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Algebraic approach to time-delay data analysis for LISA
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Cancellation of laser frequency noise in interferometers is crucial for attaining the requisite sensitivity of the
triangular three-spacecraft LISA configuration. Raw laser noise is several orders of magnitude above the other
noises and thus it is essential to bring it down to the level of other noises such as shot, acceleration, etc. Since
it is impossible to maintain equal distances between spacecrafts, laser noise cancellation must be achieved by
appropriately combining the six beams with appropriate time delays. It has been shown in several recent papers
that such combinations are possible. In this paper, we present a rigorous and systematic formalism based on
algebraic geometrical methods involving computational commutative algebra, which generates in principleall
the data combinations canceling the laser frequency noise. The relevant data combinations form the first
module of syzygies, as it is called in the literature of algebraic geometry. The module is over a polynomial ring
in three variables, the three variables corresponding to the three time delays around the LISA triangle. Spe-
cifically, we list several sets of generators for the module whose linear combinations with polynomial coeffi-
cients generate the entire module. We find that this formalism can also be extended in a straightforward way to
cancel Doppler shifts due to optical bench motions. The two modules are in fact isomorphic. We use our
formalism to obtain the transfer functions for the six beams and for the generators. We specifically investigate
monochromatic gravitational wave sources in the LISA band and carry out the maximization over linear
combinations of the generators of the signal-to-noise ratios with the frequency and source direction angles as
parameters.
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I. INTRODUCTION

Breakthroughs in modern technology have made poss
the construction of extremely large interferometers both
the ground and in space for the detection and observatio
gravitational waves~GWs!. Several ground based detecto
are being constructed around the globe; these are the pro
the Laser Interferometric Gravitational Wave Observat
~LIGO!, VIRGO, GEO, TAMA, and AIGO of building inter-
ferometers whose arm lengths will be of the order of ki
meters. These detectors will operate in the high freque
range of GWs of;10 Hz to a few kHz. A natural limit
occurs on decreasing the lower frequency cutoff of 10
because it is not practical to increase the arm lengths on
ground and also because of the gravity gradient noise w
is difficult to eliminate below 10 Hz. Thus, the ground bas
interferometers will not be sensitive below the limiting fr
quency of;10 Hz. But, on the other hand, there exist in t
cosmos interesting astrophysical GW sources that emit G
below this frequency such as galactic binaries, massive
supermassive black hole binaries, etc. If we wish to obse
these sources, we need to go to lower frequencies. The s
tion is to build an interferometer in space, where such no
will be absent and will allow the detection of GWs in the lo
frequency regime. LISA, the Laser Interferometric Spa
Antenna, is a proposed mission that will use coherent la
beams exchanged between three identical spacecraft for
a giant ~almost! equilateral triangle of side 53106 km to
observe and detect low frequency cosmic GWs. The gro
based detectors and LISA complement each other in the
0556-2821/2002/65~10!/102002~16!/$20.00 65 1020
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servation of GWs in an essential way, analogous to the o
cal, radio, x-ray,g-ray, etc., observations for electromagne
waves. As these detectors begin to operate, a new er
gravitational astronomy is on the horizon and a radica
different view of the universe is expected to be revealed

In ground based detectors the arms are chosen to b
equal length so that the laser light experiences identical d
in each arm of the interferometer. This arrangement precis
cancels the laser frequency or phase noise at the photod
tor. This cancellation of noise is crucial since the raw la
noise is orders of magnitude larger than other noises in
interferometer. The required sensitivity of the instrument c
thus only be achieved by nearly exact cancellation of
laser frequency noise. However, in LISA it is impossible
achieve equal distances between spacecraft and the
noise cannot be canceled in an obvious manner. In LISA,
data streams arise from the exchange of laser beams bet
the three spacecraft—it is not possible to bounce laser be
between different spacecraft, as is done in ground based
tectors; a scheme analogous to the rf transponder schem
used as was done in the early experiments for detecting G
by Doppler tracking a spacecraft from the earth. Seve
schemes, some quite elaborate, have been proposed@1,2#,
which combine the recorded data with suitable time del
corresponding to the three arm lengths of the giant triang
interferometer. These schemes have data combinations o
or at most eight data points which give, respectively, a s
and eight-pulse response of GWs and also show how o
data combinations can be obtained by linear superpositio

Galactic and extragalactic binaries are important sour
©2002 The American Physical Society02-1
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in the LISA frequency band. Their abundance and result
spectral amplitude have been estimated using popula
synthesis by various authors@3–10#. In the lower frequency
range (<1 mHz) there are a large number of such sour
in each of the frequency bins. This makes it impossible
resolve an individual source, which results in a stocha
GW background. It has also been proposed that massive
objects ~MACHOs! such as white dwarfs and black hole
~with mass;0.5 M ( ) can also produce stochastic GW
background@11–13#. In a recent work, Tintoet al. @14# have
used Doppler delayed beams for discriminating the stoch
tic background from the instrumental noise. The angu
resolution of LISA is restricted because it is an all-sky mo
toring detector with quadrupole beam pattern; however,
angular resolution can be achieved by the relative amplitu
and phases of the two polarizations and Doppler modula
of the beams due to the motion of LISA around the S
@15,16#.

We start with the fundamental papers by the Jet Prop
sion Laboratory team@1,2,17# where the idea of delayed da
combinations was first proposed. Here we present asystem-
atic methodbased on modules over polynomial rings, whi
not only reproduces the previously obtained results, but g
antees all the data combinations that cancel the laser n
The data combinations in the case of laser frequency n
consist of the six suitably delayed data streams, the de
being integer multiples of the light travel times betwe
spacecraft, which can be conveniently expressed in term
polynomials in the three delay operatorsE1 , E2 , E3 corre-
sponding to the light travel time along the three arms. T
laser noise cancellation condition puts three constraints
the six polynomials of the delay operators corresponding
the six data streams. The problem therefore consists of fi
ing six-tuples of polynomials that satisfy the laser noise c
cellation constraints. These polynomial tuples form
module,1 called in the literature themodule of syzygies.
There exist standard methods for obtaining the module,
which we mean methods for obtaining the generators of
module so that the linear combinations of the generators g
erate the entire module. Three constraints on six-tuples
polynomials do not lead to three generators, as naive rea
ing might suggest. Here we are dealing with modules rat
than vector spaces and the rules are different. The proce
first consists of obtaining a Groebner basis for the ideal g
erated by the coefficients appearing in the constraints. T
ideal is in the polynomial ring inE1 ,E2 ,E3 over the domain
of rational numbers~or integers if one gets rid of the denom
nators!. To obtain the Groebner basis for the ideal, one m
use the Buchberger algorithm or use a package such
MATHEMATICA . From the Groebner basis there is a stand
way to obtain a generating set for the required module. Al
this procedure has been described in the literature@18,19#.

1A module is an Abelian group over a ring, as contrasted wit
vector space, which is an Abelian group over a field. The sca
form a ring and, just as in a vector space, scalar multiplication
defined. However, in a ring the multiplicative inverses do not ex
in general for the elements, which makes all the difference.
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We thus obtain seven generators for the module. Howe
the method does not guarantee a minimal set and we find
a generating set of four polynomial six-tuples suffices to g
erate the required module. Alternatively, we can obtain g
erating sets by using the softwareMACAULAY 2 . It gives us a
a Groebner basis for the module consisting of five genera
and another generating set consisting of six elements.
importance of obtaining more data combinations is evide
they provide the necessary redundancy —different data c
binations produce different transfer functions for GWs a
so specific data combinations might be optimal for giv
astrophysical source parameters in the context of maximiz
the signal-to-noise ratio~SNR! and detection probability, im-
proving parameter estimates, etc.

The scheme we have described above can also be
tended in a straightforward way to include optical bench m
tions. There are now 12 Doppler streams of data and
apply the above scheme to cancel the noise due to op
bench drift and laser frequency noise. The six extra strea
can be combined two by two by subtracting one stream fr
the other to obtain three streams in which the freque
shifts in the optical fibers are canceled. Thus we have o
nine streams to contend with and now the module consist
nine-tuples of polynomials on which six linear constrain
are imposed. We show that the problem can be solved
terms of the previous one where the three extra polynom
are written in terms of the six-tuple polynomials that a
solutions to the laser frequency noise cancellation probl
Thus the solution to the first problem extends easily to
second.

Finally, we apply our formalism to a class of importa
astrophysical sources, but relatively simple to analy
namely, monochromatic GW sources. We maximize the S
for such sources over much of the module of data comb
tions by considering linear combinations of the generators
the module with the coefficients being real numbers. Stric
speaking one must take polynomials as the coefficients
that the maximization extends to the entire module, but
find that even this simplifying assumption yields satisfacto
results. We present the maximized SNR as a function of
quency over the data combinations.

We organize the paper in the following manner. In Sec.
we present the six raw data streams obtained with the l
phase noise and formulate the conditions for laser ph
noise cancellation. We also obtain difference equatio
which should be satisfied by the time-delay operators
canceling the laser noise. The solutions for the noise can
lation combinations can be represented as the syzygies m
ule over the polynomial ring using standard methods of
gebraic geometry described in Sec. III. First a Groebner b
for the ideal is obtained. From the Groebner basis the g
erators for the module of syzygies can be computed. Sev
sets of generators have been obtained for this module
Sec. III B this approach is extended to cancel the accelera
noise of optical benches. In Sec. IV we compute the dete
response for the GW signal and obtain transfer functions
the six elementary beams. In Sec. V, first we determine
effective noise for each generator by taking the shot no
and acceleration noise of the proof masses into acco
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ALGEBRAIC APPROACH TO TIME-DELAY DATA . . . PHYSICAL REVIEW D65 102002
which do not cancel out in the combinations. We obta
SNRs for monochromatic sources and maximize the S
over the allowed data combinations that cancel the laser
quency noise.

II. TIME-DELAYED DATA AND THE DIFFERENCE
EQUATION

A. Time-delayed data

We label the spacecraft as 1, 2, and 3. LetL1 ,L2 ,L3 be
the lengths of the arms~sides of the triangle! whereL3 is the
distance between spacecraft 1 and 2; and so on by cy
rotation of indices~see Fig. 1!. Each spacecraft has a las
which is used to send beams to the other two spacecraft,
used as a local oscillator to produce a beat signal with
incoming beams from the other two spacecraft. The data
recorded asfractional Doppler shifts. These fractional Dop-
pler shifts can occur due to the GW signal and the no
Here we will be concerned with the laser frequency no
only. More precisely, ifn0 is the central frequency of th
laser and the frequency fluctuation of the laser on space
i at timet is Dn i(t), then the fractional frequency fluctuatio
Ci(t) is given by

Ci~ t !5
Dn i~ t !

n0
. ~2.1!

The six streams of Doppler data are obtained from theCi(t)
by combining them suitably with their time-delayed copie
where the time delays are just the light travel times betw
the three spacecraft. We adopt the following notation for
six streams: we divide the six streams into two setsUi and
Vi , wherei 51,2,3, of three streams each.Ui andVi can be
regarded as three component vectorsU andV, respectively.

FIG. 1. LISA geometry.
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Also we denote the time-delayed data in armk, k51,2,3, by
the shift operatorEk whose action on a functionf (t) is de-
scribed by the equation

Ekf ~ t !5 f ~ t2Lk!, ~2.2!

where we have chosen units in which the speed of ligh
unity. The six streams are

U15E2C32C1 ,

U25E3C12C2 ,

U35E1C22C3 ,

V15C12E3C2 ,

V25C22E1C3 ,

V35C32E2C1 . ~2.3!

Thus explicitly we haveU1(t)5C3(t2L2)2C1(t), etc.
U1(t) is the data stream obtained by beating the laser be
transmitted by spacecraft 3 to spacecraft 1 measured at
t at spacecraft 1; and so on by cyclic rotation. Similar
2V1(t)5C2(t2L3)2C1(t) is the laser beam emitted b
spacecraft 2 and received and beaten with the laser at sp
craft 1 at timet. If we label the spacecraft in a countercloc
wise ~positive sense! fashion, then the beamsUi travel in the
positive sense while the beamsVi travel in the negative
sense.

The goal of the analysis is to add suitably delayed bea
together so that the net result is zero.This amounts to seek
ing data combinations that cancel the laser frequency no
In the notation/formalism that we have invoked, the delay
obtained by applying the operatorsEk to the beamsUi and
Vi . A delay of k1L11k2L21k3L3 is represented by the op
eratorE1

k1E2
k2E3

k3 acting on the data, wherek1 ,k2, andk3 are
integers. In general, a polynomial inEk , which is a polyno-
mial in three variables, applied to, say,U1 combines the
same data streamU1(t) with different time delays of the
form k1L11k2L21k3L3. This notation conveniently re
phrases the problem. One must find six polynomials, s
pi(E1 ,E2 ,E3), qi(E1 ,E2 ,E3), i 51,2,3, such that

(
i 51

3

piV
i1qiU

i50. ~2.4!

Cancellation of the laser noise is implicit in the above eq
tion.

B. The difference equation for shift operators

It is convenient to express Eq.~2.3! in matrix form. This
allows us to obtain a matrix operator equation whose so
tions arep and q where we have now writtenpi and qi as
column vectors. We can similarly expressUi ,Vi ,Ci as col-
umn vectorsU,V,C, respectively. In matrix form Eq.~2.3!
becomes
2-3
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V5mTC, U52m C, ~2.5!

wherem is a 333 matrix given by

m5S 1 0 2E2

2E3 1 0

0 2E1 1
D . ~2.6!

The exponent ‘‘T’’ represents the transpose of the matr
Equation~2.4! becomes

~mp2mTq!T C50, ~2.7!

where we have taken care to putC on the right of the opera
tors. Since the above equation must be satisfied for arbit
‘‘data’’ C, we obtain a matrix equation for the shift operato

mp5mTq. ~2.8!

The solutions to Eq.~2.8! arep, q, which are column vectors
of polynomials in the shift operatorsEk . Note that since the
Ek are just shift operators they commute, so the order
writing these operators is unimportant. In mathemati
terms, the polynomials form a commutative ring.

We can formally solve forp since the matrixm is invert-
ible. However, detm512E1E2E3 appears in the denomina
tor on the right-hand side~RHS!, which leads to the division
by polynomials inEk . This may seem hard to interpret. B
we can pull this factor to the LHS to ‘‘rationalize’’ the ex
pressions. Then we obtain

Dp5A q, ~2.9!

whereA5mad jm
T andmad j is the adjoint ofm. The operator

D512E1E2E3 is the usual difference operator that appe
in finite differences and difference equations. The quan
E1E2E3 plays a central role in determining the natural tim
step for the problem, namely,s5L11L21L3; which is noth-
ing but the light travel time around the perimeter of the LIS
triangle.D is just the difference corresponding to this tim
step.

Explicitly, using Eq.~2.6! the matrixA is given by

A5S 12E2
2 E1E22E3 E2~12E1

2!

~12E2
2!E3 12E3

2 E2E32E1

E3E12E2 E1~12E3
2! 12E1

2
D .

~2.10!

The equations display a cyclic symmetry in the indices 1,
which is also apparent in the matrixA. The cyclic symmetry
results from the nature of the problem since we are free
choose the labeling of the three spacecraft. In the matriA
we must also change the rows and columns consistentl
performing the cyclic change of the indices. The cyclic sy
metry is further carried over to the solutions (p,q).

The integration of Eq.~2.9! can be carried out in time
steps ofs. The integration is immediate if we operate wi
Eq. ~2.9! on V. We first need to take the transpose of E
~2.9! and then operate onV. We then obtain
10200
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DpTV5qTAT V

5qT~mad jm
T!T V

5qTmD C

52DqT U, ~2.11!

which gives

D~pT V1qT U!50. ~2.12!

This equation immediately integrates to

~pT V1qT U!~ t1ns!5~pT V1qT U!~ t !, ~2.13!

wheren is an integer. If we arbitrarily sett50 and if (pTV
1qTU)(0)50, then (pTV1qTU)(ns)50.

It is not clear to us how the above solution would
useful physically, but we present it as an interesting outco
However, the main problem is of seeking solutions (p,q) to
Eq. ~2.8!. We discuss this problem and its solution in the ne
section.

III. THE MODULES OF SYZYGIES

Several solutions have been exhibited in@1,2# to Eq.~2.8!.
The solutions have the characteristic property that detm can-
cels on both sides leading to polynomial vectorsp andq. We
reproduce here the solutions obtained in previous work. T
solutionz is given bypT5qT5(E1 ,E2 ,E3). The solutiona
is described bypT5(1,E3 ,E1E3) and qT5(1,E1E2 ,E2).
The solutionsb and g are obtained froma by cyclically
permuting the indices ofEk , p, and q. These solutions as
realized in earlier work are important, because they con
of polynomials with the lowest possible degrees and thus
simple. Other solutions containing higher degree polyno
als can be generated conveniently from these solutions.
ear combinations of these solutions are also solutions to
given system of equations. But it is not clear that this pro
dure generates all the solutions. In particular,z cannot be
generated from the seta, b, andg, where generating a dat
combination means writing it as a linear combination of t
elements belonging to the generating set.

The basic reason, as mentioned earlier, is that we do
have a vector space here. Three independent constraints
six-tuple do not produce a space which is necessarily ge
ated by three basis elements. This conclusion would follow
the solutions formed a vector space but they do not. T
polynomial six-tuplep, q can be multiplied by polynomials
in E1 ,E2 ,E3 ~scalars! which do not form a field, so that the
inverse in general does not exist within the ring of polyn
mials. We therefore have a module over the ring of polyn
mials in the three variablesE1 ,E2 ,E3.

In this section we present the general methodology
obtaining the solutions to Eq.~2.8!. The method is illustrated
by applying it to Eq.~2.8!. In the next subsection we con
sider the more general problem of optical bench motions
well. The optical bench motion noise can also be elimina
using the same method.
2-4
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A. Cancellation of laser frequency noise

There are three linear constraints on the polynom
given by Eq.~2.8!. Since the equations are linear the soluti
space is a submodule of the module of six-tuples of poly
mials. The module of six-tuples is a free module, i.e., it h
six basis elements that not only generate the module bu
linearly independent. A natural choice of the basis isf i
5(0, . . . ,1, . . . ,0)with 1 in the i th place and 0 everywher
else;i runs from 1 to 6. The definitions of generation~span-
ning! and linear independence are the same as for ve
spaces. A free module is essentially like a vector space.
our interest lies in its submodule, which need not be free
need not have just three generators as it would if we w
dealing with vector spaces.

The problem at hand is of finding the generators of t
submodule, i.e., any element of the module should be
pressible as a linear combination of the generating set. In
way the generators are capable of spanning the full mod
or generating the module. We examine Eq.~2.8! explicitly
componentwise:

p12q11E3q22E2p350,

p22q21E1q32E3p150,

p32q31E2q12E1p250. ~3.1!

The first step is to use Gaussian elimination to obtainp1 and
p2 in terms ofp3 ,q1 ,q2 ,q3. We then obtain

p15q12E3q21E2p3 ,

p25q22E1q31E3p1

5E3q11~12E3
2!q22E1q31E2E3p3 , ~3.2!

and then substitute these values in the third equation to
tain a linear implicit relation betweenp3 ,q1 ,q2 ,q3. We then
have

~E1E2E321!p31~E1E32E2!q1

1E1~12E3
2!q21~12E1

2!q350. ~3.3!

Obtaining solutions to Eq.~3.3! amounts to solving the prob
lem since the the remaining polynomialsp1 , p2 have been
expressed in terms ofp3 ,q1 ,q2 ,q3 in Eq. ~3.2!.

The solutions to Eq.~3.3! form the first module of syzy-
gies of the coefficients in Eq.~3.3!, namely, E1E2E3

21,E1E32E2 ,E1(12E3
2),12E1

2. The generators of this
module can be obtained from standard methods availab
the literature. We briefly outline the method given in t
books by Beckeret al. @18# and Kreuzer and Robbiano@19#
below. The details have been included in Appendix A.

1. Groebner basis

The first step is to obtain the Groebner basis for the id
U generated by the coefficients

u15E1E2E321, u25E1E32E2 ,
10200
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u35E1~12E3
2!, u4512E1

2 . ~3.4!

The ideal U consists of linear combinations of the form
(v iui where v i , i 51, . . . ,4, arepolynomials in the ring
Q@E1 ,E2 ,E3# where Q is the field of rational numbers
There can be several sets of generators forU. A Groebner
basis is a set of generators which is ‘‘small’’ in a speci
sense.

There are several ways to look at the theory of the Gro
ner basis. One way is to suppose that we are given poly
mialsg1 ,g2 , . . . ,gm in one variable over, say,Q. We would
like to know whether another polynomialf belongs to the
ideal generated by theg’s. A good way to decide the issu
would be to first compute the GCD~greatest common divi-
sor! g of g1 ,g2 , . . . ,gm and check whetherf is a multiple of
g. One can achieve this by doing the long division off by g
and checking whether the remainder is zero. All this is p
sible becauseQ@x# is a Euclidean domain and also a princ
pal ideal domain~PID! wherein any ideal is generated by
single element. Therefore we have essentially just o
polynomial—the GCD—which generates the ideal genera
by g1 ,g2 , . . . ,gm . The ring of integers and the ring of poly
nomials in one variable over any field are examples of P
whose ideals are generated by single elements. Howe
when we consider more general rings~not PIDs! like the one
we are dealing with here, we do not have a single GCD
a set of several polynomials which generates an ideal in g
eral. A Groebner basis of an ideal can be thought of a
generalization of the GCD. In the univariate case, the Gro
ner basis reduces to the GCD.

Groebner basis theory generalizes these ideas to m
variate polynomials which are neither Euclidean rings n
PIDs. Since there is in general not a single generator for
ideal, Groebner basis theory comes up with the idea of
viding a polynomial with aset of polynomials, the set of
generators of the ideal, so that by successive divisions by
polynomials in this generating set of the given polynomi
the remainder becomes zero. Clearly, every generating s
polynomials need not possess this property. Those spe
generating sets that do possess this property~and they exist!
are called Groebner bases. In order for a division to be
ried out in a sensible manner, an order must be put on
ring of polynomials, so that the final remainder after eve
division is strictly smaller than each of the divisors in th
generating set. A natural order exists on the ring of integ
or on the polynomial ringQ(x); the degree of the polyno
mial decides the order inQ(x). However, even for polyno-
mials in two variables there is no natural ordera priori ~is
x21y greater or smaller thanx1y2?!. But one can, by hand
as it were, put an order on such a ring by sayingx@y, where
@ is an order, called the lexicographical order. We follo
this type of order,E1@E2@E3, and order polynomials by
considering their highest degree terms. It is possible to
different orderings on a given ring which then produces d
ferent Groebner bases. Clearly, a Groebner basis must
‘‘small’’ elements so that division is possible and every e
ment of the ideal when divided by the Groebner basis e
ments leaves zero remainder, i.e., every element modulo
Groebner basis reduces to zero.
2-5
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In the literature, there exists a well-known algorith
called the the Buchberger algorithm which may be used
obtain the Groebner basis for a given set of polynomials
the ring. So a Groebner basis ofU can be obtained from the
generatorsui given in Eq. ~3.4! using this algorithm. It is
essentially again a generalization of the usual long divis
that we perform on univariate polynomials. More conv
niently, we prefer to use the well knownMATHEMATICA pack-
age.MATHEMATICA yields a three-element Groebner basisG
for U:

G5$E3
221,E2

221,E12E2E3%. ~3.5!

One can easily check that all theui of Eq. ~3.4! are linear
combinations of the polynomials inG and henceG generates
U. One also observes that the elements look ‘‘small’’ in t
order mentioned above. However, one can satisfy one
that G is a Groebner basis by using the standard meth
available in the literature. One method consists of compu
the S polynomials~see Appendix A! for all the pairs of the
Groebner basis elements, and checking whether these re
to zero moduloG.

This Groebner basis of the idealU is then used to obtain
the generators for the module of syzygies.

2. Generating set for the module of syzygies

The generating set for the module is obtained by furt
following the procedure in the literature@18,19#. The details
are given in Appendix A specifically for our case. We obta
seven generators for the module. These generators do
form a minimal set and there are relations between them
fact, this method does not guarantee a minimum set of g
erators. These generators can be expressed as linear c
nations ofa, b, g, z and also in terms ofX(1), X(2), X(3),
X(4) given below in Eq.~3.6!. The importance of obtaining
the seven generators is that the standard theorems guar
that these seven generators do in fact generate the req
module. Therefore from this proven set of generators we
check whether a particular set is in fact a generating set.
present several generating sets below.

Alternatively, we may use a software package cal
MACAULAY 2 @20# which calculates the generators given E
~3.1!. Using MACAULAY 2 , we obtain six generators. Again
Macaulay’s algorithm does not yield a minimal set; we c
express the last two generators in terms of the first fo
Below we list this smaller set of four generators in the ord
X5(p1 ,p2 ,p3 ,q1 ,q2 ,q3):

X(1)5~E1E32E2 ,0,E3
221,0,E2E32E1 ,E3

221!,

X(2)5~E1 ,E2 ,E3 ,E1 ,E2 ,E3!,

X(3)5~1,E3 ,E1E3 ,1,E1E2 ,E2!,

X(4)5~E1E2 ,1,E1 ,E3 ,1,E2E3!. ~3.6!

Note that the last three generators are justX(2)5z,X(3)

5a,X(4)5b. But there is an extra generatorX(1) needed to
generate all the solutions.
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Another set of generators which could be useful for fu
ther work is the Groebner basis of a module. The concep
a Groebner basis of an ideal can be extended to that
Groebner basis of a submodule of (K@x1 ,x2 , . . . ,xn#)m

whereK is a field, since a module over the polynomial rin
can be considered as a generalization of an ideal in a p
nomial ring. Just as in the case of an ideal, a Groebner b
for a module is a generating set with special properties.
the module under consideration we obtain a Groebner b
usingMACAULAY 2 :

G(1)5~E1 ,E2 ,E3 ,E1 ,E2 ,E3!,

G(2)5~E1E32E2 ,0,E3
221,0,E2E32E1 ,E3

221!,

G(3)5~E1E2 ,1,E1 ,E3 ,1,E2E3!,

G(4)5~1,E3 ,E1E3 ,1,E1E2 ,E2!,

G(5)5„E3~E1
221!,12E3

2 ,0,0,12E1
2 ,E1~E3

221!…. ~3.7!

Note that in this Groebner basisG(1)5z5X(2), G(2)

5X(1), G(3)5b5X(4), G(4)5a5X(3). Only G(5) is the new
generator.

Another set of generators are justa, b, g, andz. This can
be checked usingMACAULAY 2 or one can relatea, b, g, and
z to the generatorsX(A), A51,2,3,4, by polynomial matri-
ces. In Appendix B, we express the seven generators
obtained following the literature, in terms ofa, b, g, andz.
Also we expressa, b, g, andz in terms ofX(A). This proves
that all these sets generate the required module of syzyg

The question now arises as to which set of generators
should choose to facilitate further analysis. The analysis
simplified if we choose a smaller number of generators. A
we would prefer low degree polynomials to appear in t
generators so as to avoid cancellation of leading terms in
polynomials. By these two criteria we may chooseX(A) or
a,b,g,z. Among these two sets of generators, we arbitra
make the choice ofX(A).

B. Cancellation of noise from moving optical benches

The work done in@1,2# can be conveniently reexpresse
in our formulation and leads to further insights into the pro
lem.

There are two optical benches on each spacecraft w
have random velocities and are connected by optical fib
The random velocities of the optical benches and the dela
the optical fibers are measured as further Doppler shifts a
from other noise and the GW signal. Since we are interes
in the cancellation of laser frequency noise and motion of
optical benches, we write expressions for the beams cont
ing only these quantities. The Doppler beams will of cou
contain other effects arising from shot noise, GW sign
motion of proof masses, etc., but we will not write them
the expressions for the Doppler data because they are
relevant to the problem we are interested in. We follow t
notation of@1,2#. The quantities pertaining to the left benc
will be unstarred while those for the right bench are starr
There are now 12 Doppler data streams which need to
2-6
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combined in an appropriate manner in order to cancel
noise from the laser as well as from the motion of the opti
benches. The fractional frequency fluctuations of the lase
the left optical benchi are denoted byCi and on the right
optical bench i * by Ci* , the random velocities of the
benches byV i , V i* , andh i , are the frequency shifts in th
optical fibers connecting the optical benches in spacecrai.
We then have the following expressions for the four d
streams pertaining to spacecraft 1:

U15E2~C32n̂2•V3!2~ n̂2•V1* 1C1* !,

V152E3~C2* 1n̂3•V2* !1~C12n̂3•V1!,

z15C12C1* 1h122n̂3•V1 ,

z1* 5C1* 2C11h112n̂2•V1* . ~3.8!

The other eight data streams on spacecraft 2 and 3 are
tained by cyclic permutations of the indices in the abo
equations. Heren̂2 denotes a unit vector in the direction fro
spacecraft 1 to spacecraft 3 and the remaining unit vectorn̂3

and n̂1 are obtained by cyclically permutating the indices
We find that the 12 Doppler data streams depend only

the particular combinationsC12n̂3•V1 andC1* 1n̂2•V1* and
their cyclic permutations. We define these combinations
C̃1 and C̃1* , respectively, i.e.:

C̃15C12n̂3•V1 ,

C̃1* 5C1* 1n̂2•V1* , ~3.9!

and also their cyclic permutations. Then the expressions
the data streams simplify considerably. We write the expr
sions for the data streams corresponding to spacecraft 1.
ers are obtained as before by cyclic permutations:

U15E2C̃32C̃1* ,

V152E3C̃2* 1C̃1 ,

Z15
1

2
~z12z1* !

5C̃12C̃1* . ~3.10!

New variablesZi have been defined which automatica
cancel theh i . Also we note that theUi , Vi have the same
form as in Eq.~2.3!, except that theCi are replaced byC̃i
which account for the motions of the optical benches.

The noise cancellation condition now becomes

piV
i1qiU

i1r iZ
i50, ~3.11!

where r i are polynomials inE1 ,E2 ,E3. Since the above
equations should hold for anyC̃i ,C̃i* , we obtain the follow-
ing equations that the polynomialspi ,qi ,r i must satisfy:
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p11E3q21r 150,

E2p31q11r 150,

p21E1q31r 250,

E3p11q21r 250,

p31E2q11r 350,

E1p21q31r 350. ~3.12!

We now have a nine-component polynomial vector. The
lutions to Eqs.~3.12! form another module of syzygies whic
is related in a simple way to the module obtained in just la
noise cancellation. Eliminatingr i from Eq. ~3.12! we obtain
the same equations forpi andqi as in Eq.~3.1!. This enables
us to extend the previously obtained generating sets to
module. Thus, thanks to the mapping ofCi ,(Ci* )

→C̃i ,(C̃i* ), the two modules are isomorphic. We just sta
the remaining three entries (r 1 ,r 2 ,r 3) of the generating sets
keeping the same notation. The first set of four generator
the order (r 1 ,r 2 ,r 3) are

X(1)5„E2~12E3
2!,E1~12E3

2!,12E3
2
…,

X(2)52~E11E2E3 ,E21E1E3 ,E31E1E2!,

X(3)52~11E1E2E3 ,E1E21E3 ,E1E31E2!,

X(4)52~E1E21E3 ,11E1E2E3 ,E11E2E3!. ~3.13!

In the other generating set, namely, the Groebner basis
need to specify justG5 since the other elements are in th
previous generating set. Thus,

G(5)5„0,~E1
221!~12E3

2!,0…. ~3.14!

IV. THE DETECTOR RESPONSE

The ripples produced in spacetime by the gravitatio
waves as they propagate through the LISA detector are m
sured as Doppler shifts in the laser frequency. The meas
signals will have various noises along with the Doppler sh
produced by the gravitational radiation. In the last section
studied various combinations of beams that cancel the l
phase noise and optical bench acceleration noise. In this
tion we investigate the response of the detector for th
combinations. We compute the transfer functions for the g
erators and also their linear combinations. The laser ph
noise and optical bench acceleration noise are then also
celed for the linear combinations. However, noises such
the shot noise and the acceleration noise of the proof ma
do not cancel out. In the following subsections we set u
coordinate system adapted to the LISA geometry and then
on to compute the response of LISA.
2-7
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A. Parametrization of the interferometer

Figure 1 describes the LISA configuration. We choos
coordinate system in which the LISA triangle is at rest. A
though this coordinate system is in motion relative to
usual coordinate systems normally encountered, we will fi
such a system of coordinates convenient for further analy
such as computing SNRs of monochromatic sources, etc

The unit vectorŵ connecting the origin and the source
parametrized by the source angular location (u,f), so that

ŵ5S sinu cosf

sinu sinf

cosu
D , ~4.1!

and the transverse plane is spanned by the unit transv
vector û and f̂, defined by

û5
]ŵ

]u
, f̂5

1

sinu

]ŵ

]f
. ~4.2!

As the wave propagates through the LISA triangle, the co
ponents of the gravitational perturbation can be written a

hi j ~ t,rW !5h1~ t2ŵ•rW !~u iu j2f if j !

1h3~ t2ŵ•rW !~u if j1u jf i !, ~4.3!

whereh1 andh3 are arbitrary functions describing the tw
GW amplitudes.

We consider the effect of this perturbation on a light be
traveling between two points A and B. From this we obta
the complete response. LetrWA andrWB be the position vectors
of points A and B, respectively. Then the line element of
spacetime along the beam null ray obeys

05dt22dx22dy22dz21hi j dxidxj , ~4.4!

where thei , j run over space indices only. Ifn̂ is the unit
vector directed from A to B, we have

dxi5nidl, ~4.5!

wherel is the Euclidean length. Equation~4.4! can be ex-
pressed as,

05dt22dl2@12hi j n
inj # ~4.6!

or equivalently

dl5dtF11
1

2
h~ t2ŵ•rW !G . ~4.7!

From Eq.~4.3! we get

h~ t !5h1~ t !j1~u,f!1h3~ t !j3~u,f!, ~4.8!

j15~ û•n̂!22~f̂•n̂!2, ~4.9!

j352~ û•n̂!~f̂•n̂!.
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B. h sensitivity of one arm

We now apply the above analysis to compute the Dopp
response of the laser beam along one arm of the LISA de
tor. Let the beam start att5t0 from the point rWA , travel
toward the pointrWB , and reach it att5t1. Then

rW~ t !5rWA1~ t2t0!n̂, rW~ t1!5rWB . ~4.10!

The line element along this path satisfies the equation

dl5dtH 11
1

2
h@~12ŵ•n̂!t

2ŵ•rWA1t0ŵ•n̂#J . ~4.11!

The global travel timet12t0 is given by the integral

L5t12t01
1

2Et0

t1
h@ t~12ŵ•n̂!

2ŵ•rWA1t0ŵ•n̂#dt. ~4.12!

It is convenient for many purposes to pursue our analysi
the Fourier domain. We Fourier transform the GW amplitu
h:

h~ t !5E dVh̃~V!exp~2 iVt !, ~4.13!

and the travel time can be expressed as

t12t0

5L2
1

2E dVh̃~V!E
t0

t1
exp@2 iV~12ŵ•n̂!t#

3exp@ iVŵ•rWA#exp@2 iVt0ŵ•n̂#dt. ~4.14!

In the zeroth order of the integral, we havet12t05L, and
we obtain

t12t05L2
1

2E dVh̃~V!exp~ iVŵ•rWA!

3exp~2 iVt1!
exp~ iVLŵ•n̂!2exp~ iVL !

2 iV~12ŵ•n̂!
.

~4.15!

The phase change over that time interval isF5v(t12t0),
wherev52pnopt is the optical circular frequency. We ca
assume that the timet1 is the current time andt0 the retarded
time, so that the phase isF(t)5v(t2t0):
2-8
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F~ t !5vL2
v

2~12ŵ•n̂!
E dVh̃~V!

3exp~ iVŵ•rWA!exp~2 iVt !

3
exp~ iVLŵ•n̂!2exp~ iVL !

2 iV
. ~4.16!

By taking the time derivative, we get the instantaneous
quency

dn~ t !

nopt
5

1

v

dF~ t !

dt
. ~4.17!

In the time domain and usingrWA1Ln̂5rWB we finally get

dn~ t !

nopt
5

21

2~12ŵ•n̂!
@h~ t2ŵ•rWB!

2h~ t2ŵ•rWA2L !#. ~4.18!

In the Fourier domain we may express this result as

dn~V!˜

nopt
5

h̃~V!

2~12ŵ•n̂!
exp@ iV~L1ŵ•rWA!#

3$12exp@2 iVL~12ŵ•n̂!#%. ~4.19!

C. h sensitivity of the elementary Doppler data

In this section we compute the expression for the tran
function for the six elementary beams given in Eq.~2.3!.
These beams can be further combined with suitable delay
described in the previous sections for achieving cancella
of laser phase noise.

The Doppler shift is expressed in the Fourier domain

dn~V!˜

nopt
5h̃1~V!F1~V!1h̃3~V!F3~V!, ~4.20!

whereF1,3(V) are transfer functions. We can compute t
transfer functions for the combinationsUi ,Vi . We just give
belowFU1 ;1,3 andFV1 ;1,3 ; the others are obtained by cy
clic permutations:

FU1 ;1,35
eiV(ŵ•rW31L2)

2~11ŵ•n̂2!

3~12e2 iVL2(11ŵ•n̂2)!j2;1,3 ,

FV1 ;1,352
eiV(ŵ•rW21L3)

2~12ŵ•n̂3!

3~12e2 iVL3(12ŵ•n̂3)!j3;1,3 , ~4.21!

where
10200
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j i ;15~ û•n̂i !
22~f̂•n̂i !

2,

j i ;352~ û•n̂i !~f̂•n̂i !. ~4.22!

To implement the cancellation of laser phase noise these
ementary beams must be combined with suitable time del
We notice that in the Fourier domain the delay operators
replaced by simple multiplicative factors as the followin
computations show. This is one of the advantages of
Fourier analysis. The delay operators introduced in this s
tion areEi such that for any function of timef (t) we have

Ei* f ~ t !5 f ~ t2Li !, ~4.23!

which in the Fourier domain is nothing but

Ei* f ~V!˜ 5ei~V! f̃ ~V!, ~4.24!

where theei are simple factors:

ei5eiVLi. ~4.25!

Thus operator polynomials inEi become actual polynomial
in ei in the Fourier domain. This particularly simple fact ca
be used to advantage for simple but astrophysically imp
tant sources, namely, the monochromatic sources consid
in the next section.

In Figs. 2~a! and 2~b! we present the transfer function
FV1

for both polarizations. The other transfer functions sh
similar characteristics.

V. MONOCHROMATIC SOURCES

A. Noise

We recall that the laser frequency noise and optical be
motion noise can be canceled by taking appropriate com
nations of the beams. In this scheme the noises that do
cancel out in the module of syzygies are the accelera
noise of the proof masses and the shot noise. These
form the bulk of the noise spectrum that we obtain below
any given data combinationX. We compute the noise powe
spectral densities for the generatorsX(A).

The beam with the signal and the various noises can
written as

U15E2C̃32C̃1* 12n̂2•vW 1* 1hU11YU1
shot, ~5.1!

V152E3C̃2* 1C̃112n̂3•vW 12hV12YV1
shot,

~5.2!

Z15S 1

2D ~z12z1* !1n̂3•vW 11n̂2•vW 1* . ~5.3!

The other beams can be obtained by taking cyclic perm
tions. HerevW 1 andvW 1* are the random velocities of the proo
masses, in the left and right branches, respectively, in sp
craft 1.

Let the noise canceling combinationX be given by
2-9
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FIG. 2. ~a! Log-log plot of the PSDuFV1;1
u2 of the corresponding transfer function as a function of frequency foru50, f50. ~b!

Log-log plot of the PSDuFV1;3
u2 of the corresponding transfer function as a function of frequency foru50, f50.
.
tic
r

b-
X5piV
i1qiU

i1r iZ
i , ~5.4!

where the nine tuple (pi ,qi ,r i) is in the module of syzygies
This combination cancels laser phase noise and the op
bench acceleration noise, whereas the shot noise and p
masses acceleration noise do not cancel. Using Eq.~5.4! we
obtain the power spectral density ofX for the two noises:

^X2&proo f mass5(
i 51

3

~ u2pi1r i u21u2qi1r i u2!

3Sproo f mass, ~5.5!

^X2&shot noise5(
i 51

3

~ upi u21uqi u2!Sshot noise, ~5.6!

whereSproo f massis obtained fromvW i andvW j* . Here, follow-
ing the literature@21#, we take

Sproo f mass52.5310248@ f /1Hz#22Hz21

and

Sshot noise55.3310238@ f /1Hz#2Hz21.
10200
al
oof

Explicit simplified expressions for the noise may be o
tained by assuming

e15e25e3[eiVL.

In the particular cases of the generatorsX(A),A51,2,3,4 we
obtain

SX(1)~ f !5@16 sin2~2p f L !132 sin4p f L !]Sproo f mass

1@8 sin2~p f L !18 sin2~2p f L !#Sshot noise,

~5.7!

SX(2)~ f !524 sin2~p f L !Sproo f mass16Sshot noise,
~5.8!

SX(3)~ f !5@16 sin2~p f L !18 sin2~3p f L !#Sproo f mass

16Sshot noise, ~5.9!
2-10
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SX(4)~ f !

5@16 sin2~p f L !18 sin2~3p f L !#Sproo f mass

16Sshot noise. ~5.10!

The plots of these noise spectra are shown in Fig. 3.

B. Signal

Monochromatic sources are the simplest among the gr
tational wave sources. There are a number of important
jects such as pulsars, rotating neutron stars, and coales
binaries with sufficiently low mass may be considered
emitting monochromatic GW radiation. We will call thos
sources monochromatic for which, even if they change
little in frequency in a given observation time, the fraction
change in SNR for the optimal data combination does
fall below a preassigned limit. We could take this limit to b
a few percent, but for concreteness we fix the limit at 1
The observation timeT we take to be 1 yr.

For binary stars, the relevant quantity that decides
evolution in the GW frequency at a given frequencyf 0 is the
so called chirp massM5m3/5M2/5, wherem is the reduced
mass andM is the total mass of the binary system. We a
sume a Newtonian evolution for the binary system, wh
gives the rate of change of GW frequencyf as

ḟ 5
3

8

f 0

tc
, ~5.11!

wheretc is the Newtonian coalescence time measured fr
the epoch when the GW frequency isf 0 and the overdot
denotes the derivative with respect to time.tc is given by

tc;2.153106F M
M (

G25/3F f 0

1 mHzG
28/3

yr, ~5.12!

whereM ( is the solar mass.

FIG. 3. Log-log plot of the noise spectra for the generatorsX(A).
The curves forX(3) andX(4) coincide in the figure.
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A limit on the rate of change of frequency can be obtain
by considering the total change in the frequencyD f during
the period of observationT. That is,

D f 5 ḟ T. ~5.13!

Inverting the above equations we obtain a limit on the ch
massM:

M<175F f 0

1 mHzG
211/5F D f

1 mHzG
3/5

M ( . ~5.14!

In our investigation we take the bandwidthD f by allowing
the SNR to change by 1% at the frequencyf 0. Numerically,
we estimateD f for various values off 0. Table I shows the
upper bound forM at various frequenciesf 0.

Here our goal is to seek a data combination that optimi
the SNR for a monochromatic source with given polarizat
parameters and direction information. A convenient set
polarization parameters are the anglese andc describing the
orientation of the angular momentum vector in space. T
direction to the source is described by the polar anglesu and
f in the coordinate system tied to LISA.

For a monochromatic source the wave form can be w
ten as

h1~ t !5A11cos2e

2
cos 2c cos~2vt !, ~5.15!

h3~ t !5A cose sin 2c sin~2vt !. ~5.16!

In the Fourier domain we have

h1~V!5A11cos2e

2
cos 2c, ~5.17!

h3~V!52 iA cose sin 2c. ~5.18!

The response for the signal at the detector can now be w
ten as

hX5(
i 51

3

@pi~FVi;1h11FVi;3h3!

1qi~FUi ;1h11FUi ;3h3!#, ~5.19!

where thepi ’s andqi ’s are in the module of syzygies. From
Eqs.~5.5! and~5.6! we can compute the total noise spectru
for the generators, and it can be written as

TABLE I. Upper bound forM at various frequencies.

D f (mHz)
f 0 (mHz) for 1% change in SNR M/M (

0.1 1.0 27705
1 9.9 691
2 22 243
10 1130 74
2-11
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FIG. 4. Plots of logS of the
generatorsX(A), A51,2,3,4, are
displayed in~a!, ~b!, ~c!, and ~d!,
respectively, as functions ofu and
f for f 51 mHz and a SNR of 5.
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SX~ f !5(
i 51

3

@~ u2pi1r i u21u2qi1r i u2!Sproo f mass

1~ upi u21uqi u2!Sshot noise#. ~5.20!

The expression for the signal to noise ratio for the mo
chromatic source simplifies to

SNR5H uhXu

ASX~ f !
J . ~5.21!

We plot the sensitivities of the generatorsX(A) as function of
f in Figs. 5~a! and 6~a! below by fixing the anglesu andf. It
is also important to understand the angular dependence o
sensitivity of the generators, which is plotted in Figs. 4~a!–
4~d! at a frequency off 51 mHz. The sensitivityS is de-
fined following @20#:

S55
ASXB

uhXu
, ~5.22!

HereB51/T, whereT is the observation time which we tak
to be 1 yr. The number 5 corresponds to SNR of 5.

C. Maximization

In this subsection our goal is to maximize the SNR fo
given monochromatic source over the set of noise cance
combinations. These combinations can be generated by
generators given in Eqs.~3.6! and ~3.7!. The SNR corre-
sponding to each of the generators (X(A), A51 to 4! as a
function of frequency is shown in Fig. 6. However, one mu
maximize the SNR over an arbitrary linear combination
10200
-

he

g
he

t
f

X(A). This goal is difficult to achieve since it involves
maximization over a space of six-tuples of polynomia
which is essentially a function space. In order to make
problem tractable and still achieve adequate results we
strict the polynomials to be constants. This approach d
not fully optimize the SNR but it comes quite close to t
optimal solution. Our approach can be thought of as a ze
order approximation.

A linear combination of the generators can be written

X5 (
A51

4

a (A)X
(A); ~5.23!

here,a (A) ~for A51 to 4! are a set of real numbers. Since
scalar multiple ofX will not yield anything new, we set one
of thea ’s, say,a (1)51. Thus the SNR now becomes a fun
tion of three parametersa ( i ) ,i 52,3,4, which are just rea
numbers, and our objective is to maximize the SNR w
respect toa ( i ) .

In order to carry out the analysis efficiently and elegan
we find that it is useful to define complex noise vectorsN(A)

pertaining toX(A) as follows:

N(A)5~AS1~2pi
(A)1r i

(A)!,AS1~2qi
(A)

1r i
(A)!,AS2pi

(A) ,AS2qi
(A)! ~5.24!

wherepi
(A) , qi

(A) , andr i
(A) corresponding to generatorsX(A)

are given in Eqs.~3.6! and ~3.13! and S15Sproo f mass and
S25Sshot noise. We haveN(A)PC12 the 12-dimensional com
2-12
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plex space and the usual scalar productC12 induces a norm;
N(A)

•N(A)* [uuN(A)uu2 gives the noise PSD corresponding
the basisX(A).

In a similar fashion one can also write the signal cor
sponding to a particular basis element. We first define
polynomial six-tuple for each generatorX(A) as follows:

P(A)5~pi
(A) ,qi

(A)!, ~5.25!

and the GW signal six-tuple as

H* 5~FVi ;1h11FVi ;3h3 ,FUi ;1h11FUi ;3h3!.
~5.26!

The signal for a specific generatorX(A) is then written as

h(A)5P(A)
•H* ~5.27!

and the corresponding SNR is given by

FIG. 5. ~a! Log-log plot of the sensitivityS for the generators
X(A) as function off for u50, f50 over one year observatio
period for SNR of 5. The curve@X1,X2,X3,X4# depicts the sensi-
tivity of the linear combination of four generatorsX(A), which gives
the maximum SNR.~b! Plot of coefficientsa (A) that gives the
maximum SNR for linear combinations of all the fourX(A) as a
function of f for u50 andf50.
10200
-
e

SNR5
uh(A)u

uuN(A)uu

5A~P(A)
•H* !~P(A)

•H* !*

N(A)
•N(A)*

. ~5.28!

For an arbitrary linear combinationX @Eq. ~5.23!# the noise
vector and the signal vector can be expressed as

N5a (A)N
(A), P5a (A)P

(A), ~5.29!

where summation convention has been used. The sign
just the scalar producth5P•H* 5a (A)h

(A). We omit sub-
scriptsX on these quantities.

In this notation the SNR of the combination~5.23! can be
written as

SNR5
uhu

uuNuu
. ~5.30!

FIG. 6. ~a! Log-log plot of the sensitivityS for the generators
X(A) as function off for u5p/4, f5p/4 over one year observatio
period for SNR of 5. The curve@X1,X2,X3,X4# depicts the sensi-
tivity of the linear combination of four generatorsX(A) which gives
the maximum SNR.~b! Plot of coefficientsa (A) that gives the
maximum SNR for linear combinations of all the fourX(A) as a
function of f for u5p/4 andf5p/4.
2-13
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Writing out explicitly the sums in the scalar products,

~SNR!25
a (A)a (B)h

(A)h(B)*

a (A)a (B)N
(A)

•N(B)*
. ~5.31!

Maximization with respect toa (2) ,a (3) ,a (4) leads to the fol-
lowing three conditions which must be obeyed bya ( i ) in
order to yield the maximum SNR forX:

R~hh( i )* !

uhu2
5

R~NN( i )* !

uuNuu2
, ~5.32!

whereR(x) denotes the real part of the quantityx.
To demonstrate the usefulness of the formalism, we c

sider just two generatorsX(1) and X(2). We take a (1)
51,a (2)5a, and other twoa ’s zero. Then,

X5X(1)1aX(2). ~5.33!

Equation~5.31! reduces to the form

S5
a112b1a1c1a2

a212b2a1c2a2
, ~5.34!

where

a15uh1u2, b15R~h1h2* !, c15uh2u2,

a25uN1u2, b25R~N1N2* !, c25uN2u2.
~5.35!

The condition for the optimization~5.32! simplifies to

~b1a22a1b2!1~c1a22a1c2!a

1~c1b22b1c2!a250. ~5.36!

The two roots of Eq.~5.36! can be obtained. Here,a is a
function of the parametersf, u, f, e, and c. One of the
solutions of Eq.~5.36! corresponds to the maximum and th
other correspond to the minimum of the SNR. In a simi
fashion one can maximize the SNR by taking any two of
four generators given in Eq.~3.6! and by taking appropriate
a ( i ) in Eq. ~5.23!. We have seen in several cases that ma
mizing over just two generators yields remarkably good
sults.

This simple case demonstrates that one can use the
tions given in Eq.~3.6! to get a better SNR. However, to g
full advantage one needs to maximize the SNR over the th
a ’s. In order to optimize the SNR given by the general co
bination we resort to numerical methods since there is
straightforward method for solving the coupled algebr
equations given by Eq.~5.32!. We use Powell’s method a
given in @22# for maximizing the SNR over the paramete
a (A) . The sensitivityS for the generatorsX(A) and for the
maximal SNR combination of X(A)’s denoted by
@X1,X2,X3,X4# as a function of frequencyf has been plotted
in Figs. 5~a! and 6~a!. The coresponding values ofa (A) are
shown in Figs. 5~b! and 6~b!.
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VI. CONCLUDING REMARKS

We have presented in this paper a rigorous and system
procedure for obtaining data combinations which cancel
laser frequency noise based on algebraic geometrical t
niques and commutative algebra. The data combinations
celing the laser noise have the structure of a module ca
the module of syzygies. The module is over a ring of po
nomials in three variables, corresponding to the three t
delays along the three arms of the interferometer. Our
malism can be extended in a straightforward way to inclu
~cancel! the Doppler shifts due to the motion of the optic
benches. This module provides us with a choice of data c
binations which are in turn linear combinations of the ge
erators of the module. We use this parametrization to ma
mize the SNR over frequency for one class of GW sourc
namely, those that are monochromatic. We observe tha
the plot of sensitivity verses direction angles for the gene
tors X(A), namely Figs. 4~a!–4~d!, the sensitivity has severa
peaks. It may be possible to employ this property to op
mally resolve binaries in the confusion noise regime by c
sidering suitable data combinations which would be sensi
to specific directions in the sky. We have also investiga
monochromatic GW sources. We believe that this formali
may be applied successfully to other types of GW sourc
e.g., a stochastic GW background.
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APPENDIX A: GENERATORS OF THE MODULE
OF SYZYGIES

We require the four-tuple solutions (p3 ,q1 ,q2 ,q3) to the
equation

~xyz21!p31~xz2y!q11x~12z2!q2

1~12x2!q350, ~A1!

where for convenience we have substitutedx5E1 ,y5E2 ,z
5E3 . p3 ,q1 ,q2 ,q3 are polynomials inx,y,z with integral
coefficients, i.e., inZ@x,y,z#.

We now follow the procedure in the book by Beckeret al.
@18#.

Consider the ideal inZ@x,y,z# ~or Q@x,y,z# whereQ de-
notes the field of rational numbers!, formed by taking linear
combinations of the coefficients in Eq.~A1! f 15xyz21,f 2
5xz2y, f 35x(12z2), f 4512x2. A Groebner basis for this
ideal is

G5$g15z221,g25y221,g35x2yz%. ~A2!
2-14
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The above Groebner basis is obtained using the func
GROEBNERBASISin MATHEMATICA . One can check that bot
the f i ,i 51,2,3,4, andgj , j 51,2,3, generate the same ide
because we can express one generating set in terms o
other, and vice versa:

f i5di j gj , gj5cji f i , ~A3!

whered and c are 433 and 334 polynomial matrices, re-
spectively, and are given by

d5S 1 z2 yz

y 0 z

2x 0 0

21 2z2 2~x1yz!

D ,

c5S 0 0 2x z221

1 2y 0 0

0 z 1 0
D . ~A4!

The generators of the four-tuple module are given by the
AøB* whereA andB* are the sets described below.

A is the set of row vectors of the matrixI 2d•c where the
dot denotes the matrix product andI is the identity matrix,
434 in our case. Thus,

a15~12z2,0,x2yz,12z2!,

a25„0,z~12z2!,xy2z,y~12z2!…,

a35„0,0,12x2,x~z221!…,

a45~z2,xz,yz,z2!. ~A5!

We thus first get four generators. The additional genera
are obtained by computing theS polynomials of the Groeb-
ner basisG. The S polynomial of two polynomialsg1 ,g2 is
obtained by multiplyingg1 andg2 by suitable terms and the
adding, so that the highest terms cancel. For example, in
caseg15z221 andg25y221 and the highest terms arez2

for g1 andy2 for g2. We multiply g1 by y2 andg2 by z2 and
subtract. Thus, theS polynomialp12 of g1 andg2 is

p125y2g12z2g25z22y2. ~A6!

Note that order is defined (x@y@z) and they2z2 term can-
cels. For the Groebner basis of three elements we get thrS
polynomialsp12,p13,p23. The pi j must now be rexpresse
in terms of the Groebner basisG. This gives a 333 matrixb.
The final step is to transform to four-tuples by multiplyingb
by the matrixc to obtainb* 5b•c. The row vectorsbi* ,i
51,2,3, ofb* form the setB* :
J

D

10200
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b1* 5„12z2,y~z221!,x~12y2!,~y221!~z221!…,

b2* 5„0,z~12z2!,12z22x~x2yz!,~x2yz!~z221!…,

b3* 5~x2yz,z2xy,12y2,0!. ~A7!

Thus we obtain three more generators, which gives us a t
of seven generators of the required module of syzygies.

APPENDIX B: MATRICES OF CONVERSION BETWEEN
GENERATING SETS

In this appendix we list the three sets of generators
relations among them. We first list belowa,b,g,z:

a5~1,z,xz,1,xy,y!,

b5~xy,1,x,z,1,yz!,

g5~y,yz,1,xz,x,1!,

z5~x,y,z,x,y,z!. ~B1!

We now express theai andbj* in terms ofa,b,g,z:

a15g2zz,

a25a2zb,

a352za1b2xg1xzz,

a45zz,

b1* 52ya1yzb1g2zz,

b2* 5~12z2!b2xg1xzz,

b3* 5b2yz. ~B2!

Further, we also list belowa,b,g,z in terms ofX(A):

a5X(3),

b5X(4),

g52X(1)1zX(2),

z5X(2). ~B3!

This proves that since theai ,bj* generate the required mod
ule, the a,b,g,z and X(A),A51,2,3,4, also generate th
same module.

The Groebner basis is given in terms of the above gen
tors as follows:G(1)5z, G(2)5X(1), G(3)5b, G(4)5a, and
G(5)5a3.
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