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Thermal noise in half-infinite mirrors with nonuniform loss: A slab of excess loss
in a half-infinite mirror
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We calculate the thermal noise in half-infinite mirrors containing a layer of arbitrary thickness and depth
made of excessively lossy material but with the same elastic material properties as the substrate. For the special
case of a thin lossy layer on the surface of the mirror, the excess noise scales as the ratio of the coating loss to
the substrate loss and as the ratio of the coating thickness to the laser beam spot size. Assuming a silica
substrate with a loss function of310 8, the coating loss must be less thar B0~ ® for a 6 cmspot size and
a 7 um thick coating to avoid increasing the spectral density of displacement noise by more than 10%. A
similar number is obtained for sapphire test masses.
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[. INTRODUCTION we discuss the experimentally important special case where
the lossy layer is at the surface of the mirror and is thin
The second generation Laser Interferometric Gravitationatompared to the spot size of the light beam.
Wave ObservatoryLIGO) gravitational wave detector will

require large core optics with low internal dissipation. The Il MATHEMATICAL FORMALISM AND REVIEW
baseline design for LIGO Il will use 30 kg sapphire mirrors;
a fall back design would use silica mirrdr]. A loss func- In our previous papelrll] we used the fluctuation dissi-

tion less than 3.3 10 ° has been measured at high frequen-pation theorem to compute the cross spectral density of the
cies in small samples of sapphir2,3]. Substrate loss func- mirror surface displacements resulting from the off-
tions for silica have been measured to be around or belowesonance thermal noise in the test masses. The loss was
3% 10 8 in several different sample geometr[ds-7]. How-  parametrized through the imaginary part of the stiffness ten-
ever, to achieve this low loss in a full size coated and sussor c; the calculation was carried out in the quasistatic limit
pended LIGO II mirror the attachments for the fused silicafor isotropic and uniform loss, in which case the fluctuation
suspension, the multilayer mirror high reflector coating, andlissipation theorem can be expressed in terms of the static
the antireflection optical coating must not increase the disGreen’s function. As we showed in R¢11] the power spec-
placement noise of the mirror in the frequency range of intral density of the phase noise imposed on a light beam of a
terest. field-amplitude radiusv reflected from a lossy half-infinite
Until recently the approach used to calculate mirror ther-mirror can be written
mal noise involved a normal mode expansion of the mirror
acoustic mode$8]. Direct approaches to the problem have 16kaT 1 K2
been developed by Levif9], Nakagawaet al. [10,11], sfp'“g'e(f )= 2 - J J ds
Bonduet al.[12], and Liu and Thorng13]. Moreover, Levin ™

f wh

has used this approach to point out that nonuniform loss in a . .

mirror can lead to higher than otherwise expected thermal Xf f dS'e 2N Wi e 2T ym y e (77 7).
noised[9]. In this paper we use the general formalism devel-

oped in Refs[10] and[11] to derive expressions for the (1

phase noise imposed on a Gaussian light beam when it is

reflected from a half-infinite lossless mirror with a lossy This result relates the spectral density of phase noise induced
layer of arbitrary thickness placed at an arbitrary depth fronon a Gaussian beam by reflection from a mirror at tempera-
the surface from which the light beam is reflected. To com-+ure T to the static elastic properties of the mirror, the imagi-
pute the noise for the case where the mirror has both loss anmthry part of the elastic Green'’s function, and the laser beam
an extra layer with a different loss we take the incoherenspot size on the mirror.

sum of the noises from the uniform-lossy mirror and the It can be shown further that, under the usual single-loss-
lossless mirror with a lossy layer. This procedure is legiti-function assumption, the imaginary part of the elastic
mate for low-loss cases where the loss can be estimated aGreen’s function is proportional to the loss function and the
curately by up to linear terms in the loss functions. Finally,static Green’s functioiicf. Appendix A. The essential input
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for these calculations is, therefore, the static Green’s function

for an isotropic half-space medium given in Rgf4],

1-02 1

Im IF’/ =1 I?/,l?”: - - ,
Xzz( )= ¢Xz( )=¢ 7E |r’—r”|

2
whereg is a loss functiong the Poisson ratid; the Young'’s
modulus, and”’ andf” are surface points. The phase noise
after a single bounce from a half-infinite mirror with uniform
loss is obtained by substituting E@) for the imaginary part
of the Green’s function into Ed1) for the phase noise,

4kgT o(f) k? (1—0a?)
2w E

S9N, )= 3)

which is in agreement with Levin's resul®] for the dis-
placement noise as corrected by Liu and Thorbg], and

noting that our expression is for the double-sided spectral
density and Levin’s result is for a single-sided spectral den-
sity. We will now investigate the case where a lossy slab is

embedded in a lossless half-infinite mirror, for which we

need the Green’s function for this more complicated prob-_

lem.

IIl. LOSSLESS HALF-INFINITE MIRROR CONTAINING A
LOSSY LAYER

To calculate the phase noise after a single bounce from
lossless mirror containing a slab with loss we start as befor
with the elastic Green’s function. For a half-infinite mirror
whose surface is &=0 and all of whose loss is confined to
a layer betweenr,; andz,, the imaginary part of the Green'’s
function is derived in Appendix A,

2

—
ImxgAF' =P =¢—=[F(z)-F(z)], @
where the functiorF is defined as
) 1 . 2’/(1- o)
zZ)= 21 21
JF—r+az\ " (F-+ad)
122%/(1- o) .
+(|F/_I:>/r|2+422)2 . ( )

Substituting Eq.(4) for the imaginary part of the Green's

function into Eq.(2) for the phase noise after a single bounce G(w,o,z)=

we find

16kBT ¢Iayer(f ) k_2
s f w?

(1-0?) ,
) E f f 43
XJ f dS/e—2(F'2/w2)e—2(F"2/W2)[|:(Zl)

—F(z2)]. (6)

The two surface integrals can be performed as shown i
Appendix B; inserting these results into E) we obtain

SYe(f)= (
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FIG. 1. A plot of the functionG(w,o,z;) —G(w,0,2,) for z;
0 as a function ofz,/w evaluated for the Poisson ratio of sap-
phire, taken to be 0.23.

4|(BT ¢Iayer(]c ) k_2 (1_0'2)
w3 f w E

- G(w,0,2,)]

Slq?yer(f,W): [G(W,O’,Zl)

a
e

= §¢ingle(f ) ¢Iayer)[G(W'0-’Zl) ~G(w,0.25)],
(7)

where in the second equation we use E3).for the thermal
noise from a uniform half-infinite mirror an@ is defined as

f dxe ( (4z/w)x

This integral is evaluated analytically in Appendix B:

2z

1+W—(1_U)x

G(w,0,2)=

472

2
Wi

()

2 . 2(zIw)?
J_l 1= [(@W) = 4ZwW)"]+] 1= ———
16(z/w)* 22
D e @) erfq(2z/w). C)

The factor preceding the square brackets in &.is the
phase noise after a single bounce from a half-infinite mirror
with a uniform l0ssgy,ye,. If we setz;=0 and take the limit
asz, becomes largeG approaches 1 and we rederive Eg).

for a mirror with uniform loss. Figure 1 plot&(w,o,z,)

n-G(w,0,2.=0) as a function ofz,/w. We see that
G(w,0,2,) —G(w,0,z,=0) grows monotonically with the
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n T ] i Dia er(]c )

] SO ) =gsindlq f, [1—(1—y— G(w,0,z

] o (f) o e( Psubst) bounet T) [G(w,0,2y)

]

' —G(w,o,zzn}. (11)
- For cases where the layer loss is much greater than that of
¥ ] the substrate, this expression can be simplified to the follow-
g ing form:
5 Brayed 1)
(0] ~ S~ . |

001 | N S S, >=sil“9'9<f,¢subst>{ 1+ == [G(W,0,2)

N ~ o ] d)subst(f)
\ ~ T~
~ : —G(W,o,zz)]]. (12)
\ ~ -

\ We will now examine the experimentally important case
O e T T T s s 1, Where the lossy layer is thin and at the surface of the half-
infinite substrate.

z1/w

FIG. 2. Aplot of G(w,0,2;) —G(w,0,2,) for several values of  VI. LOSSY HALF-INFINITE MIRRORS CONTAINING A
|z,—2z;|/w=1{0.1,0.316,1.0,3.16,10.Gas a function ofz, /w evalu- THIN LOSSY SURFACE LAYER
ated for a Poisson ratio of 0.23. e . .
To evaluate the case of a half-infinite lossy mirror with a

) ) thin lossy surface layer or coating, we compute the limit for
layer thickness, and approaches 1 mrw. If we fix the  ; —0 andz,=d<w as we did above. The first case consists
layer thickness at,—z;,=d and then plot the phase noise as f 4 half-infinite mirror with lossppe,uniformly distributed
a function of the depth of the layer below the surface, weroughout, and the second case will be a half-infinite loss-
find that the phase noise goes to zero as the layer is lowerggss mirror containing a layer of thicknedst the surface: in

into the mirror beyond a characteristic depth approximatelyyiner words, a coating, with l0sé.... With Egs. (3) and
equal to the light beam spot size. The result of evaluating Eqi ) we find coa

(7) for several values ofl=z,—z,; as a function ofz, /w is
shown in Fig. 2.

50 )~ 0981 g oo 14 2 (1-20) ¢coat( ﬂ)]’

\/; (1=0) Psupstr\ W
IV. LOSSLESS HALF-INFINITE MIRROR CONTAINING A (13
THIN LOSSY SURFACE LAYER )

where the M? dependence of the term corresponding to the

For the important practical case, which approximates & rface layer agrees with Levin's E@0) in Ref. [9].
multilayer dielectric coating, as a thin lossy layer at the sur-

face of the mirror, i.e.z;=0, z,=d whered<w, G can be ,
integrated analytically as shown in Appendix B to yield VII. COMPARISON WITH LEVIN'S METHOD

We have also calculated this expression using the method
of Levin, and find the same result. Levin’s method consists
2 (1-20)/d d\2 of calculating the response of the test mass to a cyclic pres-
\/_—W(V_V> (W) . sure distribution applied to the test-mass face, where the
m pressure distribution has a Gaussian profile of the same
(10)  width as the beam. It can be shoW®j that for frequencies
far below the lowest resonant frequency of the test mass, the
(double-sidedl power spectrum of excitations having the
same Gaussian profile as the pressure distribution is

Slfyer(f )= §‘pingle( f, d’layer) [

V. LOSSY HALF-INFINITE MIRRORS CONTAINING A
THICK LOSSY SLAB

To evaluate the case of a half-infinite lossy mirror in f)= 2kgTU (f) (14)
which is embedded a lossy layer, we use linear superposition. ()= mfF2 ¢,

As shown in Appendix A the uniform-loss contribution can

be given by Eq(3) with ¢= ¢ yps» While the excess layer whereF is the amplitude of the Gaussian pressure distribu-
loss is given by EQ(10) With ¢jayer— diayer— Psunse- Then  tion, U is the mechanical energy of the resulting test-mass
by linearly superposing these two spectral densities we obresponse, and(f) is the loss angle of the test-mass re-
tain the total phase noise imposed on the light beam: sponse. The mechanical energy may be shown tdBg 3
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F2(1—0?) able coatings do not meet this requiremsit A number in
=, (15)  the range of 10° should also apply for sapphire. In both
2\mwE cases it should be borne in mind that we have neglected the

differences in the elastic properties of the substrate and the
film, an issue that will be addressed in a future paper. Pre-
liminary calculations indicate that these corrections will not
@hange the result by more than a few tens of percent.

whereE is the Young’s modulus of the mirror material and
is Poisson’s ratio. The total loss angfgf) has contribu-
tions from loss in the substrate and loss in the coating. For
thin coating we can writ¢15]

IX. CONCLUSION

ud

G(1) = bsuwsit U Pooats (16) We have calculated the thermal noise caused by the inclu-

sion of a lossy layer in an otherwise lossless half-infinite

whereéU is the energy density at the surface integrated ovemirror. By taking a linear superposition of this noise source

the surface andl is the thickness of the coating. Using the with that of a uniformly lossy half-infinite mirror we have

solutions to the elastic equations presented by Bogtdai.  computed the thermal noise in a half-infinite lossy mirror
[12] (as corrected by Liu and Thorr&3]) we have found containing a layer of excessively lossy material. The limit in
which this lossy layer lies at the surface of the mirror and is
F2(1+0)(1-20) much thinner than the laser spot size yields a simple analyti-

U= : (17 cal result, from which we can set an upper limit for the

acceptable loss in the LIGO Il mirror coatings 0k30™°.

TWE

Combining these equations, we obtain
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S.(f) by (2k)? we obtain the phase noise power spectrum,

S,"9f). The result is identical to E¢13). APPENDIX A
VIIl. LIGO Il COATING LOSS REQUIREMENTS FOR In Ref.[10], we have shown from the energy-balance re-
SAPPHIRE AND SILICA SUBSTRATES lation that

The frequency range over which the thermal noise in the
mirror coating is important for LIGO Il is between 200 and Im xgq(Fl,F2)=f dVA[dix (X, F ) 1€ im ([ A xmg(X:F2) T}
400 Hz. In this region the displacement noise in a silica v
substrate is dominated by thermal noise while in sapphire the +0(w), (A1)
displacement noise is dominated by thermoelastic noise. At
300 Hz the sapphire linear spectral density of thermoelastigvherey;'(X,X") is the elastic, traction-free Green’s function,
noise is between one-half and one-third the thermal noise Iﬁl and f’z are surface positionsy and the integra| is performed
silica. Considering a silica substrate the requirement fObver the |ossy region of the mirror body, name|y’ over the
LIGO Il is that neither the attachments nor the optical coat,glyme Vv where the los<];,,,(X) of the elastic constant is
ing increases the power spectral density of the thermal noisgonvanishing. Hereafter, we assume the quasistatic limit,
by more than 10%, which puts a limit on the coating loss ofihys ignoring theD(w) terms. Let us first introduce the usual

single loss functionp, so that
26l

¢coat<2_0 E m ¢substr- (19)

Ciiim(X)=(X) - Cfjim » (A2)
Assuming a spot sizav=6.0cm, a coating thicknesd  where we assume the same loss function for all components

=7 upm, and using the material properties of fused silicaof the stiffness tensor, a simplifying assumption for general

with a Poissor_18ratio ofr=0.16 and a loss function of ¢ases. We next separatento a uniform lossp and fluctua-
Dsupsi= 3-3X 10 °, we find, from Eq.(19), tion A (X) around it as

75 _
Ponar= 310 20 B(%)= +A (). (A3)
in order that the high reflectivity coating not increase the

power spectral density of the thermal noise by more thafor a localized loss, we set=0 while A¢(xX)#0 in the
10%. Preliminary measurements suggest that currently availessy region. For a localized excess loss, wegeatonstant
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everywhere, while\ ¢(X) # 0 in the excess-loss region. Un- q;ijk(rjz)Eci'“mglegk(ryz)

der these assumptions, tigeterm in Eq.(Al) can be inte- 1

grated to yield _ Yok J deeiprq)ijk(rj,Z) (A8b)
IM x(F1,72) lunit= & Xog(F1,F2) (A4)  we can rewrite Eq(A7) as

because, when integrated by parts with respec#,tothe o s oo A 2 B (F1—Fy)
i i § i Hanz(rlarZ)_—Z d petii 2
integrand becomes a delta function through the field equatio (2m)

X [Xi‘szt(ﬁyzl)q)zjz( —P,21) - X?;(ﬁizz)(szz
X(=p.z2)]. (A9)

while the surface integral term vanishes due to the tractiontpe half-space Green’s functigA8a) can be found in Ref.

free boundary condition imposed offj’. For the A¢(X)  [14]. Here, we express the results in the derivative form as
term, assume that ¢(X) =A ¢+ 0 whenx is in a subvolume

V' while vanishing outsid&/’. The volume integral of Eq. 1+ o
(A1) can be similarly performed by parts, except that, in thisttﬁ( F,z)=—-——
case, it only leaves the surface integral over the bounding 2mE

é’i{ciljlmaerSntq(ivFZ)}: — 8jq0(X—T3), (A5)

= Oup™ da0p(20R~(1-20)2

surfaceS' of V',
XIn(R-2)}/, (A10a)
IM Xpro(F1,72) = - Xpg(T1,F2)
ST —l+aa 1-20)In(R 2 A10b
+20 [ SRR AR, K0P g (1 2ONRED TR (A0
(A6) st - 1+o z
X2p(F2)=5—=dg| —(1—20)IN(R-2)— 5|, (A100)
. L . 2m7E R
because the delta functigA5) has no contribution sincg,
lies outside the integration volumé& . Let us apply Eq(A6) 5
to a lossy layer, where the mirror body occupies the semi- s, .. - 1+0(2(1-0) L2 (AL00)
infinite space(—ow<x, y<+ow, z<0), while the lossy re- Xzl 27E R R3)’

gion V' is a near-surface layer bounded by the two planes,

z=—2, andz=—z, (—z,<z<—2z,<0). Without loss of wherea,B={x,y} andR= \r?+Z%. Explicit differentiation
generality, we consider the local loss case, ig=0 and reproduces the result of Reff14] after changingz— -z,
A ¢= jayer, below.[For the case of a uniform and an excessWhile it is easy to Fourier-transform the expressioh$0) to

layer loss, we seth= ¢qpstr aNd A P = jayer— Psupstn and

include the previous uniform-loss result, thus deriving Eq. & ... 110 e_pz _ _ PaPs
(10).] Specifically wherp=q=z, Eq. (A6) reads Xap(P2)=—F D 26,5~ (20—p2) st (Alla)
st~ 1+0 eP?, Pg
|mX;vz<r1,r2>=A¢f ds Xo(B.2)= =~ —il(1-20)-p2]-2, (Al1b)
Sy p p
XX R P Chjimd XA K F2) o= o, (o e o 0. o
,2)=———i[—(1— -pz]—, C
_ ‘St()-(),r)l)c" aIXSt )—(>,r—.>2):|2:_z ' Xaz(p E p [ ( 0-) p ] p
[X]z zjlm mz( 2
(A7) <t 1+ 0 eP?
Xzz(p,Z)Z??[Z(l—U)—pZ], (Alld)

where the surface integral is over tkg plane. Due to the
translational symmetry in the andy directions, the integral
of Eq. (A7) becomes a convolution integral. Thus, by intro-
ducing

using the identity

- pZ

1 J’dgpeiﬁre_:ii (z=0) (A12)
(27,-)7 p 27 R

1
st ) — 2nalpr stz
Xi(1:2) (2m)° j d*pexij(p.2), (Ag3) and itsz derivatives and integrations.
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The quantity®;;,(p,z) defined in Eq(A8b) can be also
obtained from EqsiA11) and the symmetry properties of the
stiffness tensor in an isotropic medium,

20
Cijkl :m ik Sj1 + i1 Sj + 1 2o Sij 54-
(A13)
Here, we quote only the results needed,
3L P.2)=eP(~ip,)z, (Al4a)
3L {P.2)=eP(1-p2), (A14b)

which allow the explicit multiplication

Xaz(B:2) P20 —P,2) + X2AP,2) D1, — B,2)
2

= f p,o0,z A15
E ( O, )1 ( )
W| ere
f p(TZ——2’7T ‘ l——pZ+—pZ
( ) ’ ) p j 1 L

or after the Fourier transformation with the help of Eq.
(A12),

1 z2

1+
1-or*+4z°

f(r,o,2)=

1
Jre+4z°
12 z
t oo o2
1-0 (r°+4z%)

4

. (A17)

Inserting Eqs(A15) into (A9), we finally obtain Eq(4):
namely,
0.2

l_
7E

Im x7AF1.,F)=A¢ [f(|F1—F2],0,21)

—f(|F1—F2|,U,ZZ)]. (A18)

APPENDIX B

The expressions for the phase noise contain surface inte-

grals of the form

I(Fafb):ffds,fde”e‘ZW—Fa)Z/wz)

x e 2T A (P17, 2) (BY)

where the integrals ovedS and dS’ are over the two-

dimensional plane of the mirror reflecting surface defined by

vectorsi’ andr”, andf is defined as

PHYSICAL REVIEW B5 102001
1 z2

f(r.z)= 1o Az

1
1
12 z

4
.
1-o (F2+422)2>

(B2)

Due to the translational symmetry of the integration plane,
the expressiohin Eq. (B1) is a function of the difference in
the beam locations,—r},. Indeed, by shifting the integra-
tion variables ag’ —f' + 1, andf”—f"+r,, we can rewrite
the expression fof as

I(Fa'Fb):l(Fa_Fb):ffdslfde’e’z((F'*Faﬁb)Z/wz)

xe 27 AE(F - 2), (B3)
which not only proves the above assertion, but also shows
that the integral is a double convolution that can be evaluated
easily in the Fourier space. In the lossy layer Green’s func-
tion derivation in Appendix A, the functiof was obtained
from the Fourier representation

f(r,z)=

f d2peiﬁr'—2p\2\ﬁ 1+ Lp|z|
2p 1-o0

(2m)?

1
n 2,2
—SPZ

1 . (B4)

Noting that the Fourier transform of a Gaussian is a Gaussian

fj dzre—iﬁr‘—zr’zlwzzffdzre—2((F/w)+i(w/4)ﬁ)2—(w2/8)p2

2
W~ w2ig)p?

= T e , (BS)

the expression fot is given as an inverse Fourier integral,

1 L
(Fa= )= g2 | PP
2\ 2
TW 2 2 4 1

x| —— —p w4 —2plz| ~ =

> ) e e TS 1+ 1_Up|z|
1

+Ep222 . (BG)

The case of interest here i§=r}, which simplifies the
expression to

1 ’7TW2 2 * 2 2
= 2. | — . — P w/4—2p|z]
I 2m)? 2 ( 5 ) wao dpe
1 1
> 2,2
1+ l_Up|z|+ -4 P2
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=< -ﬁG(W,(r,Z),
W

W2\ 2
_) (B7)

2

where

1+ !
ED|Z|

W o0
G(w,0,2)= TJ;) dpe PAwi/a-2nld
v

1
+ —

22
l—O'p z

N
+1—0'WX

= i fwdxe7X274(|Z|/W)X
NE

ZZ
— X
W2

4

s 2
1-0

. (B8)

The integral can be performed explicitly. Letting
=2|z|/w, we find that

2 (= 2
- — X< —2UX|
G(w,0,2) \/;fo dxe 1+ 1_qu
1
+ u?x?|. (B9)
1-0
With
* o
|1=f dxe‘xz‘zungeuz erfau), (B10)
0

PHYSICAL REVIEW D65 102001

NE

1

I2=J dxe X 20 = ———ue”zerfo(u), (B11)
0 2 2
o 1 (1
— —x2—2ux 2 _ T A 2
I3 fodxe X 2u+ 5 2+u
xe'’ erfdu), (B12)
we obtain
G = 2 I+ ! l,+ u? |
(W,0,2)= \/; 1"1-6¢'?2"1-¢°3
=L 2 Haw)-a@wy?
_\/_;E[(Z w) —4(z/w)”]
2(zlw)?  16(z/w)*
1- -
1-o 1-0o
X e erfq( 2z/w). (B13)

When |z|<w if we keep terms up to linear first order in
|z|/w we find that

Z2

+o|
W

2 1-20 |7
=|. ®19

\/El—o'w

G(w,o,2)=1-
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