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Black holes and asymptotics of 2¿1 gravity coupled to a scalar field
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We consider 211 gravity minimally coupled to a self-interacting scalar field. The case in which the fall-off
of the fields at infinity is slower than that of a localized distribution of matter is analyzed. It is found that the
asymptotic symmetry group remains the same as in pure gravity~i.e., the conformal group!. The generators of
the asymptotic symmetries, however, acquire a contribution from the scalar field, but the algebra of the
canonical generators possesses the standard central extension. In this context, new massive black hole solutions
with a regular scalar field are found for a one-parameter family of potentials. These black holes are continu-
ously connected to the standard zero mass black hole.
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I. INTRODUCTION

Three-dimensional Einstein theory with a negative c
mological constant has been the source of a number o
sights in gravitation physics, including the existence of bla
holes@1,2#, their thermodynamics@3,4#, and the AdS confor-
mal field theory~CFT! correspondence@5#.

For matter-free gravity, the behavior of the thre
dimensional metric at spatial infinity is given by@6#

grr 5
l 2

r 2
1O~r 24! gtt52

r 2

l 2
1O~1!

gtr5O~r 23! gww5r 21O~1! ~1!

gwr5O~r 23! gtw5O~1!

where the cosmological constant isL52 l 22. These condi-
tions, in fact, hold not only in the absence of matter but a
for localized matter fields which fall off sufficiently fast a
infinity, so as to give no contributions to the surface integr
defining the generators of the asymptotic symmetries.

The symmetry group which leaves invariant conditio
~1! is generated by the following asymptotic Killing vector

h t5 l FT11T21
l 2

2r 2
~]1

2 T11]2
2 T2!G1O~r 24!,

h r52r ~]1T11]2T2!1O~r 21!, ~2!

hw5T12T22
l 2

2r 2
~]1

2 T12]2
2 T2!1O~r 24!,

whereT1(x1) andT2(x2) generate two independent copi
of the Virasoro algebra andx65t/ l 6w. The charges tha
generate the asymptotic symmetries involve only the me
and its derivatives, and are given by
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Q~j!5
1

16pGE dwH j'F l

r
1

r 3

l 3 S grr 2
l 2

r 2D G
1

1

lr
~j'1r j',r !@gww2r 2#12jwpw

r J . ~3!

The Poisson brackets algebra of the charges yields
copies of the Virasoro algebra with a central charge@6#

c5
3l

2G
. ~4!

This fact provides a possible explanation for the mic
scopic origin of entropy of a spinning black hole in 211
dimensions@4#.

II. MATTER, ASYMPTOTICS AND GLOBAL CHARGES

There are instances in which the matter fields modify
asymptotic behavior of the metric, as it occurs for the el
trically charged black hole, in which case the metric ha
logarithmic divergence@1,7#. This brings about the potentia
danger of having divergent contributions coming both fro
the gravitational and matter actions. In that case,
asymptotic conditions must be such that the sum of b
contributions converges. Here we analyze this possibility i
simplified setting, where matter is given by a single se
interacting scalar field minimally coupled to three dime
sional gravity, with the action

I @g,f#5
1

pGE d3xA2gF R

16
2

1

2
~¹f!22V~f!G . ~5!

The standard three-dimensional black hole is a solution
this action with a constant vanishing fieldf50 andV(0)
5L/8. With the asymptotic conditions~1!, the scalar field
would not contribute to the charges if for larger it decays at
least asf;r 2(11«). There exist, however, black hole solu
tions with a scalar field which is regular everywhere a
behaves likef;r 21/2 for r→` ~see below!, and therefore
©2002 The American Physical Society07-1



to
s

he
or

he

o

are

ex-
h-

ges

, it

try
nly
om-
the
the

ins

ld

e

as
is

nd
ld
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the charges must be computed from scratch. The asymp
behavior of these solutions belongs to the following clas

f5
x

r 1/2
2

2

3

x3

r 3/2
1O~r 25/2! ~6!

grr 5
l 2

r 2
2

4l 2x2

r 3
1O~r 24! gtt52

r 2

l 2
1O~1!

gtr5O~r 22! gww5r 21O~1! ~7!

gwr5O~r 22! gtw5O~1!

where x5x(t,w), and we have setG51. The asymptotic
behavior ofgrm has a slower falloff than in Eq.~1!. Remark-
ably, this set of conditions is also left invariant under t
Virasoro algebra generated by the asymptotic Killing vect
~2!.

The contributions of gravity and the scalar field to t
conserved charges,QG(j) and Qf(j), can be found using
the Regge-Teitelboim approach@8#. Making use of the
asymptotic conditions, their variations can be shown to be
the form @9#

dQG~j!5
1

16pE dwH j'F 2

lr
dgww1rg21/2grr dgrr G

12jwdgwtJ ,

5
1

16pE dwH 1

lr
j'dgww22r j'd~g21/2!

12jwdgwtJ . ~8!

dQf~j!52
1

pE dw@j'g1/2grr ] rfdf#

5
1

4p l E dwj'Fdx22
1

r
dx4G . ~9!

Asymptotically, j';j tr / l grows linearly withr and hence
the first term indQf in Eq. ~9! is linearly divergent. This
term cancels a divergent piece indQG coming fromd(g21/2)
because, to leading order,dgrr 524l 2r 23dx2. In other
words, if grr had been assumed independent ofx, this can-
cellation would not have occurred.

Hence, the total chargeQ5QG1Qf can be integrated to
obtain

Q~j!5
1

16pE dwH j'

lr S ~gww2r 2!22r 2~ lg21/221!

14r 2Ff21
1

3
f4G D12jwpw

r J , ~10!
10400
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s
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where the background configuration@Q(j)50# has been
chosen to be the standard massless 211 black hole with
vanishing scalar field. For the class of potentials which
consistent with the modified asymptotic behavior~7!, this
configuration corresponds to the ground state. A similar
pression forQ(j) could also be found using covariant met
ods as, for instance, in@10#.

It should be emphasized that the algebra of the char
~10! is identical to the one found in@6#, namely, two copies
of the Virasoro algebra with a central extension. Indeed
follows from the work in Ref.@11# that the bracket of two
charges provides a realization of the asymptotic symme
algebra with a possible central extension. Thus, one o
needs to determine the central charge, which is done by c
puting the variation of the charges on the vacuum. Here
vacuum is the same as in pure gravity, and therefore
computation is identical,

dhQ@h̃#5
1

8pE dwH 1

l 2
h̃ tdhgww1h̃wdhgwtJ

5
2 l

8pE dw@ T̃1]1
3 T11T̃2]2

3 T2#,

which shows that the value of the central charge rema
unchanged.

III. EXACT BLACK HOLE SOLUTIONS

An exact solution for which the metric and the scalar fie
satisfy asymptotic conditions~7! is obtained for a particular
one-parameter family of potentials of the form

Vn~f!52
1

8l 2
~cosh6f1n sinh6f!. ~11!

This expression forVn(f) is obtained through the scal
transformationĝmn5V22gmn in the action

I @ ĝ,f̂#5
1

pE d3xA2ĝS R̂12l 22

16

2
1

2
~¹f̂!22

1

16
R̂f̂21

n

8l 2
f̂6D , ~12!

for V5(12f̂2), where the scalar field has been redefined
f̂5tanhf. In this frame, the matter piece of the action
conformally invariant—i.e., it is unchanged underĝmn

→l2(x)ĝmn and f̂→l21/2f̂ –, for any value ofn.
For n>21, there is a solution that describes a static a

circularly symmetric black hole, dressed with a scalar fie
which is regular everywhere, given by

f5arctanhA B

H~r !1B
, ~13!

whereB is a non-negative integration constant and
7-2
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H~r !5
1

2
~r 1Ar 214Br !.

The line element reads

ds252S H

H1BD 2

F~r !dt21S H1B

H12BD 2 dr2

F~r !
1r 2dw2,

~14!

with

F5
H2

l 2
2~11n!S 3B2

l 2
1

2B3

l 2H
D .

The causal structure of this geometry is the same as for
standard, nonrotating 211 black hole. The event horizon i
located at

r 15BQn ,

where the constantQn is the first zero of the Schuster func
tion of ordern, given by@12#

Qn52~zz̄!2/3
z2/32 z̄2/3

z2 z̄
,

and z511 iAn. As a function ofn, Qn is monotonically
increasing, and asymptotically grows asAn ~see Fig. 1!. The
Hawking temperature for this black hole is

T5
3B

2p l 2

~11n!

Qn
, ~15!

and the mass can be obtained from Eq.~10! for j5] t ,

M5Q~] t!5
3B2

8l 2
~11n!. ~16!

The entropy is obtained evaluating the Euclidean action
the saddle point or, equivalently, from the first law of the
modynamics,

S5
pr 1

2
5

A

4
. ~17!

FIG. 1. Plot of Qn as a function ofn. The intercepts are a
Q2150 andQ05

4
3 .
10400
he

at

Note that the specific heat is equal to the entropyC
5]M /]T5(p/2)r 1 , exactly as for the standard three d
mensional black hole. The positivity ofC implies that the
black hole can always reach the thermal equilibrium with
heat bath at some fixed temperature.

The one parameter family of potentials~11! behaves as

Vn→2
~11n!

29l 2
exp~6f!,

as f@1 for n.21. However, whenn521 the potential
behaves as

V21→2
1

l 2

3

27
exp~4f!,

and the metric~14! reads

ds252
r 2

l 2
dt21

l 2

r 214Br
dr21r 2dw2. ~18!

This line element shares the same causal structure with
standard massless three dimensional black hole. In fact,
also left invariant under boosts in thet2w plane. However,
for the metric~18! the integration constantB is not related to
the mass. In fact, by virtue of Eqs.~16!, ~15!, ~17! the mass
and the temperature, as well as the entropy, vanish forn5
21. SinceQ(j) in Eq. ~10! vanishes, this configuration ca
be regarded as a degenerate ground state.

In the conformal frame and forn.21, the scalar field is

f̂5A B

r1B
, ~19!

and the metric is given bydŝ252Fdt21F21dr21r2dw2,
with

F5
r2

l 2
2~11n!S 3B2

l 2
1

2B3

l 2r
D ,

where the radial coordinate has been changed asr 5r2(r
1B)21. This metric describes a black hole whose horiz
radius is

r15
B

2
~Qn1AQn

214Qn!. ~20!

In this frame, the entropy~17! reads

Ŝ5
Â

4

2

11A114/Qn

<
Â

4
.

For n521 the metric is the standard zero-mass 211
black hole, and the scalar field does not contribute to
stress-energy tensor (Tmn50). Forn50 the solution reduces
to the one found@13# in the conformal frame (ĝ,f̂) and the
central charge in this case was computed in Ref.@14#.
7-3



b
n

fo
lu

th
in

e
g
e

am
t t

q

th

e

en-

ns
he

an-

en

s-
ally
49,
ous
he
-
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IV. DISCUSSION

~1! It should be noted that the scalar field cannot
switched off keeping the mass fixed. In fact there is only o
integration constant (B), and for f→0 , the geometry ap-
proaches the massless black hole. On the other hand,
given mass there are two widely different black hole so
tions, one withf50 ~the standard 211 black hole! and one
with a nontrivial scalar field given by Eq.~13! in the Einstein
frame, or Eq.~19! in the conformal frame.

~2! The black hole solution discussed here is similar to
black hole solution coupled to a conformal scalar field
asymptotically flat 311 spacetime@15#. In both cases there
is only one integration constant which simultaneously fix
the mass and the value of the scalar field. However the
ometry in @15# is that of an extremal black hole, and th
scalar field is softly divergent at the horizon.

~3! The fact that the algebra of the charges has the s
central extension as in the standard case would sugges
the number of degenerate microstatesN(L0 ,L̄0 ,c) could be
given by Cardy’s formula@4#. However, if one naively fol-
lows this approach, one finds

S5 logN52p lAM

2
5

A3~11n!

Qn

A

4
.

However, sinceA3(11n)/Qn.1 for n.21 this computa-
tion would imply S.A/4, in contradiction with Hawking’s
result ~the casen521 is empty since forn521 the area
vanishes!.

~4! The asymptotic expansion for the scalar field in E
~6! can be relaxed as

f5
x

r 1/2
1

b~x!

r 3/2
1O~r 25/2!, ~21!

however, invariance of the asymptotic conditions under
Virasoro symmetry impliesb(x)5ax3, wherea is an arbi-
trary real number without variation. The solutions corr
sponding to the class of potentialsVn(f) considered here
havea522/3.
lli,
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Changing the asymptotic conditions according to Eq.~21!
modifies the expression for the termf4 in the charge as

Q~j!5
1

16pE dwH j'

lr
„~gww2r 2!22r 2~ lg21/221!

14r 2@f21~11a!f4#…12jwpw
r J , ~22!

which is finite and leads to the same central charge indep
dently of a.

~5! Consistency of the asymptotic boundary conditio
introduced here with the field equations is sufficient to fix t
potentialV(f) to be of the form

V~f!52
1

8l 2
2

3

8l 2
f22

1

2l 2
f41f6U~f!, ~23!

whereU(f2) could be any smooth function aroundf50. In
spite of the fact thatV(f) could even be unbounded from
below, this potential satisfies the stability bound that guar
tees the perturbative stability of AdS space@16,17#. The po-
tential Vn(f) in Eq. ~11! belongs to this family, and for
different values of the dimensionless parametern, different
forms ofU(f2) are obtained. The exact connection betwe
V(f) anda is an open question.
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