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Peculiar velocity effects in high-resolution microwave background experiments
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We investigate the impact of peculiar velocity effects due to the motion of the solar system relative to the
cosmic microwave background~CMB! on high resolution CMB experiments. It is well known that on the
largest angular scales the combined effects of Doppler shifts and aberration are important; the lowest Legendre
multipoles of total intensity receive power from the large CMB monopole in transforming from the CMB
frame. On small angular scales aberration dominates and is shown here to lead to significant distortions of the
total intensity and polarization multipoles in transforming from the rest frame of the CMB to the frame of the
solar system. We provide convenient analytic results for the distortions as series expansions in the relative
velocity of the two frames, but at the highest resolutions a numerical quadrature is required. Although many of
the high resolution multipoles themselves are severely distorted by the frame transformations, we show that
their statistical properties distort by only an insignificant amount. Therefore, the cosmological parameter
estimation is insensitive to the transformation from the CMB frame~where theoretical predictions are calcu-
lated! to the rest frame of the experiment.
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I. INTRODUCTION

The impressive advances being made in sensitivity
resolution of cosmic microwave background~CMB! experi-
ments demand that careful attention be paid to potential
tematic effects in the analysis pipeline. Such effects can a
from imperfect modeling of the instrument, e.g. approxim
tions in modeling the beam@1–4#, or incomplete knowledge
of the pointing, but also from more fundamental effects su
as inaccurate separation of foregrounds~see e.g. Refs.@5,6#
for reviews!. In this paper we consider errors that may ar
due to neglect of the peculiar motion of the experiment re
tive to the CMB rest frame~that frame in which the CMB
dipole vanishes!. For short duration experiments~e.g. bal-
loon flights such as MAXIMA@7# and BOOMERANG@8#!
the relative velocity is constant over the time scale of
experiment, but for experiments conducted over a f
months or longer, and particularly for satellite surve
@9–11#, the variation in the relative velocity adds addition
complications. In principle, the modulation of the aberrati
arising from any variation in the relative velocity must b
accounted for with a more refined pointing model for t
experiment@12,13# when making a map.

For a relative speed ofbc ~wherec is the speed of light
and b;1.2331023 for the solar-system barycenter relativ
to the CMB frame!, the r.m.s. photon Doppler shifts an
deflection angles areb/A3 andA2/3b respectively. Despite
these small values, significant distortions of the spher
multipoles of the total intensity and polarization fields
arise. A well known example is provided by the CMB dipo
seen on Earth, which, given the observed spectrum, ar
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from the transformation of the monopole in the CMB fram
~e.g. Ref.@14# and references therein!. More generally, on the
largest angular scales the combined effects of Doppler sh
and aberration couple the total intensity monopole and dip
into the l th multipoles at the levelO(b l) and O(b l 21) re-
spectively. Given the size of the non-cosmological mon
pole, annual modulation of the dipole by the variation in t
relative velocity of the Earth in the CMB frame must b
considered in long duration experiments.

In this paper we concentrate on the effects of pecu
velocities on small angular scale features in the microw
sky. On such scales, aberration dominates the distortions
becomes particularly acute when the angular scales of in
est, O(1/l ), drop below the r.m.s. deflection angle, i.e.l
*800 for the transformation from the CMB frame to that
the solar system. We provide simple analytic results for th
distortions to the total intensity and polarization fields
power series in the relative velocityb. The power series
converge rather slowly at the highest multipoles for m
values of the azimuthal indexm @the leading-order correc
tions go like O( lb)# but the distortions can still easily b
found semianalytically with a one-dimensional quadrature
the transformations of the multipoles carried through to th
statistical properties, theoretical power spectra compute
linear theory~e.g. with standard Boltzmann codes@15,16#!
would not accurately describe the statistics of the high re
lution multipoles observed on Earth.~The theoretical power
spectra would still be accurate in the CMB frame.! It is
straightforward to calculate the statistical correlations of
multipoles observed on Earth. Fortunately, as we show h
the statistical corrections due to peculiar velocity effects t
out to be negligible despite the large corrections to the in
vidual multipoles. It follows that for the purposes of hig
resolution power spectrum and parameter estimation,
transformation from the CMB frame can be neglected.
©2002 The American Physical Society01-1
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This paper is arranged as follows. In Sec. II we descr
the transformation laws for the total intensity multipoles
specific intensity and frequency-integrated forms. Con
nient series expansions inb of the transformations are pro
vided, and their properties under rotations of the refere
frames are described. The statistical properties of the tr
formed multipoles are investigated by constructing rotati
ally invariant power spectrum estimators and full correlat
matrices. In Sec. III we discuss the geometry of the fra
transformations for linear polarization, and present power
ries expansions for the transformations of the multipol
The behavior under rotations and parity is also outlin
Power spectra estimators and correlation matrices are
structed, and cross correlations with the total intensity
considered. Some implications of our results for survey m
sions are discussed in Sec. IV, which is followed by o
conclusions in Sec. V. An Appendix provides details of t
evaluation of the multipole transformations as power se
in b.

We use units withc51.

II. TRANSFORMATION LAWS FOR TOTAL INTENSITY

We consider the microwave sky as seen by two obser
at the same event. ObserverS is equipped with a comoving
tetrad $(em)a%, m5$0,1,2,3%, and observerS8 carries the
Lorentz-boosted tetrad$(em8 )a%. The relative velocity ofS8
as seen byS has components on$(ei)

a%, i 5$1,2,3%, which
we denote by the spatial vectorv, which has magnitudeb.
The S observer receives a photon with four-momentumpa
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when their line of sight is alongn̂, so the photon propagatio
direction is2n̂. For S the photon frequency isn wherehn
5pa(e0)a (h is Planck’s constant!, while S8 observes fre-
quency

n85ng~11n̂•v!, ~1!

whereg22512b2. The line of sight inS8 is

n̂85S n̂• v̂1b

11n̂•v
D v̂1

n̂2n̂• v̂v̂

g~11n̂•v!
, ~2!

where v̂ is a unit vector in the direction of the relative ve
locity.

Denoting the sky brightness in total intensity seen bySas
I (n,n̂), the brightness seen byS8 is ~e.g. Ref.@17#!

I 8~n8,n̂8!5I ~n,n̂!S n8

n D 3

. ~3!

If S and S8 use their spatial triads$(ei)
a% and $(ei8)

a% to
define polar coordinates in the usual manner, and expand
sky brightness in terms of scalar spherical harmonics,
I (n,n̂)5( lmalm

I (n)Ylm(n̂), we find the following transfor-
mation law for the brightness multipoles:
FIG. 1. Representative elements of the frequency-integrated kernelK ( lm)( lm)8 evaluated with the relative velocity (b51.2331023) along
(e3)a. The results of a numerical integration of Eq.~6! are shown in dark gray, while results based on the series expansion~7! are shown in
light gray. The smaller~absolute values! of the two are shown in the foreground. Elements are shown forl 51500~left!, l 5700~middle!, and
l 550 ~right!, with m50 ~top! andm5 l ~bottom!.
1-2
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alm
I 8 ~n8!5 (

l 8m8
E dn̂g~11n̂•v!al 8m8

I
~n!

3Yl 8m8~ n̂!Ylm* ~ n̂8!, ~4!

where n5n8g21(11n̂•v)21, and we have usedn8 2dn̂8

5n2dn̂.
It will prove more convenient to consider the integral

the brightness over frequency,I (n̂)[*dn I (n,n̂). The trans-
formation law for this flux per solid angle follows from in
tegrating Eq.~3!:

I 8~ n̂8!5I ~ n̂!S n8

n D 4

. ~5!

ExpandingI (n̂) in spherical harmonics, we find the mult
pole transformation law

alm
I 8 5 (

l 8m8
al 8m8

I E dn̂@g~11n̂•v!#2Yl 8m8~ n̂!Ylm* ~ n̂8!,

5 (
l 8m8

K ( lm)( lm)8al 8m8
I ~6!
r

tio
ni
-

l
W
.
s

n
th
f

10300
wherealm
I 5*dnalm

I (n). The second equality defines the ke
nel K ( lm)( lm)8 which relates the frequency-integrated mul
poles inS and S8. Dividing alm

I by four times the average
flux per solid angle gives the multipoles of the gaug
invariant temperature anisotropy in linear theory~e.g. Refs.
@18,19#!.

If we choose the spacelike vectors of the tetrad$(em)a% so
that the relative velocity is along (e3)a, the multipole trans-
formation law becomes block-diagonal,K ( lm)( lm)8}dmm8 ,
with no coupling between differentm modes. The kernel for
a general configuration can then be inferred from its tra
formation properties under rotations described in Sec. II
In the Appendix we evaluate Eq.~4! as a series expansion i
b for general spin-weight functions, including terms up
O(b2), for the case wherev is aligned with (e3)a. The ex-
pression is cumbersome, partly due to the fact that the tra
formation law is non-local in frequency. For largel the ab-
erration effect dominates Doppler shifts and the freque
spectrum of the multipoles is preserved by the transform
tion. We also give the result obtained by integrating ov
frequency; settings50 in Eq.~A7! we find the series expan
sion of the kernelK ( lm)( lm)8 up to O(b2):
K ( lm)( l 8m)5d l l 8F11
1

2
b2@C( l 11)m

2 ~ l 21!~ l 22!1Clm
2 ~ l 12!~ l 13!1m22 l ~ l 11!12#G1d l ( l 811)bClm~ l 13!

2d l ( l 821)bC( l 11)m~ l 22!1d l ( l 812)b
2ClmC( l 21)m

1

2
~ l 12!~ l 13!1d l ( l 822)b

2C( l 12)mC( l 11)m

1

2
~ l 21!~ l 22!,

~7!
th

es
e
e-

e
-

-

tion
whereClm[ 0Clm with

sClm[A~ l 22m2!~ l 22s2!

l 2~4l 221!
. ~8!

Comparison with Eq.~A6! shows that for highl the aberra-
tion effect described by the termYlm* (n̂8) in Eqs.~4! and~6!
is dominant. Forb l *1 the series is slow to converge fo
umu! l since the leading-order corrections go likeO( lb),
reflecting the fact that the deflection angle due to aberra
is comparable to the angular scale of the spherical harmo
at this l. For b'1.2331023, appropriate for the solar
system barycenter relative to the CMB frame,b l;1 corre-
sponds to multipolesl;800. In this case, the kerne
K ( lm)( lm)8 is easily evaluated by a numerical quadrature.
show some representative elements of the kernel in Fig
which demonstrates that the multipoles do indeed suffer
vere distortion forl *1/b, as suggested by Eq.~7!. For umu
close tol, sClm;O( l 21/2) and retaining only the terms give
in Eq. ~7! is accurate to much better than 0.1 percent for
l range probed by e.g. Planck (l &2000). For such values o
n
cs

e
1,
e-

e

m the distortions to the multipoles are only small, wi
leading-order corrections atl 85 l 61 of O(bAl ). For lb
!1, the departures of the kernel from the identityd l l 8dmm8
are very small, giving negligible distortions to the multipol
except forl close to unity when the non-zero coupling to th
~large! monopole can give significant distortions, as d
scribed in Sec. I.

A. Rotational properties

If we rotate the relative velocityv to Dv1 keeping the
tetrad (em)a fixed @thus inducing a transformation of th
Lorentz-boosted tetrad (em8 )a#, the frequency-integrated mul
tipoles continue to be given by Eq.~6!, but with v replaced
by Dv in n̂8 @Eq. ~2!# and in (11n̂•v). With the change of
integration variablen̂→Dn̂, the integral defining the trans
formed kernelK ( lm)( lm)8(Dv) becomes

1Here, D denotes the appropriate representation of the rota
groupSO(3).
1-3



n

e

e

w

ta
e

a

he
di

r

e
B

ic

c-

is

c-

-

the

ANTHONY CHALLINOR AND FLOOR van LEEUWEN PHYSICAL REVIEW D65 103001
E dn̂g2~11n̂•v!Yl 8m8~Dn̂!Ylm* ~Dn̂8!

5E dn̂g2~11n̂•v!D21Yl 8m8~ n̂!@D21Ylm~ n̂8!#* ,

~9!

where D21Yl 8m8(n̂)5(m9Dm8m9
l* Ylm9(n̂) with Dmm8

l a
Wigner D-matrix. ~Our conventions forD-matrices follow
Refs.@20,21#.! It follows that the transformed kernel is give
by

K ( lm)( lm)8~Dv!5 (
MM8

DmM
l K ( lM )( lM )8~v!Dm8M8

l 8* . ~10!

Instead of rotating the~physical! relative velocity ofSand
S8, we could imagine rotating the spatial triad (ei)

a

→D(ei)
a. Under this coordinate transformation, th

Lorentz-boosted frame vectors transform similarly: (ei8)
a

→D(ei8)
a. For a fixed sky, the multipoles seen byS andS8

transform according to e.g.alm
I →(m8Dm8m

l* alm8
I ~which is

equivalent to rotating the sky withD21 leaving the tetrad
fixed!. It follows that under coordinate rotations, the kern
transforms as

K ( lm)( lm)8→ (
MM8

DMm
l* K ( lM )( lM )8DM8m8

l 8 . ~11!

Note that the~passive! rotation of the frame vectors byD21

has the same effect on the kernel as the~active! rotation of
the relative velocityv by D, as expected.

Finally, we consider~active! parity transformationsv
→2v with the tetrad (em)a held fixed. UsingYlm(2n̂)
5(21)lYlm(n̂) it is straightforward to show that

K ( lm)( lm)8~2v!5~21! l 1 l 8K ( lm)( lm)8~v!. ~12!

The behavior of the kernel under parity ensures that if
simultaneously invertv and the sky@alm

I →(21)lalm
I #, the

multipoles seen byS8 transform to (21)lalm
I 8 .

These transformation properties of the kernel under ro
tions allow one to generalize Eq.~7! easily to the case wher
v is not aligned with (e3)a.

B. Power spectrum estimators

We have seen how aberration effects lead to signific
distortions of some of the high-l multipoles in transforming
from the CMB frame to the frame of the experiment. In t
next two subsections we investigate the impact of these
tortions on the statistical properties of the multipoles.

We assume that in the CMB frame~S! the second-orde
statistics of the anisotropies are summarized by

^alm
I al 8m8

I* &5Cl
II d l l 8dmm8 , ~13!

appropriate to a statistically isotropic ensemble with pow
spectrumCl

II . ~The averaging is over an ensemble of CM
10300
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realizations.! It is this Cl for l>2 that is computed with
linear perturbation theory in standard Boltzmann codes~e.g.
Refs.@15,16#!.

We begin by considering the quadratic statistic

Ĉl
II 8[

1

2l 11 (
m

ualm
I 8 u2, ~14!

which is evaluated byS8. In the absence of noise this statist
is the optimal~minimum-variance! estimator for the power
spectrum if we ignore peculiar velocity effects. By constru

tion, Ĉl
II 8 is independent of the choice of spatial triad, but

only invariant under rotations of the sky inS (alm
I

→(m8Dmm8
l alm8

I ) if the relative velocity is also rotated to
Dv. However, averaging over CMB realizationskeeping the

relative velocity fixedwe obtain a quantitŷ Ĉl
II 8& which is

obviously invariant under rotations of the sky inS. The av-

erage^Ĉl
II 8&, which determines the bias of the power spe

trum estimatorĈl
II 8 , is linearly related to theCl

II :

^Ĉl
II 8&5

1

2l 11 (
l 8mm8

uK ( lm)( lm)8u
2Cl 8

II

[(
l 8

Wll 8Cl 8
II . ~15!

The kernelWll 8 depends only on the relative speedb and not
the directionv̂, so we can always evaluate it withv aligned
with (e3)a. The series expansion~7! of K ( lm)( lm8) can be
used to evaluateWll 8 . Correct toO(b2) we find

Wll 85d l l 8S 12
1

3
b2~ l 21 l 28! D1d l ( l 811)b

2
l ~ l 13!2

3~2l 11!

1d l ( l 821)b
2
~ l 22!2~ l 11!

3~2l 11!
. ~16!

Again the series is slow to converge forlb*1 and the terms
neglected in Eq.~16! are non-negligible. We showWll 8 for
some representativel values in Fig. 2. It is clear from the
figure thatWll 8 is well localized in comparison to any fea
tures in the CMB power spectrum for the range ofb of
interest here. In this case, we can approximate

^Ĉl
II 8&'Cl

II (
l 8

Wll 8

5Cl
II @114b21O~b3!#. ~17!

The effect of the velocity transformation is thus to rescale
amplitude of the power spectrum by 114b2. This bias is
clearly insignificant.( l 8Wll 8 is actually independent ofl to
all orders inb. To see this we form( l 8Wll 8 directly using
the integral expression~6! for K ( lm)( lm)8 . The result simpli-
fies to
1-4
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FIG. 2. Representative ele
ments of the kernelWll 8 evaluated
with relative velocity b51.23
31023. The results of a numerica
integration are shown in dark
gray, while results based on th
series expansion~16! are shown in
light gray. The smaller~absolute
values! of the two are shown in
the foreground. Elements ar
shown for l 51500 ~left!, l 5700
~middle!, and l 550 ~right!.
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Wll 85
g4

4pE dn̂~11n̂•v!4

5g4S 112b21
1

5
b4D , ~18!

on using the completeness relation

(
lm

sYlm~ n̂1! sYlm* ~ n̂2!5d~ n̂12n̂2!, ~19!

and the addition theorem for the spherical harmonics. T
series expansion of Eq.~18! agrees with Eq.~17!. We con-
clude that despite the fact that the multipoles themselves
be severely distorted by aberration forlb*1 in passing from
the CMB frame to that of the solar system, the quadra
power spectrum estimator is negligibly biased since the
fect of the velocity transformation is to convolve the pow
spectrum with a narrow kernelWll 8 that sums to very nearly
unity.

C. Signal covariance matrix

Assuming Gaussian statistics in the CMB frame, the m

tipolesalm
I 8 in S8 will also be distributed according to a mu

tivariate Gaussian since the transformation~6! is linear. In

this case, the covariance matrix^alm
I 8 al 8m8

I 8* & contains all sta-
tistical information about the anisotropies inS8, and as such
is an essential element of optimal power spectrum esti
tion.

If we make use of Eq.~13!, the covariance matrix inS8
reduces to

^alm
I 8 al 8m8

I 8* &5(
LM

K ( lm)(LM )K ( lm)8(LM )
* CL

II . ~20!

The presence of the preferred directionv̂ breaks statistica
isotropy inS8, and the multipoles are correlated forlÞ l 8 and
mÞm8. The structure of the covariance matrix inS8 depends
on the choice of the spatial triad (ei)

a with respect to the
relative velocity of the two observers. Aligning (e3)a with v,
the m-modes decouple inK ( lm)( lm)8 and so also in the cova
riance matrix. Furthermore, for the values ofb of interest
here (b!1), the kernelK ( lm)( lm)8 falls rapidly to zero forl
10300
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andl 8 differing by more than a few~see Fig. 1!, so the same
will be true of the covariance matrix. It follows that we ca
approximate

^alm
I 8 al 8m8

I 8* &'Cl
II (

LM
K ( lm)(LM )K ( lm)8(LM )

* . ~21!

~Pulling outCl 8
II instead will give essentially the same resu

for smooth power spectra.! The summation in Eq.~21! is
most easily evaluated by substituting the integral represe
tion ~6! for K ( lm)(LM ) and using the completeness relatio
~19!. We find that (LMK ( lm)(LM )K ( lm)8(LM )

* reduces to the
integral

E dn̂@g~11n̂•v!#4Ylm* ~ n̂8!Yl 8m8~ n̂8!

5E dn̂8@g~12n̂8•v!#26Ylm* ~ n̂8!Yl 8m8~ n̂8!, ~22!

where we changed the integration variable ton̂8 and used
g(11n̂•v)5@g(12n̂8•v)#21. Note that both spherical har
monics have the same argument in the integrand, so we
not expect the sameO( lb) terms at highl that arise in the
kernelK ( lm)( lm)8 . Equation~22! can easily be evaluated fo
(e3)a along v ~in which case there is no coupling betwee
different m) by expanding inb:

(
LM

K ( lm)(LM )K ( l 8m)(LM )
*

5d l l 8@113b2~7C( l 11)m
2 17Clm

2 21!#

1d l ( l 811)6bClm1d l ( l 821)6bC( l 11)m

1d l ( l 812)21b2ClmC( l 21)m

1d l ( l 822)21b2C( l 12)mC( l 11)m1O~b3!. ~23!

This result for the covariance matrix inS8 could easily be
used in a maximum-likelihood power spectrum estimat
~see e.g. Ref.@22#! to correct for the bias due to peculia
velocity effects. However, since the leading corrections
only O(b), even at highl, the effects will be negligible.
1-5
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III. TRANSFORMATION LAWS FOR LINEAR
POLARIZATION

The linearly polarized brightness inS is described by
Stokes parametersQ(n,n̂) and U(n,n̂). The Stokes param
eters depend on a specific choice of orthonormal basis
tors $m1 ,m2% for each line of sightn̂. If $m1 ,m2 ,2n̂% form
a right-handed orthonormal set, the Stokes parameters
related to the linear polarization tensor by

Pab5
1

2
@Q~m1^ m12m2^ m2!

1U~m1^ m21m2^ m1!#. ~24!

The Stokes parameters transform under changes of fram
the same way as the total intensity, i.e.

Q8~n8,n̂8!5Q~n,n̂!S n8

n D 3

, ~25!

and similarly forU, provided that the basis vectors are tran
formed according to@23#

mi85mi1~g21!mi• v̂v̂2gmi•vn̂8, ~26!

where i 51,2. It is straightforward to verify that this trans
formation law preserves orthonormality, and also thatmi8 is
obtained frommi by parallel transport on the unit sphe
along the great circle throughn̂ and n̂8 ~and so throughv̂
also!. In terms of the polarization tensor, the frame transf
mation law can be written as

P 8ab~n8,n̂8!5P i
ab~n,n̂;v!S n8

n D 3

, ~27!

wherePi
ab(n,n̂;v) is Pab(n,n̂) parallel propagated ton̂8. The

113 covariant form of this transformation was given in Re
@23#.

If S andS8 introduce polar coordinates as in Sec. II, t
polarization tensor can be expanded in symmetric trace-
tensor harmonics@24#:2

Pab~n,n̂!5
1

A2
(
lm

alm
E ~n!Y( lm)ab

G ~ n̂!

1alm
B ~n!Y( lm)ab

C ~ n̂!, ~28!

which defines the electric~E! and magnetic~B! multipoles.
Using Eq.~27! we can extract the multipoles seen byS8. For

alm
E8(n8) we find

2Our alm
E and alm

B are A2 times the gradient~G! and curl ~C!
multipoles introduced in Refs.@24,25#. With this convention the
power spectra of the electric and magnetic multipoles agree
those defined in the spin-weight formalism@26,27#.
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alm
E8~n8!5 (

l 8m8
E dn̂ g~11n̂•v!

3@al 8m8
E

~n8!Yi( lm)8
Gab

~ n̂;v!Y( lm)ab
G* ~ n̂8!

1al 8m8
B

~n8!Yi( lm)8
Cab

~ n̂;v!Y( lm)ab
G* ~ n̂8!#, ~29!

with a similar result for alm
B8(n8). Here Yi( lm)

Gab (n̂;v) is

Y( lm)
Gab(n̂) parallel propagated ton̂8, and similarly for the curl

harmonics. Note how in general the frame transformat
mixesE andB polarization. Equation~29! is valid quite gen-
erally, and is useful for discussing the rotational properties
the transformations~see later!. However, to compute the
transformation laws it is again convenient to arrange (ei)

a so
that v is along (e3)a. We can then exploit the fact that th
polar basis vector fieldsû(n̂) and f̂(n̂) are parallel propa-
gated along longitudes to simplifyYi( lm)

Gab (n̂;v). The gradient
and curl harmonics can be written in terms of spin-weig
62 harmonics~our conventions follow Refs.@1,28#!:

Ylm
Gab5

1

A2
~ 22Ylmm^ m1 2Ylmm* ^ m* !, ~30!

Ylm
Cab5

1

iA2
~ 22Ylmm^ m2 2Ylmm* ^ m* !,

~31!

where the complex vectorm[(û1 i f̂)/A2, so that Eq.~29!
can be written as

~alm
E86 ialm

B8!~n8!5 (
l 8m8

3E ~al 8m8
E

6 ial 8m8
B

!~n!dn̂g~11n̂•v! 62

3Yl 8m8~ n̂! 62Ylm* ~ n̂8!. ~32!

The integral on the right-hand side is evaluated as a po
series inb for general spin-weights in the Appendix.

For our purposes it will be more convenient to consid
the frequency-integrated multipoles, e.g.alm

E 5*dnalm
E (n).

Integrating Eq.~29! over frequency, we find

alm
E85 (

l 8m8
1K ( lm)( lm)8al 8m8

E
1 i 2K ( lm)( lm)8al 8m8

B , ~33!

alm
B85 (

l 8m8
1K ( lm)( lm)8al 8m8

B
2 i 2K ( lm)( lm)8al 8m8

E ,

~34!

where the kernels
th
1-6
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1K ( lm)( lm)85E dn̂@g~11n̂•v!#2Yi( lm)8
Gab

~ n̂;v!Y( lm)ab
G* ~ n̂8!

5E dn̂@g~11n̂•v!#2Yi( lm)8
Cab

~ n̂;v!Y( lm)ab
C* ~ n̂8!,

~35!

2K ( lm)( lm)852 i E dn̂@g~11n̂•v!#2Yi( lm)8
Cab

~ n̂;v!Y( lm)ab
G* ~ n̂8!

5 i E dn̂@g~11n̂•v!#2Yi( lm)8
Gab

~ n̂;v!Y( lm)ab
C* ~ n̂8!.

~36!

The behavior of6K ( lm)( lm)8 under rotationsv→Dv is the
same as for the total intensity kernel, Eq.~10!, since the
tensor harmonics transform under rigid rotations with
sameD-matrices as the scalar harmonics@1#. This property
of the tensor harmonics also ensures that under rotation
l

n

-
in

r

h

10300
e

of

the coordinate system, (ei)
a→D(ei)

a, the electric and mag-
netic multipoles transform irreducibly to e.g.(m8Dm8m

l* alm8
E .

Under inversion ofv with (em)a held fixed, the kernels trans
form to

1K ( lm)( lm)8~2v!5~21! l 1 l 8
1K ( lm)( lm)8~v!, ~37!

2K ( lm)( lm)8~2v!52~21! l 1 l 8
2K ( lm)( lm)8~v!,

~38!

so that under simultaneous inversion of the sky inS, alm
E

→(21)lalm
E andalm

B →(21)l 11alm
B , and inversion ofv, the

multipoles inS8 transform like those inS.
The frequency-integrated kernels are most simply eva

ated withv along (e3)a. In this case them-modes decouple
as with the total intensity. Writing6K5( 2K6 22K)/2, we
can use Eq.~A7!, which evaluatessK ( lm)( lm)8 as a series
correct toO(b2), to show that
1K ( lm)( l 8m)5d l l 8F11
1

2
b2S 2C( l 11)m

2 ~ l 21!~ l 22!1 2Clm
2 ~ l 12!~ l 13!1m22 l ~ l 11!162

4m2

l ~ l 11!
1

24m2

l 2~ l 11!2D G
1d l ( l 811)b 2Clm~ l 13!2d l ( l 821)b 2C( l 11)m~ l 22!1d l ( l 812)b

2
2Clm 2C( l 21)m

1

2
~ l 12!~ l 13!

1d l ( l 822)b
2

2C( l 12)m 2C( l 11)m

1

2
~ l 21!~ l 22!, ~39!
re-
za-
so
se
er-
e
the

ta-

les
ity
and

2K ( lm)( l 8m)

52d l l 8

6bm

l ~ l 11!
2d l ( l 811) 2Clm~ l 13!

6b2m

~ l 11!~ l 21!

1d l ( l 821) 2C( l 11)m~ l 22!
6b2m

l ~ l 12!
. ~40!

@Equivalent results, correct toO(b), have already been
worked out in 113 covariant form @23#.# The kernel
2K ( lm)( lm)8 is suppressed at highl. It receives comparable
contributions from Doppler and aberration effects for all
@see Eq.~A6!# in contrast to the1K ( lm)( lm)8 and the total in-
tensity kernelK ( lm)( lm)8 which are dominated by aberratio
effects at highl. The series expansion of1K ( lm)( lm)8 is slow
to converge forlb*1 whenumu! l , and there are large dis
tortions to the electric and magnetic multipoles for these
dices. Electric multipoles nearby inl couple in strongly to
distort alm

E , and similarly for the magnetic multipoles. Fo
l @1 the kernel1K ( lm)( lm)8 is almost indistinguishable from
the total intensity kernelK ( lm)( lm)8 . The cross contamination
of e.g. B by E due to the frame transformation is muc
weaker, with the maximal effect;O(b/ l ) at leading order
-

occurring for umu' l . @Note that, as with1K ( lm)( lm)8 , the
convergence of Eq.~40! is slow for lb*1 when umu! l .#
The transfer of power fromE to B is potentially the most
interesting effect since in the absence of astrophysical fo
grounds, inflationary models predict that magnetic polari
tion in the CMB frame on scales larger than a degree or
arises only from gravitational waves. However, on the
scales a gravity wave background comprising only one p
cent of the large-angle temperature anisotropy would havB
power far in excess of that generated in the frame of
experiment by transformingE from the CMB frame. On sub-
degrees scales, where any primordialB-polarization is ex-
pected to be very small, other non-linear effects, most no
bly weak lensing ofE @29#, will dominate theB signal
produced by the velocity transformation.

A. Power spectrum estimators

The second-order statistics of the polarization multipo
in the CMB frame, assuming statistical isotropy and par
invariance, define power spectra:

^alm
E al 8m8

E* &5d l l 8dmm8Cl
EE , ~41!

^alm
B al 8m8

B* &5d l l 8dmm8Cl
BB , ~42!
1-7
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^alm
E al 8m8

I* &5d l l 8dmm8Cl
IE , ~43!

with no correlations betweenB and E or I. We can form
estimators of these power spectra from the multipoles inS8
by analogy with Eq.~14!, e.g.

Ĉl
IE85

1

2l 11 (
m

alm
E8alm

I 8* . ~44!

Since these estimators are rotationally invariant we can c
pute them forv aligned with (e3)a using Eqs.~39! and ~40!
without loss of generality.

The expected values of the power spectra estimators
be expressed in terms of the power spectra in the CMB fra
using Eqs.~6!, ~33!, and~34!:

^Ĉl
EE8&5

1

2l 11 (
l 8m8m

u 1K ( lm)( lm)8u
2Cl 8

EE

1u 2K ( lm)( lm)8u
2Cl 8

BB , ~45!

^Ĉl
BB8&5

1

2l 11 (
l 8m8m

u 1K ( lm)( lm)8u
2Cl 8

BB

1u 2K ( lm)( lm)8u
2Cl 8

EE , ~46!

^Ĉl
IE8&5

1

2l 11 (
l 8m8m

1K ( lm)( lm)8K ~ lm!~ lm!8
* Cl 8

IE . ~47!

Substituting the power series expressions for the kernels
performing the summations overm andm8 we find

1

2l 11 (
mm8

u 1K ( lm)( lm)8u
2

5d l l 8S 12
1

3
b2~ l 14!~ l 23! D

1d l ( l 811)b
2
~ l 13!2~ l 224!

3l ~2l 11!

1d l ( l 821)b
2
~ l 22!2~ l 13!~ l 21!

3~ l 11!~2l 11!
, ~48!

1

2l 11 (
mm8

u 2K ( lm)( lm)8u
25d l l 8b

2
12

l ~ l 11!
, ~49!

and
10300
-

an
e

nd

1

2l 11 (
mm8

1K ( lm)( lm)8K ~ lm!~ lm!8
*

5d l l 8S 12
1

3
b2~ l 21 l 210! D

1d l ( l 811)b
2Al 224

~ l 13!2

3~2l 11!

1d l ( l 821)b
2A~ l 13!~ l 21!

~ l 22!2

3~2l 11!
, ~50!

correct toO(b2). For l @1 the right-hand sides of Eqs.~48!
and~50! are almost equal to each other and to the kernelWll 8
which determines the bias in the total-intensity estima

Ĉl
II 8 . As with the total intensity, the series in Eqs.~48!–~50!

are slow to converge forlb*1. The bias of Ĉl
BB8 by

E-polarization is controlled by(mm8u 2K ( lm)( lm)8u
2/(2l 11),

which falls off rapidly with l. In Fig. 3 we compare this

contribution to the expected̂Ĉl
BB8& with the B-polarization

power spectrum due to primordial gravity waves and we
lensing of theE-polarization. The cosmological model is
Lambda, cold dark matter (LCDM) model in which gravity
waves contribute one percent to the large-angle tempera
anisotropy. As remarked earlier, the contamination aris
from the frame transformation is well below the expect

Cl
BB in such a model. The means of the estimatorsĈl

EB8 and

Ĉl
EB8 , defined by analogy withĈl

IE8 , would vanish in the
absence of peculiar velocity effects~and foregrounds! due to
parity. The velocity transformations preserve these z
means since

(
mm8

1K ( lm)( lm)8 2K ( lm)( lm)8
* 5 (

mm8
2K ( lm)( lm)8K ( lm)( lm)8

*

50. ~51!

FIG. 3. Contribution ofCl
EE to the mean estimator̂Ĉl

BB8& in a
LCDM model with one percent contribution to the total-intens
quadrupole from gravity waves. This velocity effect is compar
with Cl

BB ~in the CMB frame! due to primordial gravity waves
~solid line! and weak lensing of theE-polarization~dashed line!.
1-8
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These results are easily proved by choosingv along (e3)a so
that all kernels are real, and using the general res

6K ( lm)( lm)8
* 56(21)m1m8

6K ( l 2m)( l 82m8) and K ( lm)( lm)8
*

5(21)m1m8K ( l 2m)( l 82m8) .
The kernels represented by the left-hand sides of E

~48!–~50! fall off sufficiently rapidly with u l 82 l u that they
are narrow compared to expected features in the primor
power spectra.3 Following the analysis in Sec. II B we ca
pull out Cl 8

EE , Cl 8
BB , andCl 8

IE at l 85 l from the summations in
Eqs.~45!–~47!. Performing the sums overl 8, we find

1

2l 11 (
mm8 l 8

u 1K ( lm)( lm)8u
25114b2

l 21 l 23

l ~ l 11!
, ~52!

1

2l 11 (
mm8 l 8

u 2K ( lm)( lm)8u
25b2

12

l ~ l 11!
, ~53!

1

2l 11 (
mm8 l 8

1K ( lm)( lm)8K ~ lm!~ lm!8
*

511
1

3
b2FA~ l 13!~ l 21!

~ l 22!2

2l 11

1Al 224
~ l 13!2

2l 11
2 l 22 l 110G , ~54!

correct toO(b2). For largel the right-hand sides of Eqs.~52!
and ~54! approach 114b2; as with the total intensity, there
is a negligible scaling of the amplitude of the power spec
estimated in theS8 frame due to the frame transformatio
Note that

1

2l 11 (
mm8 l 8

@ u 1K ( lm)( lm)8u
21u 2K ( lm)( lm)8u

2#

5
1

2~2l 11! (
mm8 l 8

@ u 2K ( lm)( lm)8u
21u 22K ( lm)( lm)8u

2#

5g4S 112b21
1

5
b4D , ~55!
10300
ts

s.

al

a

where we have used the completeness relation and add
theorem for the spin-s harmonics. Adding Eqs.~52! and~53!
we obtain the series expansion of the exact result in Eq.~55!.

B. Signal covariance matrices

The calculation of the covariance matrix of the polariz
tion multipoles inS8 follows that for the total intensity given
in Sec. II C. For smooth power spectra we can approxim

^alm
E8al 8m8

E8* &'Cl
EE(

LM
1K ( lm)(LM ) 1K ( lm)8(LM )

*

1Cl
BB(

LM
2K ( lm)(LM ) 2K ( lm)8(LM )

* , ~56!

^alm
B8al 8m8

B8* &'Cl
BB(

LM
1K ( lm)(LM ) 1K ( lm)8(LM )

*

1Cl
EE(

LM
2K ( lm)(LM ) 2K ( lm)8(LM )

* , ~57!

^alm
E8al 8m8

I 8* &'Cl
IE(

LM
1K ( lm)(LM )K ( lm)8(LM )

* . ~58!

The remaining correlators would vanish forv50 due to par-
ity invariance. For non-zerov we can approximate

^alm
E8al 8m8

B8* &' iCl
EE(

LM
1K ( lm)(LM ) 2K ( lm)8(LM )

*

1 iCl
BB(

LM
2K ( lm)(LM ) 1K ( lm)8(LM )

* , ~59!

^alm
B8al 8m8

I 8* &'2 iCl
IE(

LM
2K ( lm)(LM )K ( lm)8(LM )

* .

~60!

If we align v with (e3)a we can evaluate these expressio
by substituting for the series expansions of the kernels fr
Eqs.~39! and ~40!. Them modes decouple and we find
the
eltas at
(
LM

1K ( lm)(LM ) 1K ( l 8m)(LM )
* 5d l l 8F113b2S 7 2C( l 11)m

2 17 2Clm
2 1

16m2

l 2~ l 11!2
21D G1d l ( l 811)6b 2Clm1d l ( l 821)6b 2C( l 11)m

1d l ( l 812)21b2
2Clm 2C( l 21)m1d l ( l 822)21b2

2C( l 12)m 2C( l 11)m , ~61!

(
LM

2K ( lm)(LM ) 2K ( l 8m)(LM )
* 5d l l 8

36b2m2

l 2~ l 11!2
, ~62!

and

3At low l the polarization power spectra vary rapidly~as power laws! with l. Over this part of the spectrum the approximation that
power is approximately constant over the width of the convolving kernel is still valid since the latter are essentially Kronecker d
low l.
1-9
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(
LM

1K ( lm)(LM )K ( l 8m)(LM )
* 5d l l 8S 11

1

2
b2@2~ l 11!~ l 119!~ 2C( l 11)m

2 1C( l 11)m
2 !2 l ~ l 218!~ 2Clm

2 1Clm
2 !118

12~ l 22!2
2C( l 11)mC( l 11)m12~ l 13!2

2ClmClm# D2d l ( l 811)b@~ l 23!Clm2~ l 13! 2Clm#

1d l ( l 821)b@~ l 14!C( l 11)m2~ l 22! 2C( l 11)m#1
1

2
d l ( l 812)b

2@~ l 12!~ l 13! 2Clm 2C( l 21)m

1~ l 23!~ l 24!ClmC( l 21)m22~ l 13!~ l 24! 2C( l 21)mClm#1
1

2
d l ( l 822)b

2@~ l 21!

3~ l 22! 2C( l 12)m 2C( l 11)m1~ l 14!~ l 15!C( l 12)mC( l 11)m22~ l 22!~ l 15! 2C( l 11)mC( l 12)m#,

~63!

correct toO(b2). This final expression is cumbersome and hides the fact that the leading order corrections to the cov
matrices are onlyO(b), rather thanO(b l ). To see this, we can expand Eq.~63! in 1/l for large l to find

(
LM

1K ( lm)(LM )K ( l 8m)(LM )
* 5d l l 8F11b2S 15

2
2

155184m2

8l 2 D G1d l ( l 811)bS 32
1

l
2

3~714m2!

8l 2 D 1d l ( l 821)bS 31
1

l

2
29112m2

8l 2 D 1d l ( l 812)b
2S 21

4
2

5

2l
2

159184m2

16l 2 D 1d l ( l 822)b
2S 21

4
1

7

2l
2

223184m2

16l 2 D ,

~64!

correct toO( l 22). For umu' l the expansion in 1/l is slow to converge, and the full expression, Eq.~63!, should be evaluated
exactly if the~very small! corrections to the covariance matrices are to be included in a statistical analysis. It is worth
that

(
LM

~ 1K ( lm)(LM ) 1K ( l 8m)(LM )
* 1 2K ( lm)(LM ) 2K ( l 8m)(LM )

* !5
1

2E dn̂@g~12n̂•v!#26@ 2Ylm* ~ n̂! 2Yl 8m~ n̂!1 22Ylm* ~ n̂! 22Yl 8m~ n̂!#,

~65!

for v along (e3)a, where we have used the completeness relation, Eq.~19!. It is straightforward to show with an expansion
b that Eq.~65! is consistent with adding Eqs.~61! and ~62!.

For the correlatorŝalm
E8al 8m8

B8* & and ^alm
B8al 8m8

I 8* &, which would vanish forv50, we require the results@for v aligned with
(e3)a#

(
LM

1K ( lm)(LM ) 2K ( l 8m)(LM )
* 52d l l 8

6bm

l ~ l 11!
2d l ( l 811) 2Clm~7l 13!

6b2m

l ~ l 21!~ l 11!
2d l ( l 821) 2C( l 11)m~7l 14!

6b2m

l ~ l 11!~ l 12!
,

~66!

(
LM

2K ( lm)(LM )K ( l 8m)(LM )
* 52d l l 8

6bm

l ~ l 11!
2d l ( l 811)@ l ~ l 13! 2Clm2~ l 21!~ l 23!Clm#

6b2m

l ~ l 11!~ l 21!

1d l ( l 821)@~ l 11!~ l 22! 2C( l 11)m2~ l 14!~ l 12!C( l 11)m#
6b2m

l ~ l 11!~ l 12!
, ~67!

correct toO(b2), and the general result

(
LM

2K ( lm)(LM ) 1K ( lm)8(LM )
* 52~21!m1m8(

LM
1K ( l 82m8)(LM ) 2K ( l 2m)(LM )* . ~68!

The leading order corrections to the components of the correlation matrices that vanish forv50 areO(b), and are suppresse
at largel, and so they can safely be ignored. For completeness we note that
103001-10



PECULIAR VELOCITY EFFECTS IN HIGH- . . . PHYSICAL REVIEW D 65 103001
(
LM

~ 1K ( lm)(LM ) 2K ( l 8m)(LM )
* 1 2K ( lm)(LM ) 1K ( l 8m)(LM )

* !5
1

2E dn̂@g~12n̂•v!#26@ 2Ylm* ~ n̂! 2Yl 8m~ n̂!2 22Ylm* ~ n̂! 22Yl 8m~ n̂!#.

~69!

This result is easily shown to be consistent with Eqs.~66! and ~68!.
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IV. IMPLICATIONS FOR SURVEY MISSIONS

For experiments which observe for less than a month
so, the velocity of the instrument relative to the CMB fram
can reasonably be considered constant. In this case a m
the frame of the instrument can be made with no accoun
the effects considered in this paper. Accounting for the pe
liar velocity relative to the CMB frame can be deferred un
the statistical properties of the map are considered. As
have shown here, peculiar velocity effects can safely be
nored when estimating smooth power spectra since the
mated power spectra are essentially convolutions of the s
tra in the CMB frame~which we can reliably compute with
linear perturbation theory! with narrow kernels that integrat
to unity.

For survey experiments that observe for the order o
year or more, the variation in the orbital velocity of the i
strument adds another potential complication. Modulation
the dipole by the orbital velocity of the Earth was visible
the Cosmic Background Explorer~COBE! Differential Mi-
crowave Radiometer~DMR! data@30#; here we are intereste
in effects at small angular scales. To estimate the importa
of the effect we consider a toy model of the Planck Hi
Frequency Instrument~HFI!. We approximate the orbit of the
satellite relative to the Sun as a linear motion withb
51024 for six months, after which the direction of motion
reversed for the next six months of observation. Clearly,
toy model will overestimate the effects of the variation
orbital velocity. Planck will cover the full sky in six months
so for each six month period we could make a map a
extract the spherical multipoles. In our toy model these t
maps are produced in frames with a relative velocity ofb
5231024. In the l-range relevant to Planck we need on
retain theO(b) corrections in Eq.~7!, so the difference be
tween the multipoles measured from the two maps can
approximated as

Dalm
I 'b lA12m2/ l 2~a( l 21)m

I 2a( l 11)m
I ! ~70!

for large l. Here,alm
I are the total intensity multipoles in th

rest frame of the solar system. The r.m.s. difference in
multipoles is

^uDalm
I u2&1/2'A2b lA12m2/ l 2ACl

II

<A2b lACl
II , ~71!

which should be compared to the instrument noise. For
100 GHz Planck HFI channel, the one-year pixel noise
6.0 mK in 9.2 arcmin ~the beam full-width at half maxi-
mum! pixels. The noise on our six month maps will be larg
10300
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than this figure byA2. A comparison of the noise on th
recovered multipoles with the r.m.s. error due to the diff
ence in orbital velocity shows that the latter is just above
noise in the region of the first acoustic peak inCl

II ~at l
;200) for umu small compared tol. Combining maps at
different frequency would reduce the noise while preserv
the peculiar velocity effect. However, since we have c
tainly overestimated the importance of the variation in
bital velocity, it is likely that the variation in aberration du
to the orbital motion of the Earth need not be conside
beyond the dipole~which is modulated by the large CMB
monopole!. In principle, the modulation of the highl multi-
poles could easily be accounted for during map-making
including the aberration corrections in the pointing model
the instrument@12,13#.

V. CONCLUSION

We have shown that for total intensity the effect of t
frame transformation from the CMB frame to that of th
solar system produces large distortions in certain multipo
at high l. These effects arise principally from aberratio
rather than Doppler shifts. The linear polarization multipo
are similarly distorted at highl, but with the additional com-
plication that there is some transfer of power betweenE and
B polarization. This transfer is suppressed at largel, and
receives comparable contributions from aberration and D
pler shifts on all scales. Although the power inB polarization
is expected to be much smaller than that inE in the absence
of foregrounds, theB polarization generated fromE is well
below the primordial level even if gravity waves contribu
only one percent of the large-angle temperature anisotrop
If the gravity wave background is much below this leve
weak gravitational lensing will dominate the primordial si
nal on all scales. This lensing signal is expected to be
order of magnitude larger than theB polarization generated
from the frame transformation on large scales.

Despite significantO(b l ) distortions of certain multipoles
at largel, peculiar velocity effects are suppressed in pow
spectrum estimators and the covariance matrices for
CMB signals. The effect of the frame transformation on t
mean of the simplest power spectrum estimator is to c
volve the spectrum in the CMB frame~which we can com-
pute reliably with linear perturbation theory! with a narrow
kernel that integrates to unity. For smooth spectra ther
negligible bias introduced by such a convolution. For line
polarization, the bias of e.g. theB-polarization power spec
trum by E is suppressed at largel, and is expected to be
negligible on all scales. We also showed that the frame tra
formation has only a negligible effect@O(b) as opposed to
1-11
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O(b l )# on the signal covariance matrices for smooth und
lying power spectra. The leading order effect is a coupling
the adjacentl values,l 61. For linear polarization additiona
correlations are induced betweenB andE polarization, andB
and total intensityI, since the frame transformation does n
preserve parity invariance, but their level is negligible.

If the CMB fluctuations are Gaussian in the CMB fram
the multipoles will remain Gaussian distributed in any oth
frame since the transformation is linear in the signal. T
transformation does break rotational and parity invarian
however, and so the aberration effects described here ma
10300
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,
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e,
be

important when searching for weak lensing effects in
microwave background~using small patches of the sky ove
a coherence area of the weak shear!, or the effects of non-
trivial topologies.
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APPENDIX: SERIES EXPANSION OF THE MULTIPOLE TRANSFORMATION LAWS

In this appendix we outline the evaluation of the transformation law for the brightness multipoles as a power serieb.
We align the relative velocity with the vector (e3)a so that there is no coupling between differentm modes. To allow us to
discuss both total intensity and linear polarization, we consider the integral

alm8 ~n8!5(
l 8

E dn̂
n8

n
al 8m~n! sYl 8m~ n̂! sYlm* ~ n̂8!, ~A1!

wheren8/n5g(11n̂•v) and n̂8 is given by Eq.~2!. We Taylor expandal 8m(n) as

al 8m~n!5al 8m~n8!2n8
d

dn8
al 8m~n8!S bm2b2m21

1

2
b2D1

n82

2

d2

dn8 2
al 8m~n8!b2m21O~b3!, ~A2!

wherem[n̂• v̂, and we handlesYlm(n̂8) with the expansion

sYlm~ n̂8!5 sYl 8m~ n̂!2b~12bm!~m221!
d

dm sYl 8m~ n̂!1
b2~m221!2

2

d2

dm2 sYl 8m~ n̂!1O~b3!. ~A3!

The derivatives with respect tom can be eliminated with repeated use of the identity@21#

~m221!
d

dm sYlm5 l sC( l 11)m sY( l 11)m1
sm

l ~ l 11! sYlm2~ l 11! sClm sY( l 21)m , ~A4!

where sClm is defined in Eq.~8!, and residual factors ofm can be absorbed with the identity@21#

m sYlm5 sC( l 11)m sY( l 11)m2
sm

l ~ l 11! sYlm1 sClm sY( l 21)m . ~A5!

With these results, we find the following expression foralm8 (n8):

alm8 ~n8!5H 12
bsm

l ~ l 11! S 22n8
d

dn8
D 1b2F1

2 sC( l 11)m
2 S l ~ l 21!12ln8

d

dn8
1n8 2

d2

dn8 2D 1
1

2 sClm
2 S ~ l 11!~ l 12!

22~ l 11!n8
d

dn8
1n8 2

d2

dn8 2D 1
1

2 S m21s22 l ~ l 11!112n8
d

dn8
D 2

s2m2

2l ~ l 11!
1

s2m2

l 2~ l 11!2 S 12n8
d

dn8

1
n8 2

2

d2

dn8 2D G J alm~n8!2b sC( l 11)mF ~ l 21!1n8
d

dn8
2

bsm

l ~ l 12! S 2~ l 21!2~ l 22!n8
d

dn8

2n8 2
d2

dn8 2D Ga( l 11)m~n8!2b sClmF2~ l 12!1n8
d

dn8
2

bsm

~ l 11!~ l 21! S 22~ l 12!1~ l 13!n8
d

dn8

2n8 2
d2

dn8 2D Ga( l 21)m~n8!1
1

2
b2

sC( l 12)m sC( l 11)mS l ~ l 21!12ln8
d

dn8
1n8 2

d2

dn8 2D a( l 12)m~n8!
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1
1

2
b2

sClm sC( l 21)mS ~ l 11!~ l 12!22~ l 11!n8
d

dn8
1n8 2

d2

dn8 2D a( l 22)m~n8!1O~b3!. ~A6!

Integrating this result with respect ton8, the kernelsK ( lm)( lm)8 introduced in Sec. II (s50) and Sec. III (s562) evaluates to

sK ( lm)( l 8m)5d l l 8F12
3bsm

l ~ l 11!
1

1

2
b2S sC( l 11)m

2 ~ l 21!~ l 22!1 sClm
2 ~ l 12!~ l 13!1m21s22 l ~ l 11!122

s2m2

l ~ l 11!

1
6s2m2

l 2~ l 11!2D G1d l ( l 811)b sClm~ l 13!S 12
3bsm

~ l 11!~ l 21! D2d l ( l 821)b sC( l 11)m~ l 22!S 12
3bsm

l ~ l 12! D
1d l ( l 812)b

2
sClm sC( l 21)m

1

2
~ l 12!~ l 13!1d l ( l 822)b

2
sC( l 12)m sC( l 11)m

1

2
~ l 21!~ l 22!1O~b3!, ~A7!

with K ( lm)( lm)850 for mÞm8 in the configuration withv along (e3)a.
-

e

-
.S
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u,

i,
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