PHYSICAL REVIEW D, VOLUME 65, 103515
Living with ghosts
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Perturbation theory for gravity in dimensions greater than two requires higher derivatives in the free action.
Higher derivatives seem to lead to ghosts, states with negative norm. We consider a fourth order scalar field
theory and show that the problem with ghosts arises because, in the canonical tredtraewit[1¢ are
regarded as two independent variables. Instead, we base quantum theory on a path integral, evaluated in
Euclidean space and then Wick rotated to Lorentzian space. The path integral requires that quantum states be
specified by the values @ and ¢ . To calculate probabilities for observations, one has to trace outdyer
on the final surface. Hence one loses unitarity, but one can never produce a negative norm state or get a
negative probability. It is shown that transition probabilities tend toward those of the second order theory, as
the coefficient of the fourth order term in the action tends to zero. Hence unitarity is restored at the low
energies that now occur in the universe.
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[. INTRODUCTION In four dimensions on the other hand, the first Sobolev
norm does not bound the pointwise valuedafbut only the
In standard, second order theory the Lagrangian is a funosolume integral of ¢*. This means that the free action
tion of the fields and their first derivatives. The path integralbounds the interactions only for theories with quartic inter-
is calculated by perturbation theory, with the part of the ac-actions, likex ¢*, or Yang-Mills theory. Indeed, these are the
tion that contains quadratic terms in the fields and their firsguantum field theories that are renormalizable in four dimen-
derivatives regarded as the free field action, and the remairsions. Note that even Yang-Mills theory is not renormaliz-
ing terms as interactions. One then calculates Feynman diable in dimensions higher than four, because the interactions
grams, using the interactions as vertices, and the propagatare not bounded by the free action. Similarly, Born-Infeld
defined by the free part of the action. This is equivalent tatheory is not renormalizable in dimensions higher than two.
calculating the expectation value of the interactions in the When one does perturbation theory for gravity, one writes
Gaussian measure defined by the free action. One woulthe metric agyy+ 8g, whereg, is a background metric that
therefore expect perturbation theory to make sense, wheig a solution of the field equations. The terms quadratiégn
and only when the interaction action is bounded by the fre@re again regarded as the free action, and the higher order

action. terms are the interactions. The latter include terms like
This is born out by the examples we know. In two dimen-(V §g)2, multiplied by powers o#g. The volume integral of
sions, the free action of a scalar fiefd such an interaction is not bounded by the free action and

perturbation theory breaks down for gravity, which is not
_ 5 2,2 renormalizabld 2]. Even if all the higher loop divergences
S_f dxT e+ m ¢, @ canceled by some miracle in a supergravity theory, one could
not trust the results, because one is using perturbation theory
is the first Sobolev norm||¢||, ; of the field ¢. In two di-  beyond its limit of validity; 5 can be much larger thagy,
mensions, the first Sobolev norm bounds the pointwise valuically for only a small free action. In other words, there are
of ¢; thus, it also bounds the volume integral of any entirelarge metric fluctuations below the Planck scale.
function of ¢. This means that the free action bounds any The situation is different however if one adds curvature
interaction action, so perturbation theory should work. In-squared terms to the Einstein-Hilbert action. The action is
deed one finds that in two dimensions, any quantum fielchow quadratic in second derivatives 84, so one takes the
theory is renormalizable. free action to be the quadratic termsdg, and its first and
second derivatives. This means that it is the second Sobolev
norm|| 59| ,.» of 5g, which bounds the pointwise value 8§.

*Email address: S.W.Hawking@damtp.cam.ac.uk Hence the free action bounds the interactions, and perturba-
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For a functionf e C*(M), 1<p<w, and an integek=0, the ~ + R? theory is renormalizablg3-5], and in fact asymptoti-
Sobolev norm is definefll] as cally free[6]. However, higher derivatives seem to lead to

ghosts, states with negative norm, which have been thought
) to be a fatal flaw in any quantum field theaisee e.g[7]).
In the next section we review why higher derivatives ap-
. pear to give rise to ghosts. The existence of ghosts would
where|DI!f| is the pointwise norm of théth covariant derivative mean that the set of all states would not form a Hilbert space
and u4 is the Riemannian volume element. with a positive definite metric. There would not be a unitary
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S matrix, and there would apparently be states with negative 1 1 1
probabilities. These seemed sufficient reasons to dismiss any Gp=—7—7 I NN L (6)
quantum field theory, such as Einstein gravity, that had (mz—mj) | (p+mi) (p=+m3)

higher derivative quantum corrections and ghosts. However, . = )
we shall show that one can still make sense of higher derival his is just the difference of the propagators for and /.
tive theories, as a set of rules for calculating probabilities for! '€ important point is that the propagator fpp appears
observations. But one cannot prepare a system in a state withth @ negative sign. This would mean that states with an
a negative norm, nor can one resolve a state into its positiv@dd number ofi, particles would have a negative norm. In
and negative norm components. So there are no negativiher words,i, particles are ghosts. There would not be a
probabilities, and no nonunita§ matrix. positive definite Hilbert space metric, nor a un|.tz8ynatr|x.
Although gravity is the physically interesting case, in this If there were not any interactions, the situation would not
paper we consider a fourth order scalar field theory, whicH?€ t00 serious. The state space would be the direct sum of
has the same ghostly behavior, but does not have the corfivo Hilbert spaces, one with positive definite metrlc and_the
plications of indices or gauge invariance. We show explicitlyother negative. There would not be any physically realized
that the higher derivative theory tends toward the secon@Perators that connected the two Hilbert spaces, 5049h03t
order theory, as the coefficient of the fourth order term in the'umber would be conserved by a superselection rule”A
action tends to zero. Hence the departures from unitarity fofnteraction, however, would allow, particles to be created
higher derivative gravity are very small at the low energiesOr destroyed. As in the classical theory, there will be insta-
that now occur in the universe. bilities, with runaway production of}; and i, particles.
These instabilities show up in the fact that interactions tend
to shift the ghost poles in the two point function f@rinto

Il HIGHER DERIVATIVE GHOSTS the complexp-plane, where they represent exponentially
We consider a scalar field with a fourth-order Lagrang- 9rowing and decaying mod¢8,9]. L
ian in Lorentzian signature: It seems to add up to a pretty damning indictment of

higher derivative theories in general, and quantum gravity

1 and quantum supergravity in particular. However, the prob-
L=—=¢(0—md)(0d—m2)p—\ ¢ (3)  lem with ghosts arises because in the canonical treatrent,

2 and[dJ ¢ are regarded as two independent variables, although
they are both determined hy. We shall show that, by bas-

wherem,>m;. Defining ing quantum theory on a path integral over the field, evalu-

ated in Euclidean space and then Wick rotated to Lorentzian

2 2 space, one can obtain a sensible set of rules for calculating
1:M, ZZM (4) probabilities for observations in higher derivative theories.

[2(m3—m?f)]Y? [2(m3—mi)]H
Ill. EUCLIDEAN PATH INTEGRAL

the Lagrangian can be rewritten as According to the canonical approach, one would perform

1 1 the path integral over all; and ¢,. The path integral over
_ = N 2 1 will converge, but the path integral ové is divergent,
L= 2 a0 =my) = 5o =mz) i because the free action fg, is negative definite. However,
one should not do the path integrals ovler and «, sepa-
B 4N )’ 5) rately because they are not independent fields; they are both
(mg_mi)Z(l’bl Vo). determined byp. The fourth order free action fap is posi-
tive definite; thus the path integral over all in Euclidean
space should converge, and should define a well determined
Euclidean quantum field theory.
One way to compute the path integral for a fourth order

The action of, has the wrong sign. Classically it means
that the energy of the, field is negative, while that ofs; is
positive. If there were no interaction term, this negative en- : o - ; :
ergy would not matter because each of the fieldsand s, theory |sAtc.) expand;’_a in elgenfunct_lons of the differential
would live in its own world and the two worlds would not operatorO in the action. One then integrates ove[ the coef-
communicate with each other. However, if there is an interficients in the harmonic expansion, which gives @t '
action term, likeg?, it will couple ¢; and ¢, together. En- Another way is to use time slicing, by dividing the period
ergy can then flow from one to the other, and one can havéto a number of short time stegsand approximating the
runaway solutions, with the positive energy #f and the derivatives by
negative energy of, both increasing exponentially.
In quantum theory, on the other hand, one is in trouble _ (Pn+1~én) _ (Pn+2=2¢n+1t ¢n)

. . . . ¢ T , ¢ TT . (7)
even in the absence of interactions, as can be seen by looking " € ’ €2
at the free field propagator f@s. In momentum space, this is
the inverse of a fourth order expressionpnwhich can be One then integrates over the valuesgobn each time slice.
expanded as In a second order theory, where the action dependg and
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¢ . but not on¢ ., the path integral will depend on the values of¢ . on the intermediate surface & are not con-
values of¢ on the initial and final surfaces. However, in a strained, Hencep , will be in general discontinuous at,
fourth order theory, the use of three neighbor differencesvhich implies thate ., will have a delta function when one
means that one has to speciy, on the initial and final joins the fields above and below. In a second order action
surfaces as well. ¢ ., appears linearly; thus the delta function can be inte-
One can also see what needs to be specified on the initigirated by parts and the action of the combined field is finite.
and final surfaces as follows. In classical second ordeBut in a fourth order actiond ,,)* appears, rendering the
theory, a state can be defined by its Cauchy data on a spacaetion of the combined field infinite i® ., is a delta func-
like surface, i.e. the values @f and ¢ . on the surface. Ina tion.
canonical 3-1 treatment, these are regarded as the position Therefore, the path integral requires that quantum states
of the field and its conjugate momentum. In quantum theorybe specified byp and¢ . in order to get the composition law
position and momentum do not commute, so instead onéor amplitudes in a fourth order theory. In the next section we
describes a state by a wave function in either position spacshow how one can obtain transition probabilities for obser-
or momentum space. In ordinary quantum mechanics, theations from the Euclidean path integral ougr
position and momentum representations are regarded as
equivalent: one is just the Fourier transform of the other. |\, LiGHER DERIVATIVE HARMONIC OSCILLATOR
However, with path integrals, one has to use wave functions
in the position representation. This can be seen as follows. A. Ground state wave function

Imagine using the path integral to go from a state'ato a To illustrate how probabilities can be calculated, we con-
state atr,, and then to a state ag. In the position represen- giger g higher derivative harmonic oscillator, for which in

tation, the amplitude to go from a fieltl, on 7, to ¢, at 7, Euclidean signature we take the action
is given by a path integral over all fields with the given

boundary values. Similarly, the amplitude to go frebg at
T, t0 ¢ at 75, is given by another path integral. These _j dr
amplitudes obey a composition law:

a? 1 1
?¢?TT+§¢,2T+ §m2¢2 . (12

The general solution to the equation of motion is given by
G(¢s, =f dd,G(p3,2)G( o, d1). 8 ) .
(¢3:41) $26(93.62)G( b2, b1) @® ¢(7)=Asinh\;7+ B cosh\ 7+ C sinh\,7+ D cosh\, 7,
g o (12)
The composition law holds, only because one can join a field
from ¢, to ¢, to a field frome; to ¢, to obtain a field from  \wherex; and X, are given by Eq(A2). For smalla, \;
¢1 10 ¢3. Although in generalp . will be discontinuous at  ~m andx,~1/a.

t,, the field will still have a well defined action: For «2>0, this is similar to our scalar field model, since
in the latter we can take Fourier components so that spatial
S(p3, 1) =S(p3,b2) +S( b2, ba). (9 derivatives behave like masses. Indeed, even for0 in the

, guantum scalar field theoi), ghost instabilities arise. This
On the other hand, if one would use the momentum repres pecause of the lack of any lower-energy bound mentioned
sentation and wave functions in terms @f,, the composi-  gpove, allowing unlimited creation of pairs of ghost particles
tion law would no longer hold, because the discontinuity 0fang normal particles. This process is obviously forbidden in
¢ at r, would make the action infinite. Thus in second orderthe zero-dimensional case of the oscillator considered here,
theories, one should use wave functions in termg @éther  pyt any perturbation with a finite amplitude leads to similar
thané .. _ ) ] instabilities. This can be seen from the general solutki)

In a fourth order theory, a classical state is determined byt the equation of motion. Although in Lorentzian signature,
the values of) and its first three time derivatives on a space-hjs just corresponds to oscillatory behavior, the latter mode
like surface. In a canonical treatmegtand ¢ ,, are usually  has negative energy. Therefore, for small even a small
taken to be independent coordinates. For the scalar fie'QmpIitude for the negative mode leads to enormously nega-

theory (3) we then have the conjugate momenta tive energies, rendering the system unstabla.g® interac-
s o - tion in the field theory(3) would make the situation worse,
My=—¢ .+ (Mi+m—2V?e , I, =—¢.. by introducing exponentially growing runaway solutions

WTT

(10)  even at the classical level. For our purposes here, in which
we consider the former problem, it is sufficient to deal with
This suggests that in quantum theory, one should describethe higher derivative harmonic oscillatétl). In Sec. V we
state by a wave functional (¢, ¢ .,) on a surface. Indeed, shall show that our proposal on how to deal with the former
this is closely related to using the fielgg and i, that we  problem also solves the problems with ghosts in interacting
introduced earlier. These were linear combinationggand  field theories.

[0 ¢; thus taking the wave function to depend @¢nand i, The fourth order actiofll) for ¢ is positive definite; thus
is equivalent to it depending afi and¢ .. However, if one it gives a well defined Euclidean quantum field theory. In this
does the path integral between fixed valuespodnd ¢ .., theory, one can calculate the amplitude to go from a state

one gets in trouble with the composition law, because thé€¢,,¢,,) at time 7y, to a state §$,,¢,,) at time 7,. In
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particular, one can calculate the ground state wave function, m)\ 2 ma

the amplitude to go from zero field in the infinite Euclidean P(¢o)=|— (1+ —-|exH—m(1+ ma) 5], (17)
past, up to the given valuespf, ¢, ,) at 7=0. This yields

(see the Appendix which tends toward the result for the second order theory.

B. Transition probabilities

m
\Ifo(¢o.¢o,r>=N'exr{—F'(¢S,T+—¢é) o _ y
a In this section we compute the Euclidean transition prob-
5 ability to go from a specified valué, at time 7, to ¢, at
2m-—m/ «a ]
0,7

+ m%tﬁ (13 Umem, for the higher derivative harmonic oscillator.
27 M

In a second order theory, a state can be described by a
wave function that depends on the valuegbadn a spacelike
where surface. Thus a transition amplitude is given by a path inte-

gral from an initial statep, on 7, to a final statep, on 7.

(1—4m?a?) To calculate the probability to go from the initial state to the

= > (14  final, one multiplies the amplitude by its Euclidean conju-
2a° (AT A2) (A= My) gate. This can be represented as the path integral from a third

surface, atrs, back to r,. Because the path integral in a
L . . second order theory depends only gnon the boundary,
Similarly, one can cf';\lculate the chlldean conjugate, o+ happens above, and belowr; does not matter. Fur-
ground state wave functio , the amplitude to go from  ynermore. the path integrals above and betovcan be cal-
the given values a¢=0, to zero field in the infinite Euclid-  ¢\jated independently, which implies the probability to go
ean future. This conjugate wave function is equal to therom initial to final can be factorized into the product of &n
original ground state wave function, with the opposite signmatrix and its adjoint. Th& matrix is unitary, because prob-
of ¢o,. The probability that a quantum fluctuation in the ability is conserved.
ground state gives the specified valugs and ¢, . on the Now let us calculate the probability to go from an initial
surfacer=0 is then given by to a final state in the fourth order theofyl). The path inte-
gral requires quantum states to be specifiedgbgnd ¢ .
The transition amplitude to go from a staig,(, ¢, ,) at time
7,=—T, to a state §,,¢,,) at time r,=0, reads

((¢2.02,:0)[(Pp1,01,;—T))

!

andN’(a,m) is a normalization factor.

P(o,bo,) =V \If*=|\|'2exp[—2F'(¢>2 +T¢2”
0 %0, o*o 0,7 o o/
(15

The probability dies off at large values @f and ¢ , and is (6226
normalizable; thus the probability distribution in the Euclid- :j 7 dl ¢(7)]exd —S(¢)]. (18
ean theory is well defined. However if one Wick rotates to 1

Minkowski space;bi picks up a minus sign. The probability
distribution becomes unbounded for large Lorentztapand
can no longer be normalized. This is another reflection of th
same problem as the ghosts. You cannot fully determine
state on a spacelike surface, because that would involve . .
specifying ¢ and Lorentziang ;, which does not have a (b2, 27 0(b1,1,=T))
physically reasonable probability distribution. ( a(1+aN)H

v¢1,7’)

This is evaluated in the Appendix, by writing= ¢¢+ ¢’,
here ¢., obeys the equation of motion with the given
oundary conditions on both surfaces. The result is

1/2

exf —E( g3+ ¢3)

Although one cannot define a probability distribution for =

2
¢ and Lorentzianp , on a spacelike surface, one can calcu- 2
late a probability distribution fogp alone, by integrating out “E(d2 +d2)-C +H
over Euclidean¢ ,. This integral converges because the (91,4 82) = Gbrdost Hbrd
probability distribution is damped at large values of Euclid- —K( o, po— b1,.¢1)—L(d2, 01— b1.¢5)].

ean¢ .. This is just what one would calculate in a second
order theory. So the moral is as follows: a fourth order theory

can make sense in Lorentzian space, if you treat it like arhe coefficient functions in the exponent are given by Eq.
second order theory. The normalized probability d|str|but|on(A6) andN is a normalization factor.

(19

that a ground state fluctuation gives the specified vaigien Again, one can construct a three layer “sandwich” to cal-
a spacelike surface is then given by culate the probability to go from the initial state to the final.
o ) However, in contrast with the second order theory the path
P(%):(ZF m) ex;{ 3 2mF ¢%} (16) int_egral now qlepends on bc_;th _and ¢ . on the bour}daries.
TA a This has two important implications for the calculation of the

transition probability. First, as we just showed, one cannot
As the coefficiente of the fourth order term in the action observe Lorentziaw , because it has an unbounded Lorent-
tends to zero, this becomes zian probability distribution. Therefore one should take
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to be continuous on the surfaces and integrate over all vaHence the probability given by the sandwich tends toward

ues, fixing only the values ap on the surfaces. Because the that of the second order theory, as the coefficient of the
path integrals above and below=0 both depend o, ., fourth order term in the action tends to zero. This is impor-

the probability P(¢,,¢,) to observe the initial and final tant, because it means that fourth order corrections to gravi-
specified values o$ does not factorize into aBmatrix and  ton scattering can be neglected completely at the low ener-
its adjoint. Instead, there is loss of quantum coherence, bagies that now occur in the universe. On the other hand, in the
cause one cannot observe all the information that charactevery early universe, when fourth order terms are important,

izes the final state. we expect the Euclidean metric to be some instanton, like a
After multiplying by the Euclidean conjugate amplitude four sphere. In such a situation, one cannot define scattering
and integrating out oved, . we obtain or ask about unitarity. The only quantities we have any

chance of observing are threpoint functions of the metric
|\ 12 perturbations, which determine tigpoint functions of fluc-
(F) ex;{ —2E(¢i+ p3)—2F 2, tuations in the microwave background. With Reall we have
shown that Starobinsky’s model of inflatidd0], in which
inflation is driven by the trace anomaly of a large number of
. (20 conformally coupled matter fields, can give a sensible spec-
trum of microwave fluctuations, despite the fact it has fourth

. order terms and ghostll]. Moreover, the fourth order
Another consequence of the dependence of the path mtegr%frms can play an important role in reducing the fluctuations

on ¢ . is that what goes on outside the sandwich now af'fect§50 the level we observe
the result. The most natural choice would be the vacuum Finally, in order to obtain the Minkowski space probabil-

state abovery=T and belowr; =—T. In other words, one ity, one analytically continuesr, to future infinity in
takes the path integral to be over all fields that have the 9IVeR i kowski space, andr; and 75 to past infinity, keeping
’ 1 3 ’

values on the three surfaces, and that go to zero in the infinitg, .. "=, jijean time values fixed. This gives the Minkowski

Euclidean future and past. This means that to obtain the trans'pace probability, to go from an initial valug, to a final

value ¢,.

a(l+aN)H
22

GZ
Y
+2H ¢ 1o+ oF o1,

sition probability we also ought to multiply by the appropri-
ately normalized ground state wave functity(e,, ¢, )
and its Euclidean conjugate. The probabil®y{¢,,¢;) is
then given by V. RUNAWAYS AND CAUSALITY

Our discussion in Sec. Il suggests that even the slightest
P(¢2:¢1):f dl 1,1V oW5 amount of a fourth order term will lead to runaway produc-
tion of positive and negative energies, or of real and ghost

particles. The classical theory is certainly unstable, if one
Xf dl 2 ((h1, b1 (b2, b2.)) prescribes the initial value o and its first three time de-

rivatives. However, in quantum theory every sensible ques-
X{(b2,b2.)(P1,01,)) tion can be posed in terms of vacuum to vacuum amplitudes.

These can be defined by Wick rotating to Euclidean space
and doing a path integral over all fields that die off in the
Euclidean future and past. Thus the Euclidean formulation of
a quantum field theory implicitly imposes the final boundary

1/2

_( 012(14-01’N)2H2
\ 27%(4F(F' +F)-G?)

mF’ condition that the fields remain bounded. This removes the
Xexp{—ZE(d)iJr ¢§)—2— d)i instabilities and runaways, like a final boundary condition
@ removes the runaway solution of the classical radiation reac-
tion force.
+2H @13 |. (21) In practice, this is done as follows. The quantum instabili-

ties produce extra poles in the Fourier transform of the
point functions, which are shifted off the real axis by the
interactions. Therefore, taking the contour of integration
along the real axis and closing it in the upper half plane
would yield growing exponentials from the complex poles.
However, our prescription is to Wick rotate from the Euclid-
P(¢2.41) ean. In this case, one must take a different contour, namely
m one that can be deformed to the imagingry axis. This

avoids the growing exponentials from the complex poles.

Here F'(a,m) is the coefficient in the exponent of the

ground wave functior{13) andN is a normalization factor.
In the limit «— 0, this reduces to

2m sinhmT This final boundary condition was used [ibl] to compute
m coshm T( 3+ $2) — 2Mep1 b, ) the 2-point functions of metric perturbations in trace
Xexpg — SinhmT —me7|. anomaly driven inflation.

It has also been argued that in order to avoid pathologies
(22 in semiclassical gravity, one should only consider solutions
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that are perturbatively expandablefin13,14]. However, it VI. CONCLUDING REMARKS
has subsequently been shown that physically meaningful so- We conclude that quantum gravity with fourth order cor-

lutions can be obtained that go well beyond the approximate i K despit tv havi i
perturbative solutions, but which are not sensitive to highell)ec lons can make Sense, despite apparently having negative

order corrections to the equation of motift6]. In particu- ~ €N€rgy solutions and ghosts. In doing this, we seem to go
lar, these solutions often describe phenomena where the d@d@inst the convictions of the last 25 years, that unitarity and
viations from classical gravity are locally small but where causality are essential requirements of any viable theory of
long term cumulative effects may result in very large globalduantum gravity. Perturbative string theory has unitarity and
deviations from classical solutions. Further evidence for theifausality, so it has been claimed as the only viable quantum
validity is provided by justifying the semiclassical equationstheory of gravity. But the string perturbation expansion does
by the 1N approximation, in which case it is natural to adopt not converge, and string theory has to be augmented by non-
the view that semiclassical gravity should in general be adperturbative objects, like D-branes. One can have a world-
equate to describe phenomena on scales larger than tlsbeet theory of strings without higher derivatives, only be-
Planck scale. This was done fidl], where we concluded cause two dimensional metrics are conformally flat, meaning
that the Starobinsky solution of trace anomaly inflation fallsperturbations do not change the light cone. Still, we live
into this category. either on a 3-brane, or in the bulk of a higher dimensional
The price one pays for removing runaways with a finalcompactified space. The world-sheet theory of D-branes with
boundary condition is a slight violation of causality. For in- b greater than one has similar nonrenormalizability problems
stance, with the classical radiation reaction force, a particlg¢g Einstein gravity and supergravity. Thus string theory ef-

would start to accelerate before a wave hit it. This can bgectively has ghosts, though this awkward fact is quietly
seen by considering a single electron which is acted upon béjlided over.

a delta-function pulsgl2]. The equation of motion for the

To summarize, we first reviewed why perturbation theory
component reduces to

for gravity in dimensions greater than two required higher
derivatives in the free action. Higher derivatives seemed to

X tt=AX e+ O(1), (23)  lead to ghosts, states with negative norm. To analyze what
was happening, we considered a fourth order scalar field
with A =2e2/3mc3. This has the solution theory. We showed that the problem with ghosts arises be-

cause in the canonical approaehand]¢ are regarded as
d two independent coordinates. Instead, we based quantum
w ) 1 . . .
X(t):fz_exq_mt]ﬁ_ (24)  theory on a path_lntegral ovep, evalu_ated in Euclidean
m —0°~I\w space and then Wick rotated to Lorentzian space. We showed
the path integral required that quantum states be specified by
The integrand has two singularities, a=0 andw=ix"1.  the values of and¢ , on a spacelike surface, rather than
The final boundary condition that, should tend to a finite and ¢ ., as is usually done in a canonical treatment. The
limit implies one must choose an integration contour thatwvave function in terms of and¢ , is bounded in Euclidean
stays close to the real axis, going below the second singulaspace, but grows exponentially with Minkowski spage .
ity. This yields This means one cannot obserpe. but only ¢. To calculate
probabilities for observations one therefore has to trace out
x(t)=\exgt/\], t<O over ¢ , on the final surface, and lose information about the
quantum state. One might worry that integrating @bt
would break Lorentz invariance. Howevef,, is conjugate
to ¢ ., so tracing over¢ , is equivalent to not observing
O¢. Since, according to Ed4), ¢, and ¢, are linear com-
which is without runaways, but acausal. However, this prebinations of¢ and ¢, this means that one only considers
acceleration is appreciable only for a period of time compafeynman diagrams whose external legs #fe- . You do
rable with the time for light to travel the classical radius of not observe the other linear combinationg ¢, — m?,.
the electron, and thus practically unobservable. Because one is throwing away information, one gets a
Similarly, if we would add an interaction term to the density matrix for the final state, and loses unitarity. How-
higher derivative scalar field theo(g), the imposition of a ever, one can never produce a negative norm state or get a
final boundary condition to eliminate the runaway solutionsnegative probability. We illustrated with the example of a
would lead to acausal behavior on the scalengf’, where  higher derivative harmonic oscillator that probabilities for
m, is the mass of the ghost particle. However, in the contexbbservations tend toward those of the second order theory, as
of quantum gravity, one could again never detect a violatiorthe coefficient of the fourth order term in the action tends to
of causality, because the presence of a mass introduceszaro. This means that the departures from unitarity for higher
logarithmic time delayAt~ —mlogh, whereb is the impact  derivative gravity will be very small at the low energies that
parameter. Thus there is no standard arrival time, one camow occur in the universe. On the other hand, the higher
always arrive before any given light ray by taking a pathderivative terms will be important in the early universe, but
which stays a sulfficiently large distance from the mass.  there unitarity cannot be defined.

=t+N\, t>0 (25)
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of ¢. If we write ¢= ¢+ ¢', wherep., obeys the equation
of motion with the required boundary conditions on both
surfacesr=0 and7=T, then the amplitude becomes

We compute the Euclidean transition amplitude, to go

APPENDIX: TRANSITION AMPLITUDE

from an initial state ¢,,¢;,) on a spacelike surface at ((h2,02:,0)(P1,¢1,;—T))
=—T, to a final state ¢,,¢,,) at =0, for the higher de-
rivative harmonic oscillatof11). The general solution to the =exd —S¢((d1, b1 ¢2,¢2,)]

equation of motion is given by

(0,0
X dl ¢’ exd — 1. A4
¢(7)=Asinh\;7+ B cosh\;7+ C sinh\,7+ D cosh\, 7, f(o,—T) [#"(r)]exfl = S(4°)] (A9

(A1)
The classical action is
where
o? 1
)\1: L 1_4m2a,2 , f dr - ¢C| TT+ ¢C| 7'+ m ¢C|
V2a?
Ao =E(¢i+ 3 +F(d],+ ¢35,
+ Gy b2, ~Hh1do+K(po o= b1,b1)
Vi-4m?e?). (A2) B
TL(p2 b1~ P1,02) (A5)
The transition amplitude is given by a path integral, where

—m(1-4m?a?)
203(\5—\5)P?

2m
—(cosh)\zT cosh\ 1 T)(N1SINhN{ T+ N5 SinhA,T) +sinhh T sinhA,T

1
cosh)\szmh)\lT N (2)\ + )smh)\zTcosh)\lT

1
(ufoee 2

_ (1-4m*a?)
2a2()\2 \2)P2?

2m
(cosh)\zT cosh\ 1 T)(NpSinhA T+ N4SinhA,T) +sinh\ ;T sinhA,T

1
cosh\,T sinhA; T—X (2>\ + )smh)\zTcosh}\lT

1
TN
C(

_ - 4am?a?)

—_— (N 1SinhA,T—N, sinhA;T)
a?(\3—\3)P? s e

1
(—(cosh)\zT coshn{T—1)— 2sinh)\lT sinha,T

2m

—m(1—4m?a?) 1
=— —(cosh)\zTcosh)\lT 1)——smh>\1Tsmh>\2T (NqSinhN{T—=N,sinh\,T)

a®(\;-\DP?

2

1 2m
5 | Sinh\ ;T sinha,T(1— cosh)\lcosh)\zT)Jr—(Z 3(cost; T+ cosiHr,T))

K=o

m 1
am’+ —
a

(47
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L M1 4m'a?) 2m( h\,T coshy , T—1) L sinha, T sinhaT (coshh,T hA,T)
= ——F——F——| —(CO0S COoSs — — —=SIn Sin COoSs —CO0S
JERCENE=Ca 2 1 2 1 2 2 1
(A6)

with
P=(\2+\3)sinh\, T sinhA,T+ 2\ 1\ 5(1— coshh; T coshh,T). (A7)

The preexponential factor in E§A4) can be derived from the classical action al¢thé]; it is basically the Jacobian of the
change of variables,,®1)—(¢,,¢1). Because the Lagrangian is quadratic, the prefactor is independent of the values
specifying the initial and final states, and the transition amplitéd® is exact. It is given by

((2,02,:0)(h1, 1.~ T))= ; exf —E(¢5+ ¢35 —F(¢1,+ ¢5,) ~Ger o+ Hbib

w

—a(l—i—aN)H)l/z

—K(d2,02— b1,01) —L(do, 01— b1.62)]. (A8)

The normalization factoN is independent o to first order. It is determined by taking— + <0 in Eq. (A8) and requiring that
the amplitude tends toward the product of two normalized ground state wave fundtigits , ¢, ;) and¥o(d,, ¢, .,).
For smalla, A;~m and\,~ 1/a, hence the transition amplitude becomes

ma ) v XF{ ~ mcoshmT( b1+ ¢
2m?sinhmT

(($2,¢2,:0)(b1, 1,1~ T))= SemmT 2 (%t 3,

N Ma coshmT( ¢, ;o= b1 ,¢1) B M(a ¢, ,+ ¢o)(adi ,— ¢1)

- - A9
sinhmT sinhmT (A9)
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