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Supersymmetric topological inflation model
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~Received 6 December 2001; published 13 May 2002!

We propose a topological inflation model in supergravity. In this model, the vacuum expectation value
~VEV! of a scalar field takes a value much larger than the gravitational scaleMG.2.431018 GeV, which is
large enough to cause topological inflation. On the other hand, expansions of the Ka¨hler potential and the
superpotential beyond the gravitational scale are validated by the introduction of a Nambu-Goldstone-like shift
symmetry. Thus, topological inflation inevitably takes place in our model.
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I. INTRODUCTION

Inflation is the most powerful extension to the standa
big bang theory because it gives solutions to the flatn
problem, the horizon problem, the origin of density fluctu
tions, and so on@1#. Recent observation of anisotropies
the cosmic microwave background radiation~CMB! by the
Boomerang@2#, the MAXIMA @3#, and the DASI@4# experi-
ments found the first acoustic peak with a spherical harmo
multipole l;200, which implies the standard inflationa
scenario. Up to now, many types of inflation models ha
been proposed. Among them, chaotic inflation@5# is very
attractive because it does not suffer from any initial con
tion problem, especially, the flatness~longevity! problem. All
other models which occur at low energy scales sustain
problem. That is, why does the universe live so long up
the low energy scale from the gravitational scale? Howe
this problem is evaded if the universe is open at the be
ning. While new inflation and hybrid inflation have anoth
severe problem, namely, the initial value problem@1,6#, a
fine-tuning of the initial value of the inflaton is not need
for topological inflation@7,8#. Thus, topological inflation is
still attractive if the universe is open at the beginning. In fa
a possibility is pointed out that the quantum creation of
open universe can take place with appropriate continua
from the Euclidean instanton@9#. Furthermore, the spectrum
of density fluctuations predicted by topological inflation b
comes a tilted one, which may be testable in galaxy surv
and CMB observations.

Supersymmetry~SUSY! is one of the most powerful ex
tensions to the standard model of particle physics becau
stabilizes the electroweak scale against radiative correct
and realizes the unification of the standard gauge coupli
Therefore, it is important to consider inflation models in t
context of SUSY and its local version, i.e., supergrav
~SUGRA!. In the context of SUGRA, topological inflation i
again favorable because it straightforwardly predicts the
heating temperature low enough to avoid the overproduc
of gravitinos for a wide range of the gravitino mass. This
mainly because topological inflation occurs at a low ene
scale and the inflaton has only gravitationally suppressed
teractions with standard particles to keep the flatness of
potential. Furthermore, it is attractive in the scheme of
0556-2821/2002/65~10!/103518~5!/$20.00 65 1035
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perstring theories1 because superstring theories compactifi
on (311)-dimensional space-time have many discrete sy
metries in the low-energy effective Lagrangian@12#, which is
very useful to cause topological inflation.

Izawa, Kawasaki, and Yanagida proposed a topolog
inflation model in supergravity with anR-invariant vacuum,
which guarantees the vanishing cosmological constant at
end of inflation @13#. However, the model has two wea
points, which come from the same source. First of all,
Kähler potential is expanded around the origin with expa
sion parameterufu/MG . However, the critical valuefc of
the vacuum expectation value~VEV! ^f& of the inflaton to
cause topological inflation is roughly the gravitational sc
MG . This can be understood from a simple discussion@7,8#.
The typical radiusr;^f&/v2 of the topological defect is
given by equating the gradient energy (^f&/r )2 and the po-
tential energyv4. For topological inflation to occur, the typi
cal radiusr must be larger than the hubble radius given
H21;MG /v2, which leads to the rough condition̂f&
*MG . In fact, Sakaiet al. found the critical valuefc
.1.7MG irrespective of the coupling constant for a doub
well potential @14#. Later, the supergravity model@13# was
investigated in detail and it was found that the critical val
fc slightly depends on the slope of the potential and is
small as 0.95MG at best@15#. Thus, one wonders if the ex
pansion of the Ka¨hler potential is valid. Of course, th
R-invariant vacuum given by the requirement of]W/]f i
5W50 for all scalar fieldsf i is unchanged irrespective o
the form of the Ka¨hler potential. So, the description is sti
valid that the potential is flat around the origin and the glo
minima are given by theR-invariant vacua. However, as th
inflaton approaches the gravitational scale, the expansio
the Kähler potential becomes invalid. Thus, the potent
may take a nontrivial shape beyond the gravitational sc
and, even worse, a barrier may appear between the flat s
around the origin and the global minima so that inflati
becomes the type of old inflation, which results in an inh
mogeneous universe and hence does not work as an infla
model.

A similar problem may apply to the superpotential.
Ref. @13#, the superpotential is truncated up to the quadra
term (l8f2: l8 a real constant! of the inflaton superfield

1The superstring inspired models of topological inflation we
studied in@10,11#.
©2002 The American Physical Society18-1
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for simplicity. However, higher order term
„O @(l8f2)n# or O @(f2)n#, n>2… may appear, which
may drastically change the shape of the potential around
global minima again. Thus, the model proposed in Ref.@13#
may not work.

In this paper, we propose a new model of topologi
inflation in supergravity, where the above problems
evaded by the introduction of a Nambu-Goldstone-like s
symmetry@16#. In the next section, we give our model o
topological inflation. For successful topological inflation, w
introduce symmetries and, if necessary, spurion fields wh
vacuum values softly break the introduced symmetries
Sec. III, we investigate the dynamics of topological inflati
in detail and give a constraint on the parameters associ
with the vacuum values of the spurion fields. In the fin
section, we give the summary of our results.

II. MODEL OF TOPOLOGICAL INFLATION

First of all, we introduce aZ2 symmetry as an example o
a discrete symmetry, which is necessary for producing
main walls. We assume that the inflaton supermultipletF is
odd and the other supermultiplets introduced later are e
under the aboveZ2 symmetry. As the inflaton fieldw ac-
quires its vacuum expectation value, theZ2 symmetry is
spontaneously broken.

Next, we introduce a Nambu-Goldstone-like shift symm
try to validate the expansion of the Ka¨hler potential. We
assume that the model is invariant under the follow
Nambu-Goldstone-like shift symmetry@16#: F→F
1CMG , whereC is a dimensionless real constant.2 Then,
the Kähler potential is a function ofF2F* , i.e.,
K(F,F* )5K(F2F* ), which allows the real part of the
scalar components ofF to take a value larger than the grav
tational scale. However, if the shift symmetry is exact, t
inflaton cannot have any potential. So, we need to brea
softly for successful inflation. For this purpose, we introdu
a spurion fieldJ and extend the shift symmetry to includ
the spurion fieldJ. We assume that the model is invaria
under

F→F1CMG ,

J→S F

F1CMG
D 2

J. ~1!

2A shift symmetry introduced by us is possessed by so-ca
no-scale supergravity theories, which appear in the low energy l
of superstring theories. However, inflation does not take place f
simple no-scale type Ka¨hler potential. So, in order to realize infla
tion, we will slightly change the form of the Ka¨hler potential keep-
ing the shift symmetry. We hope that our inflaton is one of modu
fields in string theories after we reveal dynamics of the string, p
ticularly, the compactification mechanism, which has not be
known yet.
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That is, the combinationJF2 is invariant under the shift
symmetry. The vacuum value ofJ, ^J&5u!1, softly
breaks the shift symmetry. Here and hereafter, we setMG to
be unity.

Furthermore, we introduce theU(1)R symmetry (R sym-
metry! because it prohibits a constant term in the super
tential, which ensures vanishing cosmological constant at
end of inflation. Since the Ka¨hler potential is invariant only
if the R charge ofF is zero, another supermultipletX(x,u)
with its R charge equal to 2 must be introduced. Then,
superpotential invariant under theZ2, the shift and theU(1)R
symmetries is given by

W5X@a01a1JF21a2~JF2!21•••# ~2!

with a i5O(1). As shown later, for successful topologica
inflation, the coefficient ofX, a0, must be suppressed. Fo
this purpose, we introduce anotherZ2 symmetry~namedZ28)
and another spurion fieldP. Under thisZ28 symmetry,F is
even and the other superfields are odd. The vacuum valu
P, ^P&[v!1, softly breaks theZ28 symmetry so that the
smallness ofa05v is associated with the breaking of theZ28
symmetry. Here you should notice that theZ28 charge of the
spurion fieldJ is also odd. Then, two cases are possible.
the first case, theZ2 and the shift symmetries are broken
the same time. In this case, we expectO(u)5O(v). A simi-
lar case is discussed in Ref.@17# in the context of double
inflation. In the second case, theZ28 symmetry is broken first
and later the shift symmetry is broken. In this case, we
pectO(u)!O(v). In this paper, we assume the second ca
Then, inserting the vacuum values of the spurion fields,
superpotential is written as

W5X@v2uF21a2~uF2!21•••#. ~3!

The higher order termsa i(uF2) i : i>2 are negligible be-
cause we are interested in only the field values up to
VEV of F, that is,uuF2u;v!1. After all, we take the fol-
lowing superpotential:

W5vX~12gF2!, ~4!

with g[u/v!1. Here we have assumed that both consta
u andv are real and positive for simplicity.

In the same way, the Ka¨hler potential neglecting highe
order terms is given by

K52
1

2
~F2F* !21uXu2. ~5!

The higher order terms such asu8(F21F* 2) with O(u)
5O(u8) are negligible becauseu!1 and we are intereste
in only the field values up to the VEV ofF, that is,uuF2u
;v!1. The charges of the supermultiplets are shown
Table I. Here it should be noticed that the model is natura
the sense of ’t Hooft@18#, that is, the symmetries are reco
ered if the small parametersu andv are set to be zero.
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III. DYNAMICS OF TOPOLOGICAL INFLATION

In this section we investigate the dynamics of topologi
inflation and give a constraint on the parameters associ
with the breaking of the symmetries.

The superpotential and the Ka¨hler potential given in the
previous section lead to the Lagrangian densityL(F,X) for
the scalar fieldsF andX,

L~F,X!5]mF]mF* 1]mX]mX* 2V~F,X!, ~6!

where the scalar potentialV is given by

V5v2eK@ u12gF2u2~12uXu21uXu4!1uXu2u2gF

1~F2F* !~12gF2!u2#. ~7!

Here and hereafter, we denote the scalar components o
supermultiplets by the same symbols as the correspon
supermultiplets.

We decompose the scalar fieldF into the real componen
w and the imaginary componentx,

F5
1

A2
~w1 ix!. ~8!

Then the Lagrangian densityL(w,x,X) is written as

L~w,x,X!5
1

2
]mw]mw1

1

2
]mx]mx1]mX]mX*

2V~w,x,X! ~9!

with the potentialV(w,x,X) given by

V~w,x,X!5v2 exp@x21uXu2#F H S 12
g

2
w2D 2

1x2Fg1
g2

4
~2w21x2!G J ~12uXu21uXu4!

1UXU2H 2g2~w21x2!14gx2F11
g

2
~w21x2!G

12x2F12g~w22x2!1
g2

4
~w21x2!2G J G .

~10!

Due to the exponential factorex21uXu2, x and uXu are at
most of the order of unity. On the other hand,w can take a
value much larger than unity without costing exponentia

TABLE I. Charges of theU(1)R3Z23Z28 symmetries for the
various supermultiplets.

F X J P HuHd

QR 0 2 0 0 0
Z2 2 1 1 1 1

Z28 1 2 2 2 1
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large potential energy. Then,w may take a valuew

5O(1/Agv)5O(1/Au) in some regions of the universe, an
other valuew5O(1/Ag) in other regions, and so on. Th
cosmic history is quite different according to the initial valu
of w. For example, in the region with the valuew
5O(1/Au), the term (u2/4)w4 dominates the scalar poten
tial, which causes chaotic inflation. Furthermore, if we fin
tune the initial value ofw, it passes through the global min
mum ^w&56A2/g after chaotic inflation and stops near th
local maximumw50 so that new inflation may take place
Because of the peculiar nature of new inflation, primord
black holes may be produced. Thus, chaotic-new inflat
may take place. However, the case with the similar poten
has been already discussed in Ref.@19#. So we concentrate
on another interesting region in this paper.

In other regions, there are some places with the val
w.A2/g andw.2A2/g. Then, topological defects~domain
walls! may form if the energy density of the univers
dropped enough. In fact, if the VEV ofw is larger than the
gravitational scaleMG (g&1), the topological defect is un
stable and the universe expands exponentially, that is, to
logical inflation takes place@7,8#. In this paper, we investi-
gate the dynamics of this topological inflation in detail. He
one should notice that in other regions chaotic inflation ta
place just below the Planck scale and the universe expa
enough so that our topological inflation model can be f
from the flatness problem too. The observations such
spectral index of density fluctuations and gravitational wa
decide which region the present universe belongs to.

The effective mass squared ofx, mx
2 during topological

inflation is given by

mx
2.6H2, ~11!

whereH is the hubble parameter given byH2.v2/3. Thus,
once topological inflation takes place,x rapidly oscillates
around the origin and the amplitude decays in proportion
a23/2 (a : the scale factor!. Therefore, we can safely setx to
be zero at least classically.

Using x!1, the scalar potential is approximated as

V.v2F S 12
g

2
w2D 2

12g2w2uXu2G
.v2~12gw212g2w2uXu2! for w!1. ~12!

The effective mass squared ofX, mX
2 , is given by

mX
2.2g2v2w2.6g2w2H2!H2. ~13!

Thus, X does not oscillate around the origin and inste
slow-rolls down along the potential. In fact, during topolog
cal inflation,

X;Xi expS 2
g

2
w2D , ~14!

whereXi,1 is the value ofX at the beginning of topologica
inflation. Thus,uXu,1 throughout topological inflation and
8-3
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M. KAWASAKI AND MASAHIDE YAMAGUCHI PHYSICAL REVIEW D 65 103518
uXu!1 near the end of topological inflation.3 The last term in
the potential~12! is irrelevant for the dynamics ofw because
g!1 anduXu,1.

Using the slow-roll approximation, thee-fold number ac-
quired forw.wN is given by

N.E
w f

wN V

V8
.

1

2g
lnS w f

wN
D , ~15!

where the prime represents the derivative with respect tw
and w f;A2/g is the value ofw at the end of topologica
inflation. wN is represented by thee-fold N as

wN;w fe
22gN;A2

g
e22gN. ~16!

Next we evaluate the density fluctuations produced dur
topological inflation. In this model, there are two effective
massless fieldsw and X during topological inflation. How-
ever, we can easily show that the metric perturbation in
longitudinal gaugeFA can be estimated as@20#

FA52
Ḣ

H2
C122g2w2X2C3 ,

C15H
dw

ẇ
, ~17!

C35HS dw

ẇ
2

dX

Ẋ
D gw2,

where the dot represents the time derivative, the term p
portional toC1 corresponds to the growing adiabatic mod
and the term proportional toC3 the nondecaying isocurva
ture mode. For simplicity, we deal withX as if it is a real
scalar field. You should notice that onlyw contributes to the
growing adiabatic fluctuations. Then, the amplitude of
curvature perturbationFA on the comoving horizon scale a
w5wN is estimated by the standard one-field formula as

FA.
f

2A3p

V3/2

V8
.

f

2A3p

v
2gwN

~18!

with f 53/5 (2/3) in the matter~radiation! domination.
From the Cosmic Background Explorer~COBE! normaliza-
tion FA.331025 at N.60 @21#, the vacuum valuev is
constrained as

v.1.131024Age2gN/2uN560.3.33102526.131028

~19!

3If we take into account a higher order term2(k1/4)uXu2 (k1

*1) in the Kähler potential, the effective mass squared ofX is
much larger thanH2 so that the amplitude ofX rapidly decays and
throughout topological inflation we can safely setX to be zero at
least classically.
10351
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for 0.01<g<0.05. The spectral indexns is given by

ns.124g. ~20!

Since the COBE data also showns51.060.2 @21#, the pa-
rameterg5u/v is constrained asg<0.05.4

After topological inflation ends, the inflaton rapidly osci
lates around the global minimum̂w&[6A2/g and decays
into standard particles, which reheats the universe. The
cays of the inflaton into standard particles can take plac
we introduce the following superpotential,5

W5v8XHuHd , ~21!

where v85a^P& with a5O(1)@O(v8)5O(v)# is a con-
stant associated with the breaking of theZ28 symmetry and
Hu ,Hd are a pair of the Higgs doublets. If we set theR
charge and theZ2 and theZ28 charges ofHuHd to be zero and
even, the above superpotential is invariant under all the
troduced symmetries before inserting the vacuum value
the spurion fieldP. Then the inflatonw has the interaction
with a pair of the Higgs doublets,

Lint.gvv8^w&wHuHd , ~22!

which gives the decay rate

G;g2v2v82^w&2/mw ~23!

with the mass of thew field, mw.2Agv. Then the reheating
temperatureTR is given by

TR;0.1gvv8^w&/Amw;53108 GeV223106 GeV
~24!

for 0.01<g<0.05. The above reheating temperature is l
enough to avoid overproduction of gravitinos for a wid
range of the gravitino mass@22,23#.

IV. SUMMARY

In the present paper, we have proposed a topologica
flation model in supergravity. In the model, where a discr
symmetry is spontaneously broken, the vacuum expecta
value of the scalar field takes a value much larger than
gravitational scale so that topological inflation can ta
place. Generally speaking, expansions of the Ka¨hler potential
and the superpotential around the origin are invalid beyo

4In Ref. @13#, the combination of the parameters must be fin
tuned to be nearly equal to unity in order to satisfy the constra
from the spectral index. On the other hand, in our model, the
rameterg has only to be small, which originates from the differen
of the breaking scales of the shift and theZ28 symmetries.

5The inflaton may also decay into standard particles if we cons
higher order termsu9(F21F* 2)uc i u2 in the Kähler potential. Here
u9 is a constant associated with the breaking of the shift symm
with O(u)5O(u9) and c i are the standard particles. Then, th
reheating temperatureTR becomes 100 GeV–50 MeV for 0.01<g
<0.05.
8-4
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the gravitational scale. In our topological inflation model, t
expansion of the Ka¨hler potential is validated by the intro
duction of a Nambu-Goldstone-like shift symmetry. Furth
more, one can make the expansion of superpotential v
beyond the gravitational scale by introducing aZ28 symmetry
and combining it with the shift symmetry. Thus, topologic
inflation inevitably takes place in our model. Our topologic
inflation model predicts the tilted spectrum of density flu
tuations, which may be detectable in future CMB obser
tions and galaxy surveys. Furthermore, the reheating t
perature is low enough to avoid overproduction of gravitin
hy
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ys
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for a wide range of the gravitino mass, especially, that p
dicted in the gauge mediated SUSY breaking model.
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