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Corley-Jacobson dispersion relation and trans-Planckian inflation
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In this paper we study the dependence of the spectrum of fluctuations in inflationary cosmology on possible
effects of trans-Planckian physics, using the Corley-Jacobson dispersion relations as an example. We compare
the methods used in our previous work with the WKB approximation, give a new exact analytical result, and
study the dependence of the spectrum obtained using the approximate method of our previous work on the
choice of the matching time between different time intervals. We also comment on recent work subsequent to
our previous work on the trans-Planckian problem for inflationary cosmology.
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I. INTRODUCTION le 2
Ner= \/ N>+ n?b; K) , 2

The trans-Planckian problem of inflatiph] is the follow-
ing: in many models of inflation, the phase of accelerated
expansion lasts so mangfoldings that the comoving Wwhere\ denotes the physical wavelength of a given mode,
lengths corresponding to present day cosmological scaleddlcis a characteristic length expected to be determined by
were much smaller than the Planck length at the beginning dhe Planck scale. The first one is the Unruh dispersion rela-
inflation. Hence, one may wonder whether the “standard”tion [3] whereas the second one is the Corley-Jacobson rela-
predictions of inflation, in particular the fact that the powertion [4] (b, is an arbitrary number which can be positive or
spectrum of cosmological perturbations is close to scale innegative. In fact, in Ref.[1] a generalization of the Corley-
variant, will be changed if the laws of physics beyond thejacobson dispersion relation was considered.
Planck scale are different from the ones which rule the low In [1]' the problem was investigated for the class of scale
energy phenomena. The usual calculations of the spectrum @4ctors corresponding to power-law inflation, i.a(7)
cosmological perturbationsee e.g[2] for a comprehensive =14 7|2, B=—2 wherel, has the dimension of a length
review) are based on the use of classical general reIaﬂw%nd is equal to the Hubble radius during inflation Af

coupled to a weakly interacting scalar field, and on lineariz-_ — 2 (de Sitter inflation. The example of the Unruh disper-

ing the resulting equations of motion about a classical back-. . -
ground cosmology. The validity of this approach in the trans— " relation was treated only ii= —2 whereas the second

Planckian regime is highly doubtful dispersion relation was studied for any value®t —2. It
In the context of inflation. this .question was first ad- Was found that no modifications in the spectrum of fluctua-

dressgd in Ref[1]. T.O calculate t.he power spectrum of cos. tions arise in the first case, _Wherleas some differences can
mological perturbations, the main equation that needs to b8hOW up in the second caselif<0.

solved is the equation of a parametric oscillator with a time-_ The aim of this paper is to return to the example of the
dependent frequency which is a function of the scale factoforley-Jacobson dispersion relations, making use of a new
a(7) (and its derivatives and of the dispersion relation €xact analytical solution. This one allows us to address some
wpnyd k), wherek indicates the physical wave number relatedtechnical points that have been raised rece_ntly in the litera-
to the comoving wave number by k=n/a. In the usual ture and to compare the method of REf] with the other
discussions, the dispersion relation is taken to be linear asethods used in the works subsequenflp Explicitly, in
appropriate for a free field theory. The method used in RefSec. Il, we compare the Wigner-Kramers-BrilloUMWKB)

[1] was to replace the linear relationg, =k by a non- approximation method used in Reff5] to calculate the
standard one that mimics possible modifications of the physpower spectrum with the method used in Réf. In Sec. I,

ics in the ultraviolet regime. Based on similar approachesve consider the exact formula mentioned above which al-
[3,4] used to study the possible dependence of Hawking ralows us to make a smooth transition from the region where
diation on trans-Planckian physics, two classes of dispersiothe sub-Planckian effects are important to the region where
relations were considerga g=a(7) wyndn/a)]: the dispersion relation is standard. We take advantage of the
fact that this new solution is also valid fop <O to discuss

p
Nef= nitanh“p (I—C> : (1)
lc A
This result was obtained assuming that the initial state is the
“minimizing energy state.” In Ref[1], another state was also con-
*Electronic address: jmartin@iap.fr sidered, but only to demonstrate that the final spectrum depends on
TOn leave from Department of Physics, Brown University, Provi- the choice of the initial state. As stressed in R&f, the “minimiz-
dence, RI102912. Electronic address: rhb@het.brown.edu ing energy state” is the only physically well-motivated state.
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in more detail than in Ref.1] the physical meaning of com- proaches to quantum gravity {14—17. In [14,16,17 the
plex solutions in the sub-Planckian region. In the fourth secstarting point was modifications of the commutation relations
tion, we study the consequences for the matching time usestemming from general considerations of short-distance
in the approximate analysis 1] and show that the use of quantum gravitational effects, and 5] consequences of
an incorrect matching time will lead to artificial oscillations short-distance non-commutative geometry were investigated.
in the spectruni.First, however, we comment on some of the Interesting deviations of the spectrum of fluctuations from
recent work on this subject. the usual results were found. Specifically, the analysj4 5f
Following Ref.[1], there has been a significant amount of showed that non-Gaussian fluctuations are expected, and the
work on the trans-Planckian problem for inflationary cosmol-analysis of{17] revealed changes to the spectral shape.
ogy. The work has focused on two issues. The first is how To summarize the current state of knowledge on the issue
broad the class of dispersion relations is for which there is @f the possible dependence of the spectrum of fluctuations on
change in the spectrum of fluctuations, and whether there ateans-Planckian physics, if the dispersion relation leads to
other features in the linear perturbations which can be useddiabatic evolution of the vacuum state on sub-Planckian
to probe trans-Planckian physics. The second is whether tHength scales, then the spectrum is not modifiéb,7).
back reaction of the excess fluctuations produced by modiHowever, this restriction on the class of dispersion relations
fied dispersion relations is important and can have interestingnay exclude the cases of actual physical intefés17).
conseqguences. String theory, M-theory, non-commutative geometry and dis-
Let us for the moment focus on the issue of the class otrete quantum gravity can all lead to much more drastic
dispersion relations for which a modification of the spectrumchanges in the effective dispersion relation and may hence
of fluctuations is found. 1f6], the case of Unruh dispersion result in changes in the spectrum of fluctuations which can
relations was studied in a de Sitter Universe, and no changee probed observationally with current and future cosmic
in the spectrum was found, in agreement with the corremicrowave backgroundCMB) experiments. Recently, two
sponding results inl]. No dispersion relations of Corley- concrete examples where a change in the spectrum is ob-
Jacobson type were studied {6].2 In [5,7] the trans- tained were studied in Refl13,19.
Planckian problem of inflationary cosmology was addressed The second issue raised in recent work, in particular in
assuming that the mode wave function is of WKB-type form.[19 7] is whether, if the power spectrum is indeed modified
Once again, no changes in the spectrum were found. It hasy trans-Planckian physics, there is a back reaction
been pointed out i}8] that for dispersion relations which ,rplem? The back reaction problem is the following: when
lead to adiabatic evolution of the states on sub-Planckiagje\yeq at late times, the modified dispersion relations stud-
scales—and WKB states fall into this category—there are na, ;, [1] and in subsequent papers lead to mode functions
changes in the spectrum compared to what is obtained with &nich during inflation on length scales larger thanbut

linear dispersion relation. As S“OWU i8], the evolqtlon M smaller than the Hubble radius are excited compared to the
the case of the Corley-Jacobson dispersion relations with a

negative sign ob, is not adiabatic, and this is the reason thatad'abat'c vacuum. These fluctuations carry energy and mo-

the spectrum is modified. Note that the change in the Speépenpum,_and Fh'.s energy could be so large as to turn off
trum of fluctuations in the case of Corley-Jacobson disper'—nﬂ‘?t'on’ Ina s!m|lar_ manner as the baqk reaction of cosmo-
sion relations withb; <0 was confirmed if7], where these Iog|cal quctuanng In mpdels_, of ChE.iOt.IC mflatlc[Q_O] can
dispersion relations were labeled as “exceptional forms oPu'ld up 'and ter'mmate '|nflat|on. This is a very interesting
w(k).” Other dispersion relations were studied[@-12.* issue which merits detailed study.

The question of a possible dependence of the predictions
for linear cosmological fluctuations on trans-Planckian phys-

ics was recently considered in the context of possible ap- !l WKB APPROX'MSA(;'—B?IXE';SUS PIECEWISE

The equation of motion that needs to be solved in order to

2 i i i i ; X
_“As pointed out in[5], there was a mistake in Sec. VB2 of the compute the power spectrum of cosmological perturbations
first version of[ 1]: the incorrect choice of the matching time in the is

Corley-Jacobson case with >0 led to a spectrum which was the
usual one times a complicated oscillatory function, instead of to an
unmodified spectrum.

30n this basis, the claims of Rd6] that “contradictory results”
or “opposite results” were found in Ref$l] and[6] are mislead-
ing. Indeed, the only common case between these two articles is the . .
case of the Unruh dispersion relation in de Sitter spacetime fofvhere the expression fap is given below[see Eq.(7)].
which exactly the same conclusion was obtained in Rdfsand ~ Usually, Eg. (3) possesses two regimes depending on
[6].

“The goal of[10] was to provide a new model for dark energy
(see, howevef13]), and in[11] and[12] novel dispersion relations  °Clearly, the back reaction problem can only be raised as a second
were used to yield realizations of the varying speed of light scenariguestion once it has been established that there are important modi-
[11] and to obtain inflation from radiatiofl2]. fications to the fluctuation spectrum.

©'+w*(n, ) u=0, (€]
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whether the wavelength of the mode is smaller or larger rect matching time could lead to artificial oscillations in the
than the Hubble radiuky. In the present context, we deal spectrum, as pointed out in R¢E].

with three different regimes. The first one is whirgl ¢

<ly. This defines region | of Ref1]. The second regime is

such thal -<A <l and corresponds to region Il of RéL].

Finally, the third regime is wheh-<I,<<\; this is region Il IIl. THE EXACT MODEL

of Ref. [1]. We recover the usual result for the spectrum of T effective time dependent frequency is given by the
fluctuations if in region Il is given by a single branch with equation
a coefficient proportional to 3 multiplying the plane wave

solution.

The method used in Reffl] to determine the solution of 2 2
Eq. (3) is to find solutions in the three regions and to match @ (N, 7)=Neg— - (7)
them at the boundaries between the regions. The method
used in Ref[5] is different and consists in utilizing the WKB
approximation. In that case, the solution of E8) is given

4

n%e\?
e

n?+b,

—27ile+1/2

(5

We consider the Corley-Jacobson dispersion relation given in
Sitter inflation. Then the scale factor can be written as
In cases where the adiabatic approximation is justified,
NG
— e b v
MWKB 2 71_|77|| ( 7
order 10 °. We now need to distinguish between the cases of

by Eq. (1) where, as already mentioned abolgjs an arbitrary
1 number which can be positive or negative. We restrict our
n
=——-=86X iif w(7)d7
MWKB ’—Zw(n) F{ .
a(n)=Iq/| n|. If we consider the evolution of the mode well
inside horizon, the terna”/a can be neglected in Eq3).
the two methods are equivalent. To verify this, consider first
Unruh’s dispersion relation. Inserting the dispersion relation
This is nothing but Eq(66) of Ref.[1] [i.e. Eq.(54) in the  positive or negativeb,. Let us first concentrate on the,
limit when e=I/l, is small, properly normalized according >0 case. We make the following change of variableg

' (4) consideration to the prototypical model of inflation, i.e. de
where 7, is some initial time. Then, this equation takes on the form
into Eq. (4) (using the minus signyields in region | u"+
where e=|/l,. Typically, € is a very small number of the
to Egs.(56) and(57) of that reference. Similarly, in the case =Cx (x>0), where C is a constant given byC

of the Corley-Jacobson dispersion relatiomith b;>0, in  =[(b;) Y¥n]/n/e. Then the equation of motion takes the
which case the adiabatic condition is satisfiéd), Eq. (4)  form
becomes
ne\ %2 dPPu (X2 T
—p—12 _) — 12— 141112 -~ (__ _ = _ _
MwKB (277 n~ "y 77| o + 7 ajlu=0, a E\/b_1<0 9

xexr{libi’z(;‘—e)n(lnlz—lmlz)] (6)
m Clearly, this equation possesses two regimes. The first one,
corresponding to region | in Refl], is when the quartic
Again, this is the same result as obtained with the matchingerm of the dispersion relation dominates. Expressed in terms
technique in Ref[1]. To see this, take Eq(118 of that  of the new variable, this corresponds t&?/4>|a|. On the
reference, which provides the solution in region |, consideiother hand, region Il of Ref[1] corresponds to a region
the limit whenz is large and use Eq$126) and(127) with  where the dispersion relation has become standarck&#d
the lower sign. In region II, the solution is simply given by <|a|. The general solution of E¢9) (valid in both regions
plane wavesu=B,e"”+B,e """ in agreement with Eq. is given in terms of parabolic cylinder functiofa,x) (see
(14) of Ref.[1]. Ref.[21]) and reads

The advantage of the WKB method over the method used
in Ref.[1] is that one does not have to perform the matching
between the different regions. The disadvantage is that the pw=A1E(a,x)+AE* (a,X), (10)
WKB method applies only to examples in which the adiaba-
ticity condition is satisfied. In the next section, we consider
an exact model which allows us to avoid the matching bewhere the two constants; and A, are fixed by the initial
tween region | and Il. In the third section, we study theconditions whennp— — (i.e. x—®). In this limit, the
consequences for the matching time and show that an incoesymptotic behavior is given 1]
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—-1/4 -1/2 2
- Y ne 172 1/2 2, T P2 _ 1/2 € 2T _ b2
nlln_]w'u by (E) (277) | 7| =4 Arexpgiby |17| +|4+| 5 | Azexg —iby |7;| At
11
where ¢p,=argl’(1/2+ia). Thus we reproduce the correct WKB behavior if we take
b11/8771/4 ) ne T ¢y
Aj=2"12—— v (;) ex;{—u(b )1’2( )"7"2_'2_'7’ A,=0. (12)

Let us now study how this solution behaves in region Il. Then, an exact solution in terms of parabolic cylinder func-
Usually, the solution in this region is given byyne* ™7l tionsU(a,x) andV(a,x) (see Ref[21]) can be found. This

It is therefore sufficient to have only one branch proportionalgives a Harrison-Zeldovich spectrum corrected by oscilla-
to 1/\/n to recover the standard scale-invariant spectrum. Ustions and by an exponential term of the foa‘H12 This result

ing the asymptotic behavior of the parabolic cylinder func-is in agreement with what was obtained in Hé&f. However,
tions whenx?/4<|a|, one finds this result rests clearly on “non-standard physics” and for
R - this reason is not so attractive. Therefore, it is important to
?) bi’gex;{in|n|+iz ,

(13) recall that there now exist two cases where the final spectrum
i.e. we precisely recover the conditions necessary to obtain

is modified and everything is well-defin¢d3,18.

Harrison-Zeldovich spectrum, due to the fact tAatc1/\/n,
see Eq(12). We now investigate what we can learn from the previous

Let us now turn to the cade;<0. An immediate conse- exact solution with respect to the matching between regions
quence is that the dispersion relatings(n, ) vanishes at | and Il. We concentrate on the Corley-Jacobson case with
some point and then becomes complex. Therefore, we fade;>0. A priori, two natural choices for the matching time
the following problems. First, in the region whemgg(n, 7) can be envisaged. The first choice is to match the solutions
is small, the terma"/a is no longer negligible. In principle it when\ =Ic. This amounts to choosing
should be taken into account in the equation of motion but no L,
exact solution can then be found. However, this problem is Il =] = nle. (14)
not too serious because the effect of this term on the final mi=lmn 2m7ly
spectrum is expected to be small. Second, a much more se-
rious question is the fact that there is a region where we havAnother possibility is to choose the matching time such that
to quantize a field in the presence of imaginary frequencyhe usual and the extra contribution in the dispersion relation
modes. Although imaginary frequencies are standard in clagre equal
sical physics and in quantum mechanics, they seem to be
problematic in the context of quantum field the¢B2] al- n2b ('_c
though there exist concrete physical situations where they !
are importanf23]. Third, we have to fix the initial conditions
in the complex region. A possible choice for the initial con- This is in fact equivalent to matching the frequencies
ditions, which is consistent with the WKB result, is to keep Neg(N, 7). Therefore,n; and n; are not equal unleds;=1.
only the decreasing exponential in the region where the eftet us now perform the matching between regions | and II.
fective frequency becomes complex as proposed in[Réf.  Then, the coefficienB; is given by:

m=A;

R, CONSEQUENCES FOR THE MATCHING PROCEDURE

2

nlec
=n’=|pl=|ni|=

-1
12
27T|0) b, ™% (19

-1/2

: iny_ o—12] M€ U141 _. 1] M€ 12102

2inB,e"7i=2" n~ Y2 Y 5| Y2exg Fib1? — |n(| ;2= | 7l?)
! 2w 1 ) Y\ anmp J :

. 1 _1
in— §(1+,3)|771|

bllz(g )n|711|] (16

For the curly bracket of the above expression one finds

)

1 .
{rh=- §<1+ﬁ>|mll+m(1t
7

103514-4



CORLEY-JACOBSON DISPERSION RELATION . .. PHYSICAL REVIEW B5 103514

In the same manner, one can deternijeto be

. 1 . Ne
in+>(1+8)| 7| 1+|b1’2(—)n|nj| :

; —innpi_ o—1/2
2inB,e™""=2 oy
(18)

—1/2
Ne Ne
— 12— 14 -1/ —inl2 2 2
o ) n~ by zeXF{—Flbl (4 ﬁ)n(|7]j| —|%l?

Again, we can write the curly bracket in the previous expresbeen presentedjii) in the case where piecewise solutions
sion as are used, the matching conditions have been studied. It has
1 . been demonstrated that the frequencies rather than the wave-
{-- =4+ =(1+p) 77].| “1iin A ) ] (19 lengths should be matchéds could have been guessed from

2 7 the equation of motionand that if the latter requirement is

The situation is now clear. If the joining is performed gt utilized then artificial oscillations show up in the spectrum.

— 7., the terms proportional t in the curly brackets have 1hese results complete the study of Ref.

no reason to cancel out and they are in fact of order one. The ON more general grounds, the conclusion that follows
term proportional to 77j|—1 is very small and can be ne- from the previous considerations is that there is a sensitive

glected. Therefore we reach the conclusion BatB, and dependence of the spectrum of cosmological fluctuations on

we have oscillations. However, if we perform the matchinggje assumptions madehaththe Ir:avel of sg_t;-PIancklan physics.
at 7=, the situation is drastically different. This time one separate issue Is whether these modifications are reason-

of the curly brackets vanishes and one of Byis becomes of able from a physical point of view. _This question cannot be

the ordery, ‘<1, whereas the other onelis of order 1. In answered in the absence of a realistic the(_)ry of _phy3|cs be-

other Word; only’ one branch survives, we have no oscillayond the Planck scale: To our knowlgdge, it is still an open

tions and thé spectrum of fluctuations i7s unchanged prc_)blem to derive a dispersion relation from, for example,
A comparison with the exact solution shows that the corStrlng theory(see, however, Ref¢14,24 for some recent

o = ““progres
rect matching time isy; . Therefore, there are no oscillations progress
in the spectrum in the cady >0, as pointed out in Ref5], ACKNOWLEDGMENTS
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