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Black holes and asymptotics of 21 gravity coupled to a scalar field
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We consider 2-1 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off
of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the
asymptotic symmetry group remains the same as in pure graxatythe conformal group The generators of
the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the
canonical generators possesses the standard central extension. In this context, new massive black hole solutions

with a regular scalar field are found for a one-parameter family of potentials. These black holes are continu-
ously connected to the standard zero mass black hole.
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Three-dimensional Einstein theory with a negative cos- r
mological constant has been the source of a number of in- 1
sights in gravitation physics, including the existence of black o (E T E [ Gee—T2]+ 2897 . ()
holes[1,2], their thermodynamicE3,4], and the AdS confor- Ir ESee ¢
mal field theory(CFT) correspondenckb].
For matter-free gravity, the behavior of the three-

The Poisson brackets algebra of the charges yields two
dimensional metric at spatial infinity is given p§]

copies of the Virasoro algebra with a central chdige
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s ) This fact provides a possible explanation for the micro-
9 =0(r°) Jpe=r"+0(1) (1) scopic origin of entropy of a spinning black hole in+a

dimensiond4].
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IIl. MATTER, ASYMPTOTICS AND GLOBAL CHARGES
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where thfe coimlologlcal fO.nSt?].nt[LS 1= ;I'hese condi sq_There are instances in which the matter fields modify the
tions, in fact, hold not only in the absence of matter but alsq, gy htotic behavior of the metric, as it occurs for the elec-

_for_ Ipcallzed matt_er fields Whlch_fall off sufficiently _fast at trically charged black hole, in which case the metric has a
infinity, so as to give no contributions to the surface integral

defining th fth ; . Sogarithmic divergencél,7]. This brings about the potential
efining the generators of the asymptotic symmetries. danger of having divergent contributions coming both from
The symmetry group which leaves invariant conditions

i 4 by the followi i Kill “the gravitational and matter actions. In that case, the
(1) is generated by the following asymptotic Killing vectors: 5y mniotic conditions must be such that the sum of both

contributions converges. Here we analyze this possibility in a
simplified setting, where matter is given by a single self-

interacting scalar field minimally coupled to three dimen-

sional gravity, with the action

2
=TT +T + ;(aiTWaZ_T*) +0(r %,
r
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|2
=T "-T— —2(1*72+T+ —(92,T‘)+O(r_4), The standard three-dimensional black hole is a solution of
2r this action with a constant vanishing fietd)=0 andV(0)
= A/8. With the asymptotic conditionél), the scalar field
whereT*(x*) andT ™~ (x~) generate two independent copies would not contribute to the charges if for largét decays at
of the Virasoro algebra and™=t/l = ¢. The charges that least asp~r (172, There exist, however, black hole solu-
generate the asymptotic symmetries involve only the metri¢cions with a scalar field which is regular everywhere and

and its derivatives, and are given by behaves like¢p~r 2 for r— (see below, and therefore
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the charges must be computed from scratch. The asymptotighere the background configuratidiQ(¢)=0] has been

behavior of these solutions belongs to the following class
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where y= x(t,¢), and we have seG=1. The asymptotic
behavior ofg, , has a slower falloff than in Eq1). Remark-
ably, this set of conditions is also left invariant under the

Virasoro algebra generated by the asymptotic Killing vectors

2.

The contributions of gravity and the scalar field to the
conserved charge€g(§) and Q(¢), can be found using
the Regge-Teitelboim approadf8]. Making use of the

asymptotic conditions, their variations can be shown to be of

the form[9]
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Asymptotically, &-~ £'r/l grows linearly withr and hence
the first term inéQ,, in Eq. (9) is linearly divergent. This
term cancels a divergent pieced®g coming froms(g~*?)
because, to leading ordedg, =—41%r 35y In other
words, if g,, had been assumed independenjyothis can-
cellation would not have occurred.

Hence, the total charg®=Qg+Q,, can be integrated to
obtain

chosen to be the standard massless12black hole with
vanishing scalar field. For the class of potentials which are
consistent with the modified asymptotic behavia@y, this
configuration corresponds to the ground state. A similar ex-
pression forQ(£) could also be found using covariant meth-
ods as, for instance, i0].

It should be emphasized that the algebra of the charges
(10) is identical to the one found if6], namely, two copies
of the Virasoro algebra with a central extension. Indeed, it
follows from the work in Ref[11] that the bracket of two
charges provides a realization of the asymptotic symmetry
algebra with a possible central extension. Thus, one only
needs to determine the central charge, which is done by com-
puting the variation of the charges on the vacuum. Here the
vacuum is the same as in pure gravity, and therefore the
computation is identical,

- 1 1. ~
6,Q[7] :QJ' d‘P{ |_277t57/g¢40+ 796,90t
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which shows that the value of the central charge remains
unchanged.

IIl. EXACT BLACK HOLE SOLUTIONS

An exact solution for which the metric and the scalar field

satisfy asymptotic condition&) is obtained for a particular
one-parameter family of potentials of the form

VV(¢)=—$(COSW¢+vsinhG¢). (11

This expression foV,(¢) is obtained through the scale
transformatiorf;wzﬂfzgw in the action

. ~[R+2172
I[g,d)]:—f d3><\/—9< 6
1 . 1.. Vo~
—§(V¢)2— ER¢2+ @456), (12

forQ=(1- fﬁz), where the scalar field has been redefined as
d=tanhe. In this frame, the matter piece of the action is
conformally invariant—i.e., it is unchanged undétw
—\2(x)g,, and p—\"Y2p—, for any value ofv.

For v=—1, there is a solution that describes a static and

circularly symmetric black hole, dressed with a scalar field

which is regular everywhere, given by

1 L
Q(§)=Ef de f—r((gw—rz)—Zrz(lg‘l’z— 1)

+4r2 (10

1
o1+ 3" +2§‘Pw;j,

(13

/| B
¢=arctan m,

whereB is a non-negative integration constant and
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FIG. 1. Plot of ®, as a function ofv. The intercepts are at
©_,=0 and®,=13.

H(r)= %(r+ Jr°+4Br).

The line element reads

H \2 H+B |2 dr?
= —| —— 2 _ 2 2
ds? H+B) F(r)dt®+ TS F(r)+r de?,
(14)
with
F_H2 (147) 382 2B°
12 12 12H)

PHYSICAL REVIEW D 65 104007

Note that the specific heat is equal to the entrapy
=JdM/dT=(m/2)r ., exactly as for the standard three di-
mensional black hole. The positivity @@ implies that the
black hole can always reach the thermal equilibrium with a
heat bath at some fixed temperature.

The one parameter family of potentidlsl) behaves as

(1+v)
VVH—WEXD@@,

as ¢>1 for v>—1. However, wherw=—1 the potential
behaves as

13
V_o1—— 2 ﬁexp(%),

and the metrid14) reads

r2 2
dr?+r2de?.

+ (18)
12 r2+4Br

This line element shares the same causal structure with the
standard massless three dimensional black hole. In fact, it is
also left invariant under boosts in the ¢ plane. However,
for the metric(18) the integration constar is not related to
the mass. In fact, by virtue of Eqél6), (15), (17) the mass
and the temperature, as well as the entropy, vanish fer

The causal structure of this geometry is the same as for the 1- SinceQ(¢) in Eq. (10) vanishes, this configuration can
standard, nonrotating-21 black hole. The event horizon is P& regarded as a degenerate ground state.

located at

r.,=BO,,

where the constar® ,, is the first zero of the Schuster func-

tion of orderv, given by[12]

2B

0,=2(z9*P—=-—,
z-z

and z=1+i/v. As a function ofv, ®, is monotonically
increasing, and asymptotically grows @s (see Fig. 1 The
Hawking temperature for this black hole is

u 3B (1+7v) .
277'2 G)V ,

and the mass can be obtained from EXf) for £é=4;,

BZ

M=Q(&)=W(1+V)- (16)

In the conformal frame and far> — 1, the scalar field is

- B
=\

and the metric is given bys?= —Fdt?+F ~1dp?+ p2de?,
with

(19

where the radial coordinate has been changed=as?(p
+B) L. This metric describes a black hole whose horizon
radius is

B
p+:§(®v+ \/®V+4®V)-

In this frame, the entropyl7) reads

(20

2

1+1+4/0,

B>

A
=-—.
4

The entropy is obtained evaluating the Euclidean action at

the saddle point or, equivalently, from the first law of ther-

modynamics,

S=—5-=

17

NP

For v=—1 the metric is the standard zero-mass P
black hole, and the scalar field does not contribute to the
stress-energy tensof [,,=0). Forv=0 the solution reduces

to the one found13] in the conformal framed, ¢#) and the
central charge in this case was computed in Ref].
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IV. DISCUSSION Changing the asymptotic conditions according to €4)

(1) It should be noted that the scalar field cannot bemOdiﬁeS the expression for the terf in the charge as

switched off keeping the mass fixed. In fact there is only one 1
integration constantR), and for ¢—0 , the geometry ap- Q&) =15, | do
proaches the massless black hole. On the other hand, for a
given mass there are two widely different black hole solu- o o . i
tions, one with¢»=0 (the standard 2 1 black holé and one TAr ¢+ (1+a)p ) +28%m, ¢, (22)
with a nontrivial scalar field given by E@13) in the Einstein
frag;elrﬁ; IlE)(Iqa(cllf qu;r;ilz(t)ig;o;?;ihgsg&eﬁere is similar to thewhich is finite and leads to the same central charge indepen-
black hole solution coupled to a conformal scalar field indently Ofa'. . .
asymptotically flat 3-1 spacetimg15]. In both cases there . (5 ConS|stency of th? asymptqtlc poundgr_y cond!t|ons
is only one integration constant which simultaneously ﬁxeslntrodu_ced here with the field equations is sufficient to fix the
the mass and the value of the scalar field. However the geP—Otent'aIV(‘ﬁ) to be of the form
ometry in[15] is that of an extremal black hole, and the 1 3 1
scalar field is softly divergent at the horizon. V(g)=——— —p>—
(3) The fact that the algebra of the charges has the same 817 8I?
central extension as in the standard case would suggest that

the number of degenerate microstatéd_,,L,,c) could be  whereU(¢?) could be any smooth function arougd=0. In
given by Cardy's formuld4]. However, if one naively fol- spite of the fact thav/(¢) could even be unbounded from

an
F((gw—rz)—ZrZ(lg*l’z— 1)

Edﬂ #%U(g), (23

lows this approach, one finds below, this potential satisfies the stability bound that guaran-
tees the perturbative stability of AdS spdd®,17]. The po-
M V3(1+v) A
S=logN=2l \/:z(—y)—_ tential V,(¢) in Eqg. (11) belongs to this family, and for
2 9, 4 different values of the dimensionless parametedifferent

forms of U(¢?) are obtained. The exact connection between

incey3(1+ > >— i - : .
However, sincey3(1+v)/0 ,>1 for v 1 this computa V(¢) anda is an open question.

tion would imply S>A/4, in contradiction with Hawking’s
result (the casev=—1 is empty since fov=—1 the area
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