordinate timet, but will not
necessarily be at the same local coordinate timet̂ .

Consider the eventP inside the fluid atxW8 and the center
of mass eventQ at xWA , both at the same timet as the field
point xW ~see Fig. 1!. The field point could be within bodyA
itself, in free space, or in the other body. Definex̄5xW82xWA

5 x̄ jeW j , where eWm are the basis vectors of our global P
frame;x̄ is purely spatial in this frame. In the local comovin
frame

x̄5 x̄ jeW j5xm̂eW m̂5 t̂ eW 0̂1 x̂ jeW ĵ . ~B1!

Let the transformation between the two basis vectors take
general form

eWm5~Lm
â1Bmn

â x̄n!eW â , ~B2!

wherex̄n5xn2xA
n , andBmn

â is symmetric on the lower indi-

ces. The coefficientsLm
â correspond to boosts and coordina

rescalings, while the coefficientsBmn
â correspond to making

the frame freely falling. Substituting Eq.~B2! into Eq. ~B1!
we obtain

t̂5L j
0̂x̄ j1Bjk

0̂ x̄ j x̄k,

x̂ j5Lk
ĵ x̄k1Bkl

ĵ x̄kx̄l . ~B3!

Notice thatP is not simultaneous withQ in hatted coordi-
nates, and that the time differencet̂ depends onx̄ j . However,
since we assume thatr* ( x̂ j , t̂ ) is time independent, this
variation of t̂ with integration point is irrelevant.

Writing Lm
â5dm

a1L̃m
â , it is straightforward to show that

in a PN expansion, the various coefficients in Eq.~B2! have

the leading ordersL̃0
0̂;L̃k

ĵ ;e, L̃0
ĵ ;L̃ j

0̂;e1/2, B0 j
0̂ ;B00

ĵ

;Bkl
ĵ ;e, B0k

ĵ ;Bjk
0̂ ;B00

0̂ ;e3/2. The transformation then

takes the formx̂ j5 x̄ j1L̃k
ĵ x̄k1Bkl

ĵ x̄kx̄l , where the corrections
are of leading ordere. Inverting the transformation itera
tively, we obtain
8-15
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xi5xA
i 1 x̂ j$d j

i 1e~Aj
i 1Bjk

i x̂k!

1e2~Cj
i 1D jk

i x̂k1Ejkl
i x̂kx̂l !1O~e3!%, ~B4!

where the coefficients are functions of theL̃k
ĵ andBkl

ĵ . To the
PN order at which we are working, their explicit forms a
not needed. Notice that, in terms of the scales;ux̂u, the
flattening correction terms in Eq.~B4! have the general form
en(a1bs1 . . . 1gsn);en(11s)n.

In the double integral off (x,x8), where the dependence
generally on the differencex2x8, there are two cases t
consider, one wherex andx8 are in different bodies, and th
other where they are in the same body. In the former case
substitute Eq.~B4! for both xi andx8, and expand about th
quantity xA2xB in powers ofs using Eq.~3.3!, convert the
quantitiesr* d3x to the hatted coordinates, and then integr
over the spherical density distributions, keeping only ter
of O(s0). The first term in the expansion of Eq.~B4! pro-
duces the normal multipole expansion of the potential, wh
the remaining terms are relativistic flattening corrections.
the case where bothx andx8 are in the same body, we hav

~x2x8! i5~ x̂2 x̂8! j$d j
i 1e@Aj

i 1Bjk
i ~ x̂1 x̂8!k#

1e2@Cj
i 1D jk

i ~ x̂1 x̂8!k1Ejkl
i ~ x̂kx̂l1 x̂kx̂l 8

1 x̂k8x̂l 8!#1O~e3!%. ~B5!

In this case, the corrections come only from relativistic fl
tening, and also have the general formen(11s)n.

APPENDIX C: EVALUATION OF NONLINEAR 2PN
POTENTIALS FOR TWO-BODY SYSTEMS

1. Triangle potentials

The potentialP2
i j 5P(U ,iU , j ) represents a new kind o

potential that first appears at 2PN order. Unlike the Newt
ian potentialU, whose fundamental ingredient 1/ux2x8u de-
pends on the field point and the source point, the fundam
tal ingredient ofP2

i j depends on the field point and ontwo
source points, hence the name ‘‘triangle’’ potential. The p
tentialsGi , i 51, . . . ,6 andG7

i are also triangle potentials
To see this, we writeP2

i j in the form

P2
i j 5

1

4pEM

d3x8

ux2x8u E r* 9d3x9
~x82x9! i

ux82x9u3

3E r* -d3x-
~x82x-! j

ux82x-u3

5(
A,B

E
A
rA* ¹A

i d3xAE
B
rB* ¹B

j d3xB

1

4p

3E
M

d3x8

ux2x8uuxA2x8uuxB2x8u
10400
e

e
s

e
n

-

-

n-

-

5(
A,B

E
A
E

B
rA* rB* d3xAd3xB¹A

i ¹B
j G~xAB!,

~C1!

where

G~xAB![2 ln D~xAB!11,
~C2!

D~xAB![ux2xAu1ux2xBu1uxA2xBu.

The triangle functionG(ABC) satisfies the equations

¹A
2G~ABC!521/~r ABr AC!,

~C3!

¹A
i ¹B

i G~ABC!5
1

2F 1

r AB
S 1

r AC
1

1

r BC
D

2
1

r AC

1

r BC
G ,

together with the obvious results obtained by interchange
indices. Specific gradients ofG(xAB) have the form

¹B
j G~xAB!5

1

D~xAB!
~ ŷB1nAB! j ,

¹A
i ¹B

j G~xAB!5
1

D~xAB!2~ ŷA2nAB! i~ ŷB1nAB! j

1
1

r ABD~xAB!
~d i j 2nAB

i nAB
j !, ~C4!

¹B
i ¹B

j G~xAB!5
1

D~xAB!2~ ŷB1nAB! i~ ŷB1nAB! j

2
1

r ABD~xAB!
~d i j 2nAB

i nAB
j !

2
1

yBD~xAB!
~d i j 2 ŷB

i ŷB
j !,

whereyA
i [(x2xA) i , yA[uyAu, and ŷA

i 5yA
i /yA . With these

definitions, the other triangle potentials may be written

G15(
A,B

E
A
E

B
rA* rB* d3xAd3xBvA

i vB
j ¹A

i ¹B
j G~xAB!,

~C5a!

G25(
A,B

E
A
E

B
rA* rB* d3xAd3xB~aB

i ¹B
i 1vB

i vB
j ¹B

i ¹B
j !

3G~xAB!, ~C5b!
8-16
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G35(
A,B

E
A
E

B
rA* rB* d3xAd3xBvA

i vB
j ¹B

i ¹B
j G~xAB!,

~C5c!

G45(
A,B

E
A
E

B
rA* rB* d3xAd3xBvA

i vB
j ¹A

j ¹B
i G~xAB!,

~C5d!

G55(
A,B

E
A
E

B
rA* rB* d3xAd3xB~aA

i ¹B
i 1vA

i vA
j ¹A

j ¹B
i !

3G~xAB!, ~C5e!

G65(
A,B

E
A
E

B
rA* rB* d3xAd3xBvA

i vA
j ¹B

i ¹B
j G~xAB!,

~C5f!

G7
i 5(

A,B
E

A
E

B
rA* rB* d3xAd3xBS vA

j 2
3

4
vB

j D¹A
i ¹B

j

3G~xAB!. ~C5g!

2. The triangle potential P2
i j

For a two-body system, we may writeP2
i j 5P2(11)

i j

12P2(12)
( i j ) 1P2(22)

i j , where the subscripts in parentheses
note the contributions from the bodies. The contributio
P2(11)

i j andP2(22)
i j from a single body with a spherically sym

metric mass distributionr* 5r(r ) can be derived in a simple
manner. For spherical symmetry, the equation forP2

i j takes
the form ¹2P2

i j 52ni j (U8)2, where U85dU/dr
52m(r )/r 2, with dm(r )/dr54pr(r )r 2. Writing

P2
i j [~1/3!d i j P21n^ i j &PT2 , ~C6!

FIG. 1. Transformation to the local comoving frame of o
body. Global harmonic coordinates aret,xj ; local coordinates are

t̂ ,x̂ j . In local coordinates, the density of the body is assumed to
static and spherically symmetric.
10400
-
s

wheren^ i j &5ni j 2d i j /3, it is easy to show that the traceP2
and the traceless partPT2 satisfy the equations¹2P2 5
2(U8)2, and¹2PT226PT2 /r 252(U8)2. Demanding that
the solutions be regular at the origin and vanish at infin
yields

P252
m~r !2

2r 2 1
8p

r E
0

r

r~r 8!m~r 8!r 8dr8

14pE
r

R

r~r 8!m~r 8!dr8,

~C7!

PT25
m~r !2

4r 2 2
8p

5r 3E
0

r

r~r 8!m~r 8!r 83dr8

1
2pr 2

5 E
r

Rr~r 8!m~r 8!

r 82
dr8,

where R is the radius of the body. Inside the body,P2
i j

;(m/s)2. Outside the body,P2
i j 5(m/2r )2(ni j 2d i j ), ne-

glecting internal-structure terms ofO(s21) andO(s11).
For the termP2(12)

( i j ) , and for a field point between the tw
bodies, we combine the definition~C1! with the appropriate
gradient ofG from Eq. ~C4!, and show that only point mas
terms contribute. Then, for an interbody field point, we ha

P2
i j 5

m1
2

4y1
2 ~ ŷ1

i j 2d i j !1
m2

2

4y2
2 ~ ŷ2

i j 2d i j !1
2m1m2

D~x12!

3S ~ ŷ12n!( i~ ŷ21n̂! j )

D~x12!
1

d i j 2ni j

r
D , ~C8!

where ni5x12
i /r and D(x12)5y11y21r , and where self-

energy terms ofO(s21) and O(s11) have been dropped
from P2

jk .

3. Evaluation of triangle terms for two-body systems

We then take either spatial derivatives~e.g. G1
,i) or time

derivatives~e.g. Ġ7
i ) of the triangle potentials, and in som

cases multiply them by other factors~e.g. v jvkP2
i j ,k or

U , j P2
i j ), and integrate them over the density of body No.

Because we are dealing with a two-body system, then ei
two or all three of the pointsx, A and B in G(xAB) will
reside in the same body, in other words, in Eqs.~C5! we
encounter the possibilitiesG(111), G(112), G(121), and
G(122). The quantityG(111) and its derivatives are purel
internal to one body and can be treated fairly simply. Not
that a single derivative ofG(111) is of the general form
sj /s2, while a double derivative is of the formsi j /s4, and a
general derivative is of the formsQ/s2q, wheresQ5si 1 . . . i q.
Since we must be left with one spatial indexi, such purely
internal terms have odd parity, and must integrate to ze
For the mixed-body cases, we must expand the functionG
about the centers of mass of each body, sort the term
powers of the scales for each body, and retain only fina
contributions of orders0. This will be aided by a genera

e
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expansion of the functionG(ABC) in powers ofr AB /r AC ,
where pointsA andB are assumed to lie inside one body, a
point C is inside the other body, so thatr AB;s!r AC .
Straightforward methods lead to the expansion

G~ABC!52 ln r AC112 ln 2

1
1

2 (
m50

`
~2r AB!m11

~m11!! H ~nAB!M¹A
MS 1

r AC
D

1
r AC

m11
~nAB!M11¹A

M11S 1

r AC
D J . ~C9!

Note that each term in the expansion is of orderr AB
m11

;sm11, and depends on gradients of 1/r AC . SinceA andC
are in different bodies,¹2r AC

2150; this fact will be important
in the considerations to follow. The first term in the brac
produces a contribution of ordersm11 but of parity~number
of nAB

i vectors! (21)m; no matter how many gradients a
taken with respect to any of the variables, this relations
will be unchanged. Hence a term of orders0 will have odd
parity, a term of orders21 or s11 will have even parity, and
so on.~Because of the additional scalar factorr AB , enough
gradients with respect toA or B will generate terms of nega
tive powers ins.! The second term in the braces has par
(21)m11 and ordersm11, a relationship again preserved u
der any gradients. Furthermore, gradients of this term
yield terms either completely independent ofs or of positive
powers ins; no negative powers ofs or terms proportional
only to the unit vectornAB

i can be produced by this term.
Armed with these characteristics ofG, consider as an

example, the termG1
,i in the equation of motion. Taking

the gradient of Eq.~C5a! with respect tox, pulling out the
velocities, integrating over body No. 1, and considering
the possible cases forA andB, we first find no contribution
from ¹x

i ¹A
j ¹B

k G(111);sisjsk/s6, by symmetry. Considering
the other cases,G(112), G(121), andG(122), we find that
the onlys0 contributions from the gradients of the expansi
~C9! are either odd parity~from the first term!, and thus
vanish on integrating over body No. 1 or No. 2, or a
independent ofs ~from the second term!, and yield the
desired ‘‘point mass’’ result:G1

,i→m1m2@ni(4v1•nv2•n
2 v1•v2) 2 2v1

i v2•n 2 v2
i v1•n# /2r 3 2 m2

2@2ni(v2•n)2

2niv2
22v2

i v2•n#/2r 3. Consider as a less straightforward e
ample, the term inG2

,i that depends on the acceleration. I
serting the Newtonian equation of motionaB

i 5UB
,i , we must

evaluate the term

1

m1
E

1
r* d3x(

A,B
E

A
E

B
rA* rB* d3xAd3xB~UB,int

, j 1UB,ext
, j !

3¹x
i ¹B

j G~xAB!, ~C10!

where we have splitU into a contribution from within body
B itself ~‘‘int’’ ! and from the other body~‘‘ext’’ !. The case
A5B51 has a purely internal term fromU1,int

, j ¹x
i ¹B

j G(111),
which vanishes by symmetry, and a ter
U1,ext

, j ¹x
i ¹B

j G(111);m2(q( x̄Q¹Q¹ j r 21/q!)sisj /s4, where
10400
s

p

ll

ll

we expand the external potential about the center of mas
body No. 1, and wherer 5r 12. Only theq52 term contrib-
utes at overall orders0, leading to an integral of the
schematic form *1( x̄klsisj /s4)¹kl j r 21→(dkld i j 1dkid j l

1dk jd i l )¹kl j r 21}¹2¹ i r 2150. Similarly, combiningUB,int
, j

;sj /s3 with the expansion of¹x
i ¹B

j G(112) produces a po
tentially s0 term only from an orders2 term from the deriva-
tives of G; but such terms are necessarily accompanied
several ~three or more! gradients ofr 21; because only a
single indexi remains at the end, two of the gradients a
always contracted into¹2, which vanishes when acting o
r 21. All the possible combinations ofA andB in Eq. ~C10!
yield equivalent results. The final answer contains o
‘‘point’’ mass terms, and is equivalent to combining the com
pletely s-independent terms from the derivatives ofG with
only the ‘‘external’’ potential terms arising from any acce
eration. The same approach holds for the termsG5

,i , Ġ7
i , and

U , j P2
i j .

The vanishing of many potential contributions at orders0

depends critically on the fact that the terms ultimately d
pend on the factor¹kl j r 21, and that two of the indices ar
contracted, since only one index is allowed to be free. Ho
ever, at 3PN order, this is no longer the case. A simple
ample is provided by a 3PN term proportional
v jvkU ,i P2

jk . Integrating over body No. 1, the combination
Uext

,i with P2(11)
jk gives a contribution to the equation of mo

tion
1

m1
v1

j v1
kE

1
r* d3x̄m2(

q

x̄Q

q!
¹Q¹ j~r 21!

3S 1

3
P2~ r̄ !d jk1PT2~ r̄ !n^ jk&D

5
1

15H E
0

R

r* r̄ 2PT2~ r̄ !d3x̄/m1
3J

3m1
2m2v1

j v1
k¹ i jk~r 21!, ~C11!

where the quantity in braces is dimensionless, scales as0

for fixed m1, but depends on the internal structure of bo
No. 1. Contributions like this appear everywhere at 3PN
der; whether they survive in the final equation of motion,
what their ultimate interpretation is, will be the subject
future work.

4. The quadrangle potentialH

The potentialH5P(U ,i j P2
i j ) is an example of a more

complicated ‘‘quadrangle’’ potential whose fundamental
gredient depends on the field point and three source po
To see this, we write

H5
1

4pEM

d3x8

ux2x8u
U ,i j ~x8!P2

i j ~x8!

5
1

4pEM

d3x8

ux2x8u
U ,i j ~x8!

3
1

4pEM

d3x9

ux82x9u
U ,i~x9!U , j~x9!
8-18
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5 (
ABC

E
A
rA* ¹A

i ¹A
j d3xAE

B
rB* ¹B

i d3xB

3E
C
rC* ¹C

j d3xC H~xA;BC!, ~C12!

where the functionH of four field points is defined by

H~AB;CD![
1

~4p!2EM
E

M

3
d3x8d3x9

uxA2x8uuxB2x8uux82x9uuxC2x9uuxD2x9u
,

~C13!

with the properties

¹A
2H~AB;CD!52~1/r AB!G~ACD!,

¹C
2 H~AB;CD!52~1/r CD!G~ABC!,

¹A
i ¹B

i H~AB;CD!5~1/2r AB!@G~ACD!1G~BCD!#

2J~ABCD!/2, ~C14!

where

J~ABCD![
1

4pEM

d3x8

uxA2x8uuxB2x8uuxC2x8uuxD2x8u
.

~C15!

Unfortunately, we have been unable to find a closed-fo
solution forH similar to that for (G), nor a useful expansion
in the case where some of the distances between points
small compared to the others.

Instead, we make use of the first form ofH given in Eq.
~C12!. We integrateH ,i over the density of body No. 1 an
substituteU ,k5U1

,k1U2
,k andP2

jk5P2(11)
jk 12P2(12)

( jk) 1P2(22)
jk .

The result can be put into the form

E
1
r* H ,id3x5

1

4pEM
d3x8U1

,i~x8!@U1
, jk~x8!1U2

, jk~x8!#

3~P2(11)
jk 12P2(12)

( jk) 1P2(22)
jk !. ~C16!

We wish to verify that no contributions of orders0 ~other
than normal point mass terms! arise in this integral. To see
this, we split the integral overM into an integral over body
No. 1 out to a radius;s1, a similar integral over body No. 2
to a radius;s2, and an integral over the rest ofM. In the
latter integral, we may use solutions external to each sph
cal body:U5m1 /y11m2 /y2 andP2

i j from Eq. ~C8!. If car-
ried out over all ofM using these functions, the integr
would diverge at the locations of the two bodies@30#.

Consider now the integral over a region of volumes1
3

surrounding body No. 1. In the neighborhood of No. 1, t
productU1

,iU1
, jk behaves assisjsk/s8; multiplying by the vol-

ume, we have a term of odd parity andO(s1
22). The term

P2(11)
jk is even parity, so the combination integrates to ze
10400
are

ri-

.

The termP2(12)
( jk) must be expanded about No. 1 using E

~C9!; the expansion begins atO(s0) with a constant term and
an odd parity term proportional tosi /s; then atO(s) with a
term proportional tos ~even parity! and one proportional to
si ~odd parity!; then atO(s2) with terms proportional tossi

and sisj , and so on. All even parity terms integrate to ze
when multiplied bysisjsk/s8. The odd parityO(s0) and
O(s) terms lead to non-zero integrals of orders1

22 ands1
21,

which we discard. The odd parity contribution of orders2 is
accompanied by a coefficient proportional to¹ jkl(1/r ). Inte-
grating over the sphere then results in a term of orders0 but
proportional to¹2(1/r ), which vanishes. Finally expandin
the termP2(22)

( jk) about the location of body No. 1 gives onl
terms of ordersm and parity (21)m, hence only a contribu-
tion of orders1

21 survives in the integral. Applying simila
considerations to the productU1

,iU2
, jk , and then repeating the

considerations for the integral over the neighborhood
body No. 2 leads to the conclusion that the contributions
of ordersA

22 or sA
21 , or of positive powers, but that there a

no structure-dependent contributions of ordersA
0 .

Consequently, we can carry out the integral in Eq.~C16!
over M up to spheres surrounding each body, and then
the spheres shrink to zero, discarding terms that blow up
sA

22 or sA
21 , and keeping only finite terms. We are guarante

that no structure-dependent terms ofO(s0) will appear. The
final result is given in Eq.~3.9!.

APPENDIX D: EVALUATION OF MULTIPOLE MOMENTS
FOR TWO-BODY SYSTEMS

1. Quadrupole and higher moments

Substituting expressions fortmn from Eqs.~A5! into the
definitions of the multipole moments, Eqs.~A4!, converting
from densitiess, s i ands i j to the conserved baryon densi
r* to the needed PN order using Eqs.~2.21!, and integrating,
discarding any terms that depend explicitly on the radiusR
of the boundary ofM, we obtain

I i j 5(
A

mAxA
i j S 11

1

2
vA

2 D2(
AB

mAmB

r AB
S 1

2
xA

i j

2
7

4
r AB

2 d i j D ,

I i jk . . . 5(
A

mAxA
i jk . . . ,

J i j 5e iab(
A

mAvA
bxA

a j ,

~D1!

J i jk . . . 5e iab(
A

mAvA
bxA

a jk . . . ,
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M i jkl 5(
A

mAvA
i j xA

kl2
1

2 (
AB

mAmB

r AB
nAB

i j xA
kl

1
1

12 (
AB

mAmBr AB~nAB
i jkl 2nAB

i j dkl2nAB
kl d i j

1nAB
i (kd l ) j1nAB

j (kd l ) i22d i (kd l ) j12d i j dkl!.

Note that, althoughI i jk andJ i j appear in 2.5PN terms, the
are purely functions of time, and thus cancel out of the re
tive equation of motion, so they are only needed to low
order for use in 3.5PN terms.

Converting to relative coordinates, using the 1PN corr
transformation in the leading term ofI i j , we obtain

I i j 5mhxi j S 11
1

2
~123h!v22

1

2
~122h!

m

r D
1

7

2
m2hrd i j ,

I i jk52dmhxi jk ,

I i jkl 5mh~123h!xi jkl ,
~D2!

J i j 52dmhLixj ,

J i jk5mh~123h!Lixjk,

M i jkl 5mh~123h!S v i j 2
1

3

m

r
ni j D xkl

2
1

6
m2hr ~ni j dkl1nkld i j 2ni (kd l ) j

2nj (kd l ) i12d i (kd l ) j22d i j dkl!,

where L[x3v is the orbital angular momentum per un
mass. Note that the momentsI i jklm, J i jkl and M i jklm are
not needed explicitly for the 3.5PN equations of motio
since they are purely functions of time, and cancel out of
relative equation.

Time derivatives of the moments may be calculated us
the relative equations of motion in place ofẍi ; 1PN equations
must be used in the leading term inI i j , while Newtonian
equations are sufficient for the remaining terms.

2. Dipole moment and the system center of mass

For a two-body system, the dipole moment is given
I i5*Mt00xid3x. Substituting for t00 including 1PN and
10400
-
t

t

,
e

g

y

2.5PN terms from Eq.~5.9! of Paper I, and converting from
s to r* to the corresponding order from Eq.~2.21!, we ob-
tain, to zeroth, PN and 2.5PN order,

I i5(
A

mAxA
i S 11

1

2
vA

22
1

2 (
B

mB

r AB
D

2
2

5 (
A

mAxA
j ~d i j Ikk

~3!

12Ii j
~3!

!. ~D3!

Choosing the center of mass so thatI i50 to at least PN
order, we see that the final 2.5PN term is in fact at le
3.5PN order. However, we must also check the time dep
dence ofI i , to see if it remains zero to the order neede
From the definition ofI i @Paper I, Eq.~4.6!#, we have

İi5Pi2 R
]M

t0 j xid2Sj . ~D4!

Using the definition oft0 j @Paper I, Eqs.~4.4!# and the far-
zone forms of the gravitational potentials@Paper I, Eqs.
~5.12!, with I i50 to 1PN order#, it can be shown that the
surface integral is of 2.5PN order relative toPi . However,
taking an additional time derivative and usingt i j in the far
zone gives

Ïi5 Ṗi52 R
]M

t i j d2Sj

52IS 2

15
Ii j j
~5!

2
2

3
eqikJ qk

~4! D , ~D5!

where, to the order needed,I is simply the total baryon mas
m of the system. Hence integrating with respect time a
setting the initial conditionsI 0

i 50 andP0
i 50, we have

I i52mS 2

15
Ii j j
~3!

2
2

3
eqikJ qk

~2! D . ~D6!

Note that, while this may seem like an anomalous 2.5
effect on the system center of mass, it is really a gau
effect. Because the right-hand side of Eq.~D6! is a total time
derivative, it can be absorbed into a redefinition of spa
coordinates. Combining Eqs.~D3! and ~D6!, and defining
x1

i 5(m2 /m)xi1z i , x2
i 52(m1 /m)xi1z i , we can then show

that the transformation fromxA
i to relative coordinates is

given by Eqs.~5.3!, which were derived directly from the
1PN and 2.5PN equations of motion.
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