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Non-Gaussianity from inflation
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Correlated adiabatic and isocurvature perturbation modes are produced during inflation through an oscilla-
tion mechanism when extra scalar degrees of freedom, other than the inflaton field, are present. We show that
this correlation generically leads to sizable non-Gaussian features both in the adiabatic and isocurvature
perturbations. The non-Gaussianity is first generated by large nonlinearities in some scalar sector and then
efficiently transferred to the inflaton sector by the oscillation process. We compute the cosmic microwave
background angular bispectrum, providing a characteristic feature of such inflationary non-Gaussianity, which
might be detected by upcoming satellite experiments.
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I. INTRODUCTION

It is generally believed that inflation provides the cau
mechanism to seed structure formation in the Universe. O
of the most interesting aspects of these primordial pertu
tions is their statistical nature. The simplest and most ge
ally accepted idea is that these primordial perturbations w
Gaussian distributed. However, this issue is far from be
settled: there is still ample room for some level of no
Gaussianity in the initial conditions.

One way of parametrizing the possible presence of n
Gaussianity in the primordial gravitational potentialF is to
expand it in the following way@1–4#:

F5w1 f NL~w22^w2&!1O~ f NL
2 !, ~1!

wherew is a zero-mean Gaussian random field andf NL is an
expansion parameter which can be observationally c
strained.

It is commonly believed that primordial perturbation
generated during inflation are necessarily adiabatic
Gaussian. Although this is essentially the case for the s
plest model, where a single inflaton field undergoes a sl
roll transition, the range of possibilities is actually mu
wider and more interesting than such a standard lore m
tell. Even in the case of a single, slowly rolling inflaton fiel
it has been shown that the effect of field nonlinearities a
their back reaction on the underlying geometry is to gene
a small, but calculable, non-Gaussianity@2,5–7#. The non-
Gaussianity, or non-linearity, parameterf NL can be expresse
in terms of the standard slow-roll parameterse and h as
0556-2821/2002/65~10!/103505~8!/$20.00 65 1035
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f NL;3e22h @5–7#. Since the slow-roll parameters have
be much smaller than unity for inflation to occur, the typic
value of f NL in single-field inflationary models is inevitabl
tiny. These constraints can be partially relaxed if the infla
potential contains ‘‘features’’ in that part corresponding
the last;60 e-foldings@6,8,9#.

The common belief that non-Gaussianity of inflation ge
erated perturbations is small comes from this theoretical
gument applied to single-field models of inflation. On t
other hand, the presence of non-Gaussianity is only mil
constrained by observations. Let us focus on the evidence
Gaussian primordial fluctuations coming from the analysis
primary anisotropies of the cosmic microwave backgrou
~CMB!, as these certainly provide the most direct probe
initial conditions and the most efficient way to look for no
Gaussianity of the type described by Eq.~1! @3#. Recent
analyses of the angular bispectrum from 4-year Cos
Background Explorer~COBE! data@10# yield a weak upper
limit, u f NLu,1.53103. The analysis of the diagonal angula
bispectrum of the Maxima dataset@11# also provides a very
weak constraint:u f NLu,2330. According to Komatsu and
Spergel@4#, the minimum value ofu f NLu that will become
detectable from the analysis of Microwave Anisotropy Pro
~MAP! and Planck data, after properly subtracting detect
noise and foreground contamination, is as large as;20 and
5, respectively.

In this paper we show that sizable and detectable n
Gaussian perturbations both in the adiabatic and the iso
vature modes naturally arise during inflation when extra s
lar degrees of freedom are present other than the infla
field. In such a case, the adiabatic and isocurvature pertu
tions are correlated@12–14,16# as a result of an oscillation
©2002 The American Physical Society05-1
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mechanism similar to the phenomenon leading to neut
oscillations@14#.1 This may happen, for instance, if the in
flaton field is coupled to the other scalar degrees of freed
as expected on particle physics grounds. If these scalar
grees of freedom have large self-interactions, their quan
fluctuations are intrinsically non-Gaussian. This no
Gaussianity is transferred to the inflaton sector through
oscillation mechanism and is left imprinted in the adiaba
and isocurvature modes. We show that the CMB angu
bispectrum is sourced not only by the intrinsic adiabatic a
isocurvature bispectrum but also by cross-correlation ter
providing a characteristic and detectable signature of th
non-Gaussian inflationary perturbations.

The idea that an isocurvature perturbation mode produ
during inflation could be non-Gaussian is certainly not n
@17–19#. These scenarios, however, have the disadvan
that it is generally difficult to fit the observed pattern
CMB anisotropies in terms of isocurvature perturbatio
alone. The possibility of generically cross-correlating t
adiabatic and isocurvature modes is attractive@20–22# both
because of its wider capability of reproducing the obser
CMB angular power spectrum and because of the possib
of introducing non-Gaussianity in the adiabatic mode too

Moreover, the characteristic signatures of these n
Gaussian inflationary perturbations could be also a way
break some degeneracies between the cosmological pa
eters which usually arise in scenarios where correlated a
batic and isocurvature perturbations are present@21,22#. In-
deed there exist other mechanisms to produce non-Gau
primordial perturbations, such as single-field models that
low for an initial state which is not the ground state@23# or,
outside the inflationary paradigm, cosmic defects@24#. The
scenario we propose differs from the other mechanisms s
it can generate non-Gaussian perturbations which are a
batic through the oscillation mechanism mentioned abov

The plan of the paper is as follows. In Sec. II we derive
general formula for the CMB angular bispectrum in mod
where correlated adiabatic and isocurvature perturba
modes are present. The physical mechanism by which th
modes can be produced during inflation is summarized
Sec. III. The resulting form for the angular bispectrum
obtained in Sec. IV in the case of adiabatic plus cold d
matter isocurvature perturbations. Section V contains
conclusions.

II. THE CMB ANGULAR BISPECTRUM

In order to investigate possible non-Gaussian feature
the CMB one can consider the angular three-point corr
tion function

1This phenomenon was first described in Ref.@15# where it was
pointed out that dangerous relics may be generated as coh
states through the oscillation mechanism with the inflaton field
the preheating phase after inflation, leading to tight constraint
the reheating temperature.
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-

K DT

T
~ n̂1!

DT

T
~ n̂2!

DT

T
~ n̂3!L

5 (
l i ,mi

^al 1m1
al 2m2

al 3m3
&Yl 1m1

~ n̂1!Yl 2m2
~ n̂2!Yl 3m3

~ n̂3!,

~2!

where hats denote unit vectors and we have used the u
expansion of the CMB temperature anisotropy in spher
harmonicsYlm(n̂) with coefficients

alm5E dn̂ Ylm* ~ n̂!
DT

T
~ n̂!. ~3!

The angular CMB bispectrum is the harmonic conjugate
the three-point correlation function and is given by

^al 1m1
al 2m2

al 3m3
&5S l 1 l 2 l 3

m1 m2 m3
DBl 1l 2l 3

, ~4!

where the first term is the Wigner 3j symbol andBl 1l 2l 3
is

the angle-averaged bispectrum, which is the observatio
quantity.

To calculate the bispectrum one has to properly take i
account the initial conditions in the radiation-dominated e
och after the end of inflation. Such initial conditions ma
reflect either the adiabatic or isocurvature nature of the c
mological perturbations. In general, however, one expec
mixture of adiabatic and isocurvature perturbations with
nonvanishing cross correlation@12–14,16,20–22#.

For pureadiabatic perturbations the harmonic coefficien
alm are given by@25#

alm54p~2 i ! lE d3k F̂~k!D l~k!Ylm* ~ k̂!, ~5!

whereF̂(k) indicates the primordial gravitational potenti
perturbation andD l(k) is the radiation, or CMB, transfer
function. In the large scale limit, one recovers the Sac
Wolfe effect

DT

T
5

1

3
F ~6!

whereF is the gravitational potential at recombination, b
choosingD l(k)51/3 j l@k(t02t rec)#, t0 being the confor-
mal time at present andt rec the conformal time at recombi
nation. In the case of pure isocurvature perturbations
simply inserts the initial entropic perturbationS(k) in Eq. ~5!
in place of the gravitational potential perturbation~see, for
example,@26#!. Of course, this corresponds to a differe
radiation transfer function which can be calledD l

S(k).
Having the expression foralm it is possible to calculate

the bispectrum. Following the formalism of Ref.@6#, one
finds for pure adiabatic perturbations the following expre
sion

ent
n
n

5-2
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^al 1m1
al 2m2

al 3m3
&5~4p!3~2 i ! l 11 l 21 l 3E d3k1d3k2d3k3

3Yl 1m1
* ~ k̂1!Yl 2m2

* ~ k̂2!Yl 3m3
* ~ k̂3!

3d3~k11k21k3!PF̂
(3)

~k1 ,k2 ,k3!

3D l 1
~k1!D l 2

~k2!D l 3
~k3! ~7!

where

^F̂~k1!F̂~k2!F̂~k3!&5d3~k11k21k3!PF̂
(3)

~k1 ,k2 ,k3!
~8!

is the three-dimensional bispectrum of the gravitational
tential. A similar expression holds for pure isocurvature p
turbations. We now analyze what happens in the most g
eral case in which both adiabatic and isocurvature modes
present and are correlated.

A. Mixture of adiabatic and entropy perturbations

In the case of initial adiabaticplus entropy perturbations
we write the coefficientalm as

alm54p~2 i ! lE d3k@F̂~k!D l
A~k!1S~k!D l

S~k!#Ylm* ~ k̂!,

~9!

where D l
A(k) and D l

S(k) are the tranfer functions for th
adiabatic and the entropy perturbation modes, respectiv
This expression is consistent with the fact that the equat
for the evolution of cosmological perturbations are linear.
10350
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a check, one can consider the Sachs-Wolfe effect for a
batic (F̂) plus cold dark matter isocurvature (Sc) perturba-
tions @20#:

S DT

T D
SW

5S DT

T D
AD

1S DT

T D
ISOC

5
1

3
FA12 FS . ~10!

The first term on the right-hand side~rhs! of Eq. ~10!, con-
taining the gravitational potential at large scales (k!aH) at
the time of recombination, corresponds to the case of p
adiabatic perturbations. The second term corresponds to
case of pure isocurvature perturbations. The two potent
are given by

FA5
3

10S 31
4

5
Vn

RDD F̂, FS52
1

5
Vc

MDSc , ~11!

whereVc
MD is the density parameter for the cold dark mat

during the matter era andVn
RD the one for neutrinos during

the radiation era. One can recover this result from Eq.~9!
with the transfer functionsD l

A(k)51/3 j l(kx) and D l
S(k)

522/5 j l(kx)Vc
MD . Note that the full transfer functions

take into account all the other effects playing a role in t
generation of the temperature anisotropiesDT/T ~such as the
integrated Sachs-Wolfe effect emerging, for example, in
presence of a cosmological constant, and various small s
effects@4#!.

Given the expression~9!, if adiabatic and entropy pertur
bations are correlated we find for the bispectrum a re
similar to Eq.~7!, but with a more complicated structure
^al 1m1
al 2m2

al 3m3
&5~4p!3~2 i ! l 11 l 21 l 3E d3k1d3k2d3k3Yl 1m1

* ~ k̂1!Yl 2m2
* ~ k̂2!Yl 3m3

* ~ k̂3!

3d3~k11k21k3!@PF̂
(3)

~k1 ,k2 ,k3!D l 1
A ~k1!D l 2

A ~k2!D l 3
A ~k3!1PS

(3)~k1 ,k2 ,k3!D l 1
S ~k1!D l 2

S ~k2!D l 3
S ~k3!

1PAAS
(3) ~k1 ,k2 ,k3!D l 1

A ~k1!D l 2
A ~k2!D l 3

S ~k3!1~A,S,A!1~S,A,A!1~S,S,A!1~S,A,S!1~A,S,S!#.

~12!

As expected, the bispectrum gets contributions from the adiabatic modes~8!, from the isocurvature modes

^S~k1!S~k2!S~k3!&5d3~k11k21k3!PS
(3)~k1 ,k2 ,k3! ~13!

and from the terms parametrizing the cross-correlation between adiabatic and isocurvature modes, for example

^F̂~k1!S~k2!F̂~k3!&5d3~k11k21k3!PASA
(3) ~k1 ,k2 ,k3! ~14!

where we have adopted the notation

~A,S,A![PASA
(3) ~k1 ,k2 ,k3!D l 1

A ~k1!D l 2
S ~k2!D l 3

A ~k3!. ~15!

Performing the angular integration following Ref.@6#, we obtain Eq.~4!, where
5-3
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Bl 1l 2l 3
5~8p!3A~2l 111!~2l 211!~2l 311!

4p S l 1 l 2 l 3

0 0 0D E dk1k1
2dk2k2

2dk3k3
2Jl 1l 2l 3

~k1 ,k2 ,k3!

3@PF̂
(3)

~k1 ,k2 ,k3!D l 1
A ~k1!D l 2

A ~k2!D l 3
A ~k3!1PS

(3)~k1 ,k2 ,k3!D l 1
S ~k1!D l 2

S ~k2!D l 3
S ~k3!

1PAAS
(3) ~k1 ,k2 ,k3!D l 1

A ~k1!D l 2
A ~k2!D l 3

S ~k3!1~A,S,A!1~S,A,A!1~S,S,A!1~S,A,S!1~A,S,S!#. ~16!
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Note that the integral in Eq.~16! is proportional to there-
ducedbispectrum defined in Ref.@4#. Indeed it contains all
the physical information on the bispectrum. Our goal is n
to show that large contributions to the bispectrum~12! may
naturally arise when adiabatic and isocurvature modes
correlated.

III. ADIABATIC AND ENTROPY PERTURBATIONS
FROM INFLATION

Correlated adiabatic and isocurvature modes can be
erated during a period of inflation in which several sca
fields are present@12–14,16#. Indeed, adiabatic~curvature!
perturbations are produced during a period of cosmolog
inflation that is driven by a single scalar field, the inflato
On particle physics grounds—though—it is natural to exp
that this scalar field is coupled to other scalar degrees
freedom. This gives rise to oscillations between the per
bation of the inflaton field and the perturbations of the ot
scalar degrees of freedom, similar to the phenomenon of n
trino oscillations. The crucial observation is that—since
degree of mixing is governed by the squared mass matri
the scalar fields—the oscillations can occur even if the
ergy density of the extra scalar fields is much smaller th
the energy density of the inflaton. The probability of oscil
tion is resonantly amplified when perturbations cross the
rizon and the perturbations in the inflaton field may disa
pear at horizon crossing giving rise to perturbations in sc
fields other than the inflaton. Adiabatic and isocurvature p
turbations are inevitably correlated at the end of inflat
@14,16#.

It is exactly this strong correlation which may give rise
large non-Gaussian features in the CMB anisotropy sp
trum. This is a simple, but important, point. Gaussian f
tures in the CMB anisotropies are usually expected in in
tionary models because the inflaton potential is required
be very flat. This amounts to saying that the interaction te
in the inflaton potential are present, but small and n
Gaussian features are suppressed since the non-linearit
the inflaton potential are suppressed too. On the other h
nothing prevents the inflaton field from being coupled
another scalar degree of freedom whose energy densi
much smaller than the one stored in the inflaton field. It
natural to expect that the the self-interactions of such e
field or the interaction terms with the inflaton field are s
able and they represent potential non-linear sources for n
Gaussianity. If during the inflationary epoch, oscillations b
tween the perturbation of the inflaton field and t
perturbations of the other scalar degrees of freedom oc
10350
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the non-Gaussian features generated in the system of the
tra field are efficiently communicated to the inflaton sec
and may be left imprinted in the CMB anisotropies.

Let us consider for simplicity the case of two scalar fiel
f andx interacting through a generic potentialV(f,x). The
study of the field fluctuationsdf anddx can be done using
the Sasaki-Mukhanov variables2 @27#

QI[df I1
ḟ I

H
c ~17!

where I 51,2 with df15df, df25dx and c is the linear
perturbation in the line element of the metric

ds252~112A!dt212aBidxidt

1a2@~122c!d i j 12Ei j #dxidxj . ~18!

Using such variables it is possible to define the adiabatic
entropy fieldsQA and ds in terms of the original field per-
turbationsQf andQx @13#

QA5~cosb!Qf1~sinb!Qx , ~19!

ds5~cosb!Qx2~sinb!Qf , ~20!

where

cosb[cb5
ḟ

Aḟ21ẋ2
,

~21!

sinb[sb5
ẋ

Aḟ21ẋ2
,

and the dots stand for the derivatives with respect to
cosmic timet.

The curvature perturbation@28#

R5H(
I S ẇ I

(
J51

N

ẇJ
2D QI ~22!

2To simplify the calculation of the three-point correlation fun
tions one can reduce to a particular gauge, such as the spatiall
gauge (c50) in which theQI variables concide withdf I .
5-4
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deep in the radiation era can be written in terms of the a
batic fieldQA

Rrad5
H

cbḟ1sbẋ
QA ~23!

where the rhs of this equation is evaluated at the end
inflation.

Let us now introduce the slow-roll parameters for the t
scalar fieldsf andx

e I5
M Pl

2

16p
S Vf I

V
D 2

and h IJ5
M Pl

2

8p

Vf IfJ

V
, ~24!

where M Pl is the Planck mass,Vf I
5]V/]f I , and f I

5f,x. Having a sucessfull period of inflation requires th
the potential is flat enough, that ise I and uh IJu!1. Now,
making an expansion in the slow-roll parameters to low
order, it is possibile to write the gravitational potentialF̂ as
@14,16#

F̂5
2

3
Rrad5

2

3

A4p

M Pl

1

Ae tot

QA ~25!

wheree tot5ef1ex .
Under the hypothesis that the scalar fieldf decays into

‘‘ordinary’’ matter ~the present day photons, neutrinos a
baryons!, while the scalar fieldx decays only into cold dark
10350
-

of

t

t

matter ~or it does not decay at all, like in the case of th
superheavy dark matter@30#!, an adiabatic (F̂) and a cold
dark matter isocurvature mode (Sc) will be generated in the
post-inflationary epoch. To lowest order in the slow-roll p
rameters, they are given by expression~25! and @14,16#

Sc523
A4p

mPl

Ae tot

~6Aef!~6Aex!
ds ~26!

where the rhs is evaluated at the end of inflation as a ma
ing condition. In a short-hand notation we can write

F̂5A0QA , S5S0ds, ~27!

whereA0 andS0 are just the ‘‘amplitudes’’ ofF̂ andSc .
As we will show in the next section, since it is quit

natural to expect a nonzero correlation between the adiab
field QA and the entropy fieldds generated during inflation
@14#, non-Gaussian features in the CMB anisotropies may
left imprinted.

IV. PRIMORDIAL NON-GAUSSIANITY FROM INFLATION

We are now in the position of relating the bispectrum
Eq. ~12! with the expressions forF̂ andSc originated during
a a period of inflation. Consider, for example, th

^F̂(k1)F̂(k2)F̂(k3)& term. One finds
s.
batic and
s. The
en the
cts that
arge

we make
orrelation
r

^F̂~k1!F̂~k2!F̂~k3!&5A0
3^QA~k1!QA~k2!QA~k3!&

5A0
3^~cbQf11sbQx1!~cbQf21sbQx2!~cbQf31sbQx3!&

5A0
3@cb

3^Qf1Qf2Qf3&1cb
2sb^Qf1Qf2Qx3&1cb

2sb^Qf1Qx2Qf3&1cbsb
2^Qf1Qx2Qx3&

1sbcb
2^Qx1Qf2Qf3&1sb

2cb^Qx1Qf2Qx3&1sb
2cb^Qx1Qx2Qf3&1sb

3^Qx1Qx2Qx3&# ~28!

where, for example,Qf1 stands forQf(k1) and we have used Eq.~19!. Analogous expressions hold for the remaining term
Our goal is now to show that a large amount of non-Gaussianity can be generated in the presence of correlated adia

entropy perturbations. First of all, we note that the bispectrum is a sum of different three-point correlation function
coefficients in front of each correlation function involve mixing angles which parametrize the amount of mixing betwe
adiabatic and the isocurvature modes. If such mixing is sizable, all coefficients are of order unity and one expe
nonlinearities in the perturbation of the scalar fieldx may be efficiently transferred to the inflaton sector, thus generating l
non-Gaussian features.

Because expressions are quite lengthy and might obscure our point, from now on and just for illustrative purposes
some simplifying hypothesis and assume that the dominant nonlinear terms are those sourced by the three-point c
function ^Qx1Qx2Qx3&. This could be the case for a Langrangian of scalar fieldsf andx in which the largest coupling is fo
the (m/3)x3 term. Let us also assume that the fieldx is lighter than the Hubble rate during inflation.

Under these assumptions, we can rewrite the bispectrum~12! as

^al 1m1
al 2m2

al 3m3
&5~4p!3~2 i ! l 11 l 21 l 3E d3k1d3k2d3k3Yl 1m1

* ~ k̂1!Yl 2m2
* ~ k̂2!Yl 3m3

* ~ k̂3!3d3~k11k21k3!

3$A0
3sb

3 PQx

(3)~k1 ,k2 ,k3!D l 1
A ~k1!D l 2

A ~k2!D l 3
A ~k3!1S0

3cb
3 PQx

(3)~k1 ,k2 ,k3!D l 1
S ~k1!D l 2

S ~k2!D l 3
S ~k3!

1A0
2S0sb

2cbPQx

(3)~k1 ,k2 ,k3!@D l 1
A ~k1!D l 2

A ~k2!D l 3
S ~k3!1~k1↔k3 ; l 1↔ l 3!1~k2↔k3 ; l 2↔ l 3!#

1S0
2A0cb

2sbPQx

(3)~k1 ,k2 ,k3!@D l 1
S ~k1!D l 2

S ~k2!D l 3
A ~k3!1~k1↔k3 ; l 1↔ l 3!1~k2↔k3 ; l 2↔ l 3!#% ~29!
5-5
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where

^Qx1Qx2Qx3&5d3~k11k21k3!PQx

(3)~k1 ,k2 ,k3!. ~30!

The angular part of the integral can be calculated as don
Sec. II A.

The next step is to further reduce the expression for
bispectrum by expandinĝQx1Qx2Qx3&. This is necessary
because, in the presence of large mixing,Qf andQx are not
‘‘mass eigenstates’’ of the system, but just interaction eig
states. The situation here is analogous to what happen
light neutrinos where the three different flavors of neutrin
represent interaction eigenstates, but they do not repre
mass eigenstates because of the mixing among the fla
giving rise to the phenomenon of neutrino oscillations.

We first define the comoving fieldsQ̃f5aQf and Q̃x

5aQx and then we introduce a basis for annihilation a
creation operatorsai andai

† @14#. We perform the decompo
sition (t is the conformal time!:

S Q̃f

Q̃x
D 5UE d3k

~2p!3/2

3Feik•xh~t!S a1~k!

a2~k!
D 1H.c.G ,

~31!

S PQ̃f

PQ̃x

D 5UE d3k

~2p!3/2

3Feik•xh̃~t!S a1~k!

a2~k!
D 1H.c.G ,

wherePQ̃f
andPQ̃x

are the conjugate momenta ofQ̃f and

Q̃x , respectively, andh and h̃ are two 232 matrices satis-
fying the relation

@h h̃* 2h* h̃T# i j 5 i d i j , ~32!

derived from the canonical quantization condition.
The matrixU is a rotation matrix

U5S cosu 2sinu

sinu cosu D ~33!

which diagonalizes the squared mass matrix of the two sc
field perturbationsQf andQx

M IJ
2 5Vf IfJ

28p/M Pl
2 a3~a3/H ḟ IḟJ!

•

~34!

.
8pV

M Pl
2 @h IJ22~6Ae I !~6AeJ!#,
10350
in

e

-
for
s
ent
rs

ar

where the sign6 stands for the casesḟ I(ḟJ).0 and,0,
respectively. The mixing angleu is given by

tan 2u5
2 M xf

2

M ff
2 2M xx

2
. ~35!

One can envisage different situations:
~i! Inflation is driven by the inflaton fieldf and there is

another scalar fieldx with a simple polynomial potentia
V(x)}xn leading to a vacuum expectation value^x&50. In
such a case, sinb5sinu50 and there is no mixing betwee
the inflaton field and thex-field as well as no cross
correlation between the adiabatic and isocurvature mo
Nonvanishing non-Gaussianity will be present in the isoc
vature mode. This is indeed a known result@17,19#. Non-
Gaussian adiabatic perturbations may also arise if thex field
decays late after inflation@19,29#.

~ii ! Inflation is driven by two scalar fieldsf andx with
equal mass,V5(m2/2)(f21x2). In such a case the mixing
is maximal,b5u5p/4. Nevertheless, the cross-correlatio
is again vanishing@13,14,16# and the bispectrum gets contr
butions from adiabatic and isocurvature modes indep
dently, since in this case the terms parametrizing the cro
correlation in Eq. ~12! vanish. A term (m/3)x3 in the
Lagrangian would be a source of non-Gaussianity and at
same time it would switch on a cross-correlation between
adiabatic and the isocurvature modes, thus producing n
zero cross-terms in Eq.~29!. However, these non
Gaussianities would be small because of slow-roll con
tions.

~iii ! Inflation is driven by an inflaton fieldf and there is
another scalar fieldx whose vacuum expectation value d
pends on the inflaton field and—eventually—on the Hub
parameter H and some other mass scalem, ^x&
5 f (f,H,m) @31#. Under these circumstances,̂ ẋ&
5] f /]f ḟ1] f /]H Ḣ. As in illustrative case, let us restric
ourselves to the case in which] f /]f ḟ is the dominant term
and we can approximatêẋ&5] f /]fḟ. We have therefore
tanb.] f /]f and ḃ.(] f /]f)•/@11(] f /]f)2#. In such a
case, cross-correlation between the adiabatic and the iso
vature modes may be large and non-Gaussianity may be
ficiently transferred from one mode to the other.

We can now reducêQx1Qx2Qx3& using the decomposi
tion ~31! and making some further approximations justified
slow-roll conditions are attained. In fact, using a perturbat
method, it can be checked that the contributions
^Qx1Qx2Qx3& coming from terms proportional to the non
diagonal elementsh12 andh21 can be neglected sinceh12 and
h21 are O(e I ,h IJ), and on superhorizon scalesk!aH h11
andh22 are Hankel functions@14#. Thus we can neglect the
non-diagonal terms of theh matrix and write3

3In such a case the system is diagonalized by the matrixU.
5-6
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Q̃x~k!5@suh11a1~k!1cuh22a2~k!#

1@suh11* a1
†~2k!1cuh22* a2

†~2k!#

5su@h11a1~k!1h11* a1
†~2k!#

1cu@h22a2~k!1h22* a2
†~2k!#
in
f

c

la
k-

s
th
an
th

la

-

10350
[suh1I 11cuh2I 2 , ~36!

where, for simplicity of notation, we have indicated the d
agonal terms of theh matrix ash11[h1 , h22[h2 and we
have defined two new fieldsI 1 and I 2 just by collecting the
functionsh11 and h22. After all these manipulations we ar
rive at the three-point function
le,
^Q̃x1Q̃x2Q̃x3&5^~suh11I 111cuh21I 21!~suh12I 121cuh22I 22!~suh13I 131cuh23I 23!&

5su
3~h11h12h13!^I 11I 12I 13&1su

2cu~h11h12h23!^I 11I 12I 23&1su
2cu~h11h22h13!^I 11I 22I 13&

1sucu
2~h11h22h23!^I 11I 22I 23&1cusu

2~h21h12h13!^I 21 ,I 12I 13&1cu
2su~h21h12h23!

3^I 21I 12I 23&1cu
2su~h21h22h13!^I 21I 22I 13&1cu

3~h21h22h23!^I 21I 22I 23&, ~37!

where the indices ‘‘1,2,3,’’ as usual, indicate that the quantities are evaluated atk1 ,k2 andk3. If we indicate

^I i1I j 2I k3&5d3~k11k21k3!Pi jk
3 ~k1 ,k2 ,k3!, i , j ,k51,2 ~38!

because of rotation and translation invariance, it is easy to convince oneself that the terms^I i1I j 2I k3& are invariant under an
exchange ofk1 ,k2 ,k3. Thus, taking into account that the operatorsI 1 and I 2 commute, one can check that, for examp
^I 11I 12I 23& is equal to^I 11I 22I 13&. The expression~37! is thus further simplified to

^Q̃x1Q̃x2Q̃x3&5su
3~h11h12h13!^I 11I 12I 13&1cu

3~h21h22h23!^I 21I 22I 23&1su
2cu^I 11I 12I 23&~h11h12h231h11h22h131h21h12h13!

1cu
2su^I 11I 22I 23&~h11h22 ,h231h21h12h231h21h22h13!. ~39!
s

ere
xist.
ed
ia-

rise
ex-
fer
atic
the
n-

in-
sca-
ns.
one
ce,
liar
In order to make a quantitative estimate of the three-po
function ~39!, we first notice that the coefficients in front o
the various terms are of order unity, provided the degree
mixing is large. We can borrow the expression for ea
three-point function appearing in Eq.~39! from the calcula-
tion of @2#, which is done for an effectively massless sca
field x with cubic self-interactions. In the de Sitter bac
ground it is given by

^~x~k1!x~k2!x~k3!&5
1

6
mH2~k1k2k3!23F~k1 ,k2 ,k3!

3d (3)~k11k21k3!, ~40!

where

F~k1 ,k2 ,k3!.2b~k1
31k2

31k3
3! ~41!

and, for instance,b;60 if one is interested in the scale
relevant for large-angle CMB anisotropies. Notice that
functional form of the bispectrum is the same found by G
gui et al. @5#, who made different assumptions and used
stochastic approach to inflation.

Plugging the above expressions into the CMB angu
bispectrum one gets the standard relation@3,5# giving the
angular bispectrumBl 1l 2l 3

as a sum of products of two angu
t

of
h

r

e
-
e

r

lar power spectra,Cl i
Cl j

. The non-Gaussianity amplitude i

monitored by the dimensionless strengthf NL5O(m/H).

V. CONCLUSIONS

In this paper we have studied inflationary models wh
extra scalar degrees of freedom other than the inflaton e
This allows isocurvature perturbation modes to be switch
on during the inflationary evolution besides the usual ad
batic one. As previously shown@13,14,16#, a generic predic-
tion of these models is that non-zero cross-correlations a
among adiabatic and isocurvature fluctuations. Here we
ploited this physical process as an efficient tool to trans
non-Gaussian features from the isocurvature to the adiab
mode. Sizable non-Gaussianity can be easily produced in
non-inflatonic sector, by self-interactions leading to no
linearities in their evolution. This is because, unlike the
flaton case, the self-interaction strength in such an extra
lar sector does not suffer from the usual slow-roll conditio
In order to make use of our results for practical purposes,
might introduce a simple non-Gaussian model. For instan
one can parametrize the non-Gaussianity in the pecu
gravitational potential as

F5w11 f NL~w2
22^w2

2&!1O~ f NL
2 ! ~42!
5-7
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~and a similar expression for the entropy mode!, wherew1

and w2 are zero-mean Gaussian fields with non-zero cro
correlation ^w1w2&Þ0. The non-Gaussianity strengthf NL ,
being sourced by the non-inflatonic scalar sector of
theory, is not generally constrained by the slow-roll con
tions of inflationary dynamics. This may make the no
s-
t

ett

n.
,

R
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ck
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y
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Gaussian signatures accessible by future CMB satellite
periments.

ACKNOWLEDGMENTS

N.B. acknowledges financial support from the Europe
Community ProgramHuman Potentialunder contract No.
HPNT-CT-2000-00096.
J.

.

ys.
-

ett.
D

tt.

P.
@1# P. Coles and J.D. Barrow, Mon. Not. R. Astron. Soc.228, 407
~1987!; L. Moscardini, S. Matarrese, F. Lucchin, and A. Me
sina,ibid. 248, 424~1991!; Z. Fan and J. M. Bardeen, preprin
UW-PT-92-11, 1992.

@2# T. Falk, R. Rangarajan, and M. Srednicki, Astrophys. J. L
403, L1 ~1993!.

@3# L. Verde, L. Wang, A. Heavens, and M. Kamionkowski, Mo
Not. R. Astron. Soc.313, L141 ~2000!; S. Matarrese, L. Verde
and R. Jimenez, Astrophys. J.541, 10 ~2000!; L. Verde, R.
Jimenez, M. Kamionkowski, and S. Matarrese, Mon. Not.
Astron. Soc.325, 412 ~2001!.

@4# E. Komatsu and N. Spergel, Phys. Rev. D63, 063002~2001!.
@5# A. Gangui, F. Lucchin, S. Matarrese, and S. Mollerach, Ast

phys. J.430, 447 ~1994!.
@6# L. Wang and M. Kamionkowski, Phys. Rev. D61, 063504

~2000!.
@7# A. Gangui and J. Martin, Mon. Not. R. Astron. Soc.313, 323

~2000!.
@8# D.S. Salopek and J.R. Bond, Phys. Rev. D42, 3936 ~1990!;

D.S. Salopek,ibid. 45, 1139~1992!.
@9# L. Kofman, G. R. Blumenthal, H. Hodges, and J. R. Prima

Large-Scale Structures and Peculiar Motions in the Univer,
edited by D. W. Latham and L. N. daCosta, ASP Conferen
Series Vol. 15,~ASP, San Francisco, 1991!, p. 339.

@10# E. Komatsu, B.D. Wandelt, D.N. Spergel, A.J. Banday, a
K.M. Gorski, Astrophys. J.566, 19 ~2002!.

@11# M.G. Santos, A. Balbi, J. Borrill, P.G. Ferreira, S. Hanan
A.H. Jaffe, A.T. Lee, J. Magueijo, B. Rabii, P.L. Richards, G
Smoot, R. Stompor, C.D. Winant, and J.H.P. W
astro-ph/0107588.

@12# D. Langlois, Phys. Rev. D59, 123512~1999!.
@13# C. Gordon, D. Wands, B. Bassett, and R. Maartens, Phys.

D 63, 023506~2001!.
@14# N. Bartolo, S. Matarrese, and A. Riotto, Phys. Rev. D64,

083514~2001!.
@15# G.F. Giudice, A. Riotto, and I.I. Tkachev, J. High Energy Ph

06, 020 ~2001!.
.

.

-

,

e

,

v.

.

@16# N. Bartolo, S. Matarrese, and A. Riotto, Phys. Rev. D64,
123504~2001!.

@17# T.J. Allen, B. Grinstein, and M.B. Wise, Phys. Lett. B197, 66
~1987!.

@18# K. Yamamotoet al., Phys. Rev. D46, 4206~1992!; M. Bucher
and Y. Zhu,ibid. 55, 7415~1997!; P.J.E. Peebles, Astrophys.
Lett. 483, L1 ~1997!; Astrophys. J.510, 523 ~1999!; 510, 531
~1999!.

@19# A. Linde and V. Mukhanov, Phys. Rev. D56, 535 ~1997!.
@20# D. Langlois and A. Riazuelo, Phys. Rev. D62, 043504~2000!.
@21# M. Bucher, K. Moodley, and N. Turok, Phys. Rev. D62,

083508~2000!; astro-ph/0007360; Phys. Rev. Lett.87, 191301
~2002!.

@22# R. Trotta, A. Riazuelo, and R. Durrer, Phys. Rev. Lett.87,
231301~2001!; L. Amendola, C. Gordon, D. Wands, and M
Sasaki,ibid. ~to be published!, astro-ph/0107089.

@23# J. Lesgourgues, D. Polarski, and A. Starobinsky, Nucl. Ph
B497, 479 ~1997!; J. Martin, A. Riazuelo, and M. Sakellari
adou, Phys. Rev. D61, 083518~2000!.

@24# See, for example, N. Turok and D. Spergel, Phys. Rev. L
64, 2736 ~1990!; A. Gangui and S. Mollerach, Phys. Rev.
54, 4750~1996!.

@25# C.-P. Ma and E. Bertschinger, Astrophys. J.455, 7 ~1995!.
@26# E. Bertschinger, astro-ph/0101009.
@27# M. Sasaki, Prog. Theor. Phys.76, 1036 ~1986!; V.F. Mukha-
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