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Static charged perfect fluid spheres in general relativity
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Interior perfect fluid solutions for the Reissner-Nordstrmetric are studied on the basis of a new classi-
fication scheme. It specifies which two of the characteristics of the fluid are given functions and accordingly
picks up one of the three main field equations, the other two being universal. General formulas are found for
charged de Sitter solutions, the case of a constant energy component of the energy-momentum tensor, the case
of known pressurdincluding charged dustand the case of a linear equation of state. Explicit new global
solutions, mainly in elementary functions, are given as illustrations. The known solutions are briefly reviewed
and corrected.
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[. INTRODUCTION lar with a density which is constant or is concentrated on thin
shells[16,17]. In the spherically symmetric case a relation
The unique exterior metric for a spherically symmetric has been established with solutions of the sine-Gordon and
charged distribution of matter is the Reissner-Nordstsn-  the A ¢* equationg18].
lution. Interior regular charged perfect fluid solutions are far The necessary condition for a quadratic Weyl-type rela-
from unique and have been studied by different authors. Th&on has been derived also for perfect fluids with nonvanish-
case of vanishing pressufeharged dusfCD)] has received ing pressurg19,20. However, in this case many other de-
considerable attention. The general solution, in which thependencies between the electrostatic and the gravitational
fluid density equals the norm of the invariant charge densitypotential are possible, even when combined with a constant
was presented in curvature coordinates by BofdgrThe T3 [21].
proof that this relation characterizes regular CD in equilib- The original Schwarzschild idea of constant density has
rium, i.e., in the general static case, was given Ig28]. In  also been tested in the charged case for a perfect [fAfie
the spherically symmetric case another proof was proposegs] or for an imperfect fluid with two different pressuris.
in Ref. [4]. Concrete CD solutions were studied in theseAn electromagnetic mass model with vanishing density was
coordinateg4,5]. The generalization of the incompressible proposed in Ref[6]. Unfortunately, the fluid has negative
Schwarzschild sphere to the charged case with condtant pressure(tension. Although the junction conditions do not
was also undertaken in a CD environmg®t Charged dust, require the vanishing of the density at the boundary, this is
however, has been investigated more frequently in isotropitrue for gaseous spheres. A model with such a density was
coordinates, since these encompass the entire static case adposed in both the uncharged and the charged[@&s27.
allow us to search for interior solutions to the more general Another idea about the electromagnetic origin of the elec-
Majumdar-Papapetrou electrovacuum fidlds$]. In both co-  tron mass maintains that, due to vacuum polarization, its
ordinate systems there is a simple functional relation beinterior has the equation of state+ p=0, wherep is the
tweengg, and the electrostatic potential. In isotropic coordi- density andp is the pressure. This leads to tension, easier
nates there is one nonlinear main equalfi@r®] which has junction conditions, and realisteandm [28—-31]. It can be
been given several sphericdll0-13 and spheroidal combined with a Weyl-type character of the fi¢@R]. The
[11,12,14 solutions. One of them coincides with the generalexperimental evidence that the electron’s diameter is not
static conformally flat CD solutiofil5]). These CD clouds larger than 10'® cm, however, requires that the classical
may be realized in practice by a slight ionization of neutralmodels should contain regions of negative denf&y,34].
hydrogen, although the necessary equilibrium is rather deliProbably an interior solution of the Kerr-Newman metric is
cate. They have a number of interesting properties: theimore adequate in this respect.
mass and radius may be arbitrary, very large redshifts are The presence of five unknown functions and just three
attainable, their exteriors can be made arbitrarily near to thessential field equations allows one to specify the metric and
exterior of an extreme charged black hole. In the spheroidadolve for the fluid characteristid85]. This is impossible in
case the average density can be arbitrarily large, while fothe uncharged case. Another approach is to electrify some of
any given mass the surface area can be arbitrarily smalthe numerous uncharged solutions. This was done for one of
When the junction radius, shrinks to zero, many of their the Kuchowicz solution§36] in Ref.[37]. Two other papers
characteristics remain finite and nontrivial. One might ever{38,39 build upon the Wyman-Adler solutio®0,41. Thus
entertain the idea of a pointlike classical model of electrora charged solution is obtained, which has an approximately
were it not for the unrealistic ratio of charggo massm[1].  linear equation of state when/r is small. In Refs[42—44
Recently, new static CD solutions were found, in particu-generalizations of the Klein-Tolma(KT) solution [45,46
were performed. Recently, static uncharged stars with spatial
geometry depending on a paramd#¥,48 have been gen-
*Email address: boyko@inrne.bas.bg eralized to the charged ca$49]. General transformation
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TABLE I. Summary.

Section Cases New solutions, equations Old solutions, references
Il (p,p),(p,q) None None

Il (N, v),(\)Y) (36)—(38) [21,35

\ (A,n=-1) (41)—(44), (49, (55 [28,29,31,32

V (v,p) (56)—(58), (75—(78), (81), (84)—(87) [1,4-6,10-13,15-18,59

VI (v,q) (92—-(94) [38,39,63-67

VI (v,n) (105),(1006), (108—(110), (111D—(114 [36,53

\illi (v,p) (117, (118 None

IX (\,p),(N,9),(p,q) (136)—(139), (145),(146) [6,22,23,25—27,37,49,64

X (\,n) (154), (156 [42—-44,77

connecting uncharged and charged solutions was introducedent. The junction conditions are given in general form and
in Ref.[50]. a reasonable set of physical requirements is included.

The purpose of the present paper is to present a new and In Table | a summary is given of the cases discussed, the
simple classification scheme for charged static sphericallknown solutions which are reviewed, and the new general
symmetric perfect fluid solutions. The calculations in eachand particular solutions. They have been checked by com-
case are pushed as far as possible and general formulas gmater for realistic properties.
given in many instances. The known solutions are reviewed The parameten designates the linear equation of state
and compartmentalized according to this scheme in order t&q. (17), which represents a relation betweemandp, while
illustrate general ideas, without being exhaustive. New soluY=p+ p. Cases that contaig are direct generalizations of
tions are added where appropriate. The intention has been tmcharged solutions depending usually on a parameter. After
stick to the simplest cases and remain in the realm of elsome reformulation the same property is shared by the cases
ementary if not algebraic functions. The emphasis is, howef charged dusti#,p=0) and electrified de Sitter solutions
ever, on the general picture, which appears unexpectedly ricp\ ,n=—1).

and simpler than in the uncharged case. Section XI contains some discussion and conclusions.
The metric of a static spherically symmetric spacetime in
curvature coordinates reads Il. MAIN EQUATIONS AND CLASSIFICATION
ds?=e’dt2— erdr2—r2dQ2 (1) The Einstein-Maxwell equations are written as
qZ ’ 1
whered()? ig the m_etric on th_e two—spherg amgh dgpend KTgE Kp+—; = —e Mg —Z(l—e**), @)
onr. The fluid and its gravitation are described by five func- r r
tions depending on the radius;v,p,p, and the charge func-
tion g, which measures the charge within radiughere are q®> v 1 N
only three essential field equations; hence, two of the above KPp— i e r_z(l_e )s ©)

characteristics must be given. We shall classify solutions ac-
cording to this feature. For exampley,§) is the case of a ) , . ' L,
given metric and the other three fluid characteristics are N R L A (4)
found from the equations. This does not mean that solutions
are distributed among groups that do not overlap. Thus,
(p,q) is a completely general case—any solution, gtend  where the prime means a derivative with respeat &md «
q are known, may be put into this class. The essence igthat =87 G/c*. We shall use units wher@=c=1. The charge
and g? are given functions and there is control over them;function is obtained by integrating the charge density\Ve
they can be chosen regular, positive, and comparativelghall use, howeveq as a primary object and thus
simple. Then the other three functions are usually more com-
plex and are not always physically realistic. 29" .,

In Sec. Il the Einstein-Maxwell equations are organized kKo=—re "° )
into three main and two auxiliary ones. Two of the main r
equations are universal for all cases; the third one varieevh N2
from case to case. Cases with givemave linear first-order enoe
differential equations foe *. Cases with given have lin-
ear second-order equations fet’> or nonlinear first-order
equations folp+ p. These results hold also for fluids with a
linear equation of state. In the casgs ) and (p,q) the Fau=¢' =— ﬂe(vﬂ)/Z_ (6)
difficulties are discussed, that prevent their analytical treat- r2

=const, q~r?3, the case of the so-called con-
stant charge density. Spherical symmetry allows only a radial
electric field with potentiakp given by
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Equation(2) may be integrated by the introduction of the wheren is a parameter taking values in the interf@J1] for
mass function physically realistic solutions, whilp, is a positive constant,
allowing the existence of a boundary of the fluid where
K(r K(r 2 =0. Whenp,=0 we obtain the populay law (with notation
M(r):—f rzngr:_j q Po populay law (
2)o 2)o
and gives

pt ?>r2dr, (7)  n=y—1). In this case Eqs(2)—(4) with q=0 lead to an
K Abel differential equation of the second kind independently
of the approach or the coordinate systé]. It is soluble in
few simple cases. Almost all of the few known solutions of
oM the more general Eq17) may be obtained by imposing a
z=e M=1- - (8)  simpleAnsatzon A\ which makes the system overdetermined
[52]. Therefore, it is surprising that in the more complex
charged case fluids satisfying E4-7) are subject to a linear
equation, similar to Eqs(14)—(16). Substituting Eq.(17)
into Eq. (10) and replacing the resulting expression foin

This can be rewritten as

Z2m’ 1 ,
Kp+q—4=—2=—2(1—z—rz'), (99  Ed.(19 yields
r r r
and constitutes the first of our main equations. The second is (rzy’+ Sntl ry)z’z _2( r2y"+ 8—n ry' +y|z
obtained as a sum of Eq&) and(3): n+1 n+1
- ' 4Kp0
e z  z _ 2
K(pHp)=— (' +N)=2v' == (10 AT 18

The third main equation will not be E¢4) but another We call this case i,n). Equation(18) was derived in Ref.
combination of Eqs(2)—(4), which varies from case to case. [53] whenp,=0. Equation(17) is a privileged one, due to
One can transform Eq$2)—(4) into expressions fop,q,p: its linearity. Another realistic equation of state, namely, the

polytropic one, readp=np** ¥ It causes the appearance of

N v'2 N 3 1 radicals in Eq(15) and leads to nonintegrable equations.
2kp=e N -t ot pr) et (11) Equations(14)—(16) and (18) may be written in the gen-
eral form

1
+ — (12) gZ’=f12+f0, (19)
r

whose quadrature is

, K( VN R N 1) 1
Kp:e - 5 — T = - -

244 A ) z=e"(C+H) (20)

(13 ’
These equations may be written as linear first-order equa- f, fo
tions for z, suitable for the cases/(q), (v,p), and (v,p). F—f—dr, Hzf e F—dr. (21
Introducingy = e"’? we have 9
5, ) - , 2 Here and in the followingC will denote a generic integration
(rey'+ry)z' = =2(rey"—ry’' —y)z—2y+ r_zy’ constant. They may be written also as linear second-order

differential equations foy, useful in the cases\(q), (\,p),

(14) (\,p), and (\,n):

(r2y' +5ry)z’' = —2(r?y"—ry' +y)z+2y—4kpry,

(15)
2r2zy"+(r%z' —2rz)y’ +

4 2
rz'—2z+2-— 12) y=0,
(r2y’+ry)z' =—2(r2y"+3ry’' +vy)z+2y+4«pry. r 22

(16)

In the uncharged case the prescription of an equation of , 2_ , 201 , , _ 200,
state makes the system of field equations extremely difficult 202y (172! —2rz)y" + (512" + 22— 2+ dxpr )y_(()éS)
to solve. This is true even for the simplest realistic linear
equation of state

2r2zy"+(r?z' +6rz)y’' +(rz' +2z—2—4«kpr?)y=0,
P=Nnp—Po, 7 (29

104001-3



B. V. IVANOV

2r2zy"+ r22’+23_—nrz y'
n+1

5n+1 4k
1z +2z-2+ porz)y

+
n+1

=0. (25)

The coefficient before the second derivative is one and th
same in all cases. Equatid@2) is the generalization to the

charged cas¢37,39 of the Wyman equatiori40]. Obvi-
ously, the case= —1 is not covered by Eqg18),(25).

One can find first-order differential equations also for the
Tolman-

cases X,*), based on the well-known
Oppenheimer-Volkoff(TOV) equation[46,54], generalized
to the charged cade9]:

2M+kpr3—g?ir (g%’
or(r—2M) 4

kp'=—x(p+p) (26)

We can tradey in Eq. (26) for p and\ by using Eq.(9). The
result is a Riccati equation for:

NV
T2 2

eMY?+ )‘—Y—4K?+ %(rZM N2
r

It marks another way to solve the casesg),(A,n=—1).
Its solution yields for the pressurep=Y — kp. Equation
(27) is a nonlinear but first-order companion of EG5). In
somewhat different notation it was derived in Ref3]. Us-
ing Eq.(9) and the definition ofY we find Riccati equations
for the casesX,q), (\,p), and (\,n) with the same coeffi-
cients beforeY’ andY?2. In the last case it reads

vi——Lever (X "y
- 2°¢ 2 (n+1r
4Kp0 2 2 AN
— (n+1)r +r—4(r M ) . (28)
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The third main equation for the casp,(]) is obtained in
the following way. Let us replace the density in the TOV
equation(26) with its expression from Eq(9). After some
tedious manipulations, the following equation fod is
found:

(M+go)M,=f2M+f3, (29)

whose coefficients are functions pfandq. There is a stan-
dard procedure for the solution of such equatifsis,55. It
consists of two changes of variables which bring them to the
Abel equation of the second kind

wo~o=1({), (30
Its integrable cases are few, depend on the shap&/df and
are tabulated in Ref55].

As a whole, the most attractive are the mixed cases)(
where one fluid characteristic and one metric component are
specified.

The five functions that describe the fluid together with its
gravitational field should satisfy some physical requirements.
Equations(7),(8) show that at the centev(0)=0 ande*
=1. The density and pressure should be positive and mono-
tonically decreasing toward the boundary. It is obvious that
g® should be positive, too. The boundary of the fluid
sphere is determined by the relatip(r,) =0 where a junc-
tion to the Reissner-Nordsimo(RN) metric

N 2m ¢e?
e'=e "=1-—+—
r r2

(31)

should be performed. The metric and must be continuous
there. This leads to the expressions

m rov'\  M(r 2(r

LB AL ): (o)+Q(20), (32
lo 2 o 2rg

e? 2(r
—=1-e"(l+rov')= a (20). (33)
r r

0

These equations may be transformed into linear second-ordghe conditione=q(r,) follows from the vanishing of the

equations by a change of variables frafto y and we obtain
exactly Eqs(22)—(25). In this process we have exchangéd
which is the sum of the pressure and the densityyfeovhich
is part of the metric.

pressure, and vice versa.

Solutions satisfying the above conditiofwhich are al-
ready rather nontrivialare called in the following physically
realistic. Some other, more stringent requirements, are dis-

So far we have reformulated the original system of EqScyssed in Refs[56—5§. The most important of them is O

(2)-(4) into Egs.(9),(10) and a third equation, presented in <(dp/dp)¥?<1, which means that the speed of sound is
many different forms, adapted to the cases of the proposegbsitive and causal. One has control over this characteristic
classification. We have briefly discussed the casef cD and models with linear equations of state. The case
(A, v),(\,*),(v,¥). The three remaining casep ), (p.0),  (»,q), which is a generalization of uncharged solutions,
and (p,q) are the most natural ones since one prescribes twghares their behavior for smajl In other cases the expres-

of the fluid characteristics, hoping that the third one and th&jons for density and pressure may be so complicated that the

metric will be regular and reasonable. The casg@]) is eas-  fulfillment of this requirement is hard to estimate.
ily reduced to &,q) because of Eq.9). In the case

(p,p), Y isalso known and Eq27) becomes an intricate, lll. THE CASES (A,») AND CONSTANT T9
nonlinear, second-order equation frwhich is not simpler

than the TOV equation. It seems that it can be dealt with only In the case X,v) Equations(11)—(13) should be used to
numerically. find g, p, andp. This is the simplest case but control over
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pressure and density is completely lost and one must proceed V. CHARGED DE SITTER SOLUTIONS AND THEIR
by trial and error. Krori and BarugB5] have given the solu- GENERALIZATION

tion The uncharged case is a special integrable case with linear

A=air?, v=a,r?+as, (34)  equation of stat€l7) andn=—1, po=0, which is equiva-
lent to the de Sitter solution. The charged case is also com-
wherea; denote generic constants of a known solution. Theypletely solvable. The third main equation is E87), which
are fixed by the junction conditions. The solution is nonsin-becomes
gular and the positivity conditions are satisfied.

Equationg7),(8) show that the generalized Schwarzschild (r2m’y’ 1
conditionngconst determines.: Kp= o3 = ;(2M’+rM”). (41
r r
e *=1-ar? (35)

Equation (10) gives v=—A\. This is a feature also of the

where a is a positive constant. We have the freedom tOgiarior RN solution. Equatiofd) yields

choose one more function. In RdB6] the conditionp=0

was further imposed. We shall review this solution in Sec. V. 5/ nn
In Ref.[21] some relations betweep and v were utilized. q?=— r M_ _ L(ZM’—rM”). (42)
They can be arbitrary in the perfect fluid case, so we do not 2\ r2 2

base the classification on such criteria. One should use in-

stead Eqs(22)—-(25) or Eq. (27). The simplest expressions Thus, whenM is given, all other unknowns follow from
are obtained in the case\(Y) when Eq.(27) is used to  simple formulas. Equatiof42) allows one also to takg as a

determinep: basis:
4 Y’ oY + ary +12a.  (36) q? rg?
kp=—rY'— _
P 2(1—ar? 1-ar? Kp=2ao—r—4—4 Or—Sdr, (43
Thenkp=Y—«p and
(702 -
5[, rY(Y-2a) M=—2 [ [ & didr+ 223 (44)
2=r4Ba—kp)=—|Y' + ———|. 3 o Jor® 3
q =r( P)=7 2(1—ar?) 37)

The functionv is determined by a simple integration from Here a, is some positive constant and clearly
Eq. (10): =r2*2qy(r) where £>0 and qo(0)=const. Equations

(43),(44) demonstrate the process of “electrification” of de
r Sitter space. The bigger the charge function, the lower the
v'= 1—ar2(Y_2a)' (38)  density, until some point, is reached wherg(r,)=0 and
consequently the fluid sphere acquires a boundary. We al-
This is an advantage over the second-order equat@®s  ready know thaM>0. Equationg41),(42) show thatp and
(25). Equations(35)—(38) solve the problem in a minimal d° are both positive only whem’>0 and M'=r|M"|.
algebraic way. Several positivity conditions follow for the The equality holds at the boundary, whev/(ro)<0. The
master functiony and forp: 3a>«p,Y>2a,Y>«p,Y'<0. charge and the mass of the solution follow from the junction
In order to illustrate how the above scheme works oneconditions(32),(33)
may take any of the solutions elaborated upon in [R&f],
extractY, and check how the above equations and inequali- e2=2r§M "(rg), M=M(rg)+roM’(rg). (45)
ties are satisfied. The simplest case has

Obviously, there is an abundance of solutions sivicand
its first two derivatives have to satisfy a few simple inequali-

Of course, in any of the cases () we can study the fies. Four solutions are known in the literature. The
subcase given by E¢35). This will be done in the following = const condition leads tgq=0 in the interior and conse-
sections. quently to the de Sitter solution, which has constant density.

A similar problem arises when is given. Which function One can introduce, however, a surface charges(r —ro)
should be prescribed in addition in order to have the simplesthich givesq=6(r —rg)e, p=po, and
algorithm for generating solutions? Agaily, is the best

Y=2a+a(1—ar?)*2 (39

choice. This is seen by taking the difference of H&S),(24) K
or reformulating Eq(10): z=1=3por*. (46)
yz'—2y'z+ryY=0. (40

This is the solution of Cohen and Cohg28,30. Another
This equation is much simpler than any of E¢s4)—(16). solution[29] has
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K2 a2 ) Equation(52) suggests that in the nontrivial case solutions
= 360700 (5a1=2r"). (47 with positive pressure may exist.
Let us take Eq(47) with somewhat different constants:

M

Here o is the constant charge density, while is related to
ap= (K2/24)o§a1. This is one of the electromagnetic models

of the electron. Whemro—0 the limit is flat spacetime. We \yhereb>0. Whenx=r2<2/5b the density is positive and
have shown, however, thaj is not obliged to vanish when decreasing. The pressure is positive at the center when
q=0 so that, in general, the cask,(=—1) is an electric  1/4p<C<5/12. Let us choosé=0.01 andC=40. Thenp
generalization of de Sitter spacetime. The natural generaliza;as a maximum at,=0.3 and a root ax,=2.5. This is a
tion of flat spacetime is the CD solution, discussed in thesemjrealistic interior solution withe?=5b2x3 and mass
next section. Another solution withl similar to the one in given by Eq.(45).

Eq. (47) and satisfying the relatiorp=q?/r* was given in
Ref.[31]. It has zero total charge and a simple expression for
v, coming from Eq.(3).

A fourth solution has been found by Gautrd®@]. It has In this section we discuss the casegp) and briefly
(\,p). The pressure is considered a known positive function
which decreases monotonically outward and vanishes at the
boundary of the fluid sphere. The simplest case=0. This
represents charged dust. The casg] is much easier since
andg=—r2¢’. Many other solutions are possible and wethe third main equatioiil6) is linear and first order. In ad-
give one simple realistic example, a variation of the solutiondition, in Eq. (19) f,=—2g’. This allows us to obtain a

M=br3(1—br?), (55)

V. THE CASE OF GIVEN PRESSURE: CHARGED DUST

2,2
cia r
2M=c2r— —2siP— (48)
1 r a
2

in Ref.[29]: compact expression far
M=a(r®-r?%), z=1-2ar?+2ar? (49) 1 C
kp=2a(3—5r), 2=2ar®. (50) 2= (1+rv’/2)2+ r2e’(1+rv'/2)?
The junction atr,=3/5 givesm=arg, e’=2arg. _ n 4—"J'r 14 v’ eripdr.  (56)
The caser =0 is easy because E@7) collapses into the r2e’(1+rv'/2)?Jo 2

simple relation(41). A generalization can be made by taking

Eq. (41) as a basis. Theqis given again by Eq42), while ~ The knowledge ot allows one to satisfy two of the junction
Eq. (27) becomes conditions by choosing a function continuousr gttogether
with its derivative. Equation&9)—(10) provide an expression
for g in terms of the knowrv,p, and withz(»,p) from Eq.

vi=—Lever Ly 51
B ®D (56

!

2

q—zzl—z(1+rv’)+xpr2. (57)
r

This is a Bernoulli equation and, unlike the Riccati equation,
it is readily soluble in quadratures. Its general solution gives
an expression for the pressure

U The density follows from Eqg.10) and (56):

e
Kp= P (52 2z 2 2zv' zv'’
C+ %f e3Mrdr Kp=—— = + +
r< ro(1+rv’'/2) r r(l1+rv'/2)
whereC~1=Y(0). When C—o we return to the previous 71" 4kp
caseY=0. Fortunately, Eq(10) can be integrated explicitly + e - Kp (58
too and a closed expression is obtained for 1+rvif2 1+rv'/2
1 (r Whenr—0, z—1, and the third term on the right produces
e’’=A"1le M 1+ EJ e3“2rdr), (53)  a pole unless’ —2yyr, which meansy”— 2v,. Thenr v’
0 —0 and the poles in the first two terms cancel. The last two

terms approach negative constants. In order to compensate
A=14 ifroe”"zrdr (54) them and have a positive density at the centgnnust be a
2CJo ' positive constant, and the inequality$>5«p(0) should
hold. Another consequence is that is an increasing func-
The second equation follows from the junction conditions.tion in the vicinity of the center. Since™* is a decreasing
Thus, every functionM leads to two solutions: one with function, which starts from 1 and equad$ atry, we have
trivial Y and one with nontrivialy, satisfying Eq.(51). The  e”(0)<1. Equation(56) shows thatz has a pole ar=0
trivial solution has the disadvantage of negative pressurainlessC=0.
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Now we can understand the physical meaning of the ) K
terms inz. The third term represents the contribution from rww'=—w"+w-— 5rp- (66)
the pressure to the metric. Wher-0,z is still nontrivial and

represents the general CD solution. It has a pole at the berhjs is an Abel differential equation like E¢9). The pro-
ginning of the coordinates and should not be used therggqyre for its solution was described briefly after E2g)
WhenC=0 only the first term remains and this is the regularand prings it to its canonical forfi1,55. The set of density
CD solution in curvature coordinatés]. The intricate proofs  profiles leading to integrable is very restricted.

that this is the most general regular solutigh4] are re- Several explicit dust solutions in curvature coordinates
placed here by the obvious conditiai=0. The second term  haye peen given. Efingds] studied the simple case

in Eq. (56) may be induced in principle by the third if the — 4/9 in the presence of a cosmological constant. When it is
lower limit of the integral is changed. The first term may be erg we have q=r/3 and singular e’=ayr,
absorbed by the third if one makes the shifp— «xp = 4/9kr?2
+1/2r2, :
Let us discuss in detail first the case of regular CD. It
provides an excellent illustration of the classification
scheme. In the case (p=0) Egs.(5),(6) and(56)—(58) give

p=0
F10=2\a;r ~ 2 Florides illustrated his general
discussion[4] with a power-law solutiong=a,r2*3. Fi-
nally, in Ref.[6] the case of constaﬁtg was discussed. It
leads to Eq(35) and its replacement in Eq&1),(62).

As was mentioned in the Introduction, most work on CD

2 (2, has been done in isotropic coordinates
|1 — - v
e T R ds?=U"2d2— U3(dr2+1%d0?), (67)
1 where the simple relations==U"! holds and the only
rv'+2v' + Erv’2 equation to be solved is
Kp=KOo=
r(l+rv'/2)3 = “
(1+rv'f2) U+ =U= -2 U, (68)
$=—e"+ ¢y (60)

WhenU is given the density is readily determined from Eq.
For the case X,p=0) we should use Eq59) to express (68). The function U 2=a,r’+a, was used in Refs.

everything via\: [10,15. Another, more general function,
2 _ a; as(ri—rX
V=(e-1), q=ri-ed), (6D =14 2, BT ©9
ro krk+l
0
2 e was studied fok=2 in Ref.[12], for k=4 in Ref.[11] and
Kp—Ko= 3 e e tHohe . 62 for general k in Ref. [13]. Recently, the functionU
=ay(sinagr)/r was studied 16,17.
These formulas involve only the first derivative bf The ~ Whenp is given, it is convenient to transform E(68)
case (1,p=0) is explicitly solvable, unlike the general case N0
(9,p):
_Kp us
N r2 2 Uxx==>%" & (70)
e = 21 M= q— 5, (63)
(r—a) 2r

whereX=1/r. We may considep(U) as a known function,
chosen to simplify this equation. One possibility, leading to
' 2q - E M’ Bessel functions, is=ag/U? [16,17]. Other choices lead to
. kp=ko=—(r—q)q’. (64 ; . : ; .
r(r—q) rs two-dimensional integrable models, like the sine-Gordon
equation[18]. The metric(67) also describes the regular
The last formulas clearly demonstrate the electrification oktatic CD with no symmetry. Then the case of constant fluid
flat spacetime, which is the trivial dust solution in the un-densityp, is soluble in cn, one of the Jacobi elliptic func-
charged case. If we pyi=0 in Eq. (29) we still obtain a tions, but the solution cannot be spherically symmetric. In
complicated Abel equation. One can check thatgiven by  the spherically symmetric case Eq0) becomes an Emden-
Eq. (63), satisfies it. The most complicated case jsp(  Fowler equation, whose integrable cases are tabulated in Ref.
=0). Introducingw via e*=w"2, Eq. (61) gives [55]. Equation(70) is not among them.
Let us go back to the curvature coordinatés which are

, 2(1-w) more convenient when one wants to study also the case of
T w g=r(1-w), (65 nonvanishing pressure. From the considerations about the
regularity of p given after Eq.(58), it follows that the sim-
while Eq. (62) becomes an equation for: plest functionv would be v=ryr?. This choice coincides
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with Eg. (34) and leads to exponential functions and prob-At the junction z is equivalent to Eq(75) where C=C,

ably to the error function in Eq(56). We shall choose a

different option,

e’=(a+br?k, (71)

wherek is an integer, &a<1, andb>0. This Ansatzhas
been thoroughly studied in the uncharged cg&&58§. In
this section we tak&=1. The CD solution built on it has

2

a+br? brd 2
Z: f— s
a+2br? a a+2br?
2b(a+br?)(3a+2br?)
Kp= (73
(a+2br?)3

=C(rp)- An observer cannot understand whether the interior
solution consists of perfect fluid or general CD since the only
imprint left by the pressure distribution inside is a constant.
In principle, the RN metric should be taken as an exterior,
but there are no obstacles to taking a general CD metric and
postponing the junction to RN till another point>r,. Thus

we obtain a triple-layered model with a perfect fluid core up
tory (zone ), a halo of general CD fromg to ry (zone lI),

and the RN solution for>r, (zone lll). The metric compo-
nentz is given correspondingly by Ed79), Eq. (75 with

Cy, and Eq.(31). For this purpose we choose a continuous
(together with its derivativefunction v in the region G<r

<r,. At the first junctionz is also continuous, while the
pressure drops to zero. The density is finite. In zone 1l the
pressure remains zero, while the density continues to de-
crease. Finally, at, the density also drops to zefperhaps

Density is monotonically decreasing. The junction conditionswith a jump and a RN solution follows till infinity, making

give

brd

e=———, m=ro(l—a—2br?).
a+2brg ol 0

(74

The conditionz=e” at ry supplies the relatiom§=(1—4a
++/1+8a)/8b, which ensures the obligatorg=m. The
right-hand side is positive whesm<1, which is the case.

The main disadvantage of regular CD solutions is that
they possess a fixed rat&m which is unrealistic, especially
for classical electron models, and requires the extreme RN
solution as an exterior. Equatidb6) tells us that when the

the composite solution asymptotically flat. As seen from Egs.
(76),(77), the constanC, shifts e/m from 1, as a perfect
fluid solution occupying zones | and Il would do.

This picture can be backed by an explicit example with
the Ansatz(71). Since the details should not depend on the
form of p(r) but only on the value o, we shall discuss
first zone Il and its junction with zone Ill. In the interval
[ro,r1] we have

_(a+br®)[Cotr?(athbr?)]
= r?(a+br?)? ' (8D

point r=0 is excluded, general CD solutions are possiblehe total mass and charge are given by

They have the following characteristics:

rV/ -2 e v
= 1+7 1+Cr , (75)
B I'V' -2 —-v ’ Z,
kp=|1+ - |1+C— |1, (79
qz_1 1+rv’ 1+Ce*” )
r2 (1+rv'/2)? r2 )’
r4p'?2—4C(1+rv')e "2
O (Lerne s o

2r(r’+Ce )12

WhenC=0 they reduce to Eq$59),(60). What is the physi-

m=r,(1-a—2br?), e?=r¥1-a-3br. (82
The junction condition at, gives
Co=m?—e?. (83

This relation clearly shows the effect of pressure in zone | on
the mass-charge ratio, not altered by the CD halo in zone Il
The result in zone | was found in RéB].

An example of a physically realistic solution is given by
a=0.01, r;=4.013/C,, r,=3.588/C,, b=0.075A/C,.
This proves the existence of CD solutions wjt]/m+ 1.
They sustain the value @, obtained in zone | from a perfect
fluid solution with positive pressure. In R69] the same
question was studied in isotropic coordinates but the solu-

cal significance of such solutions? Let us consider a core dfons have negative density in the vicinity of the origin.

perfect fluid, occupying a ball with radiug,, with given »
andp. Thenzis determined from Eq56) with C=0:

1 C(r)
z= : (79
(1+rv'/2)? rle”
r rv’
C(I’):4Kf 1+7 e’r3pdr. (80)
0

It seems that there are no solutions of the typg&0)
in the literature. It must be stressed that this case is com-
pletely general, unlike the cases with constﬁB]tor with p
+p=0, discussed in the previous sections. Every perfect
fluid solution may be reformulated as &,p) case. Let us
proceed with theAnsatz(71). We base the discussion on
C(r) as a fundamental object; hence, it is convenient to se-
lect a more involveg leading to a simpl€(r) given by Eqg.
(80). Let us take
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Po— P12 was studied in detail by AdlgA1]. A solution withk=3 was
Kp= —F—— (84)  given by Heintzmanii60] (see also Refl58]). The general
a+2br class was studied by Korkin®1], but her only explicit so-
lution was the one of Heintzmann. Later Durgaf&#] stud-
and then ied in detail the casds=1—5. All of them satisfy the physi-
2 cal criteria used in this paper, but some have irregular
C(r)=r4( Po— §p1r2), (85 behavior of the speed of sound/dp)*? and ofp/p.
Going to the charged case we have
2
(a+br2)? rz( po_§P1r2) e’=0g%(Xo),
z= , (86)
(a+2br?)? a+br? m 1+ (k+1)7x, (€2
o +1+(2k+1)rxo(x_0 1)' ®
i - (b b ! 8
r2  (a+2br?? o= 38 ®)  herer= b/a, x=r2 Let us consider first the case=1.
Then

wherez follows from Eq.(79) while q is calculated from the

general expressiofb7). Here p, and p; are positive con- 1
stants, connected bpozplrg. The Ansatz(71) yields v,
=b/a and the conditionp(0)>0 becomes B/5a>kp(0)
=po/a. This is weaker than a necessary condition for posi-

+ 7X
Z:
1+27X

<02
(1+Cx+2xQ), szq—gdx. (92
0 X

tive %, b>p,. At the boundary the density is always posi- 1he pressure and the density are given by
tive. We have alsqoo=3C0/ré and, using the numerical
values from the CD example, one can exprggsndp; in ~ 7=3C(1+7x)  27(1+Cx)
terms ofC, in addition tob, ry, andr. It can be shown that “p= 1+27x (1+27x)2
for C>0.06 p andq? are positive and the solution is physi-
cally realistic. Thus we have constructed explicitly a triple 2(1+ 7x) 2q2 47xQ
solution of the type PF-CD-RN. This ends the discussion of -5 — |t (93
1+27x x| (1+27x)?
case ¢,p).
The caseX,p) relies on Eq(24). Even the simplest con-
stantz leads to special functions or nonintegrable equations 7+ C+37Cx+2(1+37x)Q ¢
for y whenp is chosen physically realistic. Kp= - (99

1+ 27X XZ.

VI THE CASE (v,0) Whenqg=0 these expressions coincide with the pressure and

the density from Refs[46,62. We havekp(0)=3(7—C).
Let us choosg?=K?x3. Then the conditiom(x,) =0 yields
a negative expression f& which means thap(0) is posi-

The cases#,q) and (\,q) comprise the most direct gen-
eralizations of the numerous uncharged solutions. Setting
=0 one obtains one of them with the chogemsatzfor v or

\. As in the previous section, the case ) is much simpler.
The third main equation is Eq14). Now f, can be repre-
sented as a linear combination gf, g, andy. This is a
general result which holds for any of Eq44)—(16),(18). In
this particular case we have

89 J !
f=—29'+ ——4y, h=| — 88
mrA Ty 1+rv'/2 @9
r282h
o — (89)

Ce(1+r11'/2)?

szfev

and z is given by Eq.(20). We shall use théAnsatz(71)
wherek=1. In the uncharged cade=1 leads to Tolman’s

2 2
e‘Zhr‘3(ri2— 1) dr, (90

!

14+
2

solution 1V [46]. The casek=2 was discussed first by Wy-
man[40] as an extension of Tolman’s solution VI and later

tive. The conditionz=e” at x, definesa. Equation(91)
yields e2=K2x(3, and we can expresg,a,e,m through
XO y Ty K

Let us consider next the cage=2. Then Eqs(89),(90)
give

z=1+CeF+eFJ Aarbogdx bx)q”dx
(a+3bx) 33’
X
F_
¢  (a+3bx)23 99

Whenq=0 this is the result of Adler, who used the simpli-
fying assumptiore™H =1 instead of theAnsatz(71). When
q?=K2x® we obtain

Cx 4a 2
— K%+ =KX
(a+3bx)?3

z=1+ 5b 5

(96)
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z(| | z'
Kp0+F V—? .

This is the corrected result of Nduka&8], who wrote the 1
field equations with an error in the sign gf. In all his KP=H¥1
resultsk? should be replaced by K? and the conclusions
correspondingly altered.

The Ansatz(71) with r? replaced by or r® has also been

(101

) ) . Itis more convenient to expregsandq from Eqgs.(17) and
studied|63]. In another paper Singh and Yadgsb] simpli (57) respectively and lay all the difficulty in the calculations

fied Eqgs.(14),(19) by demandingf;= —f,. Letting g=Kr . . . )
they obtain the Euler equation. It has three types of solutionOn the density. Putting Eq¢97).(98) into Eq. (101) we ob

all of which are singular at=0. If K=0 the nonsingular tain
solution of Adler is again recovered.
Other solutions with singulay were discussed in Refs.

[63—66. In Ref. [65] a charged versionwith constant (N+1)kp=KPo-+ 4Kpo
charge densityof Tolman'’s solution V was obtained. Further P 0 (n+L)(A+rv'/[2)
examples of {,q) solutions are given in Ref$66,67 but
their properties are not examined. 2|z 1 B ) zv'
r2lA A+rv'/2 A+rv'[2) T
VII. THE CASE (»,n)
z(rv')’
This is the case with givem and the perfect fluid satis- (102

fying the linear equation of state E(.7). Realistic solutions r(A+rv'/2)
have 0<n=<1 which means constant speed of sound and

causal behavior. Surprisingly, the charged case is much o
easier than the uncharged one. The third main equation is E§/hich is an analogue of Eq58) and leads to similar con-

(18) with n# — 1. The functions andH read clusions forv. The poles in the two terms in the square
brackets cancel when—0 becausez—1 and v’ —2uvgr.
(at1)-8h This condition makegp a well-defined function. We shall try
r~ (@t 1)gBhy _ ; .
ef= — (97)  for v anAnsatzwhich generalizes the one in E(.1):
e’ (A+rv'[2)?
ry' 2k e’=(a+brs)k, (103
H=2J e A+ 2 |ragsn| 1 2P dr,
2 n+1

98
8 wheres=2 is not necessarily an integer. Wher 2 it can

be shown that at the center the relatip(0)+3p(0)=0

holds. This is exactly the equation of state for the Einstein

static universéESU) [56,58. The pressure is negative at the
hl:f v'dr _on+1 99) center, which is unrealistic. Therefore we set2. The inte-

Atrov' )2 A= n+1"’ gral for z is simplified considerably when

where

1-3n 4n(9n+1)
_ _ K+5+4Vk(2k+ 1
v P rnGrrn Ne= (2k+1) (104)
100 31k—25

We shall study the rangesOn=<< and some negative The
casen=—1/5 demands special treatment commented upo
at the end of the section. The case —1 was discussed in
Sec. IV. Each of the coefficients, B, and A has the same
limits when n— *o. When Osn=<x their ranges are
—3/5=sa<1, 1sA<5, 0=pB<36/5. Expressions
(97),(98) are generic for the casew,q),(v,n),(v,p). The
case ¢,q), discussed in the previous section, is obtained by

IIhe first few values aren;~2.15, n,~0.53, nj3
~0.39, n,=1/3. The firstis beyond the physical range, the
fourth is an exact number. One cannot probe the region
<n,~0.21 with this method. A series of models is obtained,
parametrized bk. They have

putting «=—-3, B=2, A=1, changing the sign oH, f(1+t)k‘1t(“+1)’2‘1[1—2/(n+ 1) ut]dt
and an obvious replacement fgrinstead ofp,. The case ,=
(v,p) will be studied in the next section. te D21+ )T A+(A+K)L]
In the present case E¢LO0O shows thatv+1 is always (105

positive forne[0,.0]. Therefore,z will have a pole unless
C=0. Hencez=e"H. After zis found, Eqs(10),(17) allow
one to extract the density from the metric wheret=1r2, u=«kpy/r. Equation(102 becomes
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Ap(l+t)
ke T DA (AT R

.2
t

Kp
(n+1)7—
z 1+t

A A+(A+K)t

2kz
T

, 1+1
P arATit

4kz
T ATOAT (AL

(106)

Now additional terms contribute to(0) andp(0) and they
can be made positive by a proper choiceroénd py. The

PHYSICAL REVIEW &5 104001

where the integration constant was chosen so zf@}=1.
The pressure and the charge are given by E48, (102,
and(107):

Kp 3(1+2t) N 9z
T 4(2+3n M a2+3y
1/z 1+t 119
T2tl2 7 2vat) (112
1+3t Kp
2_ _ LY
=t 1- gz )+t (113

The pressure is well behaved for apyand vanishes df,.

pressure is given by E¢17) and the charge function by Eq. However,g? also has a zero, but &, and becomes negative

(57), which becomes

1+(2k+1)t  «p

Tg?=t|1— Tt

(107)

An interesting case ik=4 with n,=1/3 exactly. When

po=0 andqg=0 this is the equation of state of pure incoher- have alsoa=3, A=1/2,

ent radiation and the case is not integrdll#]. This specific

in a region whereé>t,. Unfortunately, for most values of

the inequalityt, <t, holds, meaning thaj><0 in some part

of the interior. This is grossly unrealistic. We have been un-

able to find any realistic solution by computer simulations.
Another case wittk=1 which leads to simple functions

can be guessed from E.00). Whenn=—-1/9, B=0.We

y=1. Although the pressure is

negative, it is worth being discussed. We have

charged version, which is not the only possible one, however,

is integrable and assuming=2/3 we have

1+ 5t— 33— 3t

z= , (108
(1+1)%(1+3t)

kp 5+t . 3(3+7t)z

1 12(1+3t)  2(1+t)(1+3t)
TH3t+3t245t3 2
- (109
4(1+t)%(1+3t) 3

2_4[1 1+9t Kp 110

q°=t| 1— 1Tt z+— (110

1+t
Z:—
(1+3t)?

5 3 27 ’ 1
H2ogp|tmgutt. (114

When 0<u<4/27 the pressure monotonically increases,
crosses thé axis, and forms a boundary of fluid with tension
inside. Let us take.=0. The charge functiog? is positive
and increasing. The junction conditions gige=0.55, b
=0.11f3, m=0.2%,, e=0.35, where t,=0.2. This
solution resembles the classical models of the electron in
Sec. V.

Finally, some words should be said about the case
—1/5, which is really very special. Let us choose the simple
Ansatz(71) for v. The case is formally soluble bt has
poles at the center and is ill defined. Whpp=0 andq
=0, this case is solublgs1]. It is connected by a Buchdahl

The pressure is positive, monotonically decreases, and vaffansformation to the de Sitter solution with=—1 [68,69
ishes at,=0.54. The charge density has a negative part. Th@nd is best expressed in isotropic coordinates. This transfor-

conditions yield a=0.3, b=0.16f2, m
e=0.45, We havee/m<1. Probably, all mod-

junction
= 0.5‘0,

els in the series have a rangegofwhere they are physically

realistic.

The method used to simplify Eq98) resembles the
Korkina-Durgapal method, which was extended to the
charged caseu,q) in the previous section. There are other

ways to simplify the integral for even wherk=1. One of
them is to take agaim=1/3. Then =0, A=2, pB
=3/2, y=1/2. We have

1+t 1
= W - Z(/,L—4+3[Lt)\/(2+3t)t

+4I—2M\/§In(3t+ 1+3t(2+3t))], (111

mation, however, does not work for electrostatic fields and
probably is not applicable to the present case of a perfect
fluid plus an electrostatic field.

There are two papers that come near to the results of the
present section. A solution with singulgr p, and p was
found in Ref.[53] whenpy=0. Another one is contained in
Ref.[38] which belongs to thex,q) case and is mentioned
in Sec. VI. Whenm/r is small, the solution approximately
satisfies Eq(17) with n=3/10, a value which is rather close
to 1/3. Its connection to our solutions is not clear.

A final remark is in order. It may be tempting to take the
limit e—0 in one of the solutions obtained here and try to
find analytic expressions for the at present nonintegrable
cases ofy law uncharged solutiongs1]. However, for the
Ansatz(71) used in this section, this leads tg—0 and to
flat spacetime. In the case of genetalit seems that the
above limit will produce charged solutions with zero total
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charge. This is suggested by the behaviosdh some of the Searching for an elementary solution, one may consider
models, namely, its change of sign in the interior. The propesome sophisticated density profile, leading to a simple inte-
noncharged limit seems to ligr)=0. Then, however, we gral in Eq.(117). Unfortunately we have found only solu-
obtain the field equations of the uncharged fluid. Hencetions with g><0.

nothing is gained in comparison with the three approaches

described in Ref[51]. They lead to Abel differential equa- IX. THE CASES (p,q), (X,p), AND (A,q)

tions of the second kind with few integrable cases. o _ _ o
Having in mind the results in the previous section, it is no

VIIl. THE CASE (v.p) WonQer that the case'p(q)', where there is contro_l over Fhe
evasive charge function, is much more popular in the litera-
This case arises as a special limit of,if) when n  ture. Equatior(9) easily relates this case ta (p) and (\,q),
—0o,  pe—. One sees from Eq17) that in this limit p and Eq.(22) or (23) may be used as a third main equation.
— po= Po /N which can be made a finite constant. More gen-Like (v,q), these cases are direct generalizations of un-
erally, the third main equatiofi5) is obtained from Eq(18) charged cases. Equatio(®,(8) definez in terms ofp andq
plus the chang®,/n+1—p(r). Equations(99),(100 give

a=-3/5, A=5, B=36/5.The constart in Eq. (20) is k(M rg?
zero again in order to prevent a pole at the center. Equations z=1- T OPr dr— T Or_zdr- (120
(97)-(99)
93y Equation(9) shows thap is regular wherz— 1~r? for small
7= , 2] e”(5+rv'[2)r 35 r. We accept thé\nsatz
r2Per| 5+ - z=1—ar?-br%. (121
X e 303/5(1— 2k pr2)dr, (115 It follows from Eq. (120 whenqg=Kr' with 1=2,3 andp
=po— par?, wherepy,p; are non-negative constants. The
dr Ansatzfor p goes back to Tolman’s solution VII. When
3= f E— (116 =2 andl =3 we have, respectively,
5+rv'/2
. 1 2 Kp1 2
The parametersi and p, have been exchanged effectively z=1=3(kpo+ KI)x+ —=x7, (122

for the density function and in this respect H415 re-

sembles Eqs89),(90) from the (v,q) case. Wherm is con- KPo 1

stant we obtain a generalization of the Schwarzschild interior z=1— —x+ —(kp1—K?)x2 (123

solution [70]. It is much more complicated than the other 3 5

generalization with constar‘ﬂg. As seen from Eq(115), the

casep=0 is nontrivial and leads to purely electromagnetic

mass models. e=Kx3?, (124
Let us try again thé\nsatz(103) for ». The method which

led to an infinite series of realistic solutions in theif) case 1

is rather useless here even when2. Therefore, we puk m=[a+(b+ K2)Xo1x32. (129

=1. Theny=—1/5 and

The total charge and mass are given by

Whenp,+# 0 this is a model of a gaseous sphere; both den-
e 1+t f (1= (2xp/ T)t)dt (117 sity and pressure vanish at the boundf2g,27.. We have
tY5(5+61)45 t¥3(5+61)15 ' po=p1Xo- Whenp,;=0, pp#0 this is a generalization of
the incompressible fluid sphere fb=3 [22] or [ =2 [23].
When p=p, the integrals bring forth the hypergeometric Finally, whenp,;=py,=0 we come to a model with electro-

function magnetic mas$6]. The solutions given by Eqg46),(47)
also belong to thig\nsatz The casé+# 0 appears to be sim-
1+t 116 6t pler, due to a peculiarity in Eq22), and leads to elementary
= 6 \45 F 5'5'5' 5 functions. Equatior{35) demonstrates that the other cake,
1+ gt =0, belongs to the family of solutions with consta‘F@.
Equation(22) becomes in terms of
Kpotl:( 1611 Gt) (118
— a5 _ _1 = L _; - = a b 2
37 15°5757 5 (1—ax—bx2)yxx—(bx+§ yx—(ZJr%)y:O-
X
The charge is given by Eq113), while the pressure reads (126)
Kp_ 2z o, kP (119 The coefficient beforg is constant when=3 (or K=0).
T 1+t t Let us study this case first. Equati¢h23) gives

104001-12



STATIC CHARGED PERFECT FLUID SPHERES IN . ..

L 11K?2 12
=3t 58 = 5g(Kkp1~11K"). (127
A change of variables brings E¢L26) to
Yeetdy=0, (128
= [ (129
“Joy1—ax—bx®’

This integral has several different expressions, but man
properties of the solutions depend only on the fact th

£(0)=0, and¢, and¢, are positive. Equatiofil28) is easily

solved and the last function to be determined, the pressure, is
given by Eq.(10). At the junction the pressure vanishes

when

2y ((Xo) = Zy(Xo) (130
is satisfied. The charge is given by Ef24), while the mass
becomes

11 xpo 2 Xo| 312
m—E T+(6K _Kpl)g Xp -

(131
Whenp,=0 the mass is positive. Whegn # 0 this assertion
still holds because them Xo= pg. The positivity of the mass
does not impose any conditions on the constagtsxy, and
K which determine the solution. The pressure reads

1 1
Kp=41Z % — Spo+ £ (3rpyt2KAX. (132

To be more concrete, let us introduce the three classes of

solutions of Eq.(128 for d=0, d<0, andd>0, respec-
tively:

y=C1+Cy¢, (133
y=C,e "+ Ce "% (134
y=C, sin\Jdé+C, cos\d¢. (135

The conditionsy>0 andp(0)>0 lead toC;>0, C,>0
whend=0 and toC,>0, C,>C; whend<0. Therefore,

e’ increases with until it meetsz, which decreases. We have

y(0)<1.

(1) Case ¢=0. Equation(127) meanskp;=11K?, while
Eq. (123 givesb= —2K?2. We also have,= kpo/11K? and
the solution is determined by two constanig,.andK. Equa-
tion (130 results in

1 1
02:6_6Kp0, C1:_6_6Kp0§0+ Zo, (136)
5 KpPo
=1]1— — 2 =
ZO 1 3U , Y 11|K| y (137)
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andy is given by Eq.(133. C, is real wherv</3/5. The
charge is given by EQ.(124 and the mass ism
= 2 kpoxe?, leading to the ratide|/m=3/4v=\/15/4. Due
to the negativéh Eq. (129 reads

1 | ‘ a+2bx+\/_
= n|— z
¢ V—b 2\—b
— ! In|1— a ‘ (138
J-b 27=b|’

)[n Ref.[27] another expression was used, true only in a part

of the allowed interval fow. The pressure reads

4C,\z 1

= Co i Cyl — §Kp0+ 7K2x.

(139

Kp

The conditionp(0)>0 is fulfiled when C;<2/11. This
holds whenv varies near/3/5=0.77. Thus, there are solu-
tions with positive pressure.

(2) Case &< 0. This means<p;<11K? and the limiting
casep,=0 is possible. We shall discuss the general case
first. The boundary conditions fix the constai@g,. The
pressure is given by Eq132):

Coe d—Cle "9 1
= ——d¢ 2 KPo
Coe"¥+Cce V9 3

kp=4+—dz

+ = (3kpy+2K?)x. (140

gl =

A necessary condition for positive pressure at the center is
C,>C,, satisfied when

Kpg 2
Z,(Xp)=— 3 - g(KZ— Kp1)Xo

(141
is positive, which leads tocp,;>6K?2. Simplifications are
possible wherd=b or C;=0 but they do not give solutions
with positive pressure.

Let us discuss the subcape=0, i.e., p=pg [25]. Now
Eqg. (141) shows thatz,(xq)<O0; thereforeC,<C; and the
pressure is negative in this subcase, which was not realized
in the above reference. Equatioh24) holds as it is, while
Eq. (125 reads

1 3
m= (-Kp0+ —szo) x32. (142

6 5

We haveb=K?/5>0 and consequentlg®+4b>0. Then

¢ 1 ~a+2bx 1 ] a (143
= —arcsit—=——=— —=arcsin-=——.
Vb a’+4b b vac+4b

In Ref.[27] an incorrect expression was used. Form{akd)
allows one to make connection with the results of R6f,
where in additionpy=0, so that the mass arises entirely
from the electrostatic field energy. Equatidmtl) still shows
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that the pressure is negative. Equatioh24) and(142) give
the ratio|e|/m=5/3 K|xo. Now a=0 andzis positive at the
boundary where|/m> \/5/3. The second term in E§143)
vanishes, and combining it with E¢L34) yields

11
y= Clexp< - \/; arcsin\/Bx)
11
+ Czexp< \g arcsin\/Bx) .

(144

The passage to arccos scalgg, and interchanges their

places, giving Eq(4.6) from Ref.[6].
(3) Case d¢>0. Now we havexp,>11K? which permits

the limit K=0. The two cases do not differ essentially. The

value ofz,(xg) is positive, whileb<<0. Hence¢ is given by

Eqg. (138, as in Ref.[26]. The positivity condition is even
more complicated than in the previous case and simplifica
tions do not seem possible. This is true even for the un
charged case, discussed in the mentioned reference. We shﬁl

remark only that the simple casep;=«kpy=xo=1, K
=0 has positive pressure profile. For small enokghthe
charged case must behave the same way.

Let us study next the cade=2 whenz is given by Eq.
(122. Equation(126) is not soluble unlesb=— kp,/5=0,

meaning that the density is constant. Then it becomes a par- y:a4[

ticular case of the hypergeometric equation

X(X= DY+ L(71+ 72+ 1) x = 73]y, + 7172y =0,

(149
where
x=ax, mi+n,+1=1/2, 73=0, np,=K?2a.
These relations give
11 8K?
nl——ZiZ\M—T (146

and 7, ,e[—1/2,0). The reality ofn; is ensured bykpg
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has been discussed in the uncharged casajfer2 [71,72,
a,;=7[73], and a set of discrete values fay [47]. Recently,
it was studied for arbitrarg; in both the unchargel@8] and
the charged casgd9]. Introducing the variable

=it tE—— (149

one obtains
(1= 7°)Y yyn= 1Y 5yt d1y,=0, (150
d1=a1+2—2a—K2, (151

1

whered;>0 is required.

Formally, Eq. (150 is a subcase of Eq126) with a

, b=1, X—r, y-—y,, sowe can use the machin-
ery developed there. We have=arcsiny. We may change
variable tod=arccosy because Eq(128 is invariant
under this change. Hencg,, is given by Eq.(135 andy
may be found by integration. Use of trigonometric equalities
helps to find an expression with two terms

cog (\d,+1)8+as]
Jd;+1

~ cog(ydy—1)8+ag]
Vo -1 '

This formula was found in Ref$48,49 by resorting first to
Gegenbauer functions and then to Chebyshev polynomials.
The peculiarities of Eq(126) permit a straightforward deri-
vation in elementary functions.

Let us discuss next a solution of Nduk7], belonging to
the class X,q). He chose a constaat#1 and generalized
the uncharged solution of R€f36] by takingl=1, i.e., q
=Kr. Then Eq.(22) turns into the Euler equation arydand
p are singular at =0.

(152)

>23K?. Thus, in the charged case it is not possible to put TheAnsatz(121) was examined also in R&64] where in

p=po=0. This case was studied by Wils¢&3], who did

addition toqg a generating functiois was given, satisfying

not recognize the appearance of the hypergeometric functiofhe relationG2?zq=const. Therefore this is again the case
He assumed that the pressure was positive and developed R q). Several solutions were found, including the one of
series expansion fgr. A linear combination between the two Nduka[38] and a solution singular iy, which is a generali-
fundamental solutions of E41459) is a candidate for a regu- zation of the solutions in Ref$§42,74.

lar metric. In this paper the emphasis is laid on solutions in

elementary functions, so we shall not pursue this issue fur-

ther, except in the case whefe=0. Then Eq(145) is easily
solved:

e’=[2(1—-ar?>)¥’+a,]>

(147)

This is the expected Schwarzschild interior solutigi],
contrary to the claims in Ref23].
A model for a superdense star with tAesatze

1—a,r? Ka,r®
7=——, q=

= : , (149
1+a,a,r? 2

1+aja,r

X. THE CASE (A,n)

In this case the fluid satisfies the linear equation of state
(17) and someAnsatzfor \ is given. The other metric com-
ponent is found from Eq(25—a linear second-order equa-
tion for y.

Let us study first the case=c<1 which leads to singular
pressure and density, but provides the opportunity to gener-
alize the well-known KT solutiofi45,46,51,75,7p Equation
(25) becomes

r2y"+kory’ +(—ky+kor?)y=0, (153
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3—n 1—c 2kPo las derived here show that the abundance of solutions is
n+1 P 2=m- probably bigger than in the traditional case. The p"roposed
scheme becomes rather trivial there, represenfingdze
Its solution is given by Bessel functiofiS5] mainly for \, v, and sometimep. In the charged case, how-
ever, it allows one to sort out the different ideas mentioned
y=r7*C,3 (Vkor)+CaoYi (Vkar)l, (154 apove. Thus constar leads to the cases\&1—ar?,*),
while constant density to the much more difficult cases{
and (\,p), similar to (v,n) and (\,n). Electromagnetic mass
models are subcases, often spoiled by negative pressure. The
pointlike idea seems to be viable only for CD, leading to flat
Whenp,=0 this becomes spacetime when the pressure does not vanish. The generali-
zation of uncharged solutions firmly occupies the cases
(\,9), (p,q), and (v,q). Models withn=—1 are intimately
related to the soluble caset —1 and are much richer than
their traditional protagonist, the de Sitter solution. The other

charge function are singular at the origin. This solution wag"0dels with negative pressure, which seem worth being
derived in Ref.[42] and rediscovered in Ref77]. It was Studied, are the generalizations of ESU witk: —1/3. Fi-
generalized by Tikekaf43] whose solution belongs to the nally, the Weyl-type relations, so successful in electrovac and
(Y,n) case and is singular at the origin too. Another generCD environments, seem rather out of place in a “pressur-
alization was offered in Ref.44] but it alters many of its ized" perfect fluid.

1
ka=5[(1—ko)2+ 4k ]2

y2:C1rl*k0+2k3. (155)

It can be checked that-1k,+2k;>0. We have included
only the solution nondivergent at=0. The density and the

properties, including the equation of state. Another advantage of this classification is that it delin-
Let us discuss finally theAnsatz(35), imposed by the eates the degree of difficulty and the most convenient points

condition of constant), as in Sec. lll. Introducinge=ar?  for attack of the problem. The easiest cases seem ta b (

turns Eq.(25) into and (v,Y). If we insist on authentic fluid characteristics and

not on their combinations, then (p) and (v,q) are the best
B candidates. On the other hand, the most difficult grg)

yx+Dy=0, (156  anq (n,q), which seem to be accessible only numerically.

The most unpredictable case is probablyx), since there is
KPo no control of exactly those characteristics which must satisfy
3n+1- —) (157)  the majority of regularity and positivity conditions.

a X AN .
A different division is between general and special cases.

This is once again the hypergeometric equation and its solAs was noticed in the introdyction, a known solution belongs
tions depend on the sign @. Particular cases are the de (© @ny of the general cases; a solution ofd) may be writ-
Sitter solution and the ESU. There are many elementary sd€n s @X.,p) or even as a4, p) solution. Only the simplic-

lutions but they either have singularities or it is impossible tolty Of two of the five functions/, X, p,p,q betrays the starting
ensure that botlp andg? are positive. point. The special cases that we discussed, apart from the

Ansatz(35), are essentially threg:+p=0 and (\,n),(»,n).
All of them have a linear equation of state. It should be
mentioned that all integrable uncharged solutions withjthe

Charged static perfect fluids have attracted considerabliaw found in Ref.[51] have their charged generalizations
less attention than the uncharged ones, the number of paperith p,#0 and, hence, possess a boundary. The case
being roughly an order of magnitude smaller. The Introduc-=0, pe=0 represents CD and arises as an electrification of
tion hints how diverse have been the approaches to thethe trivial uncharged dust solutigfiat spacetimg which is
study. Charged dust occupies the first place in popularityseen from Eqs(63),(64). Its boundary may be put anywhere,
The rest is a mixture of generalizations: of the Schwarzschilgincep=0 everywhere. The case=—1 generalizes the de
idea about incompressibility, with the limiting case of van- Sitter solution into a bunch of new solutions, characterized
ishing density and electromagnetic mass models, a generalpy the mass function, subjected to several mild restrictions. It
zation of the idea about vacuum polarization which bringswas completely solved in Sec. IV. The de Sitter solution
forth the de Sitter solution, a generalization simply of well- appears also as a special case in Sec. X. The option
known uncharged solutions like those of Adler, Kuchowicz, —1/3 in the uncharged case is a mark of the ESU. It appears
Klein, Mehra, Vaidya-Tikekar, and others, a generalization ofin Sec. VIl whenb=0 in Eq.(103. The ESU appears also as
Weyl-type connections, well studied in the electrovac case.the special clas® =0 in Sec. X. The case=—1/5 is spe-

In this paper we have tried to show that the charged caseial in the charged theory too, but its metric is singular as
has a life of its own when subjected to a natural classificationwas mentioned in Sec. VII. The KT solution is generalized in
scheme. Surprisingly, in many respects it looks simpler tharEq. (155). In the uncharged case these exhaust the integrable
the uncharged case. The presence of the charge functiamases of a complicated Abel differential equation of the sec-
serves as a safety valve, which absorbs much of the fineend kind. In the charged case it is replaced by a linear first-
tuning, necessary in the uncharged case. The general formarder Eq.(18), which has many other solutions, discussed in

n+5
2+ 1)~ n+1

X(X_ 1)yxx+

1

D=2+ D)

XI. DISCUSSION AND CONCLUSIONS
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Sec. VII, or by the linear second-order E85), discussed in  solution which creates a halo around charged fluid balls and
Sec. X. may postpone their junction to a RN solution.

From a mathematical viewpoint, the charged case delivers (4) The solutions of Korkina-Durgapal possess realistic
a surprising variety of equations like those of Euler, Ber-charge generalizations given by Eg88)—(90).
noulli, Riccati, Emden-Fowler, and Abel, and the hypergeo- (5) Fluids with linear equations of state are integrable for
metric equation. The cases containkgjuickly lead to spe- anyn as seen from Eq€18),(25),(28),(97)—(100. Elemen-
cial functions whose spectrum is also rich: Ei, cn, Besselfary solutions may be found by several simplification tech-
hypergeometric, and incomplegfunctions, Jacobi, Gegen- niques. Physically realistic is an infinite series of models
bauer and Chebyshev polynomials, etc. Therefore, a morgiven by Eqs(104)—(106). The status of the model given by
thorough study would require computer simulations of spe£q. (111) is still unknown.
cial functions, which are easier than purely numeric simula- (6) The case ¢,p) is closely connected tor(n) and is
tions. much more difficult than its companion with constarg,

From a physical viewpoint, the most interesting resultseven when the density is constant or zero.
are, in our opinion, the following. (7) The (p,q) case discussed in ReR27] is incomplete

(1) The case of constaﬁtg is solved by a simple algo- and has errors. It is treated in detail in Sec. IX and its con-
rithm involving algebraic operations, one differentiation andnection with Ref.[6] is elucidated. It has several realistic
one simple integration upon a generating functi9rwhich ~ subcases, but electromagnetic mass models all seem to have

satisfies a few simple inequalities, E436)—(38).

negative pressure. A formal but intriguing parallel is drawn

(2) The charged de Sitter case is completely soluble irto star models with simple spatial geomefAg].

terms of the mass or the charge function, E@kl)—(44).

(8) Solutions of the case\(n) with constantT] are ex-

There is a generalization with positive pressure given byressed in hypergeometric functiofsee Eqs(156),(157)].

Egs.(52)—(54).

All degenerate elementary solutions have either negative

(3) The general solution for a given pressure consists opressure or singularities.

three contributions ta@; from regular CD, from general CD,
and from the pressuiisee Eq.(56)]. There is a general CD

A more detailed version of the present paper can be found
in Ref. [78].
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