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Post-Newtonian gravitational radiation and equations of motion via direct integration of the
relaxed Einstein equations. Il. Two-body equations of motion to second post-Newtonian order,
and radiation reaction to 3.5 post-Newtonian order
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We derive the equations of motion for binary systems of compact bodies in the post-NewtBiNgn
approximation to general relativity. Results are given through 2PN duateler ¢/c)* beyond Newtonian
theoryl, and for gravitational radiation reaction effects at 2.5PN and 3.5PN orders. The method is based on a
framework for direct integration of the relaxed Einstein equatiddHRE) developed earlier, in which the
equations of motion through 3.5PN order can be expressed in terms of Poisson-like potentials that are gener-
alizations of the instantaneous Newtonian gravitational potential, and in terms of multipole moments of the
system and their time derivatives. All potentials are well defined and free of divergences associated with
integrating quantities over all space. Using a model of the bodies as spherical, non-rotating fluid balls whose
characteristic sizeis small compared to the bodies’ separatipwe develop a method for carefully extracting
only terms that are independent of the paramgt#rereby ignoring tidal interactions, spin effects, and internal
self-gravity effects. Through 2.5PN order, the resulting equations agree completely with those obtained by
other methods; the new 3.5PN back-reaction results are shown to be consistent with the loss of energy and
angular momentum via radiation to infinity.
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I. INTRODUCTION AND SUMMARY To complete the solution of Einstein’s equations, one
needs equations of motion for the system. For this, one needs

This is the second in a series of papers which will treatthe spacetime metric evaluated for field points within the
motion and gravitational radiation in the post-Newtonian ap-near zone, corresponding to a sphere of racuspproxi-
proximation to general relativity. While this is a problem that mately one gravitational wavelength. In Paper | we ex-
dates back to the beginnings of general relativity, it has repressed this near-zone metric explicitly through oredéf
cently taken on added observational importance because 8fyond the Newtonian approximation, corresponding to 3.5
the need for extremely accurate theoretical gravitationaPoSt-Newtonian (PN) order, in terms of instantaneous,
waveform templates for the analysis of data taken by lasefoisson-like integrals and their generalizations, of the form,
interferometric gravitational-wave detectdfd. Specifically, [oF €xample,
for waves from inspiraling binary systems of compact ob- 1 £t x'
. ) . (t,x")
jects (neutron stars or black holgsquations of motion and P(f)= _f ——d3x’, (1.2
gravitational waveforms accurate to at leakird post- 4 m [x=x|
Newtonian ordeforder @/c)®] beyond the initial Newton-

ian or quadrupole approximation are needed. where the integration is confined to the near zow and

In Paper I[2], we laid out the foundations of our method only Fhat part of the integral that is independentis kgpt.

of direct integration of the relaxed Einstein equations Itis the purpose of this paper 10 eval_uat_e these m_tegrals
(DIRE). We rewrote the Einstein equations as a flat space(-expIICItIy for a binary system of non-spinning, spherically
. ) X . ) 'symmetric bodies whose size is much smaller than their
time wave equation together with a harmonic gauge condiz . . . .
tion (the “rele?xed" Einst%in equationsand solvedgthegm for- separation. We will carry this evaluation through 2PN order,

. ! and will also evaluate the leading radiation-reaction contri-
mally in terms of a retarded integral over the past null CON&, vions at 2.5PN  order together with the first post-

of the field point. Because the “source” contains both theNevvtonian corrections to radiation reaction, at 3.5PN order.

material stress—energy tef?sor and the stresg-energy ContribJr'ﬁe extremely lengthy derivation of the non-radiative 3PN
tions of the grayltatlonal fields themselves, It was Necessaryontributions will be reserved for future publications. The
to iterate the integrals repeatedly to obtain successwel}(esulting equations have the form '

higher-order approximations to a solution in powers eof
~(vlc)>~(Gmirc?). Each power ofe represents one d2x

m
“post-Newtonian” (PN) order in the seriesel’? represents =- r—2n+ r—z[n(ApN+A2pN+A3pN)

one-half, or 0.5PN ordeys Despite the fact that the field dt®

contributions to the integrals extend over all spacetime, we ;

demonstrated that no infinite or ill-defined integrals oc- FrV(BentBopnt Bapn)]

curred, even in slow-motion, multipole expansions, and 8 mm.

found a simple prescription for evaluating the finite contri- gz 1Azt Agsen)

butions of all integrals. This was true for calculations of the

metric both in the near zone and in the far zone. —V(By spnt Baspn) 1 1.2
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where x=x;—X,, r=I[x|, n=x/r, m=m;+m,, 7z The 1PN coefficients are standard; the 2PN and 2.5PN
=mym,/m?, v=v;—V,, and r=dr/dt. We use units in te€rms agree completely with results derived by Damour and
which G=c=1. The leading term is Newtonian gravity. The Déruelle [3,4], Kopeiken and GrishchuK5,6], Blanchet
other terms on the first and second lines are the “conservegt @l-[7]; and Itohet al.[8]. However, the 2.5PN terms differ
tive” or non-dissipative terms, of even PN order, while those' O™ those derived, for example from a Burke-Thome-
on the third and fourth lines are dissipative radiation-reactiorjlepe radiation-reaction ~ potential given by drg

=_ i 57 (i) dt° (i) j ’ -
terms, of odd-half PN order. The coefficierdsand B are (1/S)XX'"TTV/dE, whereI™ is the system's trace
. o free quadrupole momerisee, e.g. Sec. 36.11 ¢9]). lyer
given explicitly by

3 .
Apn=—(1+37)v?+ Ey,r2+ 2(2+ p)ym/r,
Bpn=2(2—17), (1.33

a1 2
Aspn=—n(3—47n)v "+ 5 n(13—4n)vm/r

E _ 2.2 2102
+277(3 An)vre+(2+259+25°)r<m/r

15 .3
-5 n(1—37)r4— 2(12+ 297)(m/r)?,

1 ) 3 L
Bopn= 577(15+477)U - 577(3+27))r

1
- E(4+4177+8772)m/r, (1.3b
17
A2.5PN:302+ gm/r,
B, spn=v2+3m/r, (1.39

3 1
Assen=~ 5g(61+ 707)v4— 25519~ 12677)v>mir

15 2.2 1 2
+Z(19+27])v r —2(147+1887;)r m/r

—70r4— 2—3(43+ 147)(m/r)?
14 7 '

1
B3 spn=— 53(313+427;)v4
1
+ 25(205+ 777 v?mir
3 .
+ Z(113+277)v2r2
1 . .
- 1—2(205+4247;)r2m/r—75r4

- 4i2(1325+ 5467)(m/r)?. (1.30

and Will [10,11 showed that there is a two-parameter
“gauge” freedom in the radiation reaction equations at
2.5PN orderand a six-parameter freedom at 3.5 PN oyder
within which the different equations of motion yield identical
results for the net energy and angular momentum radiated.
The 2.5PN terms shown are thus observationally equivalent
to the Burke-Thorne radiation reaction equations. The 3.5PN
terms are new; it can be shown that they correspond to a
specific choice of the six lyer-Will gauge parameters, and
thus automatically generate the proper post-Newtonian cor-
rections to energy and angular momentum loss. fechend
Jaranowski[12—14 also derived 2PN, 2.5PN, and 3.5PN
contributions to the equations of motion in a Hamiltonian
formulation. The 3PN contributions to the equations of mo-
tion have also been reported by several groufs-19.

The remainder of this paper is devoted to the details sup-
porting these results. In Sec. Il we review the basic equations
needed to find equations of motion to the order needed. Sec-
tion Il specializes in binary systems of spherical “pointlike”
bodies, and derives the equations of motion for each body
correct to 2PN order. Section IV repeats the process for the
2.5PN and 3.5PN terms. In Sec. V we transform to an effec-
tive one-body relative equation of motion. Concluding re-
marks are made in Sec. VI. Detailed points are reserved for a
series of Appendixes.

Our conventions and notation generally follow those of
[9,20]. Greek indices run over four spacetime values 0, 1, 2,
3, while latin indices run over three spatial values 1, 2, 3;
commas denote partial derivatives with respect to a chosen
coordinate system, while semicolons denote covariant de-
rivatives; repeated indices are summed ovef'= 7,
=diag(-1,1,1,1); g=det(,,); all=(@@"+al)/2;
alll=(all —al')/2; €¥ is the totally antisymmetric Levi-
Civita symbol **=+1). We use a multi-index notation
for products of vector components and partial derivatives,
and for multiple spatial indices:x'l - k=xixl .. .xK
vi-k=viyl VK with a capital letter superscript denot-
ing an abstract product of that dimensionalitk®
=x'1x2 ., . xlaandV=V"1V'2 . V'a, Also, for a tensor of
rank Q, fe=f't2---la. The notationf%g® denotes a com-
plete contraction over thgindices. Spatial indices are freely
raised and lowered witid" and §; .

II. EQUATIONS OF MOTION OF COMPACT BINARY
SYSTEMS: BASIC EQUATIONS

A. Structure of the near-zone metric to 3.5PN order

We begin by reviewing key results from Paper |. We de-
fined the “field” h*# by

haBE ﬂaﬁ_(_g)llzgaﬁ, (21)

whereg®? is the spacetime metric. In deDonder or harmonic
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coordinates defined by the gauge conditW,Bzo, the  where the subscript on each term indicates the I€VEN,

Einstein equations take the form 2PN, 2.5PN, etg.of its leading contribution to the equations
s B of motion. Notice that our separate treatmentBoaind B"
Lh®P=—16m7", (22 leads to the slightly awkward notational circumstance that,

for example,B5 =B;. In Paper | we obtained explicit near-
zone expressions for each of the terms in &35 in terms
of Poisson-like potentials

where [ is the flat-spacetime wave operator, antf is
made up of the material stress-energy teng®f and the
contribution of all the non-linear terms in Einstein’s equa-
tions. We defined a notation for specific components of the

: af. 1 f !
field he”: P(f)E_f (t'—X,)dBX/’ VZP(f):—f,
N=h®—O(e) 4 ) o [x—=X|
, (2.6
KiEhOiNO 3/ ’ , "Vf , ’
(< = [ S e

Bi=hi~0(€?), (2.3

. ) and various generalizatiofifor definitions, see Paper I, Egs.
BEZ h"~0O(e%), (4.10—(4.16], and in terms of source multipole moments,
such asz'l= [ ,,7°% d%x [for definitions, see Paper I, Egs.
where we show the leading-order dependenceedn the  (2.14) and(4.5—(4.7)]. The integrations are over a constant
near zone. To the necessary orders for calculating the equéime hypersurfaceM that extends to a radiuR approxi-
tions of motion to 3.5PN order, the components of the physimately one gravitational wavelength from the source. In Pa-
cal metric are given in terms &, K', B, andB by per | we showed that, even for Poisson potentials where the
functionf does not have compact support, all contributions to
the fieldh#” from the integration oveM that depend orR
cancel corresponding contributions from that part of the field
point’s past null cone that is outside, and thus that any
R-dependent terms that appear in a given integral can simply
be discarded.
The potentials given in Paper | were expressed in terms of
specific source densities given by

=—|1 1N 3N2 5N3 35N4
o= | 172N g 16 128

+1B
2

2 8 4 2

+ lKiKJ 3N|<J'Ki+o 5

o=TO00+TH
. 1 1 3 o y '
goi= —K'| 1-= 5N— 5B+ ZN?| —KIBT+0(e%?),
2° 278 O 27
(2.9 ’ '
gij= 9" 14 IN- SN2+ NB— SNB+ SKHKE i i
1 2" 8 16 4 2 ol =T
N B .
+Bi— E|35|1 KK+ ENBIJ +0(€%), For example, in Eq(2.5),
(—g)=1+N—B—NB+KK +0(e). Ugff (lf(t—,xf|)d3X'=P(4’7T0')=2(1),
- MIX—X
The potentiald\, K', B" andB must also be expanded to an (2.9
appropriate order: e
vi= [ T8 o pame=3ia
N=e(4U,+ eNy+ €Ny 5+ 2Ny + 92N, 5 o= | Tx—x] & X =PAma)=21(1).
+ €3N+ €Ny o)+ O( €,
. . . . . Explicit expressions for the remaining terms in E2.5) can
K'= €324V + eK)+ €3, o+ 2K+ €9%K o) be found in Paper |, Eq$5.2), (5.4), (5.9), (5.10, (6.2), and
' ' (6.4).
+0(e%?), (2.5
B= 62(51_,_ 61/251 =+ €eB,+ 63/252 o+ 6233 B. Model of the material sources
+e5’ZB3.5)+O(e5), We merI thg material sources in the binary system as
perfect fluid, having stress-energy tensor
Bl = €(BY + €'?BY .+ B + €¥%BY o) + O (€%, TeB=(p+ p)ucub+ pg®®, (2.9
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wherep andp are the locally measured energy density andture, provided that tidal effects can be ignored. Kope[h
pressure, respectively, antt is the four-velocity of an ele- extended this to 2PN order, with results consistent with the
ment of fluid. We will assume the bodies to be non-rotatingstrong equivalence principle.

(the effects of spin will be treated in future publicatipns ~ Our approach will be intermediate between the “delta-
spherically symmetric in their comoving rest frames, andfunction” model and the full equilibrium fluid ball method.
small compared to their separation, so that tidal distortiondVe Will neglect pressure and internal energy density, and

can be ignored. treat the bodies as balls of baryons characterized by the
Our goal is to determine all contributions to the equations cOnserved” baryon mass densiy*, given by
of motion that are independent of the internal structure, size, p*Emn\/—_guo, (2.10

and shape of the bodies. We are less interested in formal

rigor than in having a robust method that captures all theyherem is the rest mass per baryamjs the baryon number
effects without missing any. One approach to this has been tgensity, andg=det(g,,,). From the conservation of baryon
assume a “delta function” or distributional form for the number, expressed in covariant terms bpuf).,=0
stress-energy tensor. This has been criticized because such:q\/__gnua)’a, we see thap* obeys the non-covariant, but
source is fundamentally incompatible with general relativity,exact, continuity equation

and because it leads to divergences related to the infinite

self-field of a point mass. A number of methods have been Ip*It+V-(p*v)=0, (211
developed in order to extract the finite part of such divergent T . )
expressions, including the Hadamapdrtie finie technique Wherev'=u'/u’, and spatial graldlents and dot products use a
(for a recent review, se@1]). Another approach is related to Cartesian metric. In terms gf*, the stress-energy tensor
that of Einstein, Infeld and Hoffma(EIH) [22]: expand the takes the form

vacuum Einstein equations in a post-Newtonian expansion Tab=p*(—g)~ Y20 %P, 2.12

and match the solutions to fields representing the near-zone,

Schwarzschild-like field of a static, spherical body. The CONwherep %= (1,Ui). We define the baryon rest mass, center of
sistency conditions imposed by the matching lead to conbaryonic mass, velocity and acceleration of each body by the
straints on the motion of the bodies that yield the equationgormulas
of motion. This has been carried out to 2.5PN order by Itoh
et al.[23,8], exploiting a “strong-field point particle” scaling m zf * oy
method of Futamasg24]. A= | P ’

A third approach is to treat the bodies realistically as fluid
balls with internal energy, supported against their self gravity _
by pressure governed by an equation of state. In this case, the Xa=(1/my) fAP* x'd’x,
mass of each body is composed of rest mass, internal energy
and self-gravitational binding energy, and the center of mass
is defined accordingly. However, at Newtonian and 1PN or- VAEdXA/dt:(l/mA)f p*Vd3x,
der, when finite-size effects such as tidal interactions are ig- A
nored, it turns out that all vestiges of the internal structure
are “effaced,” in the language of Damo(i], and the final
1PN equations of motion depend on one and only one mass
as defined above. This procedure can be seen in detail, for
example, i 25], Sec. VI B, where the calculation is actually where we have used the general fact, implied by the equation
carried out in the parametrized post-NewtoniBPN frame-  of continuity for p*, that
work, which encompasses a class of metric theories of grav-
ity. In many alternative theories, such as scalar-tensor gravéd [, =, a3
ity, the effacement is violated, and the equations of motiorﬁf p*(LXDT(LXX)dX
depend on various masses, such as inertial masactive
gravitational massn,, and passive gravitational masg, -~ * ,
which may differ by amounts depending on the bodies’ _f P (LX)
gravitational binding energy. In GR, the PPN parameters are
such that all three masses are identical.

In fact, the 1PN equations of motion derived from this
method are identical to those obtained from a “delta” func-  The definition of the stress-energy tensor in termgof
tion method in which one systematically throws away allEQ. (2.12, together with the equation of continuity, Eg.
terms that are singular when evaluated on each body’s worlt2.11), and the fundamental equations of motidit?. ;=0
line. At 1PN order, the results are in keeping with the ideacan be shown to be equivalent to the geodesic equation
that general relativity satisfies the strong equivalence prinuﬁu;‘"ﬁzo_ for each fluid element. In terms of ordinary
ciple (see Sec. Il C of25]), part of which implies that the velocityv'=dx'/dt and harmonic coordinate timethe geo-
motion of bound bodies is independent of their internal strucdesic equation takes the form

(2.13

ap= dVA/dt: (1/mA) J' p* aid?’X,
A

J
E+v’~V’)f(t,x,x’)d3x’. (2.14

C. Structure of the equations of motion to 3.5 PN order
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a'=dv'/dt=—T

o

Bvavﬁ+ pgﬂvavﬁvi, (2.15 yelocity which multiply them; reexpress the Poisson po.ten-
tials contained in the metric in terms pf, rather than in

wherel'} ; are Christoffel symbols computed from the met- terms of the “densities’s, ¢' and o', substitute into Eq.

ric. According to our definitions of the baryonic center of (2.16), and integrate over thAth body, keeping only terms

mass, velocity and acceleration of each body, we can writ¢hat do not depend on the bodies’ finite size.

the coordinate acceleration of tgh body in the form

D. Christoffel symbols to 3.5PN order
aiA: (1/m,) pr*(_piaﬁvavBJr I‘gﬁvavﬁvi)de’x. The fundamental definition
(2.19

Our task, therefore, is to determine the Christoffel symbols
through a PN order sufficient for equations of motion valid
through 3.5PN order using the 3.5PN accurate expressions @gether with the form of the metric E€R.4) and the expan-
the metric in Paper (different components of 7 ; are need  sions of Eq.(2.5) give the Christoffel symbols expanded to
to different accuracy, depending on the number of factors ofhe required order:

1
F,uVEEgaﬁ(gﬂu,v+gﬁv,u_gﬂv,ﬁ)l (217}

o

Fgoz—eUU—eZ(Z(NlJrBl)—4UgUU—4V'UU")—65’2N1_5—63(Z(N2+Bz)—N1UU—UUN1—V'U(N'1'+B{)—K'2U;;

-8V! V! +16U2U,+32U,V' U") - 57’2(—(N2,5+ Bys)— Ny U, —U,N;5— K'z_su;',) +0(e%), (2.183

[oanaos o (o8 4

rgiz—eu;—eZ(Z(N;+B;)—4UUu;)—63(Z(N5+Bg)—Nlu;;—U[,N'1'+4v;,ua+8v{,vgl+16uiu;;)

+0(eY), (2.18b

1 ) : .
- 67/2( Z(N'zl.s"' les) - N1.5Ul;

I'h=e(avi+0,80)+ €

LK : i] L i (-5 () kKiykgii 712 L i (i.j) L ij
7 (N B0 &+ 58I +KED—16viUD +aVeU o |+ " B g+ KED — 5Ny o0
+0(eh), (2.189
i i 1 i i /i i 2 1 i i d i i i TN i
Fyo=—U,—¢€ Z(N'1+B*l)+4vg—8U0U;, —€ Z(N'2+B'2)+K2—2N1U’(,—2U0N'1—U(,B'l—BZU;,—4VUU,,
160,V + VLV 483U | - 9 (g B9 + ks 2Ny 13- B | - g9 i

—2N,U — U (2N4 +Bd) — 4U Kb~ KLU, — SN;Nj — =N By — Vi (Ny +By) — 4N,V +2KLVE 42V K

2 4
| pij 1 jkpik,i ijr1.] 1 ij ) ) 2N 20, | il 2v\/i
+4V,BY + 7 BYBL - BJU L 7BY(BY +N{) + 12U3N{ +4U%B; +24U N, U,y +8U,U;JBY +64U3V,
: i IRV IRVIERE 3.0 712 1 i i i 1 | 1 |
+320,U,V,,— 64UV, V5 = 3V, VLU~ 25603U; | — € 7 (Nj s+ By + Ky 5~ 7 N1 sBi — 5 N1 N

—2U Ny 5= U By s— 2N, U+ 2V Kb i+ 2K V' —4U K5 5— K5 U, — 4V Ny 5— 4Ny gV, — U IBY 5+ 4V! B

+0(€e%), (2.180

1 . : 1 . o
— 7BIdNT+BY) + 7 BYBL + 24U, Ny U, +8U, U BY 5
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0= €(U, 81 —aviiily 4 2

7(Ni=Bp) &'~ KT+ 5B3—4U,U, 81 -4V, U, +16U Uv[,"”) - 65’2( SNysd!+ KL

Z(NZ—BZ)&I—KQ'MEBg—(N1UU+UUN1)31—KJZU;;+4U(,K[2"”—16\/5;v{2+8v5v55'1

1..
- EBES) +€3

—VI(N; +By) + 4N VI 4+ 4BkvIkIT 4 gk lBik— 4k BRI 4 16020 61+ 320 UV — 64U§Vg,n)

1

4 67/2 5

1. . - .
7(N2s= B9 8V — KL+

Bds— (N1gU, U N9 8" — Kb U+ 4U KB+ 4N, oV 1T+ B3V

+4velBYE| +0(e), (2.189

. . 1 . ' 1 o -
= €T k(U )+ €| 2°T)(N1 = B1) —4U, T (U,) + 5 (B3 + B~ BY™)

1 1 o
+e3(ZOF}k(N2—BZ)+5(8'3‘"‘+|3'3kd
—ngv‘)—Nlor}k(u(,)+Bgug&'k—Bizkug—ugor}k(Nl)Jr16u§°r}k(ug)+4v170051k+4°r}k(v[,v'g)
+67/2

— 16V, VI —16viVi] ZOF}k( Nos—Bosg) + E(B'?f.gk-i- By —BLY) - Nl.SOFIjk( U,)+Bj U, o

—szk_su;j) +0(e%), (2.18%
where we define
OF}k(f)Ef’kéij+f’j5ik—f’i5jk. (2.19

E. Conversion to the baryon densityp*

We must now convert all potentials from integrals overs', ando'! to integrals over the conserved baryon dengity
defined by Eq(2.10. From Eqgs.(2.7) and(2.12), we find

U=p*u0(1+vz)/\/—_,
o'=p*ui/\—g, (2.20
O_ij:p*uovivj/\/__,

whereu®=(—goo—2goiv' —gijv'v!) ~ Y2 Substituting the expansions for the metric, E24), and for the metric potentials
Eq. (2.5, we obtain, to the order required for 3.5PN equations of motion,

3 7 1 T 3 5 11 33 o
— % _ 2 2 _ .4, 2 _ IAV/ — 112 5/2 3| .6, __ 4 _ AV
o=p*|l+e 5V U,|+e (80 +2v U,—4v'Vv, 4N1+4Bl+2UU +2e” N5t e (16v + gV U,— 10V, v
£ L2024 Sy 20?8yt S Bl + AUV Khol— SNyt SBy— VLV 42U Ny U, By U2
4 o g 1 8 1 2 2 oV 2 4 2 4 2 otaol g0 1 4°© 1 2 o

w1 2 i i i L 3 4
e U Nt 5B v =Ko = 7 Nast 7Bas=UgNys +0(e") |, (2.21a
: . 1 3 3 .3 1 5
[ | 2 2( — 4, — .2 _ Joda — _ - 112 5/2, 3
o'=p*v'|lte 5V U,|+e g +Zv U,—4V,v +4Bl 4N1+2UU +2€e” N, 5+0(€”) |, (2.21bh
. o 1
ol=p*v'vl|1l+e EUZ_UU +0(€?)|, (2.219
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1
—vz—UU

1+e€ 5

iih— %2
o' =p*v >

3, 3 .3 1 5
+52(§v4+ —UZUU—4VJUUI+ZBl—ZN1+§U§ +26%N, 5+ O(e%) |. (2.210

Substituting these formulas into the definitions fdy and the other potentials defined in Paper |, Egs10—(4.16), and

iterating successively, we convert all such potentials into new potentials definedpdsiptus PN corrections. For example,
we find that

= 3c1>c1>274122 21152c1>2c1>321"
Us=Utel 51— Pa |+ €7 g2(07)+ 52(07U) =40V + 5 2(Pg) =2 (P2) + 52 (U =~ 52(X)
(3)jj
— o2 3V7Z (t) | +0(ed), (2.22

where henceforthl), VI, ®,, ®,, 3, and so on, are defined in terms @f (see Appendix A

F. Final continuum equations of motion
Combining Eqs(2.18 and (2.15), substituting the explicit forms of the potentidlg , K, Bg , etc. from Paper |, Eqgs.

(5.2, (5.4), (5.9), (5.10, (6.2, and(6.4), and inserting the iterated forms of all potentials, we obtain the equation of motion
through 3.5PN order,

dv'/dt=U"+apy+abpy+ah s+ Aspn T As o (2.23

where

apy=v°U"' —40'0IU = 30'0 40U + 8o VI 4+ 4V + 5K+ S i — Dy, (2.243

a'ZPN=4v'vJkaJ'k+Uzv'U+v'v‘(4(1>'21—2¢)f—2X'J)—§v2(2¢>’2'+<I)’1'—X*')+v'vk(2¢>'1k"—4<l)f’k

- . o 1. 30 . s S .
+2PY T — 4P 01| 3d,— SP1— X +4VKUK +ol[ gVl —160L 1+ 4X 0T+ 3261

. . T 9_.
—16UV["”—4E'['(UI]02)+8V'U"—4(I>T—4Pg]+§E"(v4)+EE"(UZU)—4E"(UIV')

— 53 (@1) - 6UD] — 20U~ 4DY U+ 8VIVI +4VIU +25 (vv?) +4U D3 +4D,U-

o 3. L o1 . 3. 1., ®
+8U2U"—E"(<I>2)+EE*'(UZ)—2UX*'—2XU"—8UV'—EE"(X)+ZX'1'—§X'2'+2X'

i@ . . . . . Y . _
+Z‘Yv'+4v'2—8<l>'2—66{—4G'2'+8G3'+SG;{—4G§+16(3'7—4P2Uv'—4H", (2.24b

5 1 (5

. 3 [ , (4) ® 4 O ® 26 2 (4)

+20) 70 4+200 T+ U TR X T = o T e 9, (2.249
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Because of their length, we shall defer presentation of the Our assumption that the bodies are non-rotating will im-
3PN contributions to later publications when they will actu- ply simply that every element of fluid in the body has the
ally be needed for calculations. same coordinate velocity, so thdtcan be pulled outside any

integral. This assumption can be easily modified in order to
deal, for example, with rotating bodies.

IIl. TWO-BODY EQUATIONS OF MOTION TO 2PN Finally we assume that each body is suitably spherical. By
ORDER this we mean that, in a local inertial frame comoving with

the body and centered at its baryonic center of mass, the

A. General treatment of “spherical pointlike” masses baryon density distribution is static and spherically symmet-

We must now integrate all potentia|s that appear in thélC in the coordinates of that frame. In Appendix B we show
equation of motion, as well as the equation of motiar24) that the transformation between our global harmonic coordi-
itself over the bodies in the binary system. We treat eacmatesx' and the spatial coordinates of this frame can be
body as a non-rotating, spherically symmetric fluid Ha  written in the form
seen in its momentary rest frajpavhose characteristic size o ) o
is much smaller than the orbital separation. We shall discard X'=Xp+X{ 8]+ (A + B}, x*) + O(€?)}, (3.1
all terms in the resulting equations that are proportional to ,
positive powers of: these correspond to multipolar interac- where the subscrip refers to theAth body andx), denotes
tions and their relativistic corrections. The leading Newton-its baryonic center of mass. The coefficieAtsinclude the

ian quadrupole effect is formally of ordes/f)? relative to  effect of Lorentz boosts, and the coefficieBt§ depend on
the monopole gravitational potentiai/r, but for compact  the acceleration of the frame in the field of the companion
objects such as neutron stars or black hatesm, so effec- star. Then, in terms of the local coordinatds we assume

tively this is comparable to a 2PN term. Furthermore, if thethat the baryon density is spherically symmetric and static,

qguadrupole moment is the result of tidal interaction with the .2 ~ o
companion, the size of the induced moment is of ordeSC that™ (t,x)=ps(r). As a consequence, a finite-size mov-
(s/r)3, so the net effect i©(s/r)%, or roughly 5PN order. "9 body will no longer appear spherical, in part because of

Such leading multipolar terms can be calcuiated straightforthe Lorentz-FitzGerald contraction. This will result in rela-

wardly, but here we ignore them. tivistically induced multipole moments for the body, albeit of

We also discard all terms that are proportional to negativé€der € relative to the monopole moment. Ordinarily, these
powers ofs: these correspond to self-energy corrections of¥ould resultin terms of positive powers sifn the equations
PN and higher order. We shall assume that all such corre@f motion, which we ignorgin other words, as the body's

tions can be merged uniformly into a suitably renormalizedZ€ Shrinks to zero, the flattening becomes irreleydrw-

mass for each body, in line with the strong equivalence prin€Ver &s before, in terms with products of potentials, we must

ciple. This should be checked by direct calculation, but herdVOrTy about the effect of self-potentials with negative pow-
we ignore such terms. ers ofs offsetting the positive powers from the flattening. We

We retain only terms that are proportional€d For the show in the Appendixes, however that no such terms arise in

most part, these are the expected terms that depend on tfi €quations of motion at 2PN order, but that they will con-
two masses, terms that one would have obtained from 4iPute in principle at 3PN order.

“delta-function” approach that discarded all divergent self-

energy terms. However, at higher PN orders, another class of B. Newtonian and PN terms

s” terms is possible, at least in principle. These are terms that \we shall evaluate the acceleration consistently for body
arise from non-linear combinations of potentials. One could\o. 1; the corresponding equation for body No. 2 can be
imagine one potential being expanded in a multipolar expangptained by interchange. At the end, we shall find the center-
sion about the center of mass of one of the bodies in positivgf.mass and relative equations of motion.

powers ofs, multiplied by another potential which is a “self-  The Newtonian acceleration is straightforward:

energy” potential of that body, dependent upon negative o

powers ofs. One could then end up with a term that has a i 3 L, (X=X
piece that is independent of the scale sz& the body, but (ap)n=—(1/my) LP d Xf p md X
that still depends on its internal density distribution. We will

show that such terms cannot appear at 1PN order by a simple (Xi—x"
symmetry argument. At 2PN order, terms of this kirwlld = _(1/m1)J’ J p* p* ’—,9,d3xd3x’
appear in certain non-linear potentials, but in fact vanish 1J1 |x=x'|
identically by a subtler symmetry. At 3PN order, sush

terms definitely appear, but whether they survive in the final _(1/m1)f p* dng p*
equations of motion is an open question at present. We will 1

discuss these matters explicitly at each PN order. This ap-

proach is, in some sense, a “quick and dirty” version of the The first term vanishes by symmetry, irrespective of any rela-
Hadamardpartie finie technique, but with the virtue that tivistic flattening or any other effedtNewton’s third law.
finite-size or structure-dependent terms can in principle b&ubstituting Eq(3.1) for each body and expanding the sec-
systematically kept and examined. ond term in powers of, using the general formula

(Xi_xir)

’ 3y
—|x—x’|3 d°x". (3.2
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1 “yQ 1 the baryonic center of mass of the two different bodies, re-
m: > —IVQ<—), lyl<|x|=r, (3.3  spectively, and never within the same body.
Xty =0 ¢ r The resulting N and 1PN equation of motion is

we find that all contributions apart from the leading term are i my . 2
of positive powers ins, including the effects of relativistic TGN R AL
flattening, and thus are dropped, with the result

my My
474‘57_0%

3
i i 9,240 S 2
(ay)n=—myn'/r2, (3.4) +4v102 205+ 5 (vaeN)

where we definex=x;—x,, r=|[x|, n=x/r. i ﬂz?(vl—vz)i(4vz'n—3v1-n),

The 1PN terms are similarly straightforward. A term such r
asv?U'' is integrated over body No. 1 by setting=v, and )
writing U= U, + U,. With v? pulled outside the integral, the appny=1=2. (3.6
integration is equivalent to that of the Newtonian tei3rR),
with the resultv?U"'— —m,v2ni/r2. Other 1PN terms in-

volving quadratic powers of velocityw(U, v/VI'i1, ®; and
the velocity-dependent parts ®f andX'') are treated simi-
larly. Relativistic flattening plays no role through 3PN order.

Under the interchanget2, n'— —n'.

C. 2PN terms

Since we are only working to 2PN, 2.5PN and 3.5PN
In the nonlinear terny U ' the term involvingU 1U{. is of ?rdt(;rs hf?rei Wef m?yt_eyz:!ui}ettthe_ 2PN _termfhwnhout rt(_egard
order s whred epresents a vector, k)’ nat 1% 1 S1Ecs o el tering, e e sarectons
resides entirely within the body. In Appendix B we argue that X gner. y X
expand any potentials about the centers of mass of the bodies

relativistic flattening introduces corrections of ordefA to identify all possibles? terms. The terms explicitly cubic in
2 k | i ; ; ) .
*Bs), &(C+Ds"+Es'), with the generic term scaling v' [the first two terms in Eq(2.24b] are simplest to evalu-

n n P i 14 ; ;
ase"(1+s)". The leading termg/s") vanishes by spherical ate, since the potentials involved already appeared at

bt ~2 o1
SXTmetW‘ Any contributions of overall order =, s " or 1PN order. Integrating over body No. 1, discarding terms
s*" are discarded. The only way to get a term of orsheout . . A ~
that are singular ins, we obtain a;(1+2)=—(m,/

of s'/s* is to have a correction term of orde?, which is 4 5 Th
automatically of ordee?, which results in a 4PN term. In the | )[4(1-v2)(v1-n)=0vi(vy-n)]v; . The next ten terms are
i i i explicitly quadratic in velocities; the potentials are both lin-

two cross termdJ,;U; andU,U;, U; andU3 are of order 7 : ;

1/s andsi/s3 respectively; expanding, about the center of ear and quadratic in the masses, and some involve time de-
' iy ; rivatives that require substituting the Newtonian equation of

mass of body No. 1 using E¢3.3) yields only products of motion. Pulling the velocities outside the integrals leaves po-

vectorss?, including the contributions from relativistic flat- ; L ;
. : tentials similar to those that have already been integrated at
tening. Thus the only terms in the product that vary overall o] .
1PN order. The potentiaP; also appears; unlike the

as s will have odd numbers of vectors, whose integral ) :

over body No. 1 vanishes by spherical symmetry. Only thé:)ot_entlals encountered SO .farU( & .X’ Pz, ...), :
term from U2U'2i contributes, and relativistic flattening pro- Wh'Ch depend_on the pairwise sepafjatlon between .pomts,
duces only corrections of positive powersfThe resultis €+ O the d'Stance_AB=|XA_xB|’ Pz and others like
UU,i_}_mgni/rS. it depend on the distances between points taken as a

. . . . triplet, namely on the combinatiod(ABC)=rag+rac
In the termsV' and X', the accelerationlv'/dt appears.

. X ! +rgc. We denoteP} and similar potentials lik&,, G, etc.
V_Vorklng to .1P_N order, we must insert the Nevytoman equays “triangle” potentials. Their evaluation is discussed in Ap-
tion O.f motion; but Work|ng to ZPN ordegor hlgheb, we pendix C. From these terms only the obvious “point” mass
must insert the 1PNor hlgheb _equatlons_of motion; the ZPN_ terms arise, while all others are proportional to either nega-
terms so generated will be discussed in the next subsectio

- . i ) e fve or positive powers o§. We obtain, for exampleuzd)'Zi
For V', the result using the Newtonian equation of motion 'S—>—m1mzv§n'/r3, Ujvkq)lf,k_>_mzvlz(vl.vz)(-vl. n)/r2

, ) " and  vlo*PY*—mymy{n'[8(v,-n)2—3vi]-5v}(vy-n)}/

\'/i:_f f p*  p* (X' =X & d” 4r3—m§{n'[4(vl~n)2—v_§]—3v'1(v1~n)}/4_1r3. N

[x—x'| |x'—=x"| The next 13 terms in Eq2.240, which are explicitly
linear in velocities, are quite similar, except that they involve
either an additional time derivative of potentials, or vector-
like potentials {5, ®,, G}). Triangle potentials appear in
several places@,, PU). As before, expansion about the
The double integral is integrated over body No. 1 similarly tocenters of mass yields the normal point mass terms and terms
the termUU"', and the velocity-dependent term is integratedof only positive and negative powers sf
similarly to the termv?U''. The general result of these con-  Of the remaining 33 terms, many involve several implicit
siderations is that, at 1PN order, only terms are kept irpowers of velocity coupled to potential-type expressions; in-
which, in the quantitik—x’, the two vectors are evaluated at tegration of these terms over body No. 1 is handled as be-

*'Ui'vr. X—X'
+fp ( )

3y
o 9x (3.5
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fore. However, several terms do not involve velocity at all, ~Additional cubically nonlinear terms arejU-J, and the

and thus are cubically non-linear in masses. Examples inycceleration-generated termsGg , Gi andG!,. Since these
clude the termsU°U", % '(‘DZ)_’ and the portions of the inyolve the triangle potentials, they will be discussed in Ap-
termsXU"', Xy, Y990 where time derivatives have gener- pendix C; they generate rs9 terms, again because of sym-
ated accelerations, thence the Newtonian potential. In thes@etry combined with V2(1/)=0. The term H'

cases, the high degree of nonlinearity presents at least thevyip(u'ikpizk) involves a still more complicated “quad-
possibilityof new contributions at ordes®. The termU®U"  rangle” potential, which is a function of four points. In Ap-
illustrates the issue. WritingJ=U;+U,, we have U7 pendix C we show that it likewise generates sfterms,
+2U,U,+U3) (U1 +U3), to be integrated over body No. 1. with the result

Consider the tern U3 . ExpandingU, about the center of

mass of body No. 1 using E¢3.3) and integrating over body i 5

) 4 myn m
No. 1, we obtain (1/m1)j p*H"d3x=L4(2mlm2+Tz _
_ _ 1 r
* ' 4347 *" 431 Q
e *d3;f G RS QV‘(l),
1|x=x'| J1|x=x"| T @

(3.9

mqyJi r

(3.7 Working to 2PN order, we must also include terms gen-
' erated by substituting the 1PN equations of motion into ac-

where the “barred” coordinates are all defined relative to theCelerations generated by time derivatives acting on velocities

center of mass of body No. 1, ane- |x; —X,|. Only the term  in 1PN potentials, specifically the terms/4+X'/2. This

with q=2 can produce a contribution of overall ordet. leads to the integral

Using the spherical symmetry of body No. 1, the result is

A R R A Y b 1 p* A (7 L)
—_“ jkeijk|[ — v | = _ * 43 T sy TRiRI | Al ’

6 m1<f1p reuid“x| o’V : V'V . 0. m P d°x x| 25 +2nn apn(t,x'),
(3.9 (3.10

Note that the integral in Eq3.8) scales as® for a fixedm;, _ .
yet depends on the internal structure of the body. Neverthewhere n'=(x—x")'/|x—x’|, and we substitute Ec(2.243
less, the term vanishes via a combination of the spherigior al(t,x’). Evaluation of these terms follows the same

symmetry of the body, and the fact th&f(1/r)=0. Other method already outlined for normal, non-triangle, 2PN po-
possibles® terms also vanish by symmetry, with the final tentials.

result that U?U-'——m3n'/r*. Similarly, for example The resulting 2PN contributions to the one-body equation
Si(®,y)— —mymani/r4, of motion are
, m, .| m, my (5 5 15 39
Bep= 5 M| (405~ 8V1-v2+ 2(1-N)* = 4(v1-N)(v2-1) = 6(vo )]+ T(Zvé— FV1 2= 7 Uit 5 (01 n)?

17 57m? 69 m;m m3 3
—3%01 M (v M)+ = (v N2 | = — — — ——2 =92 =204+ 402 (v1-v5) = 2(v1-v2) 2+ =02 (vy- )2
2 4,2 2 2 2 2

m; 2m,
27 155(v2- M =63(vy- )] = —=[(vy-n)

9 15
—6(v1-02) (V2 N2+ Sv5(vy )% §(Uz' n)*

LM
2 rz(vl vy)

+(v2-N)]+0v2(v2-N)+4v5(v1-N)—5v3(vp-N)—6(v1-N)(v2-N)2—4(v1-N)(v1-v2) +4(ve-N) (V1 U2)
9
+ 5(02' n)3 '

These agree completely with other resiiBs5—8|.

IV. RADIATION REACTION TO 2.5PN AND 3.5PN ORDER

Since the multipole moments are strictly functions of time, integrating the 2.5 PN and 3.5 PN terms2r2Bcpver body
No.1 is straightforward. The 2.5 PN terms are either trivial, involvihgr v', or are similar to integrating the Newtonian term.
The result is
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5 1 (5

4) 3) 5) 4)
3 2n = 3X1(I”— = SIT*K 71 LM 3% ik 24 2 gaii

+20l 70— —Fnl Ik" —n'ninkzik— —7l +—eq'JJqJ
o3 32 5’[I

4.2
az N =1=2.

Likewise, the 3.5 PN terms are either trivial, or involve integrating Newtonian or 1PN-like potentials. To keep the expression

for the 3.5 PN terms simple, we assume that, to lowest ordgr; + m,x,=0 (see Sec. V A for discussignso that we can

write, in the 3.5 PN term onl)bgl (my/m)x! andx2 —(my/m)x'. Defining a,=m,/m, we obtain

. 1 ; o N LA | e o )

a'l(3_53N)=—210a§r3(13nk6”—4n'5“‘—n'n1nk)17k 30a2r2(100k5”+4rnk6”—v'éJk—4n'nJvk+3n'nkv')11k
! 3r(10rp*8' —n*v281 + 2rv! 8%+ 2niv 25K — 5niyiy K+ 4nly k)z*+ ! TEM2f{ (55— 36 ,)nks'
15a2 [% [% v v'v 2

o I 7 . 1m,
—(19—1oa2)n'5lk+(2+6a2—1oa§)n'n1nk}11k+§a§v'(v251k—v vk)ﬂk+— {42(1 ay)v* s
—6(3+ a)rn*81 +(7— ay)v' 8%+ (1— ay)rn' 85— (19+ 3a,)v'nin®+ 2(15—- 3, — 4a3)v'n'nX

(4)

. Do1lm m . . ) . .
—3(5—9a2+4a§)rn'n'nk}I’k+Er—zz(16(1+az)Tn'ank+(2—a%)n'(4v1vk—602nlnk)

@ 1m,
+(3+ ap)nX(6ro'ni—4v'vi) +3(1— a,)n' nk(5r2ni —4ryl) 11k——— 8(1— az) n'—2(2—a3)v?n

. R I | o N N M1 .
+2(3+a2)l’v'+3(1—a2)2r2n'}zkk+ @)aer(lmlnj5kl_25nan5IJ _95IJ5kI)IjkI+ 4_5a,§r(4n[le]5k|

. . (8 y o 1 y
—2r 88— 10" 8 TH — — a3(v281 8K+ 6viv K+ Bukv 5”)11“ {(435k'+5n hs'l

45

o o 5 2m (4)
+ (74 10a,)n'nt 8= 15(1—2a,)n'inInkn" 7K + — 57 —2{u'n+ 2a/ni— 3(1— ay)rnini} ik

1 . A . . ® 16 . LB 2 o S S
+ — adr?(3e9™*+2n'nl €WK+ 4ninkedl) 79— — o 2rnlpXedk 70T+ — a1 (2r €9 —2niy €9k + 5niyedik
45 45 45
o ® 2 2 m, - @
+12nlvkedl +4nky eq”)qu-F g% S(dvivketi—y eq'k)jqk 57{(14— a,)n'nl €K+ 109K+ 2n) nkeaily 7ak

4 my k(s)k 1 Ullk 1 Ullk 1 [ (‘QIlk 1m (Sllk
—5—2—{1) N+ 2a,0'n'—3(1— ay)rnini} etk 7 ~ 820%2 L,rn'7l +3—5a NOIVALLES 4Oazv'I“ ~5472" n'z)

1 (6)kk 1 k (6)k . [i|k |]k )kk 1 (?()k
- Jqllyq — jeaikyajk_ i qli QI + qij 7akky _ i
3oa2rn € I5a orntet’™J |5a2v (2€ J e 79%% Oa orn /\/l

. rnJMk)k”—Ea v! Mk)"”+ 2a v‘/\/l"kk+ ~ M (M”"k eankak” 2 ('171)kk+ 2 eq”qukk
1572 6 3 6 r2 ~ 200
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V. RELATIVE EQUATIONS OF MOTION B. 3.5PN radiation reaction and energy-angular-momentum

. . balance
A. System center of mass and the transformation to relative

coordinates A useful check of our radiation-reaction terms at 2.5PN
It is useful to note that the 1PN equatiaf@sé), including and 3.5PN order is to verify that the resulting energy and

e angular momentum loss in the orbital motion is identical to
the 2:5 PN te“’T‘S“-l)’ a‘fm't a first mtegEaI that .co.rresponds previously derived energy and angular momentum flux ex-
to uniform motion of a “center of mass” quantity: namely,

pressions, accurate to 1PN order beyond the quadrupole ap-
1 proximation. In fact, lyer and Wil[10,11] approached this
1+ Evg) from the opposite direction, beginning with the 1PN accurate
flux expressiong26-28, and deriving the most general
m;m, _ form of a two-body relative equation of motion at 2.5PN and
—5 (vh+vh) (8T +ninh)—myi=Cl, (6.1)  3.5PN order required by energy and angular momentum bal-
ance. Writing the radiation-reaction terms in the equation of
where motion (1.2) in the general form

1 2 i
1+_U1 +m2U2

2

m]_l)ll

( 5 3 ) A, spn=ay0 2+ a,mit +agr?,

511“ - —eq'kzqk (5.2 _
BZ.5PN: bll)2+ bzm/r + b3r2,

C'is a constant, and where we have assumed that, to New-
tonian order,m;x} +m,x,=0. The 2PN corrections to this
first integral will not be needed here. Equati@nl) can also +cor 4+ cg(mir)2, (5.4)
be obtained by calculating the system dipole mon#nto
the corresponding ordgsee Appendix D 2 Choosing the
coordinates so that'=0, we obtain the transformation from
individual to relative coordinates and velocities, to 1PN and +dsr 4+ dg(mir)2,
2.5PN order,

3.5pN=C10*+ Cou?m/T + v 2r2+ c,r2m/r

BS.SPN: dlU4+ d2U2m/r + d3l)2'r2+ d4i’2m/r

they showed that energy and angular momentum balance
i+ )i, would hold if and only if the coefficients;, b;, ¢; andd;
satisfied the following equations:

i m2i 1 omf , m

a,=3+3B8, a,=23/3+2a—3B, az=-58,

x4+ Vi (5.5
(5 3) b1=2+a, b2=2—a, b3=—3—3a,

Xi +1')i, for the 2.5PN coefficients, and

i
Xp=— —X

m1.15m<2m
U

i -
+277

| I veE— — J——

m2. 1 émi( , mj . m
Y17 m 277_ r

1 3
| 61 55 (117+1329) — 5 B(1-37)+35,~ 35,
vh=— —v'+ 5T

r

m . 1 om m, . m. | ..
v? rxt [+ V!,

Cy= — —(297-3107) — 3a(1— 47;)——3(7+ 137)

wheresSm=m,;—m,. These transformations do not affect the 42(
Newtonian term, of course. However, the 1PN and 2.5PN

corrections in Eqs(5.3) will generate 2PN and 3.5PN terms, —26,—36,+365+30%,
respectively, when we transform the 1PN terms in the equa-
tion of motion to relative coordinates. The multipole mo-
ments that appear in the 2.5PN terms in the equation of mo-
tion (4.1) must also be converted to relative coordinates,
keeping any PN corrections generated by E§s3); this is 1

treated in Appendix D1 . In addition, in the 2.5PN terms, Ca= — 5g(687=368y) —6an+ 5 B(54+177)

multiple time derivatives of the multipole moments will gen-

5 5
Ca= (19~ 729) + 5B(1-37) =55, +55,+ 585,

28

erate accelerations, for which the 1PN relative equations of —26,—56,—665,
motion must be substituted; in the explicitly 3.5PN terms, the
Newtonian equation of motion suffices. Cs=—70,,

Calculating a} —al, using Egs.(3.6), (3.11), (4.1) and

(4.2), substituting Eqs(5.3) and the time derivatives of the 1
multipole momentgD2), we obtain the final relative equa- Co= — 57(1533+ 4987) — a(14+97)+3B(7+47)
tion of motion through 2.5PN order, plus 3.5PN terms as
given in Egs.(1.2 and(1.3. —263— 365,
(5.9
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3(2+ a)(1-37) -6y,

d]_:_z

1 1
dp= — 5 (139+768) ~ 5 a(5+17n) + 81~ &,

1 3
ds;= %(369— 624n) + §(3a+ 2B)(1-37p)

+36,— 35,

1 1
dy= 45(295-335y) + 5 (38~ 117) ~34(1-37)

+28,+ 483+ 35,

5
ds= 55(19-727) ~58(1~37) +55,

1
ds=— 57(634~667) +a(7+37)+ s,
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plicit integrations over them. We then used a technique
whereby we could identify those contributions to the equa-
tion of motion that are independent of the scale size of the
bodies (for given masses This method can be extended
straightforwardly to the complicated 3PN contributions, to
spinning bodies, and to bodies with tidal interactions. We can
also consider the effects at higher PN order of internal self-
gravity (contributions of ordes™"). These are the subjects
of ongoing research.
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APPENDIX A: KEY FORMULAS USED IN THE
EQUATIONS OF MOTION

Here we summarize some of the key formulas from Paper
I [2] that will be needed here. The potentials that appear in

for the 3.5PN coefficients. The two degrees of freedomhe equations of motion are all Poisson-like potentials and

(a,B) at 2.5PN order and the six5() at 3.5PN order corre-

their generalizations, namely a superpotential and a super-

spond to gauge or coordinate freedom, and have no physicgliperpotential:

consequences. For example, at 2.5PN order, the valaes

—1, =0 correspond to the gauge used by Damour and

Deruelle[3], while the valuesx=4, 8=5 correspond to the
so-called Burke-Thorne gaudeee, for example, Sec. 36.11
of [9]), also used by Blanch¢g9].

It is then a non-trivial check of our result to verify that the
18 coefficients in our 2.5PN and 3.5PN terms, E({s30
and (1.30 yield a unique, self-consistent solution for the
eight gauge coefficients. The result is

a=-1, B=0,
s 271 6 s 77 3
1= 5g 767 == =5,
5 79 92
14 77
(5.7)
5.-10 5_5 242
S0 T
5. 439 18
T

VI. CONCLUDING REMARKS

We have successfully used DIRE to derive equations of

1 f(t,x")

= 7 A3y
P(f)_477fM |x—x’|d x5

V2P(f)=—f,

1
S(f)= EJM f(t,x")|x—x"|d3x’,
V2S(f)=2P(f),
1
SD(f)= Efo(t,x’)lx—x’|3d3x’,

V2SD(f)=125(f). (A1)
Note that, in evaluating Poisson potentials and superpoten-
tials of sources that do not have compact support, our rule is
to evaluate them on the finite, constant time hypersurface
M, and to discard all terms that depend on the radius of the
near zoneR. Unlike Paper I, we now define all potentials in
terms of the conserved baryon densify:

X(f)= fMp*(t,x’)f(t,x’)|x—x’|d3 '=S(4mp*f),

p* (EXHE(t,X")

3y — *
X—x] d*x'=P(4mp*f),

motion for compact binary systems through 2.5PN and to
3.5PN order, with results consistent with other methods. In-
stead of using formal delta-function, matching, or regulariza-
tion techniques to treat the bodies, we modeled them as fluid
balls, considered to be suitably spherical and non-rotating,
and small compared to their separation, and carried out ex-

(A2)
Y(f)EJ p* (EX)F(tx)|x—x'[3d®x’
M
=SD(4mp*f).
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The specific potentials used in the 2PN, 2.5PN and 3.5PNrame is a local, freely falling frame in the field of the other
equations of motion are then given by body. In that frame, with coordinates,k'), the conserved
U=S(1), Vi=3(), ®I=3(), baryon density distributipn _of Eo%iis takerj to be spheri—
cally symmetric and static, i.ep;* (t,X')=pg(|X|). We define

d,=3(02), D,=3(U), X=X(1), the baryonic mass, center of mass and velocity of bAdy
according to Eqs(2.13.

V=3 (v/U), (I)iZEE(Vi), Y=Y(1), Our goal is to calculate PN potentials and to integrate
them over one of the bodies using the fact th#t is

Xi=X(v), X=X, X,=X(U), spherical and static in the local “hatted” coordinates. The

(A3) general form of the integrals to be evaluated is
) 1 I p* (6,%)p* (t,x")f(x,x")d3xd®x’. First we note that the
PI=P(U'U), P,=Pi=d,- §U21 quantity p* (t,x)d*x= p(t,x)u* (- g)d®s , is a scalar, i.e.
is the same at a given event in any coordinate system. Thus
we only need a transformation of the integration variables
andx’ in f(x,x") to the hatted coordinates. Notice thxednd
x' are taken at the same global coordinate ttpimut will not

necessarily be at the same local coordinate fime
Gs=—P(VKU'), Gg=P(UT®Y), Consider the evgnP inside the fluid ax’ and the center
of mass event at x,, both at the same timeas the field
point X (see Fig. L The field point could be within bod
itself, in free space, or in the other body. Defixe X' — Xy
Wheree are the basis vectors of our global PN

G,=P(U?, G,=P(UU),

Ga=—P(UMVK),  G,=P(V"iVi),

. 3 o
GY=P(UVK)+ ZP(UU), H=P(U"IPY).

The multipole moments that appear in 2.5PN and 35PN_X eJ’

terms are defined by frame;x is purely spatial in this frame. In the local comoving
frame
P;,L f /.L0d3 , — — ~ s A PPN
M x=xlej=x" e, =tes+xle;j. (B1)
70— 00, Q3 Let the transformation between the two basis vectors take the
Y general form

(A4)
=(AS+B x")é;, (B2)

inEEiabf 7obyaQq3y
M P ~
wherex”=x"—x,, andBy,, is symmetric on the lower indi-
MiR= f AIxQqBx. ces. The coefficientd ; correspond to boosts and coordinate
M

rescalings, while the coefficiens;;, correspond to making

To the order needed for our purposes, the frame freely falling. Substituting E¢B2) into Eq. (B1)

we obtain
- 7
00_ __ i _ 2
T =o0—0"'+40U, 87TVU”’ . AOXJ+B XJX
oi . ) 2 il 3. i '*j_Aj—k Bj_k—l B3
P=¢'+40'U,+—UIVII+ =0 Ul X' = A+ Bl XX (B3)
T 4
(AS) Notice thatP is not simultaneous witl® in hatted coordi-
o o o nates, and that the time differenceepends onJ. However,
m=ol+ | U U =58 VUT . since we assume that* (x/,t) is time independent, this
variation oft “with integration point is irrelevant.
APPENDIX B: TREATMENT OF “SPHERICAL” BODIES Writing A“ Sp+ Ay, itis straightforward to show that,
IN PN EXPANSIONS ina PN expansmn the various coefficients in E8R) have

Ki_X0_ 12 RO i
We define our bodies to be spherical in a suitably chosethe : leading ordersAO 5 A ~e Ay~ Aj~e™ Bo~ Boo
comoving frame. For a given body we choose a frame that ~Bki~ €, Bbc~Bj~Bgg ”63/2- The transformatlon then
momentarily has the same coordinate velogityelative to  takes the fornxi = x1+AJx"+ Bllxkx' where the corrections
the global PN frame as body. Also, in the limitm,— 0, the  are of leading ordet. Invertmg the transformation itera-
frame is locally Lorentzian with its origin at,, i.e. the tively, we obtain
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il L 0if s i Ri ok o
X =XptX{ 6]+ (Aj+Bjx) =3 JAprzp§d3xAd3xBV'AV’Bg(xAB),

+€X(Ci+ D)X+ Ejl x'x) +O(e%)}, (B4 (C1)

where the coefficients are functions of tﬁé andB{l, .Tothe Where
PN order at which we are working, their explicit forms are
not needed. Notice that, in terms of the scale|x|, the G(XAB)=—InA(XAB)+1,
flattening correction terms in E¢B4) have the general form (C2
e(a+Bs+ ... +ys")~€e"(1+s)". _
. . =|X—Xa| +|X—Xg| + |Xpo— Xg|.

In the double integral of(x,x’), where the dependence is A(XAB)=[x=xa| +[x=Xg| + [Xa— gl
generally on the differenc&—x’, there are two cases to _ _ o _
consider, one whene andx’ are in different bodies, and the The triangle functiorG(ABC) satisfies the equations
other where they are in the same body. In the former case, we

substitute Eq(B4) for bothx' andx’, and expand about the V2G(ABC)=—1/(T agf ac),

guantity X, —Xg in powers ofs using Eq.(3.3), convert the (C3)

quantitiesp* d*x to the hatted coordinates, and then integrate

over the spherical density distributions, keeping only terms Vi VLG(ABC) = E - i i)

of O(s?). The first term in the expansion of E¢B4) pro- A'B 2|rag\fac fge

duces the normal multipole expansion of the potential, while

the remaining terms are relativistic flattening corrections. In _ i i

the case where bothandx’ are in the same body, we have 'ac Tsc)’
(X_Xr)iz(;(_;(/)j{5}+ E[A}Jr B}k(;(Jr;(,)k] together with the obvious results obtained by interchange of

indices. Specific gradients ¢f{(xAB) have the form
+ €[ Cj+ Dl (X+X" )+ Ejj (XK + XX

iy . 1 R .
+XX)]+0(€%)}. (BS) VEG(xAB) = W(YB+ Nag)’,
In this case, the corrections come only from relativistic flat- 1
. n . R . _
tening, and also have the general foefi{1+s)". V! VLG(XAB) = W(YA—HAB)'(YBJFMB)J
APPENDIX C: EVALUATION OF NONLINEAR 2PN " 1 Si—ni ni ca
POTENTIALS FOR TWO-BODY SYSTEMS rAxAB) O " MaeMas) (€Y

1. Triangle potentials

The potentialPl=P(U-'U")) represents a new kind of ViVLG(XAB) = 1 - ) (Ve Na)]
potential that first appears at 2PN order. Unlike the Newton- 5VBl(XAB) A(XAB)Z(yB ae) (Yo '+ Nas)
ian potentialu, whose fundamental ingredient+ x’| de-

pends on the field point and the source point, the fundamen- (81 —nlygnhp)

tal ingredient ong depends on the field point and d&wo ragA(XAB)
source points, hence the name “triangle” potential. The po- 1 o
tentialsG;, i=1,...,6 andG; are also triangle potentials. - m(&” —VYeYL),
To see this, we writd} in the form B

§ 1 d3X/ , (X/_Xr/)i h i —(y_ i — d'\i _ i/ With th

pi—=_—_ p*"d3x" wherey,=(X—Xa)', Ya=|yal, andy,=yu/ya. With these
27 A ) pmx—xX'| X" —x"]3 definitions, the other triangle potentials may be written
" (X/ _X///)j
X * dsxm ’ m (R vIR |
f P X —x"]3 Gl=AEB fALp,’;p’éd3XAd3XBv'Av{3V',_\V{3§(XAB),

(C53

*vi 43 *v) A3 1

= PaVad™Xa | pgVgd Cyp
AB JA B m * _*x 43 3 i i IR vIR VA
GZ=AZB X BpAde Xad3xg(a5Vh+v5vLVEVL)

XJ d3x’
MIX=X"|[xa=X[|xg = X'| X G(xAB), (C5b
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Ae;

Field Point

FIG. 1. Transformation to the local comoving frame of one
body Global harmonic coordinates are!; local coordinates are

t,x/. In local coordinates, the density of the body is assumed to be

static and spherically symmetric.

Ga= 2 fA przpad3xAd3vaLv"BVngg<xAB>,
(C50

G4=AZB L prKp§d3xAd3xBuAuBVJAVBg(xAB)
| (c5d)

6s=3, [ | phescxadxe(ahVh+vhohVATH)

X G(xAB), (C5¢

> fA przp§d3xAd3vaL\vLViBViBg<xAB),

(C5h)
i % % 43w 43 J. 3 i
G7:E pAde XAd Xg UpA— 4vB VAV
AB JaJB
X G(XAB). (C59
2. The triangle potential P}
For a two-body system, we may writ@2 Pz(n)

+2P2(12)+ PZ(ZZ), where the subscripts in parentheses de-

PHYSICAL REVIEW D 65 104008

wheren{i’=nii — §1/3 it is easy to show that the trad®
and the traceless paRT, satisfy the equation¥?P, =
—(U"?, andV2PT,—6PT,/r?=—(U")?. Demanding that
the solutions be regular at the origin and vanish at infinity
yields

m(r)?> 8 (r , o
PzZ—T Tfop(r ym(r")r'dr

R
+477f p(r’ym(r")dr’,
(C7)

m(r)?

8
PTo= 7~ WJ p(r)ym(r’)r'dr’

272 (Rp(r'ym(r’

N f p(r'ym(r’) dr’

5 )i (2

where R is the radius of the body. Inside the bodgy
~(m/s)2. Outside the body,Pl=(m/2r)2(n'i— &), ne-

glecting internal-structure terms @i(s™1) andO(s™?).

For the tersz'az), and for a field point between the two
bodies, we combine the definitidi€l) with the appropriate
gradient ofG from Eq. (C4), and show that only point mass
terms contribute. Then, for an interbody field point, we have

m? m3
Pl=—5(yi- + 2
d=gy2 ="

2mym,
A(x12)

a2 VA-o+

<9l—n><‘(92+ﬁ>“ o=
A1) 1 )

(C8)

where ni=xi12/r and A(x12)=y,+y,+r, and where self-
energy terms of0(s™!) and O(s™) have been dropped
from PX.

3. Evaluation of triangle terms for two-body systems

We then take either spatial derivativesg.G;) or time

derivatives(e.g. G'7) of the triangle potentials, and in some
cases multiply them by other factor®.g. viv*PJ* or
U'JPY), and integrate them over the density of body No. 1.
Because we are dealing with a two-body system, then either
two or all three of the pointx, A and B in G(XAB) will
reside in the same body, in other words, in E¢S5) we
encounter the possibilitieg(111), G(112), G(121), and
G(122). The quantityG(111) and its derivatives are purely
internal to one body and can be treated fairly simply. Notice
that a single derivative ofj(111) is of the general form

note the contributions from the bodies. The contributionssi/s2 while a double derivative is of the forsii/s?, and a

Pl 11, andPY 5, from a single body with a spherically sym- general derivative is of the forrs?/s29, wheresR=s i1 ig,
metric mass distributiop™ = p(r) can be derived in a simple  Since we must be left with one spatial indiexsuch purely

manner. For spherical symmetry, the equatlon F?értakes

the form V2Pi=-nli(U")%  where =du/dr
=—m(r)/r?, with dm(r)/dr:47rp(r)r2. Writing
PU=(1/3)81P,+nPT,, (Ce)

internal terms have odd parity, and must integrate to zero.
For the mixed-body cases, we must expand the functibns
about the centers of mass of each body, sort the terms in
powers of the scales for each body, and retain only final
contributions of ordeis®. This will be aided by a general
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expansion of the functiog(ABC) in powers ofr ag/r ac,
where pointsA andB are assumed to lie inside one body, and
point C is inside the other body, so thaiyg~S<rac.
Straightforward methods lead to the expansion

G(ABC)=—Inrpct+1-1In2

1 o (—rap™?t vom| 1

t2 2 mror | eVl

+ rAC( M1y i (C9)
m+1" AB A \rac)

Note that each term in the expansion is of ordgk*
~s™1 and depends on gradients of J¢. SinceA andC
are in different bodiesy r ,£=0; this fact will be important

PHYSICAL REVIEW D 65 104008

we expand the external potential about the center of mass of
body No. 1, and where=r 5. Only theq=2 term contrib-
utes at overall orders’, leading to an integral of the
schematic  form [,(x¥s'sl/s*)VKlir =1 (56 + oK1 61l

+ 88" VKir 1 v2yly ~1=0. Similarly, combiningU{
~sl/s? with the expansion oV, V5G(112) produces a po-
tentially s° term only from an ordes? term from the deriva-
tives of G; but such terms are necessarily accompanied by
several (three or morg gradients ofr ~1; because only a
single indexi remains at the end, two of the gradients are
always contracted int&?2, which vanishes when acting on

r 1. All the possible combinations @& andB in Eq. (C10)
yield equivalent results. The final answer contains only
“point” mass terms, and is equivalent to combining the com-
pletely sindependent terms from the derivatives @fwith
only the “external” potential terms arising from any accel-

in the considerations to follow. The first term in the braceseration. The same approach holds for the te@’és G!, and

produces a contribution of ordef"** but of parity (number
of nlyg vectors (—1)™; no matter how many gradients are

uipy.
The vanishing of many potential contributions at org®r

taken with respect to any of the variables, this relationshiglepends critically on the fact that the terms ultimately de-

will be unchanged. Hence a term of ord@rwill have odd
parity, a term of ordes ! or s™* will have even parity, and
so on.(Because of the additional scalar factgf, enough
gradients with respect t& or B will generate terms of nega-
tive powers ins.) The second term in the braces has parity
(—1)™"1 and ordess™*?, a relationship again preserved un-

pend on the factoF 'r 71, and that two of the indices are
contracted, since only one index is allowed to be free. How-
ever, at 3PN order, this is no longer the case. A simple ex-
ample is provided by a 3PN term proportional to
sz_)kU"PJZ" . Integrating over body No. 1, the combination of
Uy, with szk(ll) gives a contribution to the equation of mo-

der any gradients. Furthermore, gradients of this term wil{ON

yield terms either completely independentsadr of positive
powers ins; no negative powers a or terms proportional
only to the unit vecton,g can be produced by this term.

Armed with these characteristics ¢f, consider as an
example, the ternG; in the equation of motion. Taking
the gradient of Eq(C53 with respect tox, pulling out the
velocities, integrating over body No. 1, and considering all
the possible cases féx and B, we first find no contribution
from V!V, VEG(111)~s's's¥/s®, by symmetry. Considering
the other caseg7(112), G(121), andG(122), we find that
the onlys® contributions from the gradients of the expansion
(C9) are either odd parityfrom the first term, and thus
vanish on integrating over body No. 1 or No. 2, or are
independent ofs (from the second terim and yield the
desired “point mass” result: Gy —m;m,[n'(4v,-nNv,-n
—V1°Vp) — 20l v,-n — vhv-n]/2r8 — m2[2n'(v,- n)?
—n'v5—vhv,- n]/2r3. Consider as a less straightforward ex-
ample, the term irG; that depends on the acceleration. In-
serting the Newtonian equation of motiag=Uj, we must
evaluate the term

1

m P*d3xz fJPzp’édsXAd:aXB(Ug,int_"Ug,ext)
1J1 AB JAJB

X V! VLG(XAB), (C10
where we have split) into a contribution from within body
B itself (“int” ) and from the other body‘ext” ). The case
A=B=1 has a purely internal term frot{;, V,V£G(111),
which  vanishes by symmetry, and a term
oViVEG(111)~m, = (xRVRVIr ~1/q!)s'si/s*,  where

lexty x

xQ

kfp*d?’szE —VOVi(r=1)
1 a

1

i
— U710
m; !

X

1 — —
§P2(r)51k+PT2(r)n<Jk>)

1 R _ o
_ * 2 3 3
= 15[ fo p*r<PT,(r)d x/ml]

xm2myu o kvilk(r =, (C1D
where the quantity in braces is dimensionless, scales’ as
for fixed my, but depends on the internal structure of body
No. 1. Contributions like this appear everywhere at 3PN or-
der; whether they survive in the final equation of motion, or
what their ultimate interpretation is, will be the subject of
future work.

4. The quadrangle potentialH

The potentialH=P(U1PY) is an example of a more
complicated “quadrangle” potential whose fundamental in-
gredient depends on the field point and three source points.
To see this, we write

1 d3x’
A7 | x—X]

1f d3x’ Ul
T Am ) plx—X| x)

3

fdx
M

Ul(x")PJ(x')

"

1

N A d ("
><47_r U''(x")U(x")
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=3 [ pavivia | pivha
ABC JA B

X f pEVLA®xe H(XA;BC), (C12)
C

where the functiori{ of four field points is defined by
H(AB;CD)= ! f f
' (4m* ) mlm
d3xrd3xu

X
[Xa=X"|[xg=X"[|X" =X"[[Xc=X"|[xp—X"|"
(C13

with the properties
V2H(AB;CD)=—(1/r 55) G(ACD),
VZH(AB;CD)=—(1/rcp)G(ABC),

VAVEH(AB;CD)I(1/Z’AB)[Q(ACD)+Q(BCD)]

PHYSICAL REVIEW D 65 104008

The termPY(,) must be expanded about No. 1 using Eq.
(C9); the expansion begins @(s’) with a constant term and
an odd parity term proportional /s; then atO(s) with a
term proportional tcs (even parity and one proportional to
s' (odd parity; then atO(s?) with terms proportional tes
ands's’, and so on. All even parity terms integrate to zero
when multiplied bys'sis¥/s®. The odd parityO(s®) and
O(s) terms lead to non-zero integrals of OI’dPIIz andsl’l,
which we discard. The odd parity contribution of or@@ris
accompanied by a coefficient proportionaM&!(1/r). Inte-
grating over the sphere then results in a term of osddyut
proportional toV2(1/r), which vanishes. Finally expanding
the termPYJ,) about the location of body No. 1 gives only
terms of ordels and parity <1)™, hence only a contribu-
tion of ordersfl survives in the integral. Applying similar
considerations to the produUtl'U"k, and then repeating the
considerations for the integral over the neighborhood of
body No. 2 leads to the conclusion that the contributions are
of orders, 2 ors, ', or of positive powers, but that there are
no structure-dependent contributions of org@r
Consequently, we can carry out the integral in Egl6)
over M up to spheres surrounding each body, and then let

- J(ABCD)/2, (C19 the spheres shrink to zero, discarding terms that blow up as
s;z ors;l, and keeping only finite terms. We are guaranteed
where that no structure-dependent terms@(s®) will appear. The
1 RN final result is given in Eq(3.9).
TABCOI= 1| e e T T
(C15 APPENDIX D: EVALUATION OF MULTIPOLE MOMENTS

Unfortunately, we have been unable to find a closed-form FOR TWO-BODY SYSTEMS

solution forH similar to that for G), nor a useful expansion
in the case where some of the distances between points are
small compared to the others.

Instead, we make ‘use of the first form ldfgiven in Eq.
(C12. We integrateH over the density of body No. 1 and
substituteU = U+ Uy and PY= P4, )+ 2P0, + PL,).
The result can be put into the form

1. Quadrupole and higher moments

Substituting expressions far*” from Egs.(A5) into the
definitions of the multipole moments, Eq#4), converting
from densitiesr, o' ando" to the conserved baryon density
p* to the needed PN order using E¢®.21), and integrating,
discarding any terms that depend explicitly on the radius
of the boundary ofM, we obtain

Al =; maxj| 1

. 1 . . _
fp*H"ch:—f d3x U (xH[UF(x") +UZ (x")]
1 4m)m

) MaMg
AB

l'aAB

X (P yq)+ 2PYi0+ PLio). (C16 7, 5”)
We wish to verify that no contributions of ordef (other 4'ae |
than normal point mass terpnarise in this integral. To see
this, we split the integral oveM into an integral over body
No. 1 out to a radius-s,, a similar integral over body No. 2

to a radius~s,, and an integral over the rest @f(. In the
latter integral, we may use solutions external to each spheri-
cal body:U=m;,/y,+m,/y, andP} from Eq.(C8). If car-

ried out over all of M using these functions, the integral
would diverge at the locations of the two bod[&€].

Consider now the integral over a region of volursg
surrounding body No. 1. In the neighborhood of No. 1, the (D1)
productU; U{* behaves as's's/s?; multiplying by the vol-
ume we have a term of odd parity amisl_z) The term ik
P 2(11) Is even parity, so the combination integrates to zero.

ik :S rnAx”k ’
ij — _iab b, aj
J=¢€2 ; MAU AXA

=20 muulxdike-
A
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- | MAMg . 2.5PN terms from Eq(5.9) of Paper I, and converting from
MY :% MAVAXA ~ 5 % —— MieXa o to p* to the corresponding order from E.21), we ob-
AB tain, to zeroth, PN and 2.5PN order,
1 N N N
1 %:3 MaAMgT ap(NAS — NAgd' —Nipd 7= muxy| 1+ Evi_ 1 > Me

+ i+ nik ST — 251 ki 42,51 541y ) 3 @

) ) _z i ( 57k 7]
Note that, althougtf'* and. 7" appear in 2.5PN terms, they 5 ZA Maxa( 8174+ 21%). ©3

are purely functions of time, and thus cancel out of the rela- '
tive equation of motion, so they are only needed to lowesChoosing the center of mass so tHdt=0 to at least PN

order for use in 3.5PN terms. order, we see that the final 2.5PN term is in fact at least
Converting to relative coordinates, using the 1PN correcB.5PN order. However, we must also check the time depen-
transformation in the leading term @f!, we obtain dence ofZ', to see if it remains zero to the order needed.

1 1 From the definition ofZ' [Paper |, Eq(4.6)], we have
- - m
Ih=myx| 1+ = (1-3p)v?—=(1-29)—
2 2 r - . Oii a2

I'=P'— 7IX'd?S; . (D4)
7 . oM

+ Emznr 8, -

Using the definition ofr% [Paper I, Eqs(4.4)] and the far-

zone forms of the gravitational potential®aper |, Egs.
(5.12, with Z7'=0 to 1PN orde}; it can be shown that the

surface integral is of 2.5PN order relative . However,
taking an additional time derivative and using in the far

Tlk= — smyxiik,

TiK = map(1— 39K,

Ji=—smyLixi, (D2) zone gives
Jk=may(1-37)L'xk, j—i:pi:_ag Ad?s,
oM
MK =my(1-37) v”—lmn” xK!
3r 206B) 2 (&
=— 1_52111_§6qlquk’ (D5)

_ %mznr(nij Skl 5T — itk ghi
where, to the order needetljs simply the total baryon mass
—nitkghif 2 5ikghi_ 2 sii 51y m of the system. Hence integrating with respect time and
setting the initial condition€,=0 andPy=0, we have

where L=xXv is the orbital angular momentum per unit

mass. Note that the momer&k'™, 71K and M K™ gre 2 (3 2

not needed explicitly for the 3.5PN equations of motion, Ii:—m(—szﬂj ——eq“‘jqk). (D6)

since they are purely functions of time, and cancel out of the 1 3

relative equation.

Time derivatives of the moments may be calculated usin
the relative equations of motion in plac_:eiéf 1PN equations
must be used in the leading term i, while Newtonian
equations are sufficient for the remaining terms.

ote that, while this may seem like an anomalous 2.5PN
ffect on the system center of mass, it is really a gauge
effect. Because the right-hand side of EQ6) is a total time
derivative, it can be absorbed into a redefinition of spatial
coordinates. Combining Eq$D3) and (D6), and defining
X;=(my/m)X'+ ¢, xy=—(m;/m)x'+ ', we can then show
that the transformation fronx), to relative coordinates is
For a two-body system, the dipole moment is given bygiven by Eqgs.(5.3), which were derived directly from the

T'=[ ™% d®x. Substituting for 7% including 1PN and 1PN and 2.5PN equations of motion.

2. Dipole moment and the system center of mass
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