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Non-Gaussianity from inflation
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Correlated adiabatic and isocurvature perturbation modes are produced during inflation through an oscilla-
tion mechanism when extra scalar degrees of freedom, other than the inflaton field, are present. We show that
this correlation generically leads to sizable non-Gaussian features both in the adiabatic and isocurvature
perturbations. The non-Gaussianity is first generated by large nonlinearities in some scalar sector and then
efficiently transferred to the inflaton sector by the oscillation process. We compute the cosmic microwave
background angular bispectrum, providing a characteristic feature of such inflationary non-Gaussianity, which
might be detected by upcoming satellite experiments.
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. INTRODUCTION faL~3e—27 [5—7]. Since the slow-roll parameters have to
be much smaller than unity for inflation to occur, the typical
It is generally believed that inflation provides the causalvalue offy, in single-field inflationary models is inevitably
mechanism to seed structure formation in the Universe. Ongny. These constraints can be partially relaxed if the inflaton
of the most interesting aspects of these primordial perturbayotential contains “features” in that part corresponding to
tions is their statistical nature. The simplest and most genekhe |ast~ 60 e-foldings[6,8,9.
ally accepted idea is that these primordial perturbations were The common belief that non-Gaussianity of inflation gen-
Gaussian distributed. However, this issue is far from beingrated perturbations is small comes from this theoretical ar-
settled: there is still ample room for some level of non-gument applied to single-field models of inflation. On the
Gaussianity in the initial conditions. other hand, the presence of non-Gaussianity is only mildly
One way of parametrizing the possible presence of nonconstrained by observations. Let us focus on the evidence for
Gaussianity in the primordial gravitational potentilis to  Gaussian primordial fluctuations coming from the analysis of
expand it in the following way1-4]: primary anisotropies of the cosmic microwave background
(CMB), as these certainly provide the most direct probe of
initial conditions and the most efficient way to look for non-
D =g+ f (@2 {2+ O(f3)), (1)  Gaussianity of the type described by Ed) [3]. Recent
analyses of the angular bispectrum from 4-year Cosmic
whereg is a zero-mean Gaussian random field &gdis an  Background ExplorefCOBE) data[10] yield a weak upper
expansion parameter which can be observationally conlimit, |fy, |<1.5X10°. The analysis of the diagonal angular
strained. bispectrum of the Maxima datagfl] also provides a very
It is commonly believed that primordial perturbations weak constraint:fy, |<2330. According to Komatsu and
generated during inflation are necessarily adiabatic an@pergel[4], the minimum value offy, | that will become
Gaussian. Although this is essentially the case for the simdetectable from the analysis of Microwave Anisotropy Probe
plest model, where a single inflaton field undergoes a slowtMAP) and Planck data, after properly subtracting detector
roll transition, the range of possibilities is actually much noise and foreground contamination, is as large-29 and
wider and more interesting than such a standard lore mag, respectively.
tell. Even in the case of a single, slowly rolling inflaton field, In this paper we show that sizable and detectable non-
it has been shown that the effect of field nonlinearities andzaussian perturbations both in the adiabatic and the isocur-
their back reaction on the underlying geometry is to generat@ature modes naturally arise during inflation when extra sca-
a small, but calculable, non-Gaussiani®;5—7. The non- lar degrees of freedom are present other than the inflaton
Gaussianity, or non-linearity, paramefgf can be expressed field. In such a case, the adiabatic and isocurvature perturba-
in terms of the standard slow-roll parametersand » as  tions are correlatefil2—14,16 as a result of an oscillation
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mechanism similar to the phenomenon leading to neutrind AT . AT . AT .
oscillations[14].! This may happen, for instance, if the in- 17(n1)?(n2)?(n3)>

flaton field is coupled to the other scalar degrees of freedom,

as expected on particle physics grounds. If these scalar de- - ~ -
grees of freedom have large self-interactions, their quantum :,%i (a|lm1a|2m2a|3m3)Y|1ml(nl)Y|2m2(n2)Y,3m3(n3),
fluctuations are intrinsically non-Gaussian. This non-

Gaussianity is transferred to the inflaton sector through the 2

illation mechanism and is left imprinted in th i ti .
oscifiatio echanism and is le printed € adiaba there hats denote unit vectors and we have used the usual

and isocurvature modes. We show that the CMB angular . . . :
. : L . . xpansion of the CMB temperature anisotropy in spherical
bispectrum is sourced not only by the intrinsic adiabatic anoe . .~ R

armonicsY,(n) with coefficients

isocurvature bispectrum but also by cross-correlation termg]

providing a characteristic and detectable signature of these

non-Ggussian inﬂatipnary perturbations. . alm:f dﬁYrm(ﬁ)E(ﬁ). 3
The idea that an isocurvature perturbation mode produced T

during inflation could be non-Gaussian is certainly not new

[17-19. These scenarios, however, have the disadvantagehe angular CMB bispectrum is the harmonic conjugate of

that it is generally difficult to fit the observed pattern of the three-point correlation function and is given by

CMB anisotropies in terms of isocurvature perturbations

alone. The possibility of generically cross-correlating the T g

adiabatic and isocurvature modes is attracf@@—22 both (@1, m, 1 ,m,B15m,) = m,_ m, ms Biyiyly (4)
because of its wider capability of reproducing the observed

CMB angular power spectrum and because of the possibilitwhere the first term is the Wignerj 3ymbol andB, | . is

of introducing non-Gaussianity in the adiabatic mode t00. {he angle-averaged bispectrum, which is the Oblsgvaﬁonm
Moreover, the characteristic signatures of these nongyantity.
Gaussian inflationary perturbations could be also a way to To calculate the bispectrum one has to properly take into
break some degeneracies between the cosmological paragcount the initial conditions in the radiation-dominated ep-
eters which usually arise in scenarios where correlated adiach after the end of inflation. Such initial conditions may
batic and isocurvature perturbations are pre$2hi22. In-  reflect either the adiabatic or isocurvature nature of the cos-
deed there exist other mechanisms to produce non-Gaussiamlogical perturbations. In general, however, one expects a
primordial perturbations, such as single-field models that almixture of adiabatic and isocurvature perturbations with a
low for an initial state which is not the ground st§&8] or,  nonvanishing cross correlatig2—14,16,20—2p
outside the inflationary paradigm, cosmic defd@4]. The For pure adiabatic perturbations the harmonic coefficients
scenario we propose differs from the other mechanisms sincam are given by{25]
it can generate non-Gaussian perturbations which are adia-
batic through the oscillation mechanism mentioned above.
The plan of the paper is as follows. In Sec. Il we derive a
general formula for the CMB angular bispectrum in models
where correlated adiabatic and isocurvature perturbatiowhered(k) indicates the primordial gravitational potential
modes are present. The physical mechanism by which theggerturbation andA (k) is the radiation, or CMB, transfer
modes can be produced during inflation is summarized idunction In the large scale limit, one recovers the Sachs-

an=an(—1) | kbR, ©

Sec. lll. The resulting form for the angular bispectrum isWolfe effect

obtained in Sec. IV in the case of adiabatic plus cold dark

matter isocurvature perturbations. Section V contains our AT 1

conclusions. T 3% (6)

where ® is the gravitational potential at recombination, by
Il. THE CMB ANGULAR BISPECTRUM choosingA,(K)=1/3j,[k(7o— 7rec)], o being the confor-

In order to investigate possible non-Gaussian features dfhal time at present and. the conformal time at recombi-
tion function simply inserts the initial entropic perturbati&ik) in Eq. (5)
in place of the gravitational potential perturbatisee, for
example,[26]). Of course, this corresponds to a different
This phenomenon was first described in 5] where it was ~ fadiation transfer function which can be callagd(k).
pointed out that dangerous relics may be generated as coherent Having the expression foa, it is possible to calculate
states through the oscillation mechanism with the inflaton field inthe bispectrum. Following the formalism of Rdf], one
the preheating phase after inflation, leading to tight constraint odinds for pure adiabatic perturbations the following expres-
the reheating temperature. sion
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a check, one can consider the Sachs-Wolfe effect for adia-

_ 3 N1+ 3 3 3 ~
(84,m, 1, m B m,) = (4)(— 1)1 712" sf d°k, d°kad ks batic (®) plus cold dark matter isocurvatur&d perturba-

A . . tions[20]:
JE— = —— + —_
><53(k1+k2+k3)Pg)(k1,k2,k3) Tlsw 'V Tlap VT Jisoc
XA (kDA (ko)A (k 7 1
1, (KA (K2) A (K3) () = S Pat20s. (10

where
The first term on the right-hand sidehs) of Eq. (10), con-
(D (k) D (kp)D(kg))=%(kq+ky+ ks)Pﬁf)(kl,kz,ks) taining the gravitational potential at large scalés<@H) at
(8) the time of recombination, corresponds to the case of pure
adiabatic perturbations. The second term corresponds to the
is the three-dimensional bispectrum of the gravitational pocase of pure isocurvature perturbations. The two potentials
tential. A similar expression holds for pure isocurvature perare given by
turbations. We now analyze what happens in the most gen- 3 4 1
eral case in which both adiabatic and isocurvature modes are cpA:_(3+ _Q'SD) ®, bg=— _QCMDSC, (12)
present and are correlated. 10 S S

whereQMP is the density parameter for the cold dark matter
during the matter era anﬂfD the one for neutrinos during
In the case of initial adiabatiplus entropy perturbations, the radiation era. One can recover this result from €.
we write the coefficient,, as with the transfer functionsA®(k)=1/3j,(kx) and A>(k)
=—2/5j,(kx)Q¥P. Note that the full transfer functions
. - - take into account all the other effects playing a role in the
Ay =4m( = )lf dK[P (k) AP(K)+ S APK) YTy (K), generation of the temperature anisotrop?él’slyT (gsuch as the
9 integrated Sachs-Wolfe effect emerging, for example, in the

A S _ presence of a cosmological constant, and various small scale
where Aj'(k) and Ap(k) are the tranfer functions for the effects[4]).

adiabatic and the entropy perturbation modes, respectively. Given the expressiof®), if adiabatic and entropy pertur-
This expression is consistent with the fact that the equationbations are correlated we find for the bispectrum a result
for the evolution of cosmological perturbations are linear. Assimilar to Eq.(7), but with a more complicated structure

A. Mixture of adiabatic and entropy perturbations

(@1 m, 1, m,13m,) = (4m)3(— )12 s f d*ky Bk dKa Y iy (K1) Y o, (K2) YT (Ka)
X 83Kyt ko + k) [PS (ky Kz, ka) Aft(Ky) A (ko) A (ka) + PE)(Ky kp ka) AP (k) AP (k) AP (Ks)

+ PRk Kz, ka) AP (k) AP (ko) AP (ko) +(A,S,A) +(S,A,A) +(S,S,A) +(SA,S) +(AS,S)].
(12

As expected, the bispectrum gets contributions from the adiabatic ni8gddsom the isocurvature modes
(S(k1)S(K2)S(k3))y = 3%(ky+ Kot ka) PE(ky ka k) (13
and from the terms parametrizing the cross-correlation between adiabatic and isocurvature modes, for example
(D(k1)S(ky) D (k)= 8%(ky+ Ko+ ko) PR K Kp ks) (14)
where we have adopted the notation
(A,SA)=PL(ky Kz Ks) AT, (Kn) AP (k) AT (k). (15)
Performing the angular integration following Rg6], we obtain Eq(4), where
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\/(2|1+ 1)(2l,+1)(21+1) (11 12 13

_ 3
Bl = (87) 4 lo o o

ol )f dklkidkzkgdk3k§J|1|2|3(k1,kz,ka)
XIPS (K1 Kz ka) AP (k) AP () Af (k3) + PE(Ky Kz ka) AP (Kp) AP (ko) AP (Kg)

+ P K Kz, ka) AP (k) AP (ko) AP (ko) + (A, S,A) +(S,AA) +(S,SA) +(SA,S) +(AS,9)]. (16)

Note that the integral in Eq16) is proportional to thae-  the non-Gaussian features generated in the system of the ex-
ducedbispectrum defined in Ref4]. Indeed it contains all tra field are efficiently communicated to the inflaton sector
the physical information on the bispectrum. Our goal is nowand may be left imprinted in the CMB anisotropies.

to show that large contributions to the bispectr(t2) may Let us consider for simplicity the case of two scalar fields
naturally arise when adiabatic and isocurvature modes are andy interacting through a generic potenti&{ ¢, x). The
correlated. study of the field fluctuationg¢ and sy can be done using
the Sasaki-Mukhanov variabfef27]
11l. ADIABATIC AND ENTROPY PERTURBATIONS ¢
FROM INFLATION Q=8¢+ ﬁl o (17)

Correlated adiabatic and isocurvature modes can be gen-
erated during a period of inflation in which several scalarwherel=1,2 with §¢1= 8¢, d¢p,=Sx and ¢ is the linear
fields are presentl2—-14,16. Indeed, adiabati¢curvatureg  perturbation in the line element of the metric
perturbations are produced during a period of cosmological _
inflation that is driven by a single scalar field, the inflaton. ds’=—(1+2A)dt*+2aBdx dt
On particle physics grounds—though—it is natural to expect 2 o
that this scalar field is coupled to other scalar degrees of +aT(1-24) &+ 2E;; Jdx dx. (18)
freedom. This gives rise to oscillations between the pertury,
bation of the inflaton field and the perturbations of the Otherentropy fieldsQ, and 8s in terms of the original field per-
scalar degrees of freedom, similar to the phenomenon of netfl]rbationsQ andQ, [13]
trino oscillations. The crucial observation is that—since the ¢ X

sing such variables it is possible to define the adiabatic and

degree of mixing is governed by the squared mass matrix of Qa=(cosB)Q,+(sinB)Q (19)

the scalar fields—the oscillations can occur even if the en- A ¢ X

ergy density of the extra scalar fields is much smaller than 85=(cosB)Q,— (sinB)Qy (20)
X 1

the energy density of the inflaton. The probability of oscilla-

tion is resonantly amplified when perturbations cross the hog heare
rizon and the perturbations in the inflaton field may disap-

pear at horizon crossing giving rise to perturbations in scalar

fields other than the inflaton. Adiabatic and isocurvature per- cosB=c :L’
turbations are inevitably correlated at the end of inflation b N B2+ X2
(14,16

It is exactly this strong correlation which may give rise to @D

large non-Gaussian features in the CMB anisotropy spec- sinB=s,=
trum. This is a simple, but important, point. Gaussian fea- G \/ﬁ
tures in the CMB anisotropies are usually expected in infla- P+ X
tionary models because the inflaton potential is required to S .
be very flat. This amounts to saying that the interaction termgnd t.he.dots stand for the derivatives with respect to the
in the inflaton potential are present, but small and non<oSMIc timet. .

Gaussian features are suppressed since the non-linearities inThe curvature perturbatiof28]

the inflaton potential are suppressed too. On the other hand,

nothing prevents the inflaton field from being coupled to P

another scalar degree of freedom whose energy density is RZH; N Q (22)
much smaller than the one stored in the inflaton field. It is > ¢§

natural to expect that the the self-interactions of such extra J=1

field or the interaction terms with the inflaton field are siz-

able and they represent potential non-linear sources for nom=———

Gaussianity. If during the inflationary epoch, oscillations be- 2To simplify the calculation of the three-point correlation func-
tween the perturbation of the inflaton field and thetions one can reduce to a particular gauge, such as the spatially flat
perturbations of the other scalar degrees of freedom occugauge ¢=0) in which theQ, variables concide wittd¢, .
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deep in the radiation era can be written in terms of the adiamatter (or it does not decay at all, like in the case of the

batic fieldQa superheavy dark matt¢B0]), an adiabatic ) and a cold
H dark matter isocurvature mod&y) will be generated in the
Riag=——-0Qn (23 post-inflationary epoch. To lowest order in the slow-roll pa-
Cpp+Spx rameters, they are given by expressi@b) and[14,16
where the rhs of this equation is evaluated at the end of Vam Veéror
inflation. =-3 s (26)

-3
Let us now introduce the slow-roll parameters for the two PI(= \/e—‘f’)(i \/E_X)
scalar fields¢ and x where the rhs is evaluated at the end of inflation as a match-
M2, <V¢| M2, V4, ing condition. In a short-hand notation we can write

2
=— and mMi—a , (24) ~
167w\ V ) 87 V d=A,Qa, S=S,5s, (27)

where Mp, is the Planck massy, =dV/d¢,, and ¢,
; ; . ; ; hereA, and S, are just the “amplitudes” ofd andS

= ¢, x. Having a sucessfull period of inflation requires thatV 0 < I phitud . e
the potential is flat enough, that i§ and | 7,,|<1. Now, As we will show in the next section, since it is quite
making an expansion in the slow-roll parameters to loweshatural to expect a nonzero correlation between the adiabatic

field Q, and the entropy fields generated during inflation
[14], non-Gaussian features in the CMB anisotropies may be
left imprinted.

€

order, it is possibile to write the gravitational potentialas
(14,14
. 2 2 V4w 1

=R =
3 rad 3 M bl @QA
where o= €+ €, . We are now in the position of relating the bispectrum in

Under the hypothesis that the scalar fiefddecays into  Ed- (12) with the expressions fob andS; originated during
“ordinary” matter (the present day photons, neutrinos and® @ period of inflation. Consider, for example, the
baryons, while the scalar fielgy decays only into cold dark (@ (k;)®(ky)P(ks)) term. One finds

(29

IV. PRIMORDIAL NON-GAUSSIANITY FROM INFLATION

(D(kp) P (ko) D (ks)) = A3 Qal(k1)Qa(kz) Qa(ka))
= Ag((CBQ¢l+ $5Q,1)(C5Q 21 55Q,2)(CsQ 3+ SQy3))

= A(S)[C?3<Q¢1Q¢2Q¢3> + 025,8<Q¢1Q¢2QX3> + C§Sﬁ<Q¢1QX2Q¢3> + CBS§<Q¢1QX2QX3>
+ SEC,%’<QX1Q¢2Q¢3> + 520B< Qy1Q¢2Qy3) + 5,%0/3<QX1QX2Q¢3> + 32<QX1QX2QX3>] (29)

where, for exampleQ ,; stands forQ4(k;) and we have used E(L9). Analogous expressions hold for the remaining terms.

Our goal is now to show that a large amount of nhon-Gaussianity can be generated in the presence of correlated adiabatic and
entropy perturbations. First of all, we note that the bispectrum is a sum of different three-point correlation functions. The
coefficients in front of each correlation function involve mixing angles which parametrize the amount of mixing between the
adiabatic and the isocurvature modes. If such mixing is sizable, all coefficients are of order unity and one expects that
nonlinearities in the perturbation of the scalar figldhay be efficiently transferred to the inflaton sector, thus generating large
non-Gaussian features.

Because expressions are quite lengthy and might obscure our point, from now on and just for illustrative purposes we make
some simplifying hypothesis and assume that the dominant nonlinear terms are those sourced by the three-point correlation
function(QngszQ)@}. This could be the case for a Langrangian of scalar fig¢ldsd y in which the largest coupling is for
the (u/3)x” term. Let us also assume that the figlds lighter than the Hubble rate during inflation.

Under these assumptions, we can rewrite the bispecti@nas

(@1, m,@1,m 81 umy) = (4m)3(—i)l1* 12t f A%k A%k 0¥k YT o (K1) Y o (R2) Yy (Ka) X 8%(Ky+ Kot Ks)
X{AZSEPE) (Ka ko ka) Al (ky) AT (k) AT (kg) + SSCEPE) (ke Kz ka) AP (K1) AP (ko) AP (k)
+A2S052C s PR (Ky Ky k) [ AL (k) AR (Kp) AS (Kg) + (Kpo kgl 3) + (Koo kgl pol5) ]

0 B~B" Q, 1 2 3

+ SACESEPG (ki kz ko) [AF (KD AR (Ko) AT (Kg) + (Ky o kailiola) + (Kporkail o) [} (29)
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where where the signt stands for the cases,(¢;)>0 and<0,
respectively. The mixing anglé is given by

(QuQy2Qua) = &*(kytka+ka) PG (ky ks k). (30)

The angular part of the integral can be calculated as done in 2 M2
Sec. IIA. tan20=— % (35)
The next step is to further reduce the expression for the Me— My

bispectrum by expandingQ,;Q,,Q,3). This is necessary

because, in the presence of large mixiQg, andQ, are not

“mass eigenstates” of the system, but just interaction eigenOne can envisage different situations:

states. The situation here is analogous to what happens for (i) Inflation is driven by the inflaton field> and there is

light neutrinos where the three different flavors of neutrinosanother scalar fielgy with a simple polynomial potential

represent interaction eigenstates, but they do not represeuf y)«x" leading to a vacuum expectation vakje)=0. In

mass eigenstates because of the mixing among the flavoggich a case, sj=sin#=0 and there is no mixing between

giving rise to the phenomenon of neutrino oscillations.  the inflaton field and they-field as well as no cross-
We first define the comoving field® ,=aQ, and Q, correlation between the adiabatic and isocurvature modes.

=aQ, and then we introduce a basis for annihilation andNonvanishing non-Gaussianity will be present in the isocur-

creation operatora; anda; [14]. We perform the decompo- vature mode. This is indeed a known requl7,19. Non-

sition (7 is the conformal timg Gaussian adiabatic perturbations may also arise ijtfield

decays late after inflatiofi19,29.

o) 4Pk (ii) Inflation is driven by two scalar fieldg and y with
¢ _ f equal massy=(m?/2)(¢*+ x?). In such a case the mixing
QX (2m)3%2 is maximal, 8= 8= m/4. Nevertheless, the cross-correlation

is again vanishingi13,14,16 and the bispectrum gets contri-
butions from adiabatic and isocurvature modes indepen-
’ dently, since in this case the terms parametrizing the cross-
(3 correlation in Eq.(12) vanish. A term /3)x® in the
Lagrangian would be a source of non-Gaussianity and at the

ay(k)

8 ay(K)

+H.c.

e””h(r)(

HQ,) d3k same time it would switch on a cross-correlation between the
m= |~ (ZT)Q”Z adiabatic and the isocurvature modes, thus producing non-
Q zero cross-terms in EQ.(29). However, these non-

Gaussianities would be small because of slow-roll condi-
, tions.
(iii ) Inflation is driven by an inflaton fielgp and there is
- another scalar fielgy whose vacuum expectation value de-
wherellg andllg are the conjugate momenta Qf, and  pends on the inflaton field and—eventually—on the Hubble

Q,, respectively, anth andh are two 2<2 matrices satis- Parameter H and some other mass scalg, (x)

a, (k)

8 ay(k)

+H.c.

eik'XFm(T)(

fying the relation =f(¢,H,u) [31]. Under these circumstances )
=df/9¢ ¢+ afIdH H. As in illustrative case, let us restrict
[h'h* — h*FT]ij =i 8y, (32)  ourselves to the case in vyhiefrﬁ/&¢<'é is the dominant term
and we can approximatey)=df/d¢¢. We have therefore
derived from the canonical quantization condition. tanB=afld¢p and B=(3fldp) I[1+(3fld$)?]. In such a
The matrixt{ is a rotation matrix case, cross-correlation between the adiabatic and the isocur-
vature modes may be large and non-Gaussianity may be ef-
cosd —sinb ficiently transferred from one mode to the other.
:( ) ) (33 We can now reducéQ,;Q,,Q,3s) using the decomposi-
sing  cos¢ tion (31) and making some further approximations justified if

. . ) ) slow-roll conditions are attained. In fact, using a perturbative
which diagonalizes the squared mass matrix of the two scalghethod, it can be checked that the contributions to

field perturbation®),, andQ, (Q,1Q,2Q,3) coming from terms proportional to the non-
diagonal elements;, andh,; can be neglected sinég, and
M,2J=V¢I¢J—8w/M§,|a3(a3/H bibs) h,, are O(e;,7,3), and on superhorizon scal&s<aH hy,

andh,, are Hankel function§14]. Thus we can neglect the
(34) non-diagonal terms of thie matrix and writé

87V
=——[m—2(=Ve) (e,
Mp, 3In such a case the system is diagonalized by the matrix
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Q (k) =[sgh13a;(K) + Cghga,(K)] =syhyly+cghaly, (36)
+[sphfal(—k)+chhial(—k)] where, for simplicity of notation, we have indicated the di-
agonal terms of thén matrix ash;;=h,, h,,=h, and we
=s,[hpa(k)+h¥al(—k)] have defined two new fields andl, just by collecting the
functionshy; andh,,. After all these manipulations we ar-
+ ol Npay(K) +h3a5(—k)] rive at the three-point function

<6X16X26X3> =((Sgh11l 11+ Cohaal 21) (Sgh 1ol 1o+ Cohoal 22) (Sphisl 13+ Chhagl 23))
=53(h11015h13) (111l 10l 13) +S5C4(N11015N53) (141 121 23) +55C(h11hooh 1) (11l 20 1)
+54C5(N11N2oN23) (1111 20l 23) + €485 Na1h1oN13) (11,1 12l 13) + C5Sg(h21h10h23)
X (121) 12l 28) + €589( 210220 13) (1 211 221 13) + €3(h21h25N23) (124l 22 23), (37)

where the indices “1,2,3,” as usual, indicate that the quantities are evaluatekh, dt, andk;. If we indicate

(lialjolkay = 83(Kq + Ko+ ka) Py (K Ko Ka), i,j,k=1,2 (39

because of rotation and translation invariance, it is easy to convince oneself that th¢lieljsigs) are invariant under an
exchange okq,k,,ks. Thus, taking into account that the operatbysand |, commute, one can check that, for example,
(I141 19l 23) is equal tol 11155l 13). The expressioli37) is thus further simplified to

<6X16X26X3> = 33(h11h12h13)<| 11l 12l 13> + Cg(hzlhzzhzsm 21l 2l 23> + 5300“ 11l 12l 23>(h11h12h23+ h11hooh13+ho1h15013)

+584(1 111 22 230 (N13N25, hos+ hyhyohoa+ hoghoohy ). (39

In order to make a quantitative estimate of the three-pointar power spectraC, C, The non-Gaussianity amplitude is
function (39), we first notice that the coefficients in front of monitored by the d|menS|onIess strendth = O(u/H).
the various terms are of order unity, provided the degree of
mixing is large. We can borrow the expression for each
three-point function appearing in E9) from the calcula- V. CONCLUSIONS
tion of [2], which is done for an effectively massless scalar

field y with cubic self-interactions. In the de Sitter back- " this paper we have studied inflationary models where
ground it is given by extra scalar degrees of freedom other than the inflaton exist.

This allows isocurvature perturbation modes to be switched
on during the inflationary evolution besides the usual adia-

1 . . . .
((X(kl)X(kz)X(k3)>=EMH2(k1k2k3)73F(k1uk2rks) patlc one. As prewou_sly showi3,14,18, a generic p_redlc- _
tion of these models is that non-zero cross-correlations arise
> 6‘3)(k1+k2+k3) (40) among adiabatic and isocurvature fluctuations. Here we ex-

ploited this physical process as an efficient tool to transfer
non-Gaussian features from the isocurvature to the adiabatic
mode. Sizable non-Gaussianity can be easily produced in the
non-inflatonic sector, by self-interactions leading to non-
linearities in their evolution. This is because, unlike the in-
flaton case, the self-interaction strength in such an extra sca-
and, for instance3~60 if one is interested in the scales lar sector does not suffer from the usual slow-roll conditions.
relevant for large-angle CMB anisotropies. Notice that thein order to make use of our results for practical purposes, one
functional form of the bispectrum is the same found by Gan-might introduce a simple non-Gaussian model. For instance,
gui et al. [5], who made different assumptions and used theone can parametrize the non-Gaussianity in the peculiar
stochastic approach to inflation. gravitational potential as

Plugging the above expressions into the CMB angular
bispectrum one gets the standard relati@b] giving the 5 5 )
angular bispectrurB, | ;. as a sum of products of two angu- D=1+ fn(e3—(92) + O(fR) (42

where

F(ky ko kg)=—B(K+K3+k3) (41)
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(and a similar expression for the entropy mpdehere ¢ Gaussian signatures accessible by future CMB satellite ex-
and ¢, are zero-mean Gaussian fields with non-zero crossPeriments.
correlation{¢,¢,)#0. The non-Gaussianity strengfty, ,

being sourced by the non-inflatonic scalar sector of the

theory, is not generally constrained by the slow-roll condi- N.B. acknowledges financial support from the European

tions of inflationary dvnamics. This mav make the non-Community ProgramHuman Potentialunder contract No.
' nrationary dynami s may HPNT-CT-2000-00096.
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