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Corley-Jacobson dispersion relation and trans-Planckian inflation
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In this paper we study the dependence of the spectrum of fluctuations in inflationary cosmology on possible
effects of trans-Planckian physics, using the Corley-Jacobson dispersion relations as an example. We compare
the methods used in our previous work with the WKB approximation, give a new exact analytical result, and
study the dependence of the spectrum obtained using the approximate method of our previous work on the
choice of the matching time between different time intervals. We also comment on recent work subsequent to
our previous work on the trans-Planckian problem for inflationary cosmology.
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I. INTRODUCTION

The trans-Planckian problem of inflation@1# is the follow-
ing: in many models of inflation, the phase of accelera
expansion lasts so manye-foldings that the comoving
lengths corresponding to present day cosmological sc
were much smaller than the Planck length at the beginnin
inflation. Hence, one may wonder whether the ‘‘standa
predictions of inflation, in particular the fact that the pow
spectrum of cosmological perturbations is close to scale
variant, will be changed if the laws of physics beyond t
Planck scale are different from the ones which rule the l
energy phenomena. The usual calculations of the spectru
cosmological perturbations~see e.g.@2# for a comprehensive
review! are based on the use of classical general relati
coupled to a weakly interacting scalar field, and on linea
ing the resulting equations of motion about a classical ba
ground cosmology. The validity of this approach in the tra
Planckian regime is highly doubtful.

In the context of inflation, this question was first a
dressed in Ref.@1#. To calculate the power spectrum of co
mological perturbations, the main equation that needs to
solved is the equation of a parametric oscillator with a tim
dependent frequency which is a function of the scale fac
a(h) ~and its derivatives! and of the dispersion relatio
vphys(k), wherek indicates the physical wave number relat
to the comoving wave numbern by k5n/a. In the usual
discussions, the dispersion relation is taken to be linea
appropriate for a free field theory. The method used in R
@1# was to replace the linear relationvphys5k by a non-
standard one that mimics possible modifications of the ph
ics in the ultraviolet regime. Based on similar approach
@3,4# used to study the possible dependence of Hawking
diation on trans-Planckian physics, two classes of disper
relations were considered@neff[a(h)vphys(n/a)#:

neff5n
l

l C
tanh1/pF S l C

l D pG , ~1!
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neff[An21n2b1S l C

l D 2

, ~2!

wherel denotes the physical wavelength of a given mo
andl C is a characteristic length expected to be determined
the Planck scale. The first one is the Unruh dispersion r
tion @3# whereas the second one is the Corley-Jacobson r
tion @4# (b1 is an arbitrary number which can be positive
negative!. In fact, in Ref.@1# a generalization of the Corley
Jacobson dispersion relation was considered.

In @1#, the problem was investigated for the class of sc
factors corresponding to power-law inflation, i.e.a(h)
5 l 0uhu11b, b<22 wherel 0 has the dimension of a lengt
and is equal to the Hubble radius during inflation ifb
522 ~de Sitter inflation!. The example of the Unruh dispe
sion relation was treated only forb522 whereas the secon
dispersion relation was studied for any value ofb<22. It
was found that no modifications in the spectrum of fluctu
tions arise in the first case, whereas some differences
show up in the second case ifb1,0.1

The aim of this paper is to return to the example of t
Corley-Jacobson dispersion relations, making use of a n
exact analytical solution. This one allows us to address so
technical points that have been raised recently in the lite
ture and to compare the method of Ref.@1# with the other
methods used in the works subsequent to@1#. Explicitly, in
Sec. II, we compare the Wigner-Kramers-Brillouin~WKB!
approximation method used in Ref.@5# to calculate the
power spectrum with the method used in Ref.@1#. In Sec. III,
we consider the exact formula mentioned above which
lows us to make a smooth transition from the region wh
the sub-Planckian effects are important to the region wh
the dispersion relation is standard. We take advantage o
fact that this new solution is also valid forb1,0 to discuss

-

1This result was obtained assuming that the initial state is
‘‘minimizing energy state.’’ In Ref.@1#, another state was also con
sidered, but only to demonstrate that the final spectrum depend
the choice of the initial state. As stressed in Ref.@1#, the ‘‘minimiz-
ing energy state’’ is the only physically well-motivated state.
©2002 The American Physical Society14-1



-
ec
s
f
s

he

o
ol
o
is
a

se
t

od
tin

o
um
n
n
re
-

se
m
h

h
ia
n

ith

th
a
e
e

o

io
ys
ap

ns
nce
f
ted.
m

d the

sue
s on

to
ian

ns

is-
tic
nce
an
ic

ob-

in
ed
ion
n
ud-
ons

the
mo-
off
o-

ng

r to
ons

on

e
e
e
a

s t
fo

y

ar
ond
odi-
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in more detail than in Ref.@1# the physical meaning of com
plex solutions in the sub-Planckian region. In the fourth s
tion, we study the consequences for the matching time u
in the approximate analysis of@1# and show that the use o
an incorrect matching time will lead to artificial oscillation
in the spectrum.2 First, however, we comment on some of t
recent work on this subject.

Following Ref.@1#, there has been a significant amount
work on the trans-Planckian problem for inflationary cosm
ogy. The work has focused on two issues. The first is h
broad the class of dispersion relations is for which there
change in the spectrum of fluctuations, and whether there
other features in the linear perturbations which can be u
to probe trans-Planckian physics. The second is whether
back reaction of the excess fluctuations produced by m
fied dispersion relations is important and can have interes
consequences.

Let us for the moment focus on the issue of the class
dispersion relations for which a modification of the spectr
of fluctuations is found. In@6#, the case of Unruh dispersio
relations was studied in a de Sitter Universe, and no cha
in the spectrum was found, in agreement with the cor
sponding results in@1#. No dispersion relations of Corley
Jacobson type were studied in@6#.3 In @5,7# the trans-
Planckian problem of inflationary cosmology was addres
assuming that the mode wave function is of WKB-type for
Once again, no changes in the spectrum were found. It
been pointed out in@8# that for dispersion relations whic
lead to adiabatic evolution of the states on sub-Planck
scales—and WKB states fall into this category—there are
changes in the spectrum compared to what is obtained w
linear dispersion relation. As shown in@8#, the evolution in
the case of the Corley-Jacobson dispersion relations wi
negative sign ofb1 is not adiabatic, and this is the reason th
the spectrum is modified. Note that the change in the sp
trum of fluctuations in the case of Corley-Jacobson disp
sion relations withb1,0 was confirmed in@7#, where these
dispersion relations were labeled as ‘‘exceptional forms
v(k).’’ Other dispersion relations were studied in@9–12#.4

The question of a possible dependence of the predict
for linear cosmological fluctuations on trans-Planckian ph
ics was recently considered in the context of possible

2As pointed out in@5#, there was a mistake in Sec. V B 2 of th
first version of@1#: the incorrect choice of the matching time in th
Corley-Jacobson case withb1.0 led to a spectrum which was th
usual one times a complicated oscillatory function, instead of to
unmodified spectrum.

3On this basis, the claims of Ref.@5# that ‘‘contradictory results’’
or ‘‘opposite results’’ were found in Refs.@1# and @6# are mislead-
ing. Indeed, the only common case between these two articles i
case of the Unruh dispersion relation in de Sitter spacetime
which exactly the same conclusion was obtained in Refs.@1# and
@6#.

4The goal of@10# was to provide a new model for dark energ
~see, however,@13#!, and in@11# and@12# novel dispersion relations
were used to yield realizations of the varying speed of light scen
@11# and to obtain inflation from radiation@12#.
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proaches to quantum gravity in@14–17#. In @14,16,17# the
starting point was modifications of the commutation relatio
stemming from general considerations of short-dista
quantum gravitational effects, and in@15# consequences o
short-distance non-commutative geometry were investiga
Interesting deviations of the spectrum of fluctuations fro
the usual results were found. Specifically, the analysis of@15#
showed that non-Gaussian fluctuations are expected, an
analysis of@17# revealed changes to the spectral shape.

To summarize the current state of knowledge on the is
of the possible dependence of the spectrum of fluctuation
trans-Planckian physics, if the dispersion relation leads
adiabatic evolution of the vacuum state on sub-Planck
length scales, then the spectrum is not modified@8,5,7#.
However, this restriction on the class of dispersion relatio
may exclude the cases of actual physical interest@15,17#.
String theory, M-theory, non-commutative geometry and d
crete quantum gravity can all lead to much more dras
changes in the effective dispersion relation and may he
result in changes in the spectrum of fluctuations which c
be probed observationally with current and future cosm
microwave background~CMB! experiments. Recently, two
concrete examples where a change in the spectrum is
tained were studied in Refs.@13,18#.

The second issue raised in recent work, in particular
@19,7# is whether, if the power spectrum is indeed modifi
by trans-Planckian physics, there is a back react
problem.5 The back reaction problem is the following: whe
viewed at late times, the modified dispersion relations st
ied in @1# and in subsequent papers lead to mode functi
which during inflation on length scales larger thanl C but
smaller than the Hubble radius are excited compared to
adiabatic vacuum. These fluctuations carry energy and
mentum, and this energy could be so large as to turn
inflation, in a similar manner as the back reaction of cosm
logical fluctuations in models of chaotic inflation@20# can
build up and terminate inflation. This is a very interesti
issue which merits detailed study.

II. WKB APPROXIMATION VERSUS PIECEWISE
SOLUTIONS

The equation of motion that needs to be solved in orde
compute the power spectrum of cosmological perturbati
is

m91v2~n,h!m50, ~3!

where the expression forv is given below@see Eq.~7!#.
Usually, Eq. ~3! possesses two regimes depending

n

he
r

io

5Clearly, the back reaction problem can only be raised as a sec
question once it has been established that there are important m
fications to the fluctuation spectrum.
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CORLEY-JACOBSON DISPERSION RELATION . . . PHYSICAL REVIEW D65 103514
whether the wavelengthl of the mode is smaller or large
than the Hubble radiusl H . In the present context, we de
with three different regimes. The first one is whenl! l C
! l H . This defines region I of Ref.@1#. The second regime is
such thatl C!l! l H and corresponds to region II of Ref.@1#.
Finally, the third regime is whenl C! l H!l; this is region III
of Ref. @1#. We recover the usual result for the spectrum
fluctuations if in region IIm is given by a single branch with
a coefficient proportional to 1/An multiplying the plane wave
solution.

The method used in Ref.@1# to determine the solution o
Eq. ~3! is to find solutions in the three regions and to ma
them at the boundaries between the regions. The me
used in Ref.@5# is different and consists in utilizing the WKB
approximation. In that case, the solution of Eq.~3! is given
by

mWKB5
1

A2v~h!
expF6 i E

h i

h
v~t!dtG , ~4!

whereh i is some initial time.
In cases where the adiabatic approximation is justifi

the two methods are equivalent. To verify this, consider fi
Unruh’s dispersion relation. Inserting the dispersion relat
into Eq. ~4! ~using the minus sign! yields in region I

mWKB5
1

2
Ae

p
uh iu1/2S Uh

h i
U D 22p i /e11/2

. ~5!

This is nothing but Eq.~66! of Ref. @1# @i.e. Eq.~54! in the
limit when e[ l C/ l 0 is small#, properly normalized according
to Eqs.~56! and~57! of that reference. Similarly, in the cas
of the Corley-Jacobson dispersion relation~with b1.0, in
which case the adiabatic condition is satisfied@5#!, Eq. ~4!
becomes

mWKB5221/2S ne

2p D 21/2

n21/2b1
21/4uhu21/2

3expF7 ib1
1/2S ne

4p Dn~ uhu22uh iu2!G . ~6!

Again, this is the same result as obtained with the match
technique in Ref.@1#. To see this, take Eq.~118! of that
reference, which provides the solution in region I, consi
the limit whenz is large and use Eqs.~126! and ~127! with
the lower sign. In region II, the solution is simply given b
plane wavesm.B1einh1B2e2 inh in agreement with Eq.
~14! of Ref. @1#.

The advantage of the WKB method over the method u
in Ref. @1# is that one does not have to perform the match
between the different regions. The disadvantage is that
WKB method applies only to examples in which the adiab
ticity condition is satisfied. In the next section, we consid
an exact model which allows us to avoid the matching
tween region I and II. In the third section, we study t
consequences for the matching time and show that an in
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rect matching time could lead to artificial oscillations in th
spectrum, as pointed out in Ref.@5#.

III. THE EXACT MODEL

The effective time dependent frequency is given by
equation

v2~n,h!5neff
2 2

a9

a
. ~7!

We consider the Corley-Jacobson dispersion relation give
Eq. ~1! where, as already mentioned above,b1 is an arbitrary
number which can be positive or negative. We restrict o
consideration to the prototypical model of inflation, i.e.
Sitter inflation. Then the scale factor can be written
a(h)5 l 0 /uhu. If we consider the evolution of the mode we
inside horizon, the terma9/a can be neglected in Eq.~3!.
Then, this equation takes on the form

m91Fn21b1S n2e

2p D 2

uhu2Gm50, ~8!

wheree[ l C/ l 0. Typically, e is a very small number of the
order 1025. We now need to distinguish between the cases
positive or negativeb1. Let us first concentrate on theb1
.0 case. We make the following change of variables2h
5Cx (x.0), where C is a constant given byC
5@(b1)21/4/n#Ap/e. Then the equation of motion takes th
form

d2m

dx2
1S x2

4
2aDm50, a[2

p

eAb1

,0. ~9!

Clearly, this equation possesses two regimes. The first
corresponding to region I in Ref.@1#, is when the quartic
term of the dispersion relation dominates. Expressed in te
of the new variablex, this corresponds tox2/4@uau. On the
other hand, region II of Ref.@1# corresponds to a region
where the dispersion relation has become standard andx2/4
!uau. The general solution of Eq.~9! ~valid in both regions!
is given in terms of parabolic cylinder functionsE(a,x) ~see
Ref. @21#! and reads

m5A1E~a,x!1A2E* ~a,x!, ~10!

where the two constantsA1 and A2 are fixed by the initial
conditions whenh→2` ~i.e. x→`). In this limit, the
asymptotic behavior is given by@21#
4-3
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lim
h→2`

m5b1
21/8S p

e D 21/4S ne

2p D 21/2

uhu21/2H A1expF ib1
1/2n2e

4p
uhu21 i

p

4
1 i

f2

2 G1A2expF2 ib1
1/2n2e

4p
uhu22 i

p

4
2 i

f2

2 G J ,

~11!

wheref2[argG(1/21 ia). Thus we reproduce the correct WKB behavior if we take

A15221/2
b1

21/8

An
S p

e D 1/4

expF2 i ~b1!1/2S n2e

4p D uh iu22 i
p

4
2 i

f2

2 G , A250. ~12!
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II.
Let us now study how this solution behaves in region
Usually, the solution in this region is given by 1/A2ne6 inuhu.
It is therefore sufficient to have only one branch proportio
to 1/An to recover the standard scale-invariant spectrum.
ing the asymptotic behavior of the parabolic cylinder fun
tions whenx2/4!uau, one finds

m.A1S p

e D 21/4

b1
1/8expF inuhu1 i

p

4 G , ~13!

i.e. we precisely recover the conditions necessary to obta
Harrison-Zeldovich spectrum, due to the fact thatA1}1/An,
see Eq.~12!.

Let us now turn to the caseb1,0. An immediate conse
quence is that the dispersion relationneff(n,h) vanishes at
some point and then becomes complex. Therefore, we
the following problems. First, in the region whereneff(n,h)
is small, the terma9/a is no longer negligible. In principle it
should be taken into account in the equation of motion but
exact solution can then be found. However, this problem
not too serious because the effect of this term on the fi
spectrum is expected to be small. Second, a much more
rious question is the fact that there is a region where we h
to quantize a field in the presence of imaginary freque
modes. Although imaginary frequencies are standard in c
sical physics and in quantum mechanics, they seem to
problematic in the context of quantum field theory@22# al-
though there exist concrete physical situations where t
are important@23#. Third, we have to fix the initial conditions
in the complex region. A possible choice for the initial co
ditions, which is consistent with the WKB result, is to ke
only the decreasing exponential in the region where the
fective frequency becomes complex as proposed in Ref.@1#.
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Then, an exact solution in terms of parabolic cylinder fun
tions U(a,x) andV(a,x) ~see Ref.@21#! can be found. This
gives a Harrison-Zeldovich spectrum corrected by osci
tions and by an exponential term of the formeAn2

. This result
is in agreement with what was obtained in Ref.@1#. However,
this result rests clearly on ‘‘non-standard physics’’ and
this reason is not so attractive. Therefore, it is important
recall that there now exist two cases where the final spect
is modified and everything is well-defined@13,18#.

IV. CONSEQUENCES FOR THE MATCHING PROCEDURE

We now investigate what we can learn from the previo
exact solution with respect to the matching between regi
I and II. We concentrate on the Corley-Jacobson case w
b1.0. A priori, two natural choices for the matching tim
can be envisaged. The first choice is to match the soluti
whenl5 l C. This amounts to choosing

uh ju5uh1u5S nlC
2p l 0

D 21

. ~14!

Another possibility is to choose the matching time such t
the usual and the extra contribution in the dispersion rela
are equal

n2b1S l C

l D 2

5n2⇒uh ju5uh18u5S nlC
2p l 0

D 21

b1
21/2. ~15!

This is in fact equivalent to matching the frequenci
neff(n,h). Therefore,h1 andh18 are not equal unlessb151.
Let us now perform the matching between regions I and
Then, the coefficientB1 is given by:
2inB1einh j5221/2S ne

2p D 21/2

n21/2b1
21/4uh ju21/2expF7 ib1

1/2S ne

4pb Dn~ uh ju22uh iu2!G H in2
1

2
~11b!uh ju21

6 ib1
1/2S ne

2p Dnuh juJ . ~16!

For the curly bracket of the above expression one finds

$•••%152
1

2
~11b!uh ju211 inS 16U h j

h18
U D . ~17!
4-4
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In the same manner, one can determineB2 to be

2inB2e2 inh j5221/2S ne

2p D 21/2

n21/2b1
21/4uh ju21/2expF7 ib1

1/2S ne

4pb Dn~ uh ju22uh iu2!G H in1
1

2
~11b!uh ju217 ib1

1/2S ne

2p Dnuh juJ .

~18!
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Again, we can write the curly bracket in the previous expr
sion as

$•••%251
1

2
~11b!uh ju211 inS 17U h j

h18
U D . ~19!

The situation is now clear. If the joining is performed ath j
5h1, the terms proportional toin in the curly brackets have
no reason to cancel out and they are in fact of order one.
term proportional touh j u21 is very small and can be ne
glected. Therefore we reach the conclusion thatB1.B2 and
we have oscillations. However, if we perform the matchi
at h j5h18 the situation is drastically different. This time on
of the curly brackets vanishes and one of theBi ’s becomes of
the orderh18

21!1, whereas the other one is of order 1.
other words, only one branch survives, we have no osc
tions and the spectrum of fluctuations is unchanged.

A comparison with the exact solution shows that the c
rect matching time ish18 . Therefore, there are no oscillation
in the spectrum in the caseb1.0, as pointed out in Ref.@5#,
and the spectrum is unchanged. On the other hand, fob1
,0 the spectrum is modified, in agreement with the analy
of Ref. @1#.

V. CONCLUSION

In this paper, we have investigated the following techni
points:~i! it has been shown that the method used in Ref.@1#
is equivalent to the WKB approach,~ii ! a new solution valid
in the case of the Corley-Jacobson dispersion relation
tt. A

hy

eij
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been presented,~iii ! in the case where piecewise solutio
are used, the matching conditions have been studied. It
been demonstrated that the frequencies rather than the w
lengths should be matched~as could have been guessed fro
the equation of motion! and that if the latter requirement i
utilized then artificial oscillations show up in the spectru
These results complete the study of Ref.@1#.

On more general grounds, the conclusion that follo
from the previous considerations is that there is a sensi
dependence of the spectrum of cosmological fluctuations
the assumptions made at the level of sub-Planckian phys
A separate issue is whether these modifications are rea
able from a physical point of view. This question cannot
answered in the absence of a realistic theory of physics
yond the Planck scale. To our knowledge, it is still an op
problem to derive a dispersion relation from, for examp
string theory~see, however, Refs.@14,24# for some recent
progress!.
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