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Living with ghosts
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Perturbation theory for gravity in dimensions greater than two requires higher derivatives in the free action.
Higher derivatives seem to lead to ghosts, states with negative norm. We consider a fourth order scalar field
theory and show that the problem with ghosts arises because, in the canonical treatment,f and hf are
regarded as two independent variables. Instead, we base quantum theory on a path integral, evaluated in
Euclidean space and then Wick rotated to Lorentzian space. The path integral requires that quantum states be
specified by the values off andf ,t . To calculate probabilities for observations, one has to trace out overf ,t

on the final surface. Hence one loses unitarity, but one can never produce a negative norm state or get a
negative probability. It is shown that transition probabilities tend toward those of the second order theory, as
the coefficient of the fourth order term in the action tends to zero. Hence unitarity is restored at the low
energies that now occur in the universe.
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I. INTRODUCTION

In standard, second order theory the Lagrangian is a fu
tion of the fields and their first derivatives. The path integ
is calculated by perturbation theory, with the part of the
tion that contains quadratic terms in the fields and their fi
derivatives regarded as the free field action, and the rem
ing terms as interactions. One then calculates Feynman
grams, using the interactions as vertices, and the propag
defined by the free part of the action. This is equivalent
calculating the expectation value of the interactions in
Gaussian measure defined by the free action. One w
therefore expect perturbation theory to make sense, w
and only when the interaction action is bounded by the f
action.

This is born out by the examples we know. In two dime
sions, the free action of a scalar fieldf,

S5E dx2@fhf1m2f2#, ~1!

is the first Sobolev norm1 ifi2,1 of the field f. In two di-
mensions, the first Sobolev norm bounds the pointwise va
of f; thus, it also bounds the volume integral of any ent
function of f. This means that the free action bounds a
interaction action, so perturbation theory should work.
deed one finds that in two dimensions, any quantum fi
theory is renormalizable.

*Email address: S.W.Hawking@damtp.cam.ac.uk
†Email address: T.Hertog@damtp.cam.ac.uk
1For a functionf PC`(M ), 1<p,`, and an integerk>0, the

Sobolev norm is defined@1# as

i f ip,k5F E
M

(
0< j <k

uD j f upmgG 1/p

, ~2!

where uD j f u is the pointwise norm of thejth covariant derivative
andmg is the Riemannian volume element.
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In four dimensions on the other hand, the first Sobo
norm does not bound the pointwise value off, but only the
volume integral off4. This means that the free actio
bounds the interactions only for theories with quartic int
actions, likelf4, or Yang-Mills theory. Indeed, these are th
quantum field theories that are renormalizable in four dim
sions. Note that even Yang-Mills theory is not renormal
able in dimensions higher than four, because the interact
are not bounded by the free action. Similarly, Born-Infe
theory is not renormalizable in dimensions higher than tw

When one does perturbation theory for gravity, one wri
the metric asg01dg, whereg0 is a background metric tha
is a solution of the field equations. The terms quadratic indg
are again regarded as the free action, and the higher o
terms are the interactions. The latter include terms l
(¹dg)2, multiplied by powers ofdg. The volume integral of
such an interaction is not bounded by the free action
perturbation theory breaks down for gravity, which is n
renormalizable@2#. Even if all the higher loop divergence
canceled by some miracle in a supergravity theory, one co
not trust the results, because one is using perturbation th
beyond its limit of validity;dg can be much larger thang0
locally for only a small free action. In other words, there a
large metric fluctuations below the Planck scale.

The situation is different however if one adds curvatu
squared terms to the Einstein-Hilbert action. The action
now quadratic in second derivatives ofdg, so one takes the
free action to be the quadratic terms indg, and its first and
second derivatives. This means that it is the second Sob
normidgi2,2 of dg, which bounds the pointwise value ofdg.
Hence the free action bounds the interactions, and pertu
tion theory works. This is reflected in the fact that theR
1R2 theory is renormalizable@3–5#, and in fact asymptoti-
cally free @6#. However, higher derivatives seem to lead
ghosts, states with negative norm, which have been thou
to be a fatal flaw in any quantum field theory~see e.g.@7#!.

In the next section we review why higher derivatives a
pear to give rise to ghosts. The existence of ghosts wo
mean that the set of all states would not form a Hilbert sp
with a positive definite metric. There would not be a unita
©2002 The American Physical Society15-1
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Smatrix, and there would apparently be states with nega
probabilities. These seemed sufficient reasons to dismiss
quantum field theory, such as Einstein gravity, that h
higher derivative quantum corrections and ghosts. Howe
we shall show that one can still make sense of higher der
tive theories, as a set of rules for calculating probabilities
observations. But one cannot prepare a system in a state
a negative norm, nor can one resolve a state into its pos
and negative norm components. So there are no nega
probabilities, and no nonunitaryS matrix.

Although gravity is the physically interesting case, in th
paper we consider a fourth order scalar field theory, wh
has the same ghostly behavior, but does not have the c
plications of indices or gauge invariance. We show explic
that the higher derivative theory tends toward the sec
order theory, as the coefficient of the fourth order term in
action tends to zero. Hence the departures from unitarity
higher derivative gravity are very small at the low energ
that now occur in the universe.

II. HIGHER DERIVATIVE GHOSTS

We consider a scalar fieldf with a fourth-order Lagrang-
ian in Lorentzian signature:

L52
1

2
f~h2m1

2!~h2m2
2!f2lf4 ~3!

wherem2.m1. Defining

c15
~h2m2

2!f

@2~m2
22m1

2!#1/2
, c25

~h2m1
2!f

@2~m2
22m1

2!#1/2
~4!

the Lagrangian can be rewritten as

L5
1

2
c1~h2m1

2!c12
1

2
c2~h2m2

2!c2

2
4l

~m2
22m1

2!2
~c12c2!4. ~5!

The action ofc2 has the wrong sign. Classically it mean
that the energy of thec2 field is negative, while that ofc1 is
positive. If there were no interaction term, this negative
ergy would not matter because each of the fields,c1 andc2,
would live in its own world and the two worlds would no
communicate with each other. However, if there is an int
action term, likef4, it will couple c1 andc2 together. En-
ergy can then flow from one to the other, and one can h
runaway solutions, with the positive energy ofc1 and the
negative energy ofc2 both increasing exponentially.

In quantum theory, on the other hand, one is in trou
even in the absence of interactions, as can be seen by loo
at the free field propagator forf. In momentum space, this i
the inverse of a fourth order expression inp, which can be
expanded as
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G~p!5
1

~m2
22m1

2!
S 1

~p21m1
2!

2
1

~p21m2
2!
D . ~6!

This is just the difference of the propagators forc1 andc2.
The important point is that the propagator forc2 appears
with a negative sign. This would mean that states with
odd number ofc2 particles would have a negative norm.
other words,c2 particles are ghosts. There would not be
positive definite Hilbert space metric, nor a unitarySmatrix.

If there were not any interactions, the situation would n
be too serious. The state space would be the direct sum
two Hilbert spaces, one with positive definite metric and t
other negative. There would not be any physically realiz
operators that connected the two Hilbert spaces, so g
number would be conserved by a superselection rule. Af4

interaction, however, would allowc2 particles to be created
or destroyed. As in the classical theory, there will be ins
bilities, with runaway production ofc1 and c2 particles.
These instabilities show up in the fact that interactions te
to shift the ghost poles in the two point function forf into
the complexp-plane, where they represent exponentia
growing and decaying modes@8,9#.

It seems to add up to a pretty damning indictment
higher derivative theories in general, and quantum grav
and quantum supergravity in particular. However, the pr
lem with ghosts arises because in the canonical treatmenf
andhf are regarded as two independent variables, altho
they are both determined byf. We shall show that, by bas
ing quantum theory on a path integral over the field, eva
ated in Euclidean space and then Wick rotated to Lorentz
space, one can obtain a sensible set of rules for calcula
probabilities for observations in higher derivative theories

III. EUCLIDEAN PATH INTEGRAL

According to the canonical approach, one would perfo
the path integral over allc1 andc2. The path integral over
c1 will converge, but the path integral overc2 is divergent,
because the free action forc2 is negative definite. However
one should not do the path integrals overc1 and c2 sepa-
rately because they are not independent fields; they are
determined byf. The fourth order free action forf is posi-
tive definite; thus the path integral over allf in Euclidean
space should converge, and should define a well determ
Euclidean quantum field theory.

One way to compute the path integral for a fourth ord
theory is to expandf in eigenfunctions of the differentia
operatorÔ in the action. One then integrates over the co
ficients in the harmonic expansion, which gives (detÔ)21/2.
Another way is to use time slicing, by dividing the perio
into a number of short time stepse and approximating the
derivatives by

f ,t;
~fn112fn!

e
, f ,tt;

~fn1222fn111fn!

e2
. ~7!

One then integrates over the values off on each time slice.
In a second order theory, where the action depends onf and
5-2
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LIVING WITH GHOSTS PHYSICAL REVIEW D65 103515
f ,t but not onf ,tt , the path integral will depend on th
values off on the initial and final surfaces. However, in
fourth order theory, the use of three neighbor differen
means that one has to specifyf ,t on the initial and final
surfaces as well.

One can also see what needs to be specified on the in
and final surfaces as follows. In classical second or
theory, a state can be defined by its Cauchy data on a sp
like surface, i.e. the values off andf ,t on the surface. In a
canonical 311 treatment, these are regarded as the posi
of the field and its conjugate momentum. In quantum theo
position and momentum do not commute, so instead
describes a state by a wave function in either position sp
or momentum space. In ordinary quantum mechanics,
position and momentum representations are regarded
equivalent: one is just the Fourier transform of the oth
However, with path integrals, one has to use wave functi
in the position representation. This can be seen as follo
Imagine using the path integral to go from a state att1 to a
state att2, and then to a state att3. In the position represen
tation, the amplitude to go from a fieldf1 on t1, to f2 at t2,
is given by a path integral over all fieldsf with the given
boundary values. Similarly, the amplitude to go fromf2 at
t2, to f3 at t3, is given by another path integral. The
amplitudes obey a composition law:

G~f3 ,f1!5E df2G~f3 ,f2!G~f2 ,f1!. ~8!

The composition law holds, only because one can join a fi
from f1 to f2 to a field fromf2 to f3, to obtain a field from
f1 to f3. Although in generalf ,t will be discontinuous at
t2, the field will still have a well defined action:

S~f3 ,f1!5S~f3 ,f2!1S~f2 ,f3!. ~9!

On the other hand, if one would use the momentum rep
sentation and wave functions in terms off ,t , the composi-
tion law would no longer hold, because the discontinuity
f at t2 would make the action infinite. Thus in second ord
theories, one should use wave functions in terms off rather
thanf ,t .

In a fourth order theory, a classical state is determined
the values off and its first three time derivatives on a spac
like surface. In a canonical treatment,f andf ,tt are usually
taken to be independent coordinates. For the scalar
theory ~3! we then have the conjugate momenta

Pf52f ,ttt1~m1
21m2

222¹W 2!f ,t , Pf ,tt
52f ,t .

~10!

This suggests that in quantum theory, one should descri
state by a wave functionalC(f,f ,tt) on a surface. Indeed
this is closely related to using the fieldsc1 andc2 that we
introduced earlier. These were linear combinations off and
hf; thus taking the wave function to depend onc1 andc2,
is equivalent to it depending onf andf ,tt . However, if one
does the path integral between fixed values off and f ,tt ,
one gets in trouble with the composition law, because
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values off ,t on the intermediate surface att2 are not con-
strained, Hencef ,t will be in general discontinuous att2,
which implies thatf ,tt will have a delta function when one
joins the fields above and belowt2. In a second order action
f ,tt appears linearly; thus the delta function can be in
grated by parts and the action of the combined field is fin
But in a fourth order action (f ,tt)

2 appears, rendering th
action of the combined field infinite iff ,tt is a delta func-
tion.

Therefore, the path integral requires that quantum sta
be specified byf andf ,t in order to get the composition law
for amplitudes in a fourth order theory. In the next section
show how one can obtain transition probabilities for obs
vations from the Euclidean path integral overf.

IV. HIGHER DERIVATIVE HARMONIC OSCILLATOR

A. Ground state wave function

To illustrate how probabilities can be calculated, we co
sider a higher derivative harmonic oscillator, for which
Euclidean signature we take the action

S5E dtFa2

2
f ,tt

2 1
1

2
f ,t

2 1
1

2
m2f2G . ~11!

The general solution to the equation of motion is given b

f~t!5A sinhl1t1B coshl1t1C sinhl2t1D coshl2t,
~12!

where l1 and l2 are given by Eq.~A2!. For smalla, l1
;m andl2;1/a.

For a2.0, this is similar to our scalar field model, sinc
in the latter we can take Fourier components so that spa
derivatives behave like masses. Indeed, even forl→0 in the
quantum scalar field theory~3!, ghost instabilities arise. This
is because of the lack of any lower-energy bound mentio
above, allowing unlimited creation of pairs of ghost particl
and normal particles. This process is obviously forbidden
the zero-dimensional case of the oscillator considered h
but any perturbation with a finite amplitude leads to simi
instabilities. This can be seen from the general solution~12!
of the equation of motion. Although in Lorentzian signatu
this just corresponds to oscillatory behavior, the latter mo
has negative energy. Therefore, for smalla, even a small
amplitude for the negative mode leads to enormously ne
tive energies, rendering the system unstable. Alf4 interac-
tion in the field theory~3! would make the situation worse
by introducing exponentially growing runaway solution
even at the classical level. For our purposes here, in wh
we consider the former problem, it is sufficient to deal w
the higher derivative harmonic oscillator~11!. In Sec. V we
shall show that our proposal on how to deal with the form
problem also solves the problems with ghosts in interact
field theories.

The fourth order action~11! for f is positive definite; thus
it gives a well defined Euclidean quantum field theory. In th
theory, one can calculate the amplitude to go from a s
(f1 ,f1,t) at time t1, to a state (f2 ,f2,t) at time t2. In
5-3
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S. W. HAWKING AND THOMAS HERTOG PHYSICAL REVIEW D65 103515
particular, one can calculate the ground state wave funct
the amplitude to go from zero field in the infinite Euclide
past, up to the given values (f0 ,f0,t) at t50. This yields
~see the Appendix!

C0~f0 ,f0,t!5N8expF2F8S f0,t
2 1

m

a
f0

2D
1

2m22m/a

~l22l1!2
f0f0,tG ~13!

where

F85
~124m2a2!

2a2~l11l2!~l22l1!2
~14!

andN8(a,m) is a normalization factor.
Similarly, one can calculate the Euclidean conjug

ground state wave functionC0* , the amplitude to go from
the given values att50, to zero field in the infinite Euclid-
ean future. This conjugate wave function is equal to
original ground state wave function, with the opposite s
of f0,t . The probability that a quantum fluctuation in th
ground state gives the specified valuesf0 and f0,t on the
surfacet50 is then given by

P~f0 ,f0,t!5C0C0* 5N82expF22F8S f0,t
2 1

m

a
f0

2D G .
~15!

The probability dies off at large values off andf ,t and is
normalizable; thus the probability distribution in the Eucli
ean theory is well defined. However if one Wick rotates
Minkowski space,f ,t

2 picks up a minus sign. The probabilit
distribution becomes unbounded for large Lorentzianf ,t and
can no longer be normalized. This is another reflection of
same problem as the ghosts. You cannot fully determin
state on a spacelike surface, because that would inv
specifying f and Lorentzianf ,t , which does not have a
physically reasonable probability distribution.

Although one cannot define a probability distribution f
f and Lorentzianf ,t on a spacelike surface, one can calc
late a probability distribution forf alone, by integrating ou
over Euclideanf ,t . This integral converges because t
probability distribution is damped at large values of Eucl
eanf ,t . This is just what one would calculate in a seco
order theory. So the moral is as follows: a fourth order the
can make sense in Lorentzian space, if you treat it lik
second order theory. The normalized probability distribut
that a ground state fluctuation gives the specified valuef0 on
a spacelike surface is then given by

P~f0!5S 2F8m

pa D 1/2

expF2
2mF8

a
f0

2G . ~16!

As the coefficienta of the fourth order term in the actio
tends to zero, this becomes
10351
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P~f0!5S m

p D 1/2S 11
ma

2 Dexp@2m~11ma!f0
2#, ~17!

which tends toward the result for the second order theor

B. Transition probabilities

In this section we compute the Euclidean transition pro
ability to go from a specified valuef1 at time t1, to f2 at
time t2, for the higher derivative harmonic oscillator.

In a second order theory, a state can be described b
wave function that depends on the values off on a spacelike
surface. Thus a transition amplitude is given by a path in
gral from an initial statef1 on t1, to a final statef2 on t2.
To calculate the probability to go from the initial state to t
final, one multiplies the amplitude by its Euclidean conj
gate. This can be represented as the path integral from a
surface, att3, back to t2. Because the path integral in
second order theory depends only onf on the boundary,
what happens abovet3 and belowt1 does not matter. Fur-
thermore, the path integrals above and belowt2 can be cal-
culated independently, which implies the probability to
from initial to final can be factorized into the product of anS
matrix and its adjoint. TheSmatrix is unitary, because prob
ability is conserved.

Now let us calculate the probability to go from an initi
to a final state in the fourth order theory~11!. The path inte-
gral requires quantum states to be specified byf and f ,t .
The transition amplitude to go from a state (f1 ,f1,t) at time
t152T, to a state (f2 ,f2,t) at timet250, reads

^~f2 ,f2,t ;0!u~f1 ,f1,t ;2T!&

5E
(f1 ,f1,t)

(f2 ,f2,t)

d@f~t!#exp@2S~f!#. ~18!

This is evaluated in the Appendix, by writingf5fcl1f8,
where fcl obeys the equation of motion with the give
boundary conditions on both surfaces. The result is

^~f2 ,f2,t ;0!u~f1 ,f1,t ;2T!&

5S 2
a~11aN!H

2p2 D 1/2

exp@2E~f1
21f2

2!

2F~f1,t
2 1f2,t

2 !2Gf1,tf2,t1Hf1f2

2K~f2,tf22f1,tf1!2L~f2,tf12f1,tf2!# .

~19!

The coefficient functions in the exponent are given by E
~A6!, andN is a normalization factor.

Again, one can construct a three layer ‘‘sandwich’’ to ca
culate the probability to go from the initial state to the fina
However, in contrast with the second order theory the p
integral now depends on bothf andf ,t on the boundaries
This has two important implications for the calculation of t
transition probability. First, as we just showed, one can
observe Lorentzianf ,t because it has an unbounded Lore
zian probability distribution. Therefore one should takef ,t
5-4
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LIVING WITH GHOSTS PHYSICAL REVIEW D65 103515
to be continuous on the surfaces and integrate over all
ues, fixing only the values off on the surfaces. Because th
path integrals above and belowt250 both depend onf2,t ,
the probability P(f2 ,f1) to observe the initial and fina
specified values off does not factorize into anSmatrix and
its adjoint. Instead, there is loss of quantum coherence,
cause one cannot observe all the information that chara
izes the final state.

After multiplying by the Euclidean conjugate amplitud
and integrating out overf2,t we obtain

2
a~11aN!H

2p2 S p

2F D 1/2

expF22E~f1
21f2

2!22Ff1,t
2

12Hf1f21
G2

2F
f1,t

2 G . ~20!

Another consequence of the dependence of the path inte
on f ,t is that what goes on outside the sandwich now affe
the result. The most natural choice would be the vacu
state abovet35T and belowt152T. In other words, one
takes the path integral to be over all fields that have the gi
values on the three surfaces, and that go to zero in the infi
Euclidean future and past. This means that to obtain the t
sition probability we also ought to multiply by the approp
ately normalized ground state wave functionC0(f1 ,f1,t)
and its Euclidean conjugate. The probabilityP(f2 ,f1) is
then given by

P~f2 ,f1!5E d@f1,t#C0C0*

3E d@f2,t^~f1 ,f1,t!u~f2 ,f2,t!&

3^~f2 ,f2,t!u~f1 ,f1,t!&

5S a2~11aÑ!2H2

2p2
„4F~F81F !2G2

…

D 1/2

3expF22E~f1
21f2

2!22
mF8

a
f1

2

12Hf1f2G . ~21!

Here F8(a,m) is the coefficient in the exponent of th
ground wave function~13! and Ñ is a normalization factor.
In the limit a→0, this reduces to

P~f2 ,f1!

5
m

2p sinhmT

3expF2
m coshmT~f1

21f2
2!22mf1f2

sinhmT
2mf1

2G .
~22!
10351
l-

e-
er-

ral
ts
m

n
ite
n-

Hence the probability given by the sandwich tends tow
that of the second order theory, as the coefficient of
fourth order term in the action tends to zero. This is imp
tant, because it means that fourth order corrections to gr
ton scattering can be neglected completely at the low e
gies that now occur in the universe. On the other hand, in
very early universe, when fourth order terms are importa
we expect the Euclidean metric to be some instanton, lik
four sphere. In such a situation, one cannot define scatte
or ask about unitarity. The only quantities we have a
chance of observing are then-point functions of the metric
perturbations, which determine then-point functions of fluc-
tuations in the microwave background. With Reall we ha
shown that Starobinsky’s model of inflation@10#, in which
inflation is driven by the trace anomaly of a large number
conformally coupled matter fields, can give a sensible sp
trum of microwave fluctuations, despite the fact it has fou
order terms and ghosts@11#. Moreover, the fourth order
terms can play an important role in reducing the fluctuatio
to the level we observe.

Finally, in order to obtain the Minkowski space probab
ity, one analytically continuest2 to future infinity in
Minkowski space, andt1 and t3 to past infinity, keeping
their Euclidean time values fixed. This gives the Minkows
space probability, to go from an initial valuef1 to a final
valuef2.

V. RUNAWAYS AND CAUSALITY

Our discussion in Sec. II suggests that even the sligh
amount of a fourth order term will lead to runaway produ
tion of positive and negative energies, or of real and gh
particles. The classical theory is certainly unstable, if o
prescribes the initial value off and its first three time de
rivatives. However, in quantum theory every sensible qu
tion can be posed in terms of vacuum to vacuum amplitud
These can be defined by Wick rotating to Euclidean sp
and doing a path integral over all fields that die off in t
Euclidean future and past. Thus the Euclidean formulation
a quantum field theory implicitly imposes the final bounda
condition that the fields remain bounded. This removes
instabilities and runaways, like a final boundary conditi
removes the runaway solution of the classical radiation re
tion force.

In practice, this is done as follows. The quantum instab
ties produce extra poles in the Fourier transform of then
point functions, which are shifted off the real axis by th
interactions. Therefore, taking the contour of integrati
along the real axis and closing it in the upper half pla
would yield growing exponentials from the complex pole
However, our prescription is to Wick rotate from the Eucli
ean. In this case, one must take a different contour, nam
one that can be deformed to the imaginaryp0 axis. This
avoids the growing exponentials from the complex pol
This final boundary condition was used in@11# to compute
the 2-point functions of metric perturbations in tra
anomaly driven inflation.

It has also been argued that in order to avoid patholog
in semiclassical gravity, one should only consider solutio
5-5
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that are perturbatively expandable in\ @13,14#. However, it
has subsequently been shown that physically meaningfu
lutions can be obtained that go well beyond the approxim
perturbative solutions, but which are not sensitive to hig
order corrections to the equation of motion@15#. In particu-
lar, these solutions often describe phenomena where the
viations from classical gravity are locally small but whe
long term cumulative effects may result in very large glob
deviations from classical solutions. Further evidence for th
validity is provided by justifying the semiclassical equatio
by the 1/N approximation, in which case it is natural to ado
the view that semiclassical gravity should in general be
equate to describe phenomena on scales larger than
Planck scale. This was done in@11#, where we concluded
that the Starobinsky solution of trace anomaly inflation fa
into this category.

The price one pays for removing runaways with a fin
boundary condition is a slight violation of causality. For i
stance, with the classical radiation reaction force, a part
would start to accelerate before a wave hit it. This can
seen by considering a single electron which is acted upon
a delta-function pulse@12#. The equation of motion for thex
component reduces to

x,tt5lx,ttt1d~ t !, ~23!

with l52e2/3mc3. This has the solution

x~ t !5E dv

2p
exp@2 ivt#

1

2v22 ilv3
. ~24!

The integrand has two singularities, atv50 andv5 il21.
The final boundary condition thatx,t should tend to a finite
limit implies one must choose an integration contour t
stays close to the real axis, going below the second singu
ity. This yields

x~ t !5l exp@ t/l#, t,0

5t1l, t.0 ~25!

which is without runaways, but acausal. However, this p
acceleration is appreciable only for a period of time com
rable with the time for light to travel the classical radius
the electron, and thus practically unobservable.

Similarly, if we would add an interaction term to th
higher derivative scalar field theory~3!, the imposition of a
final boundary condition to eliminate the runaway solutio
would lead to acausal behavior on the scale ofm2

21, where
m2 is the mass of the ghost particle. However, in the cont
of quantum gravity, one could again never detect a violat
of causality, because the presence of a mass introduc
logarithmic time delayDt;2m logb, whereb is the impact
parameter. Thus there is no standard arrival time, one
always arrive before any given light ray by taking a pa
which stays a sufficiently large distance from the mass.
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VI. CONCLUDING REMARKS

We conclude that quantum gravity with fourth order co
rections can make sense, despite apparently having neg
energy solutions and ghosts. In doing this, we seem to
against the convictions of the last 25 years, that unitarity a
causality are essential requirements of any viable theory
quantum gravity. Perturbative string theory has unitarity a
causality, so it has been claimed as the only viable quan
theory of gravity. But the string perturbation expansion do
not converge, and string theory has to be augmented by n
perturbative objects, like D-branes. One can have a wo
sheet theory of strings without higher derivatives, only b
cause two dimensional metrics are conformally flat, mean
perturbations do not change the light cone. Still, we li
either on a 3-brane, or in the bulk of a higher dimensio
compactified space. The world-sheet theory of D-branes w
p greater than one has similar nonrenormalizability proble
to Einstein gravity and supergravity. Thus string theory
fectively has ghosts, though this awkward fact is quie
glided over.

To summarize, we first reviewed why perturbation theo
for gravity in dimensions greater than two required high
derivatives in the free action. Higher derivatives seemed
lead to ghosts, states with negative norm. To analyze w
was happening, we considered a fourth order scalar fi
theory. We showed that the problem with ghosts arises
cause in the canonical approach,f andhf are regarded as
two independent coordinates. Instead, we based quan
theory on a path integral overf, evaluated in Euclidean
space and then Wick rotated to Lorentzian space. We sho
the path integral required that quantum states be specifie
the values off andf ,t on a spacelike surface, rather thanf
and f ,tt as is usually done in a canonical treatment. T
wave function in terms off andf ,t is bounded in Euclidean
space, but grows exponentially with Minkowski spacef ,t .
This means one cannot observef ,t but onlyf. To calculate
probabilities for observations one therefore has to trace
over f ,t on the final surface, and lose information about t
quantum state. One might worry that integrating outf ,t
would break Lorentz invariance. However,f ,t is conjugate
to f ,tt so tracing overf ,t is equivalent to not observing
hf. Since, according to Eq.~4!, c1 andc2 are linear com-
binations off andhf, this means that one only conside
Feynman diagrams whose external legs arec12c2. You do
not observe the other linear combination,m2

2c12m1
2c2.

Because one is throwing away information, one get
density matrix for the final state, and loses unitarity. Ho
ever, one can never produce a negative norm state or g
negative probability. We illustrated with the example of
higher derivative harmonic oscillator that probabilities f
observations tend toward those of the second order theor
the coefficient of the fourth order term in the action tends
zero. This means that the departures from unitarity for hig
derivative gravity will be very small at the low energies th
now occur in the universe. On the other hand, the hig
derivative terms will be important in the early universe, b
there unitarity cannot be defined.
5-6
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APPENDIX: TRANSITION AMPLITUDE

We compute the Euclidean transition amplitude, to
from an initial state (f1 ,f1,t) on a spacelike surface att
52T, to a final state (f2 ,f2,t) at t50, for the higher de-
rivative harmonic oscillator~11!. The general solution to the
equation of motion is given by

f~t!5A sinhl1t1B coshl1t1C sinhl2t1D coshl2t,
~A1!

where

l15
1

A2a2
A~12A124m2a2!,

l2

5
1

A2a2
A~11A124m2a2!. ~A2!

The transition amplitude is given by a path integral,
10351
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^~f2 ,f2,t ;0!u~f1 ,f1,t ;2T!&

5E
(f1 ,f1,t)

(f2 ,f2,t)

d@f~t!#exp@2S~f!#. ~A3!

This can be evaluated by separating out the ‘‘classical’’ p
of f. If we write f5fcl1f8, wherefcl obeys the equation
of motion with the required boundary conditions on bo
surfacest50 andt5T, then the amplitude becomes

^~f2 ,f2,t ;0!u~f1 ,f1,t ;2T!&

5exp@2Scl~f1 ,f1,t ,f2 ,f2,t!#

3E
(0,2T)

(0,0)

d@f8~t!#exp@2S~f8!#. ~A4!

The classical action is

Scl5E
0

T

dtFa2

2
fcl,tt

2 1
1

2
fcl,t

2 1
1

2
m2fcl

2 G
5E~f1

21f2
2!1F~f1,t

2 1f2,t
2 !

1Gf1,tf2,t2Hf1f21K~f2,tf22f1,tf1!

1L~f2,tf12f1,tf2! ~A5!

where
E5
2m~124m2a2!

2a3~l2
22l1

2!P2 F2m

a
~coshl2T2coshl1T!~l1sinhl1T1l2 sinhl2T!1sinhl1T sinhl2T

3S l1S 2l2
21

1

a2D coshl2T sinhl1T2l2S 2l1
21

1

a2D sinhl2T coshl1TD G
F5

~124m2a2!

2a2~l2
22l1

2!P2 F2m

a
~coshl2T2coshl1T!~l2sinhl1T1l1sinhl2T!1sinhl1T sinhl2T

3S l2S 2l1
21

1

a2D coshl2T sinhl1T2l1S 2l2
21

1

a2D sinhl2T coshl1TD G
G5

~124m2a2!

a2~l2
22l1

2!P2 S 2m

a
~coshl2T coshl1T21!2

1

a2
sinhl1T sinhl2TD ~l1sinhl2T2l2 sinhl1T!

H5
2m~124m2a2!

a3~l2
22l1

2!P2 S 2m

a
~coshl2T coshl1T21!2

1

a2
sinhl1T sinhl2TD ~l1sinhl1T2l2sinhl2T!

K5
1

P2 Fm

a S 4m21
1

a2D sinhl1T sinhl2T~12coshl1coshl2T!1
2m2

a2
„223~cosh2l1T1cosh2l2T!…G
5-7
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L5
2m~124m2a2!

a3~l2
22l1

2!P2 S 2m

a
~coshl2T coshl1T21!2

1

a2
sinhl1T sinhl2TD ~coshl2T2coshl1T!

~A6!

with

P5~l1
21l2

2!sinhl1T sinhl2T12l1l2~12coshl1T coshl2T!. ~A7!

The preexponential factor in Eq.~A4! can be derived from the classical action alone@16#; it is basically the Jacobian of th
change of variables (p1 ,f1)→(f2 ,f1). Because the Lagrangian is quadratic, the prefactor is independent of the v
specifying the initial and final states, and the transition amplitude~A4! is exact. It is given by

^~f2 ,f2,t ;0!u~f1 ,f1,t ;2T!&5S 2a~11aN!H

2p2 D 1/2

exp@2E~f1
21f2

2!2F~f1,t
2 1f2,t

2 !2Gf1,tf2,t1Hf1f2

2K~f2,tf22f1,tf1!2L~f2,tf12f1,tf2!# . ~A8!

The normalization factorN is independent ofa to first order. It is determined by takingT→1` in Eq. ~A8! and requiring that
the amplitude tends toward the product of two normalized ground state wave functionsC0(f1 ,f1,t) andC0(f2 ,f2,t).

For smalla, l1;m andl2;1/a, hence the transition amplitude becomes

^~f2 ,f2,t ;0!u~f1 ,f1,t ;2T!&5S ma

2p2sinhmT
D 1/2

expF2
m coshmT~f1

21f2
2!

2 sinhmT
2

a

2
~f1,t

2 1f2,t
2 !

1
ma coshmT~f2,tf22f1,tf1!

sinhmT
2

m~af2,t1f2!~af1,t2f1!

sinhmT G . ~A9!
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