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Static charged perfect fluid spheres in general relativity
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Interior perfect fluid solutions for the Reissner-Nordstro¨m metric are studied on the basis of a new classi-
fication scheme. It specifies which two of the characteristics of the fluid are given functions and accordingly
picks up one of the three main field equations, the other two being universal. General formulas are found for
charged de Sitter solutions, the case of a constant energy component of the energy-momentum tensor, the case
of known pressure~including charged dust!, and the case of a linear equation of state. Explicit new global
solutions, mainly in elementary functions, are given as illustrations. The known solutions are briefly reviewed
and corrected.
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I. INTRODUCTION

The unique exterior metric for a spherically symmet
charged distribution of matter is the Reissner-Nordstro¨m so-
lution. Interior regular charged perfect fluid solutions are
from unique and have been studied by different authors.
case of vanishing pressure@charged dust~CD!# has received
considerable attention. The general solution, in which
fluid density equals the norm of the invariant charge dens
was presented in curvature coordinates by Bonnor@1#. The
proof that this relation characterizes regular CD in equil
rium, i.e., in the general static case, was given later@2,3#. In
the spherically symmetric case another proof was propo
in Ref. @4#. Concrete CD solutions were studied in the
coordinates@4,5#. The generalization of the incompressib
Schwarzschild sphere to the charged case with constanT0

0

was also undertaken in a CD environment@6#. Charged dust,
however, has been investigated more frequently in isotro
coordinates, since these encompass the entire static cas
allow us to search for interior solutions to the more gene
Majumdar-Papapetrou electrovacuum fields@7,8#. In both co-
ordinate systems there is a simple functional relation
tweeng00 and the electrostatic potential. In isotropic coord
nates there is one nonlinear main equation@7,9# which has
been given several spherical@10–13# and spheroidal
@11,12,14# solutions. One of them coincides with the gene
static conformally flat CD solution@15#. These CD clouds
may be realized in practice by a slight ionization of neut
hydrogen, although the necessary equilibrium is rather d
cate. They have a number of interesting properties: th
mass and radius may be arbitrary, very large redshifts
attainable, their exteriors can be made arbitrarily near to
exterior of an extreme charged black hole. In the sphero
case the average density can be arbitrarily large, while
any given mass the surface area can be arbitrarily sm
When the junction radiusr 0 shrinks to zero, many of thei
characteristics remain finite and nontrivial. One might ev
entertain the idea of a pointlike classical model of elect
were it not for the unrealistic ratio of chargee to massm @1#.

Recently, new static CD solutions were found, in partic
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lar with a density which is constant or is concentrated on t
shells @16,17#. In the spherically symmetric case a relatio
has been established with solutions of the sine-Gordon
the lf4 equations@18#.

The necessary condition for a quadratic Weyl-type re
tion has been derived also for perfect fluids with nonvani
ing pressure@19,20#. However, in this case many other d
pendencies between the electrostatic and the gravitati
potential are possible, even when combined with a cons
T0

0 @21#.
The original Schwarzschild idea of constant density h

also been tested in the charged case for a perfect fluid@22–
25# or for an imperfect fluid with two different pressures@1#.
An electromagnetic mass model with vanishing density w
proposed in Ref.@6#. Unfortunately, the fluid has negativ
pressure~tension!. Although the junction conditions do no
require the vanishing of the density at the boundary, this
true for gaseous spheres. A model with such a density
proposed in both the uncharged and the charged case@26,27#.

Another idea about the electromagnetic origin of the el
tron mass maintains that, due to vacuum polarization,
interior has the equation of stater1p50, wherer is the
density andp is the pressure. This leads to tension, eas
junction conditions, and realistice andm @28–31#. It can be
combined with a Weyl-type character of the field@32#. The
experimental evidence that the electron’s diameter is
larger than 10216 cm, however, requires that the classic
models should contain regions of negative density@33,34#.
Probably an interior solution of the Kerr-Newman metric
more adequate in this respect.

The presence of five unknown functions and just th
essential field equations allows one to specify the metric
solve for the fluid characteristics@35#. This is impossible in
the uncharged case. Another approach is to electrify som
the numerous uncharged solutions. This was done for on
the Kuchowicz solutions@36# in Ref. @37#. Two other papers
@38,39# build upon the Wyman-Adler solution@40,41#. Thus
a charged solution is obtained, which has an approxima
linear equation of state whenm/r 0 is small. In Refs.@42–44#
generalizations of the Klein-Tolman~KT! solution @45,46#
were performed. Recently, static uncharged stars with sp
geometry depending on a parameter@47,48# have been gen-
eralized to the charged case@49#. General transformation
©2002 The American Physical Society01-1
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TABLE I. Summary.

Section Cases New solutions, equations Old solutions, refere

II ( r,p),(p,q) None None
III ( l,n),(l,Y) ~36!–~38! @21,35#
IV ( l,n521) ~41!–~44!, ~49!, ~55! @28,29,31,32#
V (n,p) ~56!–~58!, ~75!–~78!, ~81!, ~84!–~87! @1,4–6,10–13,15–18,59#

VI ( n,q) ~92!–~94! @38,39,63–67#
VII ( n,n) ~105!,~106!, ~108!–~110!, ~111!–~114! @36,53#
VIII ( n,r) ~117!, ~118! None
IX ( l,r),(l,q),(r,q) ~136!–~139!, ~145!,~146! @6,22,23,25–27,37,49,64#

X (l,n) ~154!, ~156! @42–44,77#
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connecting uncharged and charged solutions was introdu
in Ref. @50#.

The purpose of the present paper is to present a new
simple classification scheme for charged static spheric
symmetric perfect fluid solutions. The calculations in ea
case are pushed as far as possible and general formula
given in many instances. The known solutions are review
and compartmentalized according to this scheme in orde
illustrate general ideas, without being exhaustive. New so
tions are added where appropriate. The intention has bee
stick to the simplest cases and remain in the realm of
ementary if not algebraic functions. The emphasis is, ho
ever, on the general picture, which appears unexpectedly
and simpler than in the uncharged case.

The metric of a static spherically symmetric spacetime
curvature coordinates reads

ds25endt22eldr22r 2dV2, ~1!

wheredV2 is the metric on the two-sphere andn,l depend
on r. The fluid and its gravitation are described by five fun
tions depending on the radius:l,n,r,p, and the charge func
tion q, which measures the charge within radiusr. There are
only three essential field equations; hence, two of the ab
characteristics must be given. We shall classify solutions
cording to this feature. For example, (n,l) is the case of a
given metric and the other three fluid characteristics
found from the equations. This does not mean that soluti
are distributed among groups that do not overlap. Th
(r,q) is a completely general case—any solution, afterr and
q are known, may be put into this class. The essence is thr
and q2 are given functions and there is control over the
they can be chosen regular, positive, and comparativ
simple. Then the other three functions are usually more c
plex and are not always physically realistic.

In Sec. II the Einstein-Maxwell equations are organiz
into three main and two auxiliary ones. Two of the ma
equations are universal for all cases; the third one va
from case to case. Cases with givenn have linear first-order
differential equations fore2l. Cases with givenl have lin-
ear second-order equations foren/2 or nonlinear first-order
equations forr1p. These results hold also for fluids with
linear equation of state. In the cases (r,p) and (r,q) the
difficulties are discussed, that prevent their analytical tre
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ment. The junction conditions are given in general form a
a reasonable set of physical requirements is included.

In Table I a summary is given of the cases discussed,
known solutions which are reviewed, and the new gene
and particular solutions. They have been checked by c
puter for realistic properties.

The parametern designates the linear equation of sta
Eq. ~17!, which represents a relation betweenr andp, while
Y[r1p. Cases that containq are direct generalizations o
uncharged solutions depending usually on a parameter. A
some reformulation the same property is shared by the c
of charged dust (n,p50) and electrified de Sitter solution
(l,n521).

Section XI contains some discussion and conclusions

II. MAIN EQUATIONS AND CLASSIFICATION

The Einstein-Maxwell equations are written as

kT0
0[kr1

q2

r 4
5

l8

r
e2l1

1

r 2
~12e2l!, ~2!

kp2
q2

r 4
5

n8

r
e2l2

1

r 2
~12e2l!, ~3!

kp1
q2

r 4
5e2lS n9

2
2

l8n8

4
1

n82

4
1

n82l8

2r D , ~4!

where the prime means a derivative with respect tor andk
58pG/c4. We shall use units whereG5c51. The charge
function is obtained by integrating the charge densitys. We
shall use, however,q as a primary object and thus

ks5
2q8

r 2
e2l/2. ~5!

Whensel/25const, q;r 3, the case of the so-called con
stant charge density. Spherical symmetry allows only a ra
electric field with potentialf given by

F015f852
q

r 2
e(n1l)/2. ~6!
1-2
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Equation~2! may be integrated by the introduction of th
mass function

M ~r !5
k

2E0

r

r 2T0
0dr5

k

2E0

r S r1
q2

kr 4D r 2dr, ~7!

and gives

z[e2l512
2M

r
. ~8!

This can be rewritten as

kr1
q2

r 4
5

2M 8

r 2
5

1

r 2
~12z2rz8!, ~9!

and constitutes the first of our main equations. The secon
obtained as a sum of Eqs.~2! and ~3!:

k~r1p!5
e2l

r
~n81l8!5

z

r
n82

z8

r
. ~10!

The third main equation will not be Eq.~4! but another
combination of Eqs.~2!–~4!, which varies from case to cas
One can transform Eqs.~2!–~4! into expressions forp,q,r:

2kp5e2lS n9

2
2

l8n8

4
1

n82

4
2

l8

2r
1

3n8

2r
1

1

r 2D 2
1

r 2
, ~11!

2q2

r 4
5e2lS n9

2
2

l8n8

4
1

n82

4
2

l8

2r
2

n8

2r
2

1

r 2D 1
1

r 2
, ~12!

2kr5e2lS 2
n9

2
1

l8n8

4
2

n82

4
1

5l8

4r
1

n8

2r
2

1

r 2D 1
1

r 2
.

~13!

These equations may be written as linear first-order eq
tions for z, suitable for the cases (n,q), (n,p), and (n,r).
Introducingy5en/2 we have

~r 2y81ry !z8522~r 2y92ry82y!z22y1
4q2

r 2
y,

~14!

~r 2y815ry !z8522~r 2y92ry81y!z12y24krr 2y,
~15!

~r 2y81ry !z8522~r 2y913ry81y!z12y14kpr2y.
~16!

In the uncharged case the prescription of an equation
state makes the system of field equations extremely diffi
to solve. This is true even for the simplest realistic line
equation of state

p5nr2p0 , ~17!
10400
is

a-

of
lt
r

wheren is a parameter taking values in the interval@0,1# for
physically realistic solutions, whilep0 is a positive constant
allowing the existence of a boundary of the fluid wherep
50. Whenp050 we obtain the popularg law ~with notation
n5g21). In this case Eqs.~2!–~4! with q50 lead to an
Abel differential equation of the second kind independen
of the approach or the coordinate system@51#. It is soluble in
few simple cases. Almost all of the few known solutions
the more general Eq.~17! may be obtained by imposing
simpleAnsatzon l which makes the system overdetermin
@52#. Therefore, it is surprising that in the more compl
charged case fluids satisfying Eq.~17! are subject to a linea
equation, similar to Eqs.~14!–~16!. Substituting Eq.~17!
into Eq. ~10! and replacing the resulting expression forr in
Eq. ~15! yields

S r 2y81
5n11

n11
ry D z8522S r 2y91

32n

n11
ry81yD z

12y2
4kp0

n11
r 2y. ~18!

We call this case (n,n). Equation~18! was derived in Ref.
@53# when p050. Equation~17! is a privileged one, due to
its linearity. Another realistic equation of state, namely, t
polytropic one, readsp5nr111/k. It causes the appearance
radicals in Eq.~15! and leads to nonintegrable equations.

Equations~14!–~16! and ~18! may be written in the gen-
eral form

gz85 f 1z1 f 0 , ~19!

whose quadrature is

z5eF~C1H !, ~20!

F5E f 1

g
dr, H5E e2F

f 0

g
dr. ~21!

Here and in the followingC will denote a generic integration
constant. They may be written also as linear second-o
differential equations fory, useful in the cases (l,q), (l,r),
(l,p), and (l,n):

2r 2zy91~r 2z822rz!y81S rz822z122
4q2

r 2 D y50,

~22!

2r 2zy91~r 2z822rz!y81~5rz812z2214krr 2!y50,
~23!

2r 2zy91~r 2z816rz!y81~rz812z2224kpr2!y50,
~24!
1-3
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2r 2zy91S r 2z812
32n

n11
rzD y8

1S 5n11

n11
rz812z221

4kp0

n11
r 2D y

50. ~25!

The coefficient before the second derivative is one and
same in all cases. Equation~22! is the generalization to the
charged case@37,39# of the Wyman equation@40#. Obvi-
ously, the casen521 is not covered by Eqs.~18!,~25!.

One can find first-order differential equations also for t
cases (l,*), based on the well-known Tolman
Oppenheimer-Volkoff~TOV! equation@46,54#, generalized
to the charged case@29#:

kp852k~r1p!
2M1kpr32q2/r

2r ~r 22M !
1

~q2!8

r 4
. ~26!

We can tradeq in Eq. ~26! for r andl by using Eq.~9!. The
result is a Riccati equation forY:

Y852
r

2
elY21

l8

2
Y24k

r

r
1

2

r 4
~r 2M 8!8. ~27!

It marks another way to solve the cases (l,r),(l,n521).
Its solution yields for the pressurekp5Y2kr. Equation
~27! is a nonlinear but first-order companion of Eq.~15!. In
somewhat different notation it was derived in Ref.@43#. Us-
ing Eq. ~9! and the definition ofY we find Riccati equations
for the cases (l,q), (l,p), and (l,n) with the same coeffi-
cients beforeY8 andY2. In the last case it reads

Y852
r

2
elY21S l8

2
2

4

~n11!r DY

2
4kp0

~n11!r
1

2

r 4
~r 2M 8!8. ~28!

These equations may be transformed into linear second-o
equations by a change of variables fromY to y and we obtain
exactly Eqs.~22!–~25!. In this process we have exchangedY,
which is the sum of the pressure and the density, fory, which
is part of the metric.

So far we have reformulated the original system of E
~2!–~4! into Eqs.~9!,~10! and a third equation, presented
many different forms, adapted to the cases of the propo
classification. We have briefly discussed the ca
(l,n),(l,*),(n,*). The three remaining cases (r,p), (r,q),
and (p,q) are the most natural ones since one prescribes
of the fluid characteristics, hoping that the third one and
metric will be regular and reasonable. The case (r,q) is eas-
ily reduced to (l,q) because of Eq.~9!. In the case
(r,p), Y is also known and Eq.~27! becomes an intricate
nonlinear, second-order equation forM which is not simpler
than the TOV equation. It seems that it can be dealt with o
numerically.
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The third main equation for the case (p,q) is obtained in
the following way. Let us replace the density in the TO
equation~26! with its expression from Eq.~9!. After some
tedious manipulations, the following equation forM is
found:

~M1g0!M 85 f 2M1 f 3 , ~29!

whose coefficients are functions ofp andq. There is a stan-
dard procedure for the solution of such equations@51,55#. It
consists of two changes of variables which bring them to
Abel equation of the second kind

vvz2v5 f ~z!, ~30!

Its integrable cases are few, depend on the shape off (z), and
are tabulated in Ref.@55#.

As a whole, the most attractive are the mixed cases (n,*)
where one fluid characteristic and one metric component
specified.

The five functions that describe the fluid together with
gravitational field should satisfy some physical requiremen
Equations~7!,~8! show that at the centerM (0)50 andel

51. The density and pressure should be positive and mo
tonically decreasing toward the boundary. It is obvious t
q2 should be positive, too. The boundaryr 0 of the fluid
sphere is determined by the relationp(r 0)50 where a junc-
tion to the Reissner-Nordstro¨m ~RN! metric

en5e2l512
2m

r
1

e2

r 2
~31!

should be performed. The metric andn8 must be continuous
there. This leads to the expressions

m

r 0
512enS 11

r 0n8

2 D5
M ~r 0!

r 0
1

q2~r 0!

2r 0
2

, ~32!

e2

r 0
2

512en~11r 0n8!5
q2~r 0!

r 0
2

. ~33!

The conditione5q(r 0) follows from the vanishing of the
pressure, and vice versa.

Solutions satisfying the above conditions~which are al-
ready rather nontrivial! are called in the following physically
realistic. Some other, more stringent requirements, are
cussed in Refs.@56–58#. The most important of them is 0
<(dp/dr)1/2<1, which means that the speed of sound
positive and causal. One has control over this character
in CD and models with linear equations of state. The c
(n,q), which is a generalization of uncharged solution
shares their behavior for smallq. In other cases the expres
sions for density and pressure may be so complicated tha
fulfillment of this requirement is hard to estimate.

III. THE CASES „l,n… AND CONSTANT T0
0

In the case (l,n) Equations~11!–~13! should be used to
find q, p, andr. This is the simplest case but control ov
1-4
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pressure and density is completely lost and one must pro
by trial and error. Krori and Barua@35# have given the solu-
tion

l5a1r 2, n5a2r 21a3 , ~34!

whereai denote generic constants of a known solution. Th
are fixed by the junction conditions. The solution is nons
gular and the positivity conditions are satisfied.

Equations~7!,~8! show that the generalized Schwarzsch
conditionT0

05const determinesl:

e2l512ar2, ~35!

where a is a positive constant. We have the freedom
choose one more function. In Ref.@6# the conditionp50
was further imposed. We shall review this solution in Sec
In Ref. @21# some relations betweenf andn were utilized.
They can be arbitrary in the perfect fluid case, so we do
base the classification on such criteria. One should use
stead Eqs.~22!–~25! or Eq. ~27!. The simplest expression
are obtained in the case (l,Y) when Eq. ~27! is used to
determiner:

4kr52rY82
r 2Y2

2~12ar2!
1

arY

12ar2
112a. ~36!

Thenkp5Y2kr and

q25r 4~3a2kr!5
r 5

4 FY81
rY~Y22a!

2~12ar2!
G . ~37!

The functionn is determined by a simple integration fro
Eq. ~10!:

n85
r

12ar2
~Y22a!. ~38!

This is an advantage over the second-order equations~22!–
~25!. Equations~35!–~38! solve the problem in a minima
algebraic way. Several positivity conditions follow for th
master functionY and forr: 3a.kr,Y.2a,Y.kr,Y8,0.

In order to illustrate how the above scheme works o
may take any of the solutions elaborated upon in Ref.@21#,
extractY, and check how the above equations and inequ
ties are satisfied. The simplest case has

Y52a1a1~12ar2!1/2. ~39!

Of course, in any of the cases (l,*) we can study the
subcase given by Eq.~35!. This will be done in the following
sections.

A similar problem arises whenn is given. Which function
should be prescribed in addition in order to have the simp
algorithm for generating solutions? Again,Y is the best
choice. This is seen by taking the difference of Eqs.~23!,~24!
or reformulating Eq.~10!:

yz822y8z1ryY50. ~40!

This equation is much simpler than any of Eqs.~14!–~16!.
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IV. CHARGED DE SITTER SOLUTIONS AND THEIR
GENERALIZATION

The uncharged case is a special integrable case with li
equation of state~17! andn521, p050, which is equiva-
lent to the de Sitter solution. The charged case is also c
pletely solvable. The third main equation is Eq.~27!, which
becomes

kr5
~r 2M 8!8

2r 3
5

1

2r 2
~2M 81rM 9!. ~41!

Equation ~10! gives n52l. This is a feature also of the
exterior RN solution. Equation~9! yields

q252
r 5

2 S M 8

r 2 D 8
5

r

2
~2M 82rM 9!. ~42!

Thus, whenM is given, all other unknowns follow from
simple formulas. Equation~42! allows one also to takeq as a
basis:

kr52a02
q2

r 4
24E

0

r q2

r 5
dr, ~43!

M522E
0

r

r̄ 2E
0

r̄ q2

r̆ 5
dr̆dr̄1

a0

3
r 3. ~44!

Here a0 is some positive constant and clearlyq
5r 21«q0(r ) where «.0 and q0(0)5const. Equations
~43!,~44! demonstrate the process of ‘‘electrification’’ of d
Sitter space. The bigger the charge function, the lower
density, until some pointr 0 is reached wherer(r 0)50 and
consequently the fluid sphere acquires a boundary. We
ready know thatM.0. Equations~41!,~42! show thatr and
q2 are both positive only whenM 8.0 and 2M 8>r uM 9u.
The equality holds at the boundary, whereM 9(r 0),0. The
charge and the mass of the solution follow from the junct
conditions~32!,~33!

e252r 0
2M 8~r 0!, m5M ~r 0!1r 0M 8~r 0!. ~45!

Obviously, there is an abundance of solutions sinceM and
its first two derivatives have to satisfy a few simple inequa
ties. Four solutions are known in the literature. TheT0

0

5const condition leads toq50 in the interior and conse
quently to the de Sitter solution, which has constant dens
One can introduce, however, a surface charges;d(r 2r 0)
which givesq5u(r 2r 0)e, r5r0, and

z512
k

3
r0r 2. ~46!

This is the solution of Cohen and Cohen@28,30#. Another
solution @29# has
1-5
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B. V. IVANOV PHYSICAL REVIEW D 65 104001
M5
k2

360
s0

2r 3~5a1
222r 2!. ~47!

Heres0 is the constant charge density, whilea1 is related to
a05(k2/24)s0

2a1. This is one of the electromagnetic mode
of the electron. Whens0→0 the limit is flat spacetime. We
have shown, however, thata0 is not obliged to vanish when
q50 so that, in general, the case (l,n521) is an electric
generalization of de Sitter spacetime. The natural genera
tion of flat spacetime is the CD solution, discussed in
next section. Another solution withM similar to the one in
Eq. ~47! and satisfying the relationkp5q2/r 4 was given in
Ref. @31#. It has zero total charge and a simple expression
n, coming from Eq.~3!.

A fourth solution has been found by Gautreau@32#. It has

2M5c1
2r 2

c1
2a2

2

r
sin2

r

a2
~48!

and q52r 2f8. Many other solutions are possible and w
give one simple realistic example, a variation of the solut
in Ref. @29#:

M5a~r 32r 4!, z5122ar212ar3, ~49!

kr52a~325r !, q252ar5. ~50!

The junction atr 053/5 givesm5ar0
3 , e252ar0

5.
The caseY50 is easy because Eq.~27! collapses into the

simple relation~41!. A generalization can be made by takin
Eq. ~41! as a basis. Thenq is given again by Eq.~42!, while
Eq. ~27! becomes

Y852
r

2
elY21

l8

2
Y. ~51!

This is a Bernoulli equation and, unlike the Riccati equati
it is readily soluble in quadratures. Its general solution giv
an expression for the pressure

kp5
el/2

C1 1
2 E e3l/2rdr

2kr, ~52!

whereC215Y(0). When C→` we return to the previous
caseY50. Fortunately, Eq.~10! can be integrated explicitly
too and a closed expression is obtained forn:

en/25A21e2l/2S 11
1

2CE0

r

e3l/2rdr D , ~53!

A511
1

2CE0

r 0
e3l/2rdr . ~54!

The second equation follows from the junction condition
Thus, every functionM leads to two solutions: one with
trivial Y and one with nontrivialY, satisfying Eq.~51!. The
trivial solution has the disadvantage of negative press
10400
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e
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Equation~52! suggests that in the nontrivial case solutio
with positive pressure may exist.

Let us take Eq.~47! with somewhat different constants:

M5br3~12br2!, ~55!

whereb.0. Whenx[r 2,2/5b the density is positive and
decreasing. The pressure is positive at the center w
1/4b,C,5/12b. Let us chooseb50.01 andC540. Thenp
has a maximum atx050.3 and a root atx052.5. This is a
semirealistic interior solution withe255b2x0

3 and mass
given by Eq.~45!.

V. THE CASE OF GIVEN PRESSURE: CHARGED DUST

In this section we discuss the cases (n,p) and briefly
(l,p). The pressure is considered a known positive funct
which decreases monotonically outward and vanishes at
boundary of the fluid sphere. The simplest case isp50. This
represents charged dust. The case (n,p) is much easier since
the third main equation~16! is linear and first order. In ad
dition, in Eq. ~19! f 1522g8. This allows us to obtain a
compact expression forz

z5
1

~11rn8/2!2
1

C

r 2en~11rn8/2!2

1
4k

r 2en~11rn8/2!2E0

r S 11
rn8

2 Denr 3pdr. ~56!

The knowledge ofn allows one to satisfy two of the junction
conditions by choosing a function continuous atr 0 together
with its derivative. Equations~9!–~10! provide an expression
for q in terms of the knownn,p, and withz(n,p) from Eq.
~56!:

q2

r 2
512z~11rn8!1kpr2. ~57!

The density follows from Eqs.~10! and ~56!:

kr5
2z

r 2
2

2

r 2~11rn8/2!
1

2zn8

r
1

zn8

r ~11rn8/2!

1
zn9

11rn8/2
2

4kp

11rn8/2
2kp. ~58!

Whenr→0, z→1, and the third term on the right produce
a pole unlessn8→2n0r , which meansn9→2n0. Then rn8
→0 and the poles in the first two terms cancel. The last t
terms approach negative constants. In order to compen
them and have a positive density at the center,n0 must be a
positive constant, and the inequality 8n0.5kp(0) should
hold. Another consequence is thaten is an increasing func-
tion in the vicinity of the center. Sincee2l is a decreasing
function, which starts from 1 and equalsen at r 0, we have
en(0),1. Equation~56! shows thatz has a pole atr 50
unlessC50.
1-6
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Now we can understand the physical meaning of
terms inz. The third term represents the contribution fro
the pressure to the metric. Whenp50,z is still nontrivial and
represents the general CD solution. It has a pole at the
ginning of the coordinates and should not be used th
WhenC50 only the first term remains and this is the regu
CD solution in curvature coordinates@1#. The intricate proofs
that this is the most general regular solution@2,4# are re-
placed here by the obvious conditionC50. The second term
in Eq. ~56! may be induced in principle by the third if th
lower limit of the integral is changed. The first term may
absorbed by the third if one makes the shiftkp→kp
11/2r 2.

Let us discuss in detail first the case of regular CD.
provides an excellent illustration of the classificati
scheme. In the case (n,p50) Eqs.~5!,~6! and~56!–~58! give

el5S 11
rn8

2 D 2

, q5
r 2n8

2~11rn8/2!
, ~59!

kr5ks5

rn912n81
1

2
rn82

r ~11rn8/2!3
,

f52en/21f0 . ~60!

For the case (l,p50) we should use Eq.~59! to express
everything vial:

n85
2

r
~el/221!, q5r ~12e2l/2!, ~61!

kr5ks5
2

r 2 S e2l/22e2l1
r

2
l8e2lD . ~62!

These formulas involve only the first derivative ofl. The
case (q,p50) is explicitly solvable, unlike the general cas
(q,p):

el5
r 2

~r 2q!2
, M5q2

q2

2r
, ~63!

n85
2q

r ~r 2q!
, kr5ks5

2

r 3
~r 2q!q8. ~64!

The last formulas clearly demonstrate the electrification
flat spacetime, which is the trivial dust solution in the u
charged case. If we putp50 in Eq. ~29! we still obtain a
complicated Abel equation. One can check thatM, given by
Eq. ~63!, satisfies it. The most complicated case is (r,p
50). Introducingw via el5w22, Eq. ~61! gives

n85
2~12w!

rw
, q5r ~12w!, ~65!

while Eq. ~62! becomes an equation forw:
10400
e

e-
e.
r

t

f
-

rww852w21w2
k

2
r 2r. ~66!

This is an Abel differential equation like Eq.~29!. The pro-
cedure for its solution was described briefly after Eq.~29!
and brings it to its canonical form@51,55#. The set of density
profiles leading to integrablew is very restricted.

Several explicit dust solutions in curvature coordina
have been given. Efinger@5# studied the simple casee2l

54/9 in the presence of a cosmological constant. When
zero we have q5r /3 and singular en5a1r , r5s
54/9kr 2, F105

1
2 Aa1r 21/2. Florides illustrated his genera

discussion@4# with a power-law solutionq5a2r a313. Fi-
nally, in Ref. @6# the case of constantT0

0 was discussed. It
leads to Eq.~35! and its replacement in Eqs.~61!,~62!.

As was mentioned in the Introduction, most work on C
has been done in isotropic coordinates

ds25U22dt22U2~dr21r 2dV2!, ~67!

where the simple relationf56U21 holds and the only
equation to be solved is

U91
2

r
U852

k

2
U3r. ~68!

WhenU is given the density is readily determined from E
~68!. The function U225a1r 21a2 was used in Refs.
@10,15#. Another, more general function,

U511
a3

r 0
1

a3~r 0
k2r k!

kr0
k11

, ~69!

was studied fork52 in Ref. @12#, for k54 in Ref. @11# and
for general k in Ref. @13#. Recently, the functionU
5a4(sina5r)/r was studied@16,17#.

When r is given, it is convenient to transform Eq.~68!
into

UXX52
kr

2

U3

X4
, ~70!

whereX51/r . We may considerr(U) as a known function,
chosen to simplify this equation. One possibility, leading
Bessel functions, isr5a6 /U2 @16,17#. Other choices lead to
two-dimensional integrable models, like the sine-Gord
equation @18#. The metric ~67! also describes the regula
static CD with no symmetry. Then the case of constant fl
densityr0 is soluble in cn, one of the Jacobi elliptic func
tions, but the solution cannot be spherically symmetric.
the spherically symmetric case Eq.~70! becomes an Emden
Fowler equation, whose integrable cases are tabulated in
@55#. Equation~70! is not among them.

Let us go back to the curvature coordinates~1!, which are
more convenient when one wants to study also the cas
nonvanishing pressure. From the considerations about
regularity ofr given after Eq.~58!, it follows that the sim-
plest functionn would be n5n0r 2. This choice coincides
1-7
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with Eq. ~34! and leads to exponential functions and pro
ably to the error function in Eq.~56!. We shall choose a
different option,

en5~a1br2!k, ~71!

wherek is an integer, 0,a,1, andb.0. This Ansatzhas
been thoroughly studied in the uncharged case@56,58#. In
this section we takek51. The CD solution built on it has

z5S a1br2

a12br2D 2

, q5
br3

a12br2
, ~72!

kr5
2b~a1br2!~3a12br2!

~a12br2!3
. ~73!

Density is monotonically decreasing. The junction conditio
give

e5
br0

3

a12br0
2

, m5r 0~12a22br0
2!. ~74!

The conditionz5en at r 0 supplies the relationr 0
25(124a

1A118a)/8b, which ensures the obligatorye5m. The
right-hand side is positive whena,1, which is the case.

The main disadvantage of regular CD solutions is t
they possess a fixed ratioe/m which is unrealistic, especially
for classical electron models, and requires the extreme
solution as an exterior. Equation~56! tells us that when the
point r 50 is excluded, general CD solutions are possib
They have the following characteristics:

z5S 11
rn8

2 D 22S 11C
e2n

r 2 D , ~75!

kr5S 11
rn8

2 D 22S 11C
e2n

r 2 D n8

r
2

z8

r
, ~76!

q2

r 2
512

11rn8

~11rn8/2!2 S 11C
e2n

r 2 D , ~77!

f852en/2
@r 4n8224C~11rn8!e2n#1/2

2r ~r 21Ce2n!1/2
. ~78!

WhenC50 they reduce to Eqs.~59!,~60!. What is the physi-
cal significance of such solutions? Let us consider a cor
perfect fluid, occupying a ball with radiusr 0, with given n
andp. Thenz is determined from Eq.~56! with C50:

z5
1

~11rn8/2!2 F11
C~r !

r 2en G , ~79!

C~r !54kE
0

r S 11
rn8

2 Denr 3pdr. ~80!
10400
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At the junction z is equivalent to Eq.~75! where C5C0
[C(r 0). An observer cannot understand whether the inte
solution consists of perfect fluid or general CD since the o
imprint left by the pressure distribution inside is a consta
In principle, the RN metric should be taken as an exter
but there are no obstacles to taking a general CD metric
postponing the junction to RN till another pointr 1.r 0. Thus
we obtain a triple-layered model with a perfect fluid core
to r 0 ~zone I!, a halo of general CD fromr 0 to r 1 ~zone II!,
and the RN solution forr .r 1 ~zone III!. The metric compo-
nent z is given correspondingly by Eq.~79!, Eq. ~75! with
C0, and Eq.~31!. For this purpose we choose a continuo
~together with its derivative! function n in the region 0,r
,r 1. At the first junctionz is also continuous, while the
pressure drops to zero. The density is finite. In zone II
pressure remains zero, while the density continues to
crease. Finally, atr 1 the density also drops to zero~perhaps
with a jump! and a RN solution follows till infinity, making
the composite solution asymptotically flat. As seen from E
~76!,~77!, the constantC0 shifts e/m from 1, as a perfect
fluid solution occupying zones I and II would do.

This picture can be backed by an explicit example w
the Ansatz~71!. Since the details should not depend on t
form of p(r ) but only on the value ofC, we shall discuss
first zone II and its junction with zone III. In the interva
@r 0 ,r 1# we have

z5
~a1br2!@C01r 2~a1br2!#

r 2~a1br2!2
. ~81!

The total mass and charge are given by

m5r 1~12a22br1
2!, e25r 1

2~12a23br1
2!. ~82!

The junction condition atr 1 gives

C05m22e2. ~83!

This relation clearly shows the effect of pressure in zone I
the mass-charge ratio, not altered by the CD halo in zone
The result in zone I was found in Ref.@6#.

An example of a physically realistic solution is given b
a50.01, r 154.013AC0, r 053.588AC0, b50.075/AC0.
This proves the existence of CD solutions withueu/m5” 1.
They sustain the value ofC, obtained in zone I from a perfec
fluid solution with positive pressure. In Ref.@59# the same
question was studied in isotropic coordinates but the so
tions have negative density in the vicinity of the origin.

It seems that there are no solutions of the type (n,p.0)
in the literature. It must be stressed that this case is c
pletely general, unlike the cases with constantT0

0 or with r
1p50, discussed in the previous sections. Every perf
fluid solution may be reformulated as a (n,p) case. Let us
proceed with theAnsatz~71!. We base the discussion o
C(r ) as a fundamental object; hence, it is convenient to
lect a more involvedp leading to a simpleC(r ) given by Eq.
~80!. Let us take
1-8
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kp5
p02p1r 2

a12br2
~84!

and then

C~r !5r 4S p02
2

3
p1r 2D , ~85!

z5
~a1br2!2

~a12br2!2
F 11

r 2S p02
2

3
p1r 2D

a1br2
G , ~86!

q2

r 2
5

r 4

~a12br2!2 S b2bp02
1

3
ap1D , ~87!

wherez follows from Eq.~79! while q is calculated from the
general expression~57!. Here p0 and p1 are positive con-
stants, connected byp05p1r 0

2. The Ansatz~71! yields n0

5b/a and the conditionr(0).0 becomes 8b/5a.kp(0)
5p0 /a. This is weaker than a necessary condition for po
tive q2, b.p0. At the boundary the density is always pos
tive. We have alsop053C0 /r 0

4 and, using the numerica
values from the CD example, one can expressp0 and p1 in
terms ofC0, in addition tob, r 0, andr 1. It can be shown tha
for C.0.06r andq2 are positive and the solution is phys
cally realistic. Thus we have constructed explicitly a trip
solution of the type PF-CD-RN. This ends the discussion
case (n,p).

The case (l,p) relies on Eq.~24!. Even the simplest con
stantz leads to special functions or nonintegrable equati
for y whenp is chosen physically realistic.

VI. THE CASE „n,q…

The cases (n,q) and (l,q) comprise the most direct gen
eralizations of the numerous uncharged solutions. Settinq
50 one obtains one of them with the chosenAnsatzfor n or
l. As in the previous section, the case (n,q) is much simpler.
The third main equation is Eq.~14!. Now f 1 can be repre-
sented as a linear combination ofg8, g, and y. This is a
general result which holds for any of Eqs.~14!–~16!,~18!. In
this particular case we have

f 1522g81
8g

r
24y, h5E n8dr

11rn8/2
, ~88!

eF5
r 2e2h

en~11rn8/2!2
, ~89!

H52E enS 11
rn8

2 De22hr 23S 2q2

r 2
21D dr, ~90!

and z is given by Eq.~20!. We shall use theAnsatz~71!
wherek>1. In the uncharged casek51 leads to Tolman’s
solution IV @46#. The casek52 was discussed first by Wy
man @40# as an extension of Tolman’s solution VI and lat
10400
i-

f

s

was studied in detail by Adler@41#. A solution withk53 was
given by Heintzmann@60# ~see also Ref.@58#!. The general
class was studied by Korkina@61#, but her only explicit so-
lution was the one of Heintzmann. Later Durgapal@62# stud-
ied in detail the casesk5125. All of them satisfy the physi-
cal criteria used in this paper, but some have irregu
behavior of the speed of sound (dp/dr)1/2 and ofp/r.

Going to the charged case we have

e25q2~x0!,

m

r 0
511

11~k11!tx0

11~2k11!tx0
S e2

x0
21D , ~91!

wheret5b/a, x5r 2. Let us consider first the casek51.
Then

z5
11tx

112tx
~11Cx12xQ!, Q5E

0

xq2

x3
dx. ~92!

The pressure and the density are given by

kr5
t23C~11tx!

112tx
1

2t~11Cx!

~112tx!2

2
2~11tx!

112tx S 3Q1
2q2

x2 D 1
4txQ

~112tx!2
, ~93!

kp5
t1C13tCx12~113tx!Q

112tx
1

q2

x2
. ~94!

Whenq50 these expressions coincide with the pressure
the density from Refs.@46,62#. We havekr(0)53(t2C).
Let us chooseq25K2x3. Then the conditionp(x0)50 yields
a negative expression forC which means thatr(0) is posi-
tive. The conditionz5en at x0 definesa. Equation ~91!
yields e25K2x0

3 and we can expressc,a,e,m through
x0 ,t,K.

Let us consider next the casek52. Then Eqs.~89!,~90!
give

z511CeF1eFE 2~a1bx!q2dx

~a13bx!1/3x3
,

eF5
x

~a13bx!2/3
. ~95!

Whenq50 this is the result of Adler, who used the simp
fying assumptioneFH51 instead of theAnsatz~71!. When
q25K2x3 we obtain

z511
Cx

~a13bx!2/3
1

4a

5b
K2x1

2

5
K2x2. ~96!
1-9
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This is the corrected result of Nduka@38#, who wrote the
field equations with an error in the sign ofq2. In all his
resultsK2 should be replaced by2K2 and the conclusions
correspondingly altered.

TheAnsatz~71! with r 2 replaced byr or r 3 has also been
studied@63#. In another paper Singh and Yadav@39# simpli-
fied Eqs.~14!,~19! by demandingf 152 f 0. Letting q5Kr
they obtain the Euler equation. It has three types of solut
all of which are singular atr 50. If K50 the nonsingular
solution of Adler is again recovered.

Other solutions with singulary were discussed in Refs
@63–66#. In Ref. @65# a charged version~with constant
charge density! of Tolman’s solution V was obtained. Furthe
examples of (n,q) solutions are given in Refs.@66,67# but
their properties are not examined.

VII. THE CASE „n,n…

This is the case with givenn and the perfect fluid satis
fying the linear equation of state Eq.~17!. Realistic solutions
have 0,n<1 which means constant speed of sound a
causal behavior. Surprisingly, the charged case is m
easier than the uncharged one. The third main equation is
~18! with n5” 21. The functionsF andH read

eF5
r 2(a11)ebh1

en~A1rn8/2!2
, ~97!

H52E enS A1
rn8

2 D r ae2bh1S 12
2kp0

n11
r 2Ddr,

~98!

where

h15E n8dr

A1rn8/2
, A5

5n11

n11
, ~99!

a5
123n

5n11
, b5

4n~9n11!

~n11!~5n11!
.

~100!

We shall study the range 0<n<` and some negativen. The
casen521/5 demands special treatment commented u
at the end of the section. The casen521 was discussed in
Sec. IV. Each of the coefficientsa, b, andA has the same
limits when n→6`. When 0<n<` their ranges are
23/5<a<1, 1<A<5, 0<b<36/5. Expressions
~97!,~98! are generic for the cases (n,q),(n,n),(n,r). The
case (n,q), discussed in the previous section, is obtained
putting a523, b52, A51, changing the sign ofH,
and an obvious replacement forq instead ofp0. The case
(n,r) will be studied in the next section.

In the present case Eq.~100! shows thata11 is always
positive for nP@0,̀ #. Therefore,z will have a pole unless
C50. Hencez5eFH. After z is found, Eqs.~10!,~17! allow
one to extract the density from the metric
10400
n,

d
h
q.

n

y

kr5
1

n11 Fkp01
z

r S n82
z8

z D G . ~101!

It is more convenient to expressp andq from Eqs.~17! and
~57! respectively and lay all the difficulty in the calculation
on the density. Putting Eqs.~97!,~98! into Eq. ~101! we ob-
tain

~n11!kr5kp01
4kp0

~n11!~A1rn8/2!

1
2

r 2 F z

A
2

1

A1rn8/2
G1S 22

b

A1rn8/2
D zn8

r

1
z~rn8!8

r ~A1rn8/2!
, ~102!

which is an analogue of Eq.~58! and leads to similar con
clusions for n. The poles in the two terms in the squa
brackets cancel whenr→0 becausez→1 and n8→2n0r .
This condition makesr a well-defined function. We shall try
for n an Ansatzwhich generalizes the one in Eq.~71!:

en5~a1brs!k, ~103!

wheres>2 is not necessarily an integer. Whens.2 it can
be shown that at the center the relationr(0)13p(0)50
holds. This is exactly the equation of state for the Einst
static universe~ESU! @56,58#. The pressure is negative at th
center, which is unrealistic. Therefore we sets52. The inte-
gral for z is simplified considerably when

nk5
k1514Ak~2k11!

31k225
. ~104!

The first few values are n1'2.15, n2'0.53, n3
'0.39, n451/3. The first is beyond the physical range, t
fourth is an exact number. One cannot probe the region
,n`'0.21 with this method. A series of models is obtaine
parametrized byk. They have

z5

E ~11t !k21t (a11)/221@122/~n11!mt#dt

t (a11)/2~11t !k22@A1~A1k!t#
,

~105!

wheret5tr 2, m5kp0 /t. Equation~102! becomes
1-10
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~n11!
kr

t
5m1

4m~11t !

~n11!@A1~A1k!t#

1
2

t F z

A
2

11t

A1~A1k!t G
1

2kz

11t F22b
11t

A1~A1k!t G
1

4kz

~11t !@A1~A1k!t#
. ~106!

Now additional terms contribute tor(0) andp(0) and they
can be made positive by a proper choice oft and p0. The
pressure is given by Eq.~17! and the charge function by Eq
~57!, which becomes

tq25tF12
11~2k11!t

11t
z1

kp

t
t G . ~107!

An interesting case isk54 with n451/3 exactly. When
p050 andq50 this is the equation of state of pure incohe
ent radiation and the case is not integrable@51#. This specific
charged version, which is not the only possible one, howe
is integrable and assumingm52/3 we have

z5
11 2

3 t2 2
7 t32 1

9 t4

~11t !2~113t !
, ~108!

kp

t
5

519t

12~113t !
1

3~317t !z

2~11t !~113t !

2

7
3 13t1 9

7 t21 1
9 t3

4~11t !2~113t !
2

2

3
, ~109!

tq25tS 12
119t

11t
z1

kp

t
t D . ~110!

The pressure is positive, monotonically decreases, and
ishes att050.54. The charge density has a negative part. T
junction conditions yield a50.3, b50.16/r 0

2 , m
50.5r 0 , e50.45r 0. We havee/m,1. Probably, all mod-
els in the series have a range ofm where they are physically
realistic.

The method used to simplify Eq.~98! resembles the
Korkina-Durgapal method, which was extended to t
charged case (n,q) in the previous section. There are oth
ways to simplify the integral forz even whenk51. One of
them is to take againn51/3. Then a50, A52, b
53/2, g51/2. We have

z5
11t

t1/2~213t !3/2F2
1

4
~m2413mt !A~213t !t

1
41m

12
A3ln~3t111A3t~213t !!G , ~111!
10400
r,
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where the integration constant was chosen so thatz(0)51.
The pressure and the charge are given by Eqs.~17!, ~102!,
and ~107!:

kp

t
52

3~112t !

4~213t !
m1

9z

4~213t !

1
1

2t S z

2
2

11t

213t D , ~112!

tq25tS 12
113t

11t
zD1

kp

t
t2. ~113!

The pressure is well behaved for anym and vanishes att0.
However,q2 also has a zero, but att1, and becomes negativ
in a region wheret.t1. Unfortunately, for most values ofm
the inequalityt1,t0 holds, meaning thatq2,0 in some part
of the interior. This is grossly unrealistic. We have been u
able to find any realistic solution by computer simulation

Another case withk51 which leads to simple function
can be guessed from Eq.~100!. Whenn521/9, b[0. We
have alsoa53, A51/2, g51. Although the pressure is
negative, it is worth being discussed. We have

z5
11t

~113t !2 F11S 22
3

2
m D t2

27

8
mt2G . ~114!

When 0,m,4/27 the pressure monotonically increase
crosses thet axis, and forms a boundary of fluid with tensio
inside. Let us takem50. The charge functionq2 is positive
and increasing. The junction conditions givea50.55, b
50.11/r 0

2 , m50.23r 0 , e50.35r 0 where t050.2. This
solution resembles the classical models of the electron
Sec. IV.

Finally, some words should be said about the casen5
21/5, which is really very special. Let us choose the sim
Ansatz~71! for n. The case is formally soluble butz has
poles at the center and is ill defined. Whenp050 and q
50, this case is soluble@51#. It is connected by a Buchdah
transformation to the de Sitter solution withn521 @68,69#
and is best expressed in isotropic coordinates. This trans
mation, however, does not work for electrostatic fields a
probably is not applicable to the present case of a per
fluid plus an electrostatic field.

There are two papers that come near to the results of
present section. A solution with singulary, r, and p was
found in Ref.@53# whenp050. Another one is contained in
Ref. @38# which belongs to the (n,q) case and is mentione
in Sec. VI. Whenm/r 0 is small, the solution approximatel
satisfies Eq.~17! with n53/10, a value which is rather clos
to 1/3. Its connection to our solutions is not clear.

A final remark is in order. It may be tempting to take th
limit e→0 in one of the solutions obtained here and try
find analytic expressions for the at present nonintegra
cases ofg law uncharged solutions@51#. However, for the
Ansatz~71! used in this section, this leads tor 0→0 and to
flat spacetime. In the case of generaln, it seems that the
above limit will produce charged solutions with zero tot
1-11
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charge. This is suggested by the behavior ofs in some of the
models, namely, its change of sign in the interior. The pro
noncharged limit seems to beq(r )[0. Then, however, we
obtain the field equations of the uncharged fluid. Hen
nothing is gained in comparison with the three approac
described in Ref.@51#. They lead to Abel differential equa
tions of the second kind with few integrable cases.

VIII. THE CASE „n,r…

This case arises as a special limit of (n,n) when n
→`, p0→`. One sees from Eq.~17! that in this limit r
→r05p0 /n which can be made a finite constant. More ge
erally, the third main equation~15! is obtained from Eq.~18!
plus the changep0 /n11→r(r ). Equations~99!,~100! give
a523/5, A55, b536/5. The constantC in Eq. ~20! is
zero again in order to prevent a pole at the center. Equat
~97!–~99!

z5
2e365h3/5

r 2/5enS 51
rn8

2 D 2E en~51rn8/2!r 23/5

3e236h3/5~122krr 2!dr, ~115!

h35E n8dr

51rn8/2
. ~116!

The parametersn and p0 have been exchanged effective
for the density function and in this respect Eq.~115! re-
sembles Eqs.~89!,~90! from the (n,q) case. Whenr is con-
stant we obtain a generalization of the Schwarzschild inte
solution @70#. It is much more complicated than the oth
generalization with constantT0

0. As seen from Eq.~115!, the
caser50 is nontrivial and leads to purely electromagne
mass models.

Let us try again theAnsatz~103! for n. The method which
led to an infinite series of realistic solutions in the (n,n) case
is rather useless here even whens52. Therefore, we putk
51. Theng521/5 and

z5
11t

t1/5~516t !4/5E ~12~2kr/t!t !dt

t4/5~516t !1/5
. ~117!

When r5r0 the integrals bring forth the hypergeometr
function

z5
11t

S 11
6

5
t D 4/5FFS 1

5
,
1

5
,
6

5
;2

6t

5 D

2
kr0

3t
tFS 1

5
,
6

5
,
11

5
;2

6t

5 D G . ~118!

The charge is given by Eq.~113!, while the pressure reads

kp

t
5

2z

11t
22zt2

kr

t
. ~119!
10400
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Searching for an elementary solution, one may consi
some sophisticated density profile, leading to a simple in
gral in Eq. ~117!. Unfortunately we have found only solu
tions with q2,0.

IX. THE CASES „r,q…, „l,r…, AND „l,q…

Having in mind the results in the previous section, it is
wonder that the case (r,q), where there is control over th
evasive charge function, is much more popular in the lite
ture. Equation~9! easily relates this case to (l,r) and (l,q),
and Eq.~22! or ~23! may be used as a third main equatio
Like (n,q), these cases are direct generalizations of
charged cases. Equations~7!,~8! definez in terms ofr andq

z512
k

r E0

r

rr 2dr2
1

r E0

r q2

r 2
dr. ~120!

Equation~9! shows thatr is regular whenz21;r 2 for small
r. We accept theAnsatz

z512ar22br4. ~121!

It follows from Eq. ~120! when q5Kr l with l 52,3 andr
5r02r1r 2, where r0 ,r1 are non-negative constants. Th
Ansatzfor r goes back to Tolman’s solution VII. Whenl
52 andl 53 we have, respectively,

z512
1

3
~kr01K2!x1

kr1

5
x2, ~122!

z512
kr0

3
x1

1

5
~kr12K2!x2. ~123!

The total charge and mass are given by

e5Kx0
3/2, ~124!

m5
1

2
@a1~b1K2!x0#x0

3/2. ~125!

Whenr15” 0 this is a model of a gaseous sphere; both d
sity and pressure vanish at the boundary@26,27#. We have
r05r1x0. When r150, r05” 0 this is a generalization o
the incompressible fluid sphere forl 53 @22# or l 52 @23#.
Finally, whenr15r050 we come to a model with electro
magnetic mass@6#. The solutions given by Eqs.~46!,~47!
also belong to thisAnsatz. The caseb5” 0 appears to be sim
pler, due to a peculiarity in Eq.~22!, and leads to elementar
functions. Equation~35! demonstrates that the other caseb
50, belongs to the family of solutions with constantT0

0.
Equation~22! becomes in terms ofx

~12ax2bx2!yxx2S bx1
a

2D yx2S b

4
1

q2

2x3D y50.

~126!

The coefficient beforey is constant whenl 53 ~or K50).
Let us study this case first. Equation~123! gives
1-12
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d[2S b

4
1

q2

2x3D 5
1

20
~kr1211K2!. ~127!

A change of variables brings Eq.~126! to

yjj1dy50, ~128!

j5E
0

x dx

A12ax2bx2
. ~129!

This integral has several different expressions, but m
properties of the solutions depend only on the fact t
j(0)50, andj, andjx are positive. Equation~128! is easily
solved and the last function to be determined, the pressur
given by Eq. ~10!. At the junction the pressure vanishe
when

2yj~x0!5zx~x0! ~130!

is satisfied. The charge is given by Eq.~124!, while the mass
becomes

m5
1

2 Fkr0

3
1~6K22kr1!

x0

5 Gx0
3/2. ~131!

Whenr150 the mass is positive. Whenr15” 0 this assertion
still holds because thenr1x05r0. The positivity of the mass
does not impose any conditions on the constantsr0 , x0, and
K which determine the solution. The pressure reads

kp54Az
yj

y
2

1

3
kr01

1

5
~3kr112K2!x. ~132!

To be more concrete, let us introduce the three classe
solutions of Eq.~128! for d50, d,0, and d.0, respec-
tively:

y5C11C2j, ~133!

y5C1e2A2dj1C2eA2dj, ~134!

y5C1 sinAdj1C2 cosAdj. ~135!

The conditionsy.0 and p(0).0 lead toC1.0, C2.0
whend>0 and toC2.0, C2.C1 whend,0. Therefore,
en increases withr until it meetsz, which decreases. We hav
y(0),1.

~1! Case d50. Equation~127! meanskr1511K2, while
Eq. ~123! givesb522K2. We also havex05kr0/11K2 and
the solution is determined by two constants,r0 andK. Equa-
tion ~130! results in

C25
1

66
kr0 , C152

1

66
kr0j01Az0, ~136!

z0512
5

3
v2, v[

kr0

11uKu
, ~137!
10400
y
t

, is
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andy is given by Eq.~133!. C1 is real whenv<A3/5. The
charge is given by Eq.~124! and the mass ism
5 4

33 kr0x0
3/2, leading to the ratioueu/m53/4v>A15/4. Due

to the negativeb Eq. ~129! reads

j5
1

A2b
lnU2

a12bx

2A2b
1AzU

2
1

A2b
lnU12

a

2A2b
U . ~138!

In Ref. @27# another expression was used, true only in a p
of the allowed interval forv. The pressure reads

kp5
4C2Az

C11C2j
2

1

3
kr017K2x. ~139!

The condition p(0).0 is fulfilled when C1,2/11. This
holds whenv varies nearA3/550.77. Thus, there are solu
tions with positive pressure.

~2! Case d,0. This meanskr1,11K2 and the limiting
caser150 is possible. We shall discuss the general c
first. The boundary conditions fix the constantsC1,2. The
pressure is given by Eq.~132!:

kp54A2dz
C2eA2dj2C1e2A2dj

C2eA2dj1C1e2A2dj
2

1

3
kr0

1
1

5
~3kr112K2!x. ~140!

A necessary condition for positive pressure at the cente
C2.C1, satisfied when

zx~x0!52
kr0

3
2

2

5
~K22kr1!x0 ~141!

is positive, which leads tokr1.6K2. Simplifications are
possible whend5b or C150 but they do not give solutions
with positive pressure.

Let us discuss the subcaser150, i.e., r5r0 @25#. Now
Eq. ~141! shows thatzx(x0),0; thereforeC2,C1 and the
pressure is negative in this subcase, which was not real
in the above reference. Equation~124! holds as it is, while
Eq. ~125! reads

m5S 1

6
kr01

3

5
K2x0D x0

3/2. ~142!

We haveb5K2/5.0 and consequentlya214b.0. Then

j5
1

Ab
arcsin

a12bx

Aa214b
2

1

Ab
arcsin

a

Aa214b
. ~143!

In Ref. @27# an incorrect expression was used. Formula~143!
allows one to make connection with the results of Ref.@6#,
where in additionr050, so that the mass arises entire
from the electrostatic field energy. Equation~141! still shows
1-13
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that the pressure is negative. Equations~124! and~142! give
the ratioueu/m55/3uKux0. Now a50 andz is positive at the
boundary whenueu/m.A5/3. The second term in Eq.~143!
vanishes, and combining it with Eq.~134! yields

y5C1expS 2A11

2
arcsinAbxD

1C2expSA11

2
arcsinAbxD . ~144!

The passage to arccos scalesC1,2 and interchanges thei
places, giving Eq.~4.6! from Ref. @6#.

~3! Case d.0. Now we havekr1.11K2 which permits
the limit K50. The two cases do not differ essentially. T
value ofzx(x0) is positive, whileb,0. Hence,j is given by
Eq. ~138!, as in Ref.@26#. The positivity condition is even
more complicated than in the previous case and simplifi
tions do not seem possible. This is true even for the
charged case, discussed in the mentioned reference. We
remark only that the simple casekr15kr05x051, K
50 has positive pressure profile. For small enoughK, the
charged case must behave the same way.

Let us study next the casel 52 whenz is given by Eq.
~122!. Equation~126! is not soluble unlessb[2kr1/550,
meaning that the density is constant. Then it becomes a
ticular case of the hypergeometric equation

x~x21!yxx1@~h11h211!x2h3#yx1h1h2y50,
~145!

where

x5ax, h11h21151/2, h350, h1h25K2/2a.

These relations give

h152
1

4
6

1

4
A12

8K2

a
~146!

and h1,2P@21/2,0). The reality ofh1 is ensured bykr0
.23K2. Thus, in the charged case it is not possible to
r5r050. This case was studied by Wilson@23#, who did
not recognize the appearance of the hypergeometric func
He assumed that the pressure was positive and develop
series expansion fory. A linear combination between the tw
fundamental solutions of Eq.~145! is a candidate for a regu
lar metric. In this paper the emphasis is laid on solutions
elementary functions, so we shall not pursue this issue
ther, except in the case whereK50. Then Eq.~145! is easily
solved:

en5@2~12ar2!1/21a1#2. ~147!

This is the expected Schwarzschild interior solution@70#,
contrary to the claims in Ref.@23#.

A model for a superdense star with theAnsatze

z5
12a2r 2

11a1a2r 2
, q5

Ka2r 3

11a1a2r 2
, ~148!
10400
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has been discussed in the uncharged case fora152 @71,72#,
a157 @73#, and a set of discrete values fora1 @47#. Recently,
it was studied for arbitrarya1 in both the uncharged@48# and
the charged cases@49#. Introducing the variable

h5S a1

a111D 1/2

~12a2r 2!1/2, ~149!

one obtains

~12h2!yhhh2hyhh1d1yh50, ~150!

d15a1122
2K2

a1
, ~151!

whered1.0 is required.
Formally, Eq. ~150! is a subcase of Eq.~126! with a

50, b51, x→r , y→yh , so we can use the machin
ery developed there. We havej5arcsinh. We may change
the variable tod5arccosh because Eq.~128! is invariant
under this change. Hence,yh is given by Eq.~135! and y
may be found by integration. Use of trigonometric equalit
helps to find an expression with two terms

y5a4H cos@~Ad111!d1a3#

Ad111

2
cos@~Ad121!d1a3#

Ad121
J . ~152!

This formula was found in Refs.@48,49# by resorting first to
Gegenbauer functions and then to Chebyshev polynom
The peculiarities of Eq.~126! permit a straightforward deri-
vation in elementary functions.

Let us discuss next a solution of Nduka@37#, belonging to
the class (l,q). He chose a constantz5” 1 and generalized
the uncharged solution of Ref.@36# by taking l 51, i.e., q
5Kr . Then Eq.~22! turns into the Euler equation andy and
r are singular atr 50.

TheAnsatz~121! was examined also in Ref.@64# where in
addition toq a generating functionG was given, satisfying
the relationG2zq5const. Therefore this is again the ca
(l,q). Several solutions were found, including the one
Nduka@38# and a solution singular iny, which is a generali-
zation of the solutions in Refs.@42,74#.

X. THE CASE „l,n…

In this case the fluid satisfies the linear equation of st
~17! and someAnsatzfor l is given. The other metric com
ponent is found from Eq.~25!—a linear second-order equa
tion for y.

Let us study first the casez5c,1 which leads to singular
pressure and density, but provides the opportunity to ge
alize the well-known KT solution@45,46,51,75,76#. Equation
~25! becomes

r 2y91k0ry81~2k11k2r 2!y50, ~153!
1-14
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k05
32n

n11
, k15

12c

c
, k25

2kp0

~n11!c
.

Its solution is given by Bessel functions@55#

y5r (12k0)/2@C1Jk3
~Ak2r !1C2Yk3

~Ak2r !#, ~154!

k35
1

2
@~12k0!214k1#1/2.

Whenp050 this becomes

y25C1r 12k012k3. ~155!

It can be checked that 12k012k3.0. We have included
only the solution nondivergent atr 50. The density and the
charge function are singular at the origin. This solution w
derived in Ref.@42# and rediscovered in Ref.@77#. It was
generalized by Tikekar@43# whose solution belongs to th
(Y,n) case and is singular at the origin too. Another gen
alization was offered in Ref.@44# but it alters many of its
properties, including the equation of state.

Let us discuss finally theAnsatz~35!, imposed by the
condition of constantT0

0, as in Sec. III. Introducingx5ar2

turns Eq.~25! into

x~x21!yxx1F n15

2~n11!
x2

2

n11Gyx1Dy50, ~156!

D5
1

2~n11! S 3n112
kp0

a D . ~157!

This is once again the hypergeometric equation and its s
tions depend on the sign ofD. Particular cases are the d
Sitter solution and the ESU. There are many elementary
lutions but they either have singularities or it is impossible
ensure that bothp andq2 are positive.

XI. DISCUSSION AND CONCLUSIONS

Charged static perfect fluids have attracted considera
less attention than the uncharged ones, the number of pa
being roughly an order of magnitude smaller. The Introd
tion hints how diverse have been the approaches to t
study. Charged dust occupies the first place in popula
The rest is a mixture of generalizations: of the Schwarzsc
idea about incompressibility, with the limiting case of va
ishing density and electromagnetic mass models, a gene
zation of the idea about vacuum polarization which brin
forth the de Sitter solution, a generalization simply of we
known uncharged solutions like those of Adler, Kuchowic
Klein, Mehra, Vaidya-Tikekar, and others, a generalization
Weyl-type connections, well studied in the electrovac cas

In this paper we have tried to show that the charged c
has a life of its own when subjected to a natural classifica
scheme. Surprisingly, in many respects it looks simpler t
the uncharged case. The presence of the charge fun
serves as a safety valve, which absorbs much of the fi
tuning, necessary in the uncharged case. The general fo
10400
s

r-

u-

o-

ly
ers
-
ir

y.
ld

li-
s

,
f
.
se
n
n

ion
e-
u-

las derived here show that the abundance of solution
probably bigger than in the traditional case. The propo
scheme becomes rather trivial there, representingAnsätze
mainly for l, n, and sometimesr. In the charged case, how
ever, it allows one to sort out the different ideas mention
above. Thus constantT0

0 leads to the cases (l512ar2,*),
while constant density to the much more difficult cases (n,r)
and (l,r), similar to (n,n) and (l,n). Electromagnetic mass
models are subcases, often spoiled by negative pressure
pointlike idea seems to be viable only for CD, leading to fl
spacetime when the pressure does not vanish. The gene
zation of uncharged solutions firmly occupies the ca
(l,q), (r,q), and (n,q). Models withn521 are intimately
related to the soluble casen5” 21 and are much richer tha
their traditional protagonist, the de Sitter solution. The oth
models with negative pressure, which seem worth be
studied, are the generalizations of ESU withn521/3. Fi-
nally, the Weyl-type relations, so successful in electrovac
CD environments, seem rather out of place in a ‘‘press
ized’’ perfect fluid.

Another advantage of this classification is that it del
eates the degree of difficulty and the most convenient po
for attack of the problem. The easiest cases seem to be (l,Y)
and (n,Y). If we insist on authentic fluid characteristics an
not on their combinations, then (n,p) and (n,q) are the best
candidates. On the other hand, the most difficult are (r,p)
and (p,q), which seem to be accessible only numerica
The most unpredictable case is probably (l,n), since there is
no control of exactly those characteristics which must sat
the majority of regularity and positivity conditions.

A different division is between general and special cas
As was noticed in the introduction, a known solution belon
to any of the general cases; a solution of (n,q) may be writ-
ten as a (l,p) or even as a (r,p) solution. Only the simplic-
ity of two of the five functionsn,l,r,p,q betrays the starting
point. The special cases that we discussed, apart from
Ansatz~35!, are essentially three:r1p50 and (l,n),(n,n).
All of them have a linear equation of state. It should
mentioned that all integrable uncharged solutions with thg
law found in Ref. @51# have their charged generalization
with p05” 0 and, hence, possess a boundary. The casn
50, p050 represents CD and arises as an electrification
the trivial uncharged dust solution~flat spacetime!, which is
seen from Eqs.~63!,~64!. Its boundary may be put anywher
sincep50 everywhere. The casen521 generalizes the de
Sitter solution into a bunch of new solutions, characteriz
by the mass function, subjected to several mild restrictions
was completely solved in Sec. IV. The de Sitter soluti
appears also as a special case in Sec. X. The optionn5
21/3 in the uncharged case is a mark of the ESU. It appe
in Sec. VII whenb50 in Eq.~103!. The ESU appears also a
the special classD50 in Sec. X. The casen521/5 is spe-
cial in the charged theory too, but its metric is singular
was mentioned in Sec. VII. The KT solution is generalized
Eq. ~155!. In the uncharged case these exhaust the integr
cases of a complicated Abel differential equation of the s
ond kind. In the charged case it is replaced by a linear fi
order Eq.~18!, which has many other solutions, discussed
1-15
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Sec. VII, or by the linear second-order Eq.~25!, discussed in
Sec. X.

From a mathematical viewpoint, the charged case deliv
a surprising variety of equations like those of Euler, B
noulli, Riccati, Emden-Fowler, and Abel, and the hyperge
metric equation. The cases containingl quickly lead to spe-
cial functions whose spectrum is also rich: Ei, cn, Bess
hypergeometric, and incompleteb functions, Jacobi, Gegen
bauer and Chebyshev polynomials, etc. Therefore, a m
thorough study would require computer simulations of s
cial functions, which are easier than purely numeric simu
tions.

From a physical viewpoint, the most interesting resu
are, in our opinion, the following.

~1! The case of constantT0
0 is solved by a simple algo

rithm involving algebraic operations, one differentiation a
one simple integration upon a generating functionY, which
satisfies a few simple inequalities, Eqs.~36!–~38!.

~2! The charged de Sitter case is completely soluble
terms of the mass or the charge function, Eqs.~41!–~44!.
There is a generalization with positive pressure given
Eqs.~52!–~54!.

~3! The general solution for a given pressure consists
three contributions toz; from regular CD, from general CD
and from the pressure@see Eq.~56!#. There is a general CD
ys

R.

al
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solution which creates a halo around charged fluid balls
may postpone their junction to a RN solution.

~4! The solutions of Korkina-Durgapal possess realis
charge generalizations given by Eqs.~88!–~90!.

~5! Fluids with linear equations of state are integrable
any n as seen from Eqs.~18!,~25!,~28!,~97!–~100!. Elemen-
tary solutions may be found by several simplification tec
niques. Physically realistic is an infinite series of mod
given by Eqs.~104!–~106!. The status of the model given b
Eq. ~111! is still unknown.

~6! The case (n,r) is closely connected to (n,n) and is
much more difficult than its companion with constantT0

0,
even when the density is constant or zero.

~7! The (r,q) case discussed in Ref.@27# is incomplete
and has errors. It is treated in detail in Sec. IX and its c
nection with Ref.@6# is elucidated. It has several realist
subcases, but electromagnetic mass models all seem to
negative pressure. A formal but intriguing parallel is draw
to star models with simple spatial geometry@49#.

~8! Solutions of the case (l,n) with constantT0
0 are ex-

pressed in hypergeometric functions@see Eqs.~156!,~157!#.
All degenerate elementary solutions have either nega
pressure or singularities.

A more detailed version of the present paper can be fo
in Ref. @78#.
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