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Cancellation of laser frequency noise in interferometers is crucial for attaining the requisite sensitivity of the
triangular three-spacecraft LISA configuration. Raw laser noise is several orders of magnitude above the other
noises and thus it is essential to bring it down to the level of other noises such as shot, acceleration, etc. Since
it is impossible to maintain equal distances between spacecrafts, laser noise cancellation must be achieved by
appropriately combining the six beams with appropriate time delays. It has been shown in several recent papers
that such combinations are possible. In this paper, we present a rigorous and systematic formalism based on
algebraic geometrical methods involving computational commutative algebra, which generates in palhciple
the data combinations canceling the laser frequency noise. The relevant data combinations form the first
module of syzygies, as it is called in the literature of algebraic geometry. The module is over a polynomial ring
in three variables, the three variables corresponding to the three time delays around the LISA triangle. Spe-
cifically, we list several sets of generators for the module whose linear combinations with polynomial coeffi-
cients generate the entire module. We find that this formalism can also be extended in a straightforward way to
cancel Doppler shifts due to optical bench motions. The two modules are in fact isomorphic. We use our
formalism to obtain the transfer functions for the six beams and for the generators. We specifically investigate
monochromatic gravitational wave sources in the LISA band and carry out the maximization over linear
combinations of the generators of the signal-to-noise ratios with the frequency and source direction angles as

parameters.
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[. INTRODUCTION servation of GWSs in an essential way, analogous to the opti-

cal, radio, x-ray,y-ray, etc., observations for electromagnetic

Breakthroughs in modern technology have made possibleraves. As these detectors begin to operate, a new era of
the construction of extremely large interferometers both orgravitational astronomy is on the horizon and a radically
the ground and in space for the detection and observation dafifferent view of the universe is expected to be revealed.
gravitational wavegGWs). Several ground based detectors In ground based detectors the arms are chosen to be of
are being constructed around the globe; these are the proje@gual length so that the laser light experiences identical delay
the Laser Interferometric Gravitational Wave Observatoryin each arm of the interferometer. This arrangement precisely
(LIGO), VIRGO, GEO, TAMA, and AIGO of building inter-  cancels the laser frequency or phase noise at the photodetec-
ferometers whose arm lengths will be of the order of kilo-tor. This cancellation of noise is crucial since the raw laser
meters. These detectors will operate in the high frequencyoise is orders of magnitude larger than other noises in the
range of GWs of~10 Hz to a few kHz. A natural limit interferometer. The required sensitivity of the instrument can
occurs on decreasing the lower frequency cutoff of 10 Hzhus only be achieved by nearly exact cancellation of the
because it is not practical to increase the arm lengths on thaser frequency noise. However, in LISA it is impossible to
ground and also because of the gravity gradient noise whichchieve equal distances between spacecraft and the laser
is difficult to eliminate below 10 Hz. Thus, the ground basednoise cannot be canceled in an obvious manner. In LISA, six
interferometers will not be sensitive below the limiting fre- data streams arise from the exchange of laser beams between
qguency of~10 Hz. But, on the other hand, there exist in thethe three spacecraft—it is not possible to bounce laser beams
cosmos interesting astrophysical GW sources that emit GWsetween different spacecraft, as is done in ground based de-
below this frequency such as galactic binaries, massive angctors; a scheme analogous to the rf transponder scheme is
supermassive black hole binaries, etc. If we wish to observesed as was done in the early experiments for detecting GWs
these sources, we need to go to lower frequencies. The solby Doppler tracking a spacecraft from the earth. Several
tion is to build an interferometer in space, where such noiseschemes, some quite elaborate, have been progdsgf
will be absent and will allow the detection of GWSs in the low which combine the recorded data with suitable time delays
frequency regime. LISA, the Laser Interferometric Spacecorresponding to the three arm lengths of the giant triangular
Antenna, is a proposed mission that will use coherent laseinterferometer. These schemes have data combinations of six
beams exchanged between three identical spacecraft formirmy at most eight data points which give, respectively, a six-
a giant(almos) equilateral triangle of side $10° km to  and eight-pulse response of GWs and also show how other
observe and detect low frequency cosmic GWSs. The groundata combinations can be obtained by linear superposition.
based detectors and LISA complement each other in the ob- Galactic and extragalactic binaries are important sources
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in the LISA frequency band. Their abundance and resultingVe thus obtain seven generators for the module. However,
spectral amplitude have been estimated using populatiothe method does not guarantee a minimal set and we find that
synthesis by various authof8-10]. In the lower frequency a generating set of four polynomial six-tuples suffices to gen-
range £1 mHz) there are a large number of such sourcerate the required module. Alternatively, we can obtain gen-
in each of the frequency bins. This makes it impossible taerating sets by using the softwav@CAuLAY 2. It gives us a
resolve an individual source, which results in a stochasti@ Groebner basis for the module consisting of five generators
GW background. It has also been proposed that massive haémd another generating set consisting of six elements. The
objects (MACHOSs) such as white dwarfs and black holes importance of obtaining more data combinations is evident:
(with mass~0.5 My ) can also produce stochastic GW they provide the necessary redundancy —different data com-
background11-13. In a recent work, Tint@t al.[14] have  binations produce different transfer functions for GWs and
used Doppler delayed beams for discriminating the stochaso specific data combinations might be optimal for given
tic background from the instrumental noise. The angulalstrophysical source parameters in the context of maximizing
resolution of LISA is restricted because it is an all-sky moni-the signal-to-noise ratiSNR) and detection probability, im-
toring detector with quadrupole beam pattern; however, th@roving parameter estimates, etc.
angular resolution can be achieved by the relative amplitudes The scheme we have described above can also be ex-
and phases of the two polarizations and Doppler modulatiotended in a straightforward way to include optical bench mo-
of the beams due to the motion of LISA around the Suntions. There are now 12 Doppler streams of data and we
[15,16. apply the above scheme to cancel the noise due to optical
We start with the fundamental papers by the Jet Propulbench drift and laser frequency noise. The six extra streams
sion Laboratory tearfil,2,17 where the idea of delayed data can be combined two by two by subtracting one stream from
combinations was first proposed. Here we presesysiem- the other to obtain three streams in which the frequency
atic methodbased on modules over polynomial rings, which shifts in the optical fibers are canceled. Thus we have only
not only reproduces the previously obtained results, but guamine streams to contend with and now the module consists of
antees all the data combinations that cancel the laser noiseine-tuples of polynomials on which six linear constraints
The data combinations in the case of laser frequency noisare imposed. We show that the problem can be solved in
consist of the six suitably delayed data streams, the delayterms of the previous one where the three extra polynomials
being integer multiples of the light travel times betweenare written in terms of the six-tuple polynomials that are
spacecraft, which can be conveniently expressed in terms solutions to the laser frequency noise cancellation problem.
polynomials in the three delay operatdfs, E,, E; corre-  Thus the solution to the first problem extends easily to the
sponding to the light travel time along the three arms. Thesecond.
laser noise cancellation condition puts three constraints on Finally, we apply our formalism to a class of important
the six polynomials of the delay operators corresponding t@strophysical sources, but relatively simple to analyze,
the six data streams. The problem therefore consists of findiamely, monochromatic GW sources. We maximize the SNR
ing six-tuples of polynomials that satisfy the laser noise canfor such sources over much of the module of data combina-
cellation constraints. These polynomial tuples form ations by considering linear combinations of the generators of
module! called in the literature thenodule of syzygies the module with the coefficients being real numbers. Strictly
There exist standard methods for obtaining the module, bgpeaking one must take polynomials as the coefficients so
which we mean methods for obtaining the generators of théhat the maximization extends to the entire module, but we
module so that the linear combinations of the generators geriind that even this simplifying assumption yields satisfactory
erate the entire module. Three constraints on six-tuples ofesults. We present the maximized SNR as a function of fre-
polynomials do not lead to three generators, as naive reasoguency over the data combinations.
ing might suggest. Here we are dealing with modules rather We organize the paper in the following manner. In Sec. Il,
than vector spaces and the rules are different. The proceduvee present the six raw data streams obtained with the laser
first consists of obtaining a Groebner basis for the ideal genphase noise and formulate the conditions for laser phase
erated by the coefficients appearing in the constraints. Thigoise cancellation. We also obtain difference equations
ideal is in the polynomial ring i€, ,E,,E5 over the domain which should be satisfied by the time-delay operators for
of rational numbersor integers if one gets rid of the denomi- canceling the laser noise. The solutions for the noise cancel-
nators. To obtain the Groebner basis for the ideal, one mayation combinations can be represented as the syzygies mod-
use the Buchberger algorithm or use a package such a#e over the polynomial ring using standard methods of al-
MATHEMATICA . From the Groebner basis there is a standardjebraic geometry described in Sec. Ill. First a Groebner basis
way to obtain a generating set for the required module. All offor the ideal is obtained. From the Groebner basis the gen-
this procedure has been described in the literaftB19. erators for the module of syzygies can be computed. Several
sets of generators have been obtained for this module. In
Sec. I B this approach is extended to cancel the acceleration
IA module is an Abelian group over a ring, as contrasted with anoise of optical benches. In Sec. IV we compute the detector
vector space, which is an Abelian group over a field. The scalaréesponse for the GW signal and obtain transfer functions for
form a ring and, just as in a vector space, scalar multiplication ighe six elementary beams. In Sec. V, first we determine the
defined. However, in a ring the multiplicative inverses do not existeffective noise for each generator by taking the shot noise
in general for the elements, which makes all the difference. and acceleration noise of the proof masses into account,
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Also we denote the time-delayed data in aegnk=1,2,3, by
the shift operatoE, whose action on a functiof(t) is de-
scribed by the equation

Exf()=f(t—Luy), (2.2

where we have chosen units in which the speed of light is
v’ unity. The six streams are

Ul=E,C;—Cy4,
U2=E,;C,—C,,
U3=E,C,—Cg,

Vi=C,-E;C,,

V?=C,—E;Cg,

V3=C;3—E,C;. (2.3

FIG. 1. LISA geometry. Thus explicitly we haveU?(t)=Cj(t—L,)—C4(t), etc.
U(t) is the data stream obtained by beating the laser beam
which do not cancel out in the combinations. We obtaintransmitted by spacecraft 3 to spacecraft 1 measured at time
SNRs for monochromatic sources and maximize the SNR at spacecraft 1; and so on by cyclic rotation. Similarly,

over the allowed data combinations that cancel the laser fre= V(1) =Ca(t—Lz) —Cy(t) is the laser beam emitted by
guency noise. spacecraft 2 and received and beaten with the laser at space-

craft 1 at timet. If we label the spacecraft in a counterclock-
wise (positive sensefashion, then the beants' travel in the

II. TIME-DELAYED DATA AND THE DIFEERENCE positive sense while the beamé travel in the negative
EQUATION sense. . .
_ The goal of the analysis is to add suitably delayed beams
A. Time-delayed data together so that the net result is zefichis amounts to seek-

We label the spacecraft as 1, 2, and 3. LgtL,,Ls be ing data combination_s that cancel the I_aser frequency noige.
the lengths of the armisides of the trianglewhereL; is the In th_e notatlon/formahsm that we have invoked, the delay is
distance between spacecraft 1 and 2; and so on by cycligbtained by applying the operato to the beamdJ' and
rotation of indices(see Fig. 1 Each spacecraft has a laser V'- A d(ilayk Ofli<1|-1+k2|-2+k3'-3 is represented by the op-
which is used to send beams to the other two spacecraft, argfatorE 'E,’E;® acting on the data, whelq ,k,, andk; are
used as a local oscillator to produce a beat signal with théintegers. In general, a polynomial &, which is a polyno-
incoming beams from the other two spacecraft. The data amnial in three variables, applied to, say,! combines the
recorded adractional Doppler shiftsThese fractional Dop- same data stread’(t) with different time delays of the
pler shifts can occur due to the GW signal and the noiseform k;L;+k,L,+ksLs. This notation conveniently re-
Here we will be concerned with the laser frequency noisephrases the problem. One must find six polynomials, say,
only. More precisely, ifvq is the central frequency of the p,(E,,E,,E3), q;(E;,E,,E3), i=1,2,3, such that
laser and the frequency fluctuation of the laser on spacecraft

i at timet is A,;(t), then the fractional frequency fluctuation 3 i i
Ci(t) is given by ;1 piV' +qU'=0. 2.9
Ay;(t) . L
Ci(t)= ) (2.  Cancellation of the laser noise is implicit in the above equa-
Yo tion.

The six streams of Doppler data are obtained fromGh(g) B. The difference equation for shift operators

by combining them suitably with their time-delayed copies, It is convenient to express E@.3) in matrix form. This
where the time delays are just the light travel times betweemllows us to obtain a matrix operator equation whose solu-
the three spacecraft. We adopt the following notation for theions arep andq where we have now writtep' andq' as

six streams: we divide the six streams into two détsand  column vectors. We can similarly express,V',C' as col-

V', wherei=1,2,3, of three streams eadl’ andV' can be  umn vectorsU,V,C, respectively. In matrix form E¢(2.3)
regarded as three component vectdrandV, respectively. becomes
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V=u'C, U=-puC, (2.5 Ap'V=q'ATV
whereu is a 3x 3 matrix given by =0 (gagjp)"V
1 0 -E; =q'uAC
=| —E 1 0o . (2.6
M 3 =—Aq"
0 B, 1 =—AqQq' U, (2.11)
The exponent T” represents the transpose of the matrix. which gives
Equation(2.4) becomes A(p"V+qTU)=0. (2.12
_ T \T =
(up—pq) C=0, (2.7) This equation immediately integrates to
where we have taken care to giiton the right of the opera- (PTV+qTU)(t+ns)=(pTV+qT U)(1) (2.13

tors. Since the above equation must be satisfied for arbitrary
“data" C, we Obtain a matriX equation f0r the Sh|ft Operators:wheren iS an integer_ If we arbitrar”y sdt=0 and if (pTV
g 0 g +q'U)(0)=0, then p"V+q'U)(ns)=0.
MP=n Q. (2.8 It is not clear to us how the above solution would be
. . useful physically, but we present it as an interesting outcome.
The solutions to Eq(2.8) arep, g, which are column vectors However, the main problem is of seeking solutiopsa) to

of polynomials in the shift operatois, . Note that since the . ) X ST
E, are just shift operators they commute, so the order inEq.(2.8). We discuss this problem and its solution in the next

writing these operators is unimportant. In mathematicalcC o™
terms, the polynomials form a commutative ring.
We can formally solve fop since the matrixu is invert- lll. THE MODULES OF SYZYGIES

ible. However, det.=1—E,E,E; appears in the denomina-  geyeral solutions have been exhibitedir?] to Eq.(2.9).
tor on the right-hand sideRHS), which leads to the division The solutions have the characteristic property thajdean-
by polynomials inEy. This may seem hard to interpret. But cels on both sides leading to polynomial vectprandq. We
we can pull this factor to the LHS to “rationalize” the ex- renroduce here the solutions obtained in previous work. The
pressions. Then we obtain solution¢ is given byp'=q"=(E; ,E,,E3). The solutiona
is described byp'=(1E;,E;E;) and q"'=(1E;E,,E,).
The solutionsB and y are obtained fromx by cyclically

whereA= u,q;u" anduag; is the adjoint ofu. The operator permuting the indices oy, p, andq. These solutions as
A=1—E,E,E; is the usual difference operator that appearsreal'zed in .earlle_r work are important, because they consist
in finite differences and difference equations. The quantityPf Polynomials with the lowest possible degrees and thus are
E,E,E, plays a central role in determining the natural time SimPI€. Other solutions containing higher degree polynomi-
step for the problem, namely=L,+ L ,+ L which is noth- als can bg ge_nerated convenlen_tly from these solu_tlons. Lin-
ing but the light travel time around the perimeter of the LISAGar combinations of these solutions are also solutions to the

triangle. A is just the difference corresponding to this time 91V€N system of equations. But it is not clear that this proce-
step. dure generates all the solutions. In particularcannot be

Explicitly, using Eq.(2.6) the matrixA is given by gener.atec_:i from the set, S, a}nd v, w_here genergting a data
combination means writing it as a linear combination of the

Ap=Aq, (2.9

1— Eg E,E,—E; Ey(1- Ef) elements b_elonging to the ger_1erating set.
) ) The basic reason, as mentioned earlier, is that we do not
A=| (1-E3)Es  1-E3 EE3—E; |. have a vector space here. Three independent constraints on a
EsE,—E, E(1-E 1-E? six-tuple do not produce a space which is necessarily gener-

(2.10  ated by three basis elements. This conclusion would follow if
the solutions formed a vector space but they do not. The
The equations display a cyclic symmetry in the indices 1,2,3olynomial six-tuplep, g can be multiplied by polynomials
which is also apparent in the matrx The cyclic symmetry in E;,E,,E; (scalarg which do not form a field, so that the
results from the nature of the problem since we are free tinverse in general does not exist within the ring of polyno-
choose the labeling of the three spacecraft. In the matrix mials. We therefore have a module over the ring of polyno-
we must also change the rows and columns consistently imials in the three variableg; ,E,,Es.
performing the cyclic change of the indices. The cyclic sym- In this section we present the general methodology for
metry is further carried over to the solutions,q). obtaining the solutions to E@2.8). The method is illustrated
The integration of Eq(2.9) can be carried out in time by applying it to Eq.(2.8). In the next subsection we con-
steps ofs. The integration is immediate if we operate with sider the more general problem of optical bench motions as
Eqg. (2.9 on V. We first need to take the transpose of Eq.well. The optical bench motion noise can also be eliminated
(2.9 and then operate ovi. We then obtain using the same method.
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A. Cancellation of laser frequency noise us=E(1— E%), Us=1- E%. (3.4

There are three linear constraints on the polynomials
given by Eq.(2.8). Since the equations are linear the solutionThe ideall{ consists of linear combinations of the form
space is a submodule of the module of six-tuples of polyno=v;U; Wherev;, i=1,...,4, arepolynomials in the ring
mials. The module of six-tuples is a free module, i.e., it hasQ[E1,E2,E3] where Q is the field of rational numbers.
six basis elements that not only generate the module but arhere can be several sets of generatorsifoA Groebner
linearly independent. A natural choice of the basisfis basis is a set of generators which is “small” in a specific
=(0,...,1,...,0)with 1 in theith place and 0 everywhere S€nse.
else;i runs from 1 to 6. The definitions of generatitspan- There are several ways to look at the theory of the Groeb-
ning) and linear independence are the same as for vectdter basis. One way is to suppose that we are given polyno-
spaces. A free module is essentially like a vector space. Bufialsg:,Jz, . . . ,gm in one variable over, sag. We would
our interest lies in its submodule, which need not be free antike to know whether another polynomiélbelongs to the
need not have just three generators as it would if we werédeal generated by thg's. A good way to decide the issue
dealing with vector spaces. would be to first compute the GC@reatest common divi-

The problem at hand is of finding the generators of thisson g of 91,92, . . . ,.gm and check whethdris a multiple of
submodule, i.e., any element of the module should be exd. One can achieve this by doing the long divisionf &y g
pressible as a linear combination of the generating set. In thignd checking whether the remainder is zero. All this is pos-
way the generators are capable of spanning the full modulgible becaus&][ x] is a Euclidean domain and also a princi-
or generating the module. We examine K2.8) explicitly ~ pal ideal domainPID) wherein any ideal is generated by a
componentwise: single element. Therefore we have essentially just one

polynomial—the GCD—which generates the ideal generated
P1— 01+ Ez02—Ezp3=0, by 91,95, . .. ,Om. The ring of integers and the ring of poly-
nomials in one variable over any field are examples of PIDs
P2~ 02t E103—E3p;=0, whose ideals are generated by single elements. However,
when we consider more general ring®t PID9 like the one
P3—0ds+Exq;—E;p>=0. (3.)  we are dealing with here, we do not have a single GCD but
a set of several polynomials which generates an ideal in gen-
eral. A Groebner basis of an ideal can be thought of as a
generalization of the GCD. In the univariate case, the Groeb-
ner basis reduces to the GCD.

Groebner basis theory generalizes these ideas to multi-
. variate polynomials which are neither Euclidean rings nor
P2=02— E103+ E3zp; PIDs. Since there is in general not a single generator for an
_ 2y ideal, Groebner basis theory comes up with the idea of di-
=Es0ut (17E5)0o~ Eadst EoEqps, 32 viding a polynomial with aset of polynomials, the set of

and then substitute these values in the third equation to otfienerators of the ideal, so that by successive divisions by the
tain a linear implicit relation betweems,q;,q,,qs. We then polynomials in this generating set of the given polynomial,

The first step is to use Gaussian elimination to obpiand
p, in terms ofps,q4,9,,q3. We then obtain

P1=0d1—E3dx+Ezps,

have the remainder becomes zero. Clearly, every generating set of
polynomials need not possess this property. Those special
(E;E5E3—1)p3+(E;E3—E,)q; generating sets that do possess this propenty they exist
are called Groebner bases. In order for a division to be car-
+Ey(1-E3) 0+ (1-E5)g3=0. (3.3 ried out in a sensible manner, an order must be put on the

o . ) ring of polynomials, so that the final remainder after every
Obtaining solutions to E3.3 amounts to solving the prob-  givision is strictly smaller than each of the divisors in the

lem since the the remaining polynomigg, p, have been generating set. A natural order exists on the ring of integers
expressed in terms @f3,d1,9,03 in EQ. (3.2). or on the polynomial ringQ(x); the degree of the polyno-

_ The solutions to Eq(3.3) form thefirst module of syzy- mja| decides the order i@(x). However, even for polyno-
gies of the coefficients in Eq.(3.3), namely, E;E2Es  mjals in two variables there is no natural ordepriori (is
~1EEs—E;,Eq(1-E5),1-Ef. The generators of this 2.1y greater or smaller thax+y2?). But one can, by hand
module can be obtained from standard methods available igs jt were, put an order on such a ring by sayizgy, where
the literature. We briefly outline the method given in thes s an order, called the lexicographical order. We follow
books by Becke_et al.[18] and Kreuzer and Robbiar[dQ] this type of order,E;>E,>Es, and order polynomials by
below. The details have been included in Appendix A. considering their highest degree terms. It is possible to put
different orderings on a given ring which then produces dif-
ferent Groebner bases. Clearly, a Groebner basis must have
The first step is to obtain the Groebner basis for the ideafsmall” elements so that division is possible and every ele-

1. Groebner basis

U generated by the coefficients ment of the ideal when divided by the Groebner basis ele-
ments leaves zero remainder, i.e., every element modulo the
u=E.E;E3—1, u,=E;E3—E,, Groebner basis reduces to zero.
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In the literature, there exists a well-known algorithm  Another set of generators which could be useful for fur-
called the the Buchberger algorithm which may be used taher work is the Groebner basis of a module. The concept of
obtain the Groebner basis for a given set of polynomials ira Groebner basis of an ideal can be extended to that of a
the ring. So a Groebner basis#fcan be obtained from the Groebner basis of a submodule oK[k;,X5, ... X,])™
generatory; given in Eq.(3.4) using this algorithm. It is whereK is a field, since a module over the polynomial ring
essentially again a generalization of the usual long divisiorcan be considered as a generalization of an ideal in a poly-
that we perform on univariate polynomials. More conve-nomial ring. Just as in the case of an ideal, a Groebner basis
niently, we prefer to use the well knowmTHEMATICA pack-  for a module is a generating set with special properties. For
age.MATHEMATICA Yyields a three-element Groebner bagis the module under consideration we obtain a Groebner basis
for U: USINgMACAULAY 2 :

G={E2-1E2-1E,~E,E3}. (3.5 GM=(E;,E;,E3,Ey,Ep,Ey),

One can easily check that all thg of Eq. (3.4) are linear G®=(E,E3—E,,0E5-1,0E,E;—E;,E5—1),
combinations of the polynomials % and hencej generates

U. One also observes that the elements look “small” in the G®=(E;E;,1E;,E3, 1EE),

order mentioned above. However, one can satisfy oneself

that G is a Groebner basis by using the standard methods G'=(1Es,EiE3, 1EE;,E)),

available in the literature. One method consists of computing

the S polynomials(see Appendix A for all the pairs of the G®)=(E5(E3-1),1-E5,0,0,1-Ef,Ey(E5-1)). (37
Groebner basis elements, and checking whether these reduce

to zero modulog Note that in this Groebner basi&®=;=x?), G
. ' . . . . =x1) gBR=p=x® g@=_,=xO) (5)
This Groebner basis of the ideflis then used to obtain — X *» G7'=B=X", G*'=a=X". Only G™’is the new
the generators for the module of syzygies. generator. _ _
Another set of generators are just 8, y, and{. This can
2. Generating set for the module of syzygies be checked usingACAULAY 2 or one can relate, 3, y, and

_ _ _ { to the generatorX®, A=1,2,3,4, by polynomial matri-
The generating set for the module is obtained by furthefgg |y Appendix B, we express the seven generators we
following the procedure in the literatufé8,19. The details _ obtained following the literature, in terms af 3, vy, and{.

are given in Appendix A specifically for our case. We obtamA|So we express, 3, v, and¢ in terms ofX™®. This proves

seven generators for the module. Thfese generators do Nfat all these sets generate the required module of syzygies.
form a.mmlmal set and there are relatlon§ petween them; in 1o question now arises as to which set of generators we
fact, this method does not guarantee a minimum set of ge should choose to facilitate further analysis. The analysis is
era.tors. These generators can be expres?le)d a(sz)llneg; co anlified if we choose a smaller number of generators. Also
n?jl)on_s ofe, B, v, ¢ and also in terms oK™, X7, X, e \yould prefer low degree polynomials to appear in the
X' given below in Eq.(3.6. The importance of obtaining generators so as to avoid cancellation of leading terms in the

; e
tEe scra]ven generators is that tge .ste}ndard theoremr_? guarapéngomims By these two criteria we may choos&) or
that these seven generators do In fact generate the requirgds ., - Among these two sets of generators, we arbitrarily
module. Therefore from this proven set of generators we cal ake the choice oK®

check whether a particular set is in fact a generating set. We
present several generating sets below.

Alternatively, we may use a software package called
MACAULAY 2 [20] which calculates the generators given Eq. The work done il 1,2] can be conveniently reexpressed
(3.1). Using MACAULAY 2, we obtain six generators. Again, in our formulation and leads to further insights into the prob-
Macaulay’s algorithm does not yield a minimal set; we canlem.
express the last two generators in terms of the first four. There are two optical benches on each spacecraft which
Below we list this smaller set of four generators in the orderhave random velocities and are connected by optical fibers.

B. Cancellation of noise from moving optical benches

X=(p1,P2:P3,d1,92,93): The random velocities of the optical benches and the delay in
the optical fibers are measured as further Doppler shifts apart
XM= (E,E;—E,,0E5—1,0E,E;—E; ,E53— 1), from other noise and the GW signal. Since we are interested
in the cancellation of laser frequency noise and motion of the
X®=(E,,E,,E;3,E;,E;,Ey), optical benches, we write expressions for the beams contain-
ing only these quantities. The Doppler beams will of course
X®)=(1E;,E;E3,1EE,,Ey), contain other effects arising from shot noise, GW signal,
motion of proof masses, etc., but we will not write them in
X®=(E,E,,1E;,E3,1E,E3). (3.6)  the expressions for the Doppler data because they are not

relevant to the problem we are interested in. We follow the
Note that the last three generators are ju$t)=¢,X®®)  notation of[1,2]. The quantities pertaining to the left bench
=a,X®=g. But there is an extra generatdf') needed to  will be unstarred while those for the right bench are starred.
generate all the solutions. There are now 12 Doppler data streams which need to be
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combined in an appropriate manner in order to cancel the P+ EzQp+r,=0,
noise from the laser as well as from the motion of the optical
benches. The fractional frequency fluctuations of the laser on
the left optical bench are denoted byC; and on the right
optical benchi* by Cf, the random velocities of the
benches by;, Vi, and 5;, are the frequency shifts in the
optical fibers connecting the optical benches in spacecraft
We then have the following expressions for the four data
streams pertaining to spacecraft 1:

Eops+4d;+r,=0,
P2+ Eq03+r,=0,
Espi+0p+r,=0,

) . Pst+ExQ1+r3=0,
U=E,(C3—Ny-V3)—(Nny- Vi +C7),
- R Eip2tgs+r3=0. (3.12
Vi=—E5(C; +n;3-V3)+(C1—ng-Vy),
We now have a nine-component polynomial vector. The so-

2,=C,—Ci+ 79— 2n3-Vy, lutions to Eqs(3.12 form another module of syzygies which
is related in a simple way to the module obtained in just laser
ZF=C* —Cy+ my+2n, VY. (3.99  hoise cancellation. Eliminating from Eq. (3.12 we obtain

the same equations f@r andq; as in Eq.(3.1). This enables
The other eight data streams on spacecraft 2 and 3 are obs to extend the previously obtained generating sets to this
tained by cyclic permutations of the indices in the abovemodule. Thus, thanks to the mapping of;,(C)

equations. Here, denotes a unit vector in the direction from —C; ,(ET), the two modules are isomorphic. We just state

spacecraft 1 to spacecraft 3 and the remaining unit veators the remaining three entries(,r,,r3) of the generating sets -
andn, are obtained by cyclically permutating the indices. keeping the same notation. The first set of four generators in

We find that the 12 Doppler data streams depend only off1€ ©rder (1.12.rs) are
the particular combination8; —ns-V; andC% +n,-V* and
their cyclic permutations. We define these combinations as
C, andC* , respectively, i.e.:

XW=(E,(1-Ej),E1(1-E),1-Ej),

X®= —(E;+E,Eq,E)+E(Ez, E3+E Ey),
alzcl_ﬁS'Vly
X®) = —(14+E,E,E;5,EE,+E3,E1E3+Ey),
C¥=C¥+n, V¥, (3.9
X#=—(E,E,+E3, 1+ E;E,E5, E;+E,E5).  (3.13
and also their cyclic permutations. Then the expressions for
the data streams simplify considerably. We write the expresm the other generating set, namely, the Groebner basis, we

sions for the data streams corresponding to spacecraft 1. Otaeq to specify jusGs since the other elements are in the
ers are obtained as before by cyclic permutations: previous generating set. Thus,

1_ -~ _ A%
UT=E.Cs—Ct G®)=(0,(E2-1)(1-E3),0). (3.14
Vl: - E3E§ +61,

IV. THE DETECTOR RESPONSE

71— 3(21—2’5) The ripples produced in spacetime by the gravitational
2 waves as they propagate through the LISA detector are mea-
o sured as Doppler shifts in the laser frequency. The measured

=C,—C7. (3.10 signals will have various noises along with the Doppler shift

_ produced by the gravitational radiation. In the last section we
New variablesZ' have been defined which automatically studied various combinations of beams that cancel the laser
cancel thez; . Also we note that th&J', V' have the same phase noise and optical bench acceleration noise. In this sec-
form as in Eq.(2.3), except that theC; are replaced by, tion we investigate the response of the detector for these

which account for the motions of the optical benches. combinations. We compute the transfer functions for the gen-
The noise cancellation condition now becomes erators and also their linear combinations. The laser phase
) ) ) noise and optical bench acceleration noise are then also can-

piV'+qU'+r,Z2'=0, (3.1)  celed for the linear combinations. However, noises such as

_ ) _ the shot noise and the acceleration noise of the proof masses
wherer; are polynomials ink,,E;,E;. Since the above o not cancel out. In the following subsections we set up a
equations should hold for ary; ,C;" , we obtain the follow- coordinate system adapted to the LISA geometry and then go
ing equations that the polynomigts,q; ,r; must satisfy: on to compute the response of LISA.
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A. Parametrization of the interferometer B. h sensitivity of one arm

Figure 1 describes the LISA configuration. We choose a We now apply the above analysis to compute the Doppler
coordinate system in which the LISA triangle is at rest. Al-response of the laser beam along one arm of the LISA detec-

though this coordinate system is in motion relative to theior, et the beam start at=t, from the pointr,, travel

usual coordinate systems normally encountered, we will ﬁnqoward the poinf and reach it at=t.. Then

such a system of coordinates convenient for further analysis, B o

such as computing SNRs of monochromatic sources, etc. ;(t):;AJr(t_to)ﬁ’ F(tl):FB- (4.10
The unit vectow connecting the origin and the source is

parametrized by the source angular locatiéngf), so that The line element along this path satisfies the equation

sin 6 cos¢
- . . 1 A
w=| sindsing |, (4.1) dh=dt} 1+ Sh[(1-W-A)t
cosé
and the transverse plane is spanned by the unit transverse —\7V«FA+t0\7v-ﬁ]]. (4.11)
vector # and ¢, defined by
LW .1 ow The global travel time; —t, is given by the integral
b= —, ¢=——. 4.2
d sinég d¢
1(u A o~
As the wave propagates through the LISA triangle, the com- L=t;—to+ E,ft h{t(1—w-n)
0

ponents of the gravitational perturbation can be written as

. - —W- T o+tow-n]dt. (4.12

(67 = R (=W 1) (616, i) attow: Tl
+hy (t—w- F)(ai i+ 0jbi), (4.3 It is convenient for many purposes to pursue our analysis in

the Fourier domain. We Fourier transform the GW amplitude
whereh, andh, are arbitrary functions describing the two h:

GW amplitudes.
We consider the effect of this perturbation on a light beam
traveling between two points A and B. From this we obtain h(t):J dQﬁ(Q)exq—iQt), (4.13
the complete response. Lt andrg be the position vectors
of points A and B, respectively. Then the line element of the

Spacetime a|ong the beam null ray Obeys and the travel time can be eXpressed as
0=dt?—dx?—dy?—dZ*+ h;;dx'dx, (4.4 t—to
where thei,j run over space indices only. ff is the unit 1 ~ ty . ~ a
vector directed from A to B, we have =L- Ef th(Q)ft exg —iQ(1-w-n)t]
0
dx' =n'dx, (4.5

X exp[iOW-ralexd —iQtow-n]dt.  (4.14
where\ is the Euclidean length. Equatigd.4) can be ex-

pressed as, In the zeroth order of the integral, we haye-t,=L, and
o we obtain
0=dt?—d\?[1—h;n'ni] (4.6
. 1 B L
or equivalently tl—tO:L—EJ dQh(Q)expiQw-r,)
1 a o
dr=dt 1+§h(t—w~r)}. (4.7) _ exp(iQLw-n)—expiQL)
Xexp —iQty) - P .
—iQ(1l-w-n)

From Eq.(4.3) we get
h(t)=h,(1)£,(8,¢) +hy(1)£x(6, ), (4.9

(4.1

The phase change over that time intervathiss w(t;—tg),

£.=(0-n)2—(¢-n)?, (4.9 wherew=2mv,, is the optical circular frequency. We can
o assume that the tintg is the current time antj, the retarded
Ex=2(0-n)(¢p-n). time, so that the phase &(t) = w(t—tg):
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D(t)= L—LJ dOR(Q

X exp(i QW-r ,)exp( —iQt)

Xexmm\?v.ﬁ)—exmm)

-5 (4.16

PHYSICAL REVIEW D65 102002
&.=(0-n)%—($-n)?,

Eix=2(0-n)(p-1y). (4.22

To implement the cancellation of laser phase noise these el-
ementary beams must be combined with suitable time delays.
We notice that in the Fourier domain the delay operators are
replaced by simple multiplicative factors as the following

By taking the time derivative, we get the instantaneous fre€Omputations show. This is one of the advantages of the

quency

Sv(t) 1 dd(t)
T (4.17

VOpt w
In the time domain and using,+Ln=rg we finally get

Sw(t) 1 2
= P —W-r
Vopt 2(1—w-n)[ ( .

—h(t—w-ry—L)]. (4.189

In the Fourier domain we may express this result as

o) _ h((}) —exdiQ(L+W-rp)]
Vopt  2(1—w-n)

x{1—exd —iQL(1-w-n)]}. (4.19

C. h sensitivity of the elementary Doppler data

In this section we compute the expression for the transfer

function for the six elementary beams given in Eg.3).

These beams can be further combined with suitable delays as

Fourier analysis. The delay operators introduced in this sec-
tion areE; such that for any function of timé(t) we have

Eff(t)=Ff(t—L;), (4.23
which in the Fourier domain is nothing but
Ef f(Q)=e(M)F(Q), (4.24
where thee; are simple factors:
g=e'hi, (4.25

Thus operator polynomials iB; become actual polynomials
in g; in the Fourier domain. This particularly simple fact can
be used to advantage for simple but astrophysically impor-
tant sources, namely, the monochromatic sources considered
in the next section.

In Figs. 2a) and Zb) we present the transfer functions
Fv, for both polarizations. The other transfer functions show

similar characteristics.

V. MONOCHROMATIC SOURCES

A. Noise

described in the previous sections for achieving cancellation We recall that the laser frequency noise and optical bench

of laser phase noise.

motion noise can be canceled by taking appropriate combi-

The Doppler shift is expressed in the Fourier domain asnations of the beams. In this scheme the noises that do not

ov(Q))

=h. (QF.(Q)+h (Q)F(Q),
Vopt

(4.20

cancel out in the module of syzygies are the acceleration
noise of the proof masses and the shot noise. These then
form the bulk of the noise spectrum that we obtain below for
any given data combinatiod. We compute the noise power

whereF . () are transfer functions. We can compute theSPectral densities for the generates.

transfer functions for the combinatiots ,V;. We just give
belowFy_ .. x andFy .. «; the others are obtained by cy-

clic permutations:

el Q(W-r3+Ly)
FU1;+'X:2(1+\7V-F12)
X (1— e—imz(uwﬁz))gz;ﬁx ,
el QW rp+Lg)
T T S )

(4.21

X(1—e 1Oy g

where

The beam with the signal and the various noises can be
written as

Ul=E,C3—C¥+2n,- 0¥ +hy + Y, (5.0
Vi=—E4Ch +Cq+2n5-v,—hy— YS!,
(5.2
1 1 * - g - “x
Z = E (Zl—Zl)+n3~vl+n2~vl . (53)

The other beams can be obtained by taking cyclic permuta-
tions. HereJ1 andJ’l‘ are the random velocities of the proof
masses, in the left and right branches, respectively, in space-
craft 1.

Let the noise canceling combinatiohbe given by
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1x10°7

1Ix10°8 | -~

1x10™° | -

1xt O»‘!O 1 1 1 1
1x10-5 0.0001 ©0.00% 0.01 o.1 1

@) log f

-9 1 1 2
1x10°% 0.0001 0.001 .01 o.1 1
(b) log f

FIG. 2. (a) Log-log plot of the PSD FV1-+|2 of the corresponding transfer function as a function of frequencyfed, ¢=0. (b)
Log-log plot of the PSO F\,l_X|2 of the corresponding transfer function as a function of frequencyfed, ¢=0.

X=p;V +qU'+r,Z, (5.4) Explicit simplified expressions for the noise may be ob-
tained by assuming
where the nine tupleg|,q;,r;) is in the module of syzygies.
This combination cancels laser phase noise and the optical
bench acceleration noise, whereas the shot noise and proof e,=e,=gz=e'
masses acceleration noise do not cancel. Using&4). we
obtain the power spectral density Xffor the two noises:

5 In the particular cases of the generat¥f§),A=1,2,3,4 we

<X2>proof mass_ 21 (|2pi+ri|2+ |2qi+ ri|2) obtain
“
x gprootmass (5.9 Sxa)(f)=[16sirf(2mfL) +32sirfmfL)] SProet mass
3 +[8 sirf(arfL)+ 8 sirf(27fL)]Sshot noise
<X2>shot noise_ 2 (|pi|2+ |qi|2)Sshot nois? (5.6)
= (5.7
whereSPT°f massis optained fromy; andv . Here, follow- _ SR
ing the literaturg21], we take Sxe(f)=24sirf(7fL)SP + 6S ; 59
Sproof mass= 3 5y 10~ 49 f/1Hz] 2Hz '
and Sy (f)=[16sirf(7fL)+ 8 sird(3afL)]SProof mass
gehot noise= 5 3% 103 f/1Hz]?Hz .. +6gehot noise (5.9
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w10 TABLE |. Upper bound forM at various frequencies.
! Af (uHz)
o fo (MHz) for 1% change in SNR MIMg
=
‘g’ 0.1 1.0 27705
ST 1 9.9 691
& 2 22 243
T ok 10 1130 74
I A limit on the rate of change of frequency can be obtained
B by considering the total change in the frequerdy during
the period of observatiof. That is,
‘X‘O;::m"’s 0 01301 o (;01 051 .
log f Af=1T. (5.13
FIG. 3. Log-log plot of the noise spectra for the generaldfS. | erting the above equations we obtain a limit on the chirp
The curves forx® and X* coincide in the figure. massM:
—11 3/5
Sx(f) fo Af
= . .
M= "1mz 1 pHz Mo (5.19

=[16 sirf(7fL)+ 8 sirf(37fL)]Sproof mass

+ gSshot noise (5.10  In our investigation we take the bandwidf by allowing
the SNR to change by 1% at the frequerigy Numerically,
we estimateAf for various values of 5. Table | shows the
upper bound forM at various frequencief,.

Here our goal is to seek a data combination that optimizes
B. Signal the SNR for a monochromatic source with given polarization

Monochromatic sources are the simplest among the gravparamett_ars and direction information. A convemgnt set of
olarization parameters are the angéeand s describing the

tational wave sources. There are a number of important ol X )
jects such as pulsars, rotating neutron stars, and coalescils?]{]:emgt'on of the angglar mor_nentum vector in space. The
binaries with sufficiently low mass may be considered asd gctlon to the' Source Is despnbed by the polar anglasd
emitting monochromatic GW radiation. We will call those ¢ in the coordinate system tied to LISA. .
sources monochromatic for which, even if they change a For a monochromatic source the wave form can be writ-
little in frequency in a given observation time, the fractional ten as
change in SNR for the optimal data combination does not 1+ cole
fall below a preassigned limit. We could take this limit to be h., (t)= A————co0s 2/ cog 2wt), (5.19
a few percent, but for concreteness we fix the limit at 1%. 2
The observation tim& we take to be 1 yr. . )

For binary stars, the relevant quantity that decides the hx(t)=.Acose sin 2y sin(2wt). (5.16
evolution in the GW frequency at a given frequerfgyis the
so called chirp masa=u¥*M?5 wherey is the reduced

The plots of these noise spectra are shown in Fig. 3.

In the Fourier domain we have

mass andM is the total mass of the binary system. We as- 1+ coLe
sume a Newtonian evolution for the binary system, which h,(Q)=A——-———cos 2, (5.17
gives the rate of change of GW frequerfcgs 2
. 31, h,(Q)=—i.Acose sin 2¢. (5.18
f=-—, (5.1
8 7.

The response for the signal at the detector can now be writ-
ten as
where 7, is the Newtonian coalescence time measured from

the epoch when the GW frequency fig and the overdot 3
denotes the derivative with respect to time.is given by hx:izl [Pi(Fyi;+hy +Fyixchy)
0 15¢ 1P M ‘5’3[ fo |83 (5.12 +0i(Fui;+hy +Fyich) ], (5.19
T~ 2. — yr, .
Mo 1 mHz where thep;’s andq;’s are in the module of syzygies. From

Egs.(5.5 and(5.6) we can compute the total noise spectrum
whereMg is the solar mass. for the generators, and it can be written as
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FIG. 4. Plots of logs of the
(a) b) generatorsX®, A=1,2,3,4, are
displayed in(a), (b), (c), and(d),
respectively, as functions a&f and
¢ for f=1 mHz and a SNR of 5.

© (d)

3 XA This goal is difficult to achieve since it involves a
Sx(f):_Z [(|2p;+r;|?+|20;+r;|?)Sproef mass maximization over a space of six-tuples of polynomials

=1 which is essentially a function space. In order to make the

+(|pi| 2+ ;| 2) SShot noisq (5.20  Problem tractable and still achieve adequate results we re-

strict the polynomials to be constants. This approach does
The expression for the signal to noise ratio for the mono-ot fully optimize the SNR but it comes quite close to the
chromatic source simplifies to optimal solution. Our approach can be thought of as a zeroth
order approximation.
A linear combination of the generators can be written as

NFbl |hX|J (5.21)
VSk(f)

We plot the sensitivities of the generatdt$) as function of
fin Figs. 5a) and &a) below by fixing the angleg and ¢. It
is also important to understand the angular dependence of the

sensitivity of the generators, which is plotted in Fig&)4  Neré.a() (for A=1 to 4 are a set of real numbers. Since a
4(d) at a frequency of =1 mHz. The sensitivityS is de- scalar multiple ofX will not yield anything new, we set one
fined following [20]: of the a’s, say,a(;y=1. Thus the SNR now becomes a func-

4
X= 2 amX®; (523
A=1

tion of three parametera;,i=2,3,4, which are just real
numbers, and our objective is to maximize the SNR with
SZS\/SXB (5.22 respect too) . o
[hy| ' In order to carry out the analysis efficiently and elegantly

we find that it is useful to define complex noise vectsf$
HereB= 1/T, whereT is the observation time which we take pertaining toX® as follows:
to be 1 yr. The number 5 corresponds to SNR of 5.

C. Maximization N(A):(\/§1(2pi(A)+ri(A))-\/§l(2qi(A)
In this subsection our goal is to maximize the SNR for a B e (A) [ (A)
given monochromatic source over the set of noise canceling +r%),VSpM ,VS,aM) (5.29

combinations. These combinations can be generated by the

generators given in Eq¢3.6) and (3.7). The SNR corre-

sponding to each of the generatoxX®, A=1 to 4 as a wherep®™, g, andr® corresponding to generatoxé®
function of frequency is shown in Fig. 6. However, one mustare given in Eqs(3.6) and (3.13 and S, = SPro°f massgng
maximize the SNR over an arbitrary linear combination ofS,=S*"°t "%is€ \We haveN(®) e C1? the 12-dimensional com-
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FIG. 5. (a) Log-log plot of the sensitivityS for the generators
X® as function off for =0, ¢=0 over one year observation
period for SNR of 5. The curvgEX1,X2,X3,X4] depicts the sensi-
tivity of the linear combination of four generatax§®, which gives
the maximum SNR(b) Plot of coefficientsa () that gives the
maximum SNR for linear combinations of all the fof® as a
function off for /=0 and¢=0.

FIG. 6. (a) Log-log plot of the sensitivityS for the generators
X® as function off for 6= /4, ¢= /4 over one year observation
period for SNR of 5. The curvgEX1,X2,X3,X4] depicts the sensi-
tivity of the linear combination of four generatox$® which gives
the maximum SNR.(b) Plot of coefficientsaa) that gives the
maximum SNR for linear combinations of all the fof" as a
function of f for = w/4 and¢=w/4.

plex space and the usual scalar prodD&t induces a norm; |h®)|
N . NA*=||N®||2 gives the noise PSD corresponding to SNR=———=
the basisx(®. [INY]|
In a similar fashion one can also write the signal corre-
. . ; ) , (PA . H*)(PA. H*)*
sponding to a particular basis element. We first define the _ (5.29
polynomial six-tuple for each generat¥f” as follows: NA) . NA)* )

P = (pi" g, 5.25

For an arbitrary linear combinatioX [Eq. (5.23)] the noise
vector and the signal vector can be expressed as

and the GW signal six-tuple as

N=amN®,  P=aquP®W, (5.29

H*:(Fvi;+h++Fvi;><h><yFUi;+h++FUi;><h><)- . . . .
(5.26 yvhere summation convention has beeQ used. The signal is
just the scalar produdt="P-H* = a(yh™. We omit sub-
scriptsX on these quantities.
In this notation the SNR of the combinatié.23 can be
written as

The signal for a specific generat¥f” is then written as

h(A) =pA). (5.27)
[h|
SNR=

I (530

and the corresponding SNR is given by
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Writing out explicitly the sums in the scalar products, VI. CONCLUDING REMARKS

(A)(B) We have presented in this paper a rigorous and systematic
anagh™Vh . . .
(AT(®) _ (5.31)  Pprocedure for obtaining data combinations which cancel the
aayaeN® - NE* laser frequency noise based on algebraic geometrical tech-
nigues and commutative algebra. The data combinations can-
Maximization with respect te(, a3y, a(4) leads to the fol-  celing the laser noise have the structure of a module called
lowing three conditions which must be obeyed &y, in  the module of syzygies. The module is over a ring of poly-
order to yield the maximum SNR fot: nomials in three variables, corresponding to the three time
delays along the three arms of the interferometer. Our for-
malism can be extended in a straightforward way to include

(SNR?=

R(hhM*)  R(NNO*)

|h|2 - IINJ|2 ' (5.32 (cance) the Doppler shifts due to the motion of the optical
benches. This module provides us with a choice of data com-
where9i(x) denotes the real part of the quantity binations which are in turn linear combinations of the gen-

To demonstrate the usefulness of the formalism, we conerators of the module. We use this parametrization to maxi-
sider just two generatorX® and X®. We take ayyy ~ MiZe the SNR over frequency for one class of GW sources,
=1,a(2)=a, and other twax’s zero. Then, namely, those that are monochromatic. We observe that in

the plot of sensitivity verses direction angles for the genera-

X=XD + o X (5.33  torsX®™, namely Figs. 4)—4(d), the sensitivity has several
peaks. It may be possible to employ this property to opti-
Equation(5.31) reduces to the form mally resolve binaries in the confusion noise regime by con-
sidering suitable data combinations which would be sensitive
a;+2bja+cya? to specific directions in the sky. We have also investigated
T T (5.34  monochromatic GW sources. We believe that this formalism
ay+2bya+Coa may be applied successfully to other types of GW sources,
Where e.g., a stochastic GW background.
a;=|h"?,  by=%R(h'h?*), c¢;=|h%? ACKNOWLEDGMENTS
a,=|NY2,  b,=R(NIN?*), c,=|N?2. '_I'he quthors thank IFQPARQProject No. 2204—)1u!’1der _
(5.35  Which this work was carried out. The authors are highly in-
debted to Himanee Arjunwadkar for painstakingly explaining
The condition for the optimizatiof6.32 simplifies to the intricacies of the algebraic geometrical ideas required in
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The two roots of Eq(5.36 can be obtained. Herey is a APPENDIX A: GENERATORS OF THE MODULE
function of the parameter§ 6, ¢, €, and 4. One of the OF SYZYGIES

solutions of Eq(5.36) corresponds to the maximum and the ire the f | luti h
other correspond to the minimum of the SNR. In a similareql\:\;‘;éﬁqu'ret e four-tuple solutionpy,ds.q,.03) to the

fashion one can maximize the SNR by taking any two of the
four generators given in E@3.6) and by taking appropriate

agy in Eq. (5.23. We have seen in several cases that maxi- (xyz=1)ps+(xz—y)q; +x(1- 20,
mizing over just two generators yields remarkably good re- +(1-x3)qs=0 (A1)
sults. qs=0,

This simple case demonstrates that one can use the solu- ) .
tions given in Eq(3.6) to get a better SNR. However, to get Where for convenience we have substituledE,,y=E;,z
full advantage one needs to maximize the SNR over the threg Es- P3.01,02,9s are polynomials irx,y,z with integral
a’s. In order to optimize the SNR given by the general com-coefficients, i.e., irZ[x,y,z]. .
bination we resort to numerical methods since there is no We now follow the procedure in the book by Becletral.
straightforward method for solving the coupled algebraic18] ) _ )
equations given by Eq(5.32. We use Powell's method as  Consider the ideal iZ[x,y,z] (or Q[x,y,z] whereQ de-
given in [22] for maximizing the SNR over the parameters Notes the field of rational numbeygormed by taking linear
an - The sensitivityS for the generatorX® and for the ~ combinations of thg coeff|C|en;[s in EGAL) fi=xyz—1f,
maximal SNR combination of X*s denoted by =XZ—Y,fs=x(1-2%),f4=1—x°. A Groebner basis for this
[X1,X2,X3X4] as a function of frequendyhas been plotted ideal is
in Figs. Sa) and Ga). The coresponding values of ) are
shown in Figs. &) and Gb). G=1{0,=2°—10,=y?>—103=x-yZ7}. (A2)
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The above Groebner basis is obtained using the function b¥=(1—22y(2—1),x(1—y?),(y>—1)(z*— 1)),
GROEBNERBASISIN MATHEMATICA . One can check that both

the f;,i=1,2,3,4, andy;,j=1,2,3, generate the same ideal b;:(O,z(l—22),1—zz—x(x—yz),(x—yz)(zz—1)),
because we can express one generating set in terms of the

other, and vice versa: b3 =(x—yzz—xy,1-y?0). (A7)

fi=dijg;, gj=c;fi, (A3)  Thus we obtain three more generators, which gives us a total

whered andc are 4<3 and 3<4 polynomial matrices, re- of seven generators of the required module of syzygies.

spectively, and are given b
P Y 9 y APPENDIX B: MATRICES OF CONVERSION BETWEEN

1 22 yz GENERATING SETS
y 0 z In this appendix we list the three sets of generators and
d= % 0 0 , relations among them. We first list below 3,7y, {:
1 —z2 —(x+Yy2) a=(1z,xz,1xy,y),
0 0 —X Z2_ 1 B:(nyl,X,Z,lyyZ),
c=({1 -y O o . (A4) y=(y,yz,1xzx,1),

0 2z 1 0 =(X,Y,Z,X,Y,2). (B1)
The generators of the four-tuple module are given by the se\}v . )
AUB* whereA andB* are the sets described below. e now express the; andbj’ in terms of,B,v,{:
A is the set of row vectors of the matrix-d- ¢ where the a,=vy—2¢,
dot denotes the matrix product ahds the identity matrix,
4X4 in our case. Thus, a,=a—2z0,

a,=(1-2%,0x-yz1-2%), ag=—za+ B—Xy+Xxz{,

a,=(02(1-2%) xy—zy(1-2?), a,=z¢,
_ 2 2_

a3 (01011 X 1X(Z 1))1 b’]\::—ya+yzﬂ+ y—zg,
— (52 2

a4_(z !XZ!yZ!Z ) (AS) b;Z(l—ZZ),B—X'y-i-XZé,

We thus first get four generators. The additional generators .

are obtained by computing tf®polynomials of the Groeb- b3 =B-Yy{. (B2

ner basisg. The S polynomial of two polynomialgy,,g, is

i i (A)-
obtained by multiplyingy; andg, by suitable terms and then Further, we also list below, 8, y,Z in terms of X"

adding, so that the highest terms cancel. For example, in our a=X®,
caseg,=z°—1 andg,=y?—1 and the highest terms aré
for g, andy? for g,. We multiply g, by y? andg, by z% and B=X@),

subtract. Thus, th& polynomial p,, of g; andg, is
y=—XW 42X,

=X, (B3)

P12= Y201~ 220, =22 -y (A6)

Note that order is definedk&y>z) and they?z? term can-
cels. For the Groebner basis of three elements we get 8ireeThis proves that since the , bj" generate the required mod-

polynomialspy,,p13,P23. The p;; must now be rexpressed ule, the a,8,y,{ and X®), A= 1,2,3,4, also generate the
in terms of the Groebner bagis This gives a X 3 matrixb. same module.

The final step is to transform to four-tuples by multiplying The Groebner basis is given in terms of the above genera-
by the matrixc to obtainb* =b-c. The row vectorsb{" ,i  tors as followsGM=¢, GP=Xx1) G®)=p, GHW=q, and
=1,2,3, ofb* form the setB*: GO®)=a,
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