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Why do naked singularities form in gravitational collapse?
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We investigate the key physical features that cause the development of a naked singularity, rather than a
black hole, as the end state of spherical gravitational collapse. We show that sufficiently strong shearing effects
near the singularity delay the formation of the apparent horizon. This exposes the singularity to an external
observer, in contrast with a black hole, which is hidden behind an event horizon due to the early formation of
an apparent horizon.
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I. INTRODUCTION

In the past decade or so, several scenarios have been
covered where the gravitational collapse of a massive ma
cloud results in the development of a naked singularity@1#.
The final outcome of gravitational collapse in general re
tivity is an issue of great importance and interest from
perspective of black hole physics as well as its astrophys
implications. When there is a continual collapse without a
final equilibrium, either a black hole forms when the sup
dense regions of matter are hidden from the outside obse
within an event horizon of gravity, or a naked singular
results as the end product, depending on the nature of
initial data from which the collapse develops.

The theoretical and observational properties of a na
singularity would be quite different from those of a bla
hole ~see @2# for further discussion of this!. Thus it is of
crucial importance to understand the key physical charac
istics and dynamical features in collapse that give rise t
naked singularity, rather than a black hole. While many m
els of naked singularity formation within dynamically deve
oping collapse scenarios have been found and analyzed@3#,
not much attention has been given to understanding this
portant aspect. We begin here an investigation of this qu
tion.

The main purpose of this paper is to identify the physi
process which exposes the singularity. We find that it is
shearing effects which, if sufficiently strong near the cen
worldline of the collapsing cloud, would delay the formatio
of the apparent horizon so that the singularity becomes
ible and communication from the very strong gravity regio
to outside observers becomes possible. When the she
weak ~and in the extreme case of no shear!, the collapse
necessarily ends in a black hole, because an early forma
of the apparent horizon leads to the singularity being hid
behind an event horizon.

For spherical gravitational collapse of a massive ma
cloud, the interior metric in comoving coordinates is
0556-2821/2002/65~10!/101501~5!/$20.00 65 1015
is-
er

-
e
al
y
-
er

he

d

r-
a
-

-
s-

l
e
l

s-
s

is

on
n

r

ds252e2n(t,r )dt21e2c(t,r )dr21R2~ t,r !dV2. ~1!

The matter shear is

sab5e2nS Ṙ

R
2ċ D ~ 1

3 hab2nanb!, ~2!

wherehab5gab1uaub is the induced metric on 3-surface
orthogonal to the fluid 4-velocityua, andna is a unit radial
vector.

The initial data for collapse are the values ont5t i of the
three metric functions, the density, the pressures, and
mass function that arise from integrating the Einstein eq
tions ~for details see, e.g.@4#!,

F~ t i ,r !5E r~ t i ,r !r 2dr, ~3!

where 4pF(t i ,r b)5M , the total mass of the collapsin
cloud, and wherer .r b is a Schwarzschild spacetime. W
use the rescaling freedom inr to set

R~ t i ,r !5r , ~4!

so that the physical area radiusR increases monotonically in
r, and withRi851 there are no shell crossings on the init
surface.~We will be interested here only in the central she
focusing singularity atR50,r 50 which is a gravitationally
strong singularity, as opposed to the shell-crossing o
which are weak, and through which the spacetime m
sometimes be extended.! The evolution of the density and
radial pressure are given by

r5
F8

R2R8
, pr5

Ḟ

R2Ṙ
. ~5!

The central singularity atr 50, where density and curvatur
are infinite, is naked if there are outgoing nonspacelike g
©2002 The American Physical Society01-1
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desics which reach outside observers in the future and te
nate at the singularity in the past. Outgoing radial null ge
desics of Eq.~1! are given by

dt

dr
5ec2n. ~6!

Consider first the case of homogeneous-density colla
r5r(t). Writing f 5e22cR8221, the Einstein equation
give f 2e22nṘ252F/R. Then Eq.~6! can be written as@5#

dR

du
5S 12Af 1F/R

11 f D R8

ar a21
, ~7!

whereu5r a (a.1). If there are outgoing radial null geo
desics terminating in the past at the singularity with a d
nite tangent, then at the singularity we havedR/du.0. For
homogeneous density, the entire mass of the cloud colla
to the singularity simultaneously at the event (t5ts,r 50),
so thatF/R→`. By Eq. ~7!, dR/du→2`, so that no radial
null geodesics can emerge from the central singularity. It
be similarly shown that all the later epochst.ts are similarly
covered.

We have thus shown thatfor spherical gravitational col-
lapse with homogeneous density (and arbitrary pressur
the final outcome is necessarily a black hole. We note that
this conclusion does not require homogeneity of the pr
surespr and p' , and is independent of their behavior. Th
result generalizes the well-known Oppenheimer-Snyder
sult for the special case of dust, where the homogene
cloud collapses to form a black hole always.

An immediate consequence is thatif the final outcome of
spherical gravitational collapse is not a black hole, then t
density must be inhomogeneous. In any physically realistic
scenario, the density will be typically higher at the center,
that generically collapse is inhomogeneous.

II. INHOMOGENEOUS DUST

Consider now a collapsing inhomogeneous dust clo
(p50), with density higher at the center. The metric
Tolman-Bondi-Lemaiˆtre, given by Eq.~1! with n50 and
e2c5R82/(11 f ), and

Ṙ25 f ~r !1
F~r !

R
. ~8!

These models are fully characterized by the initial da
specified on an initial surfacet5t i from which the collapse
develops, which consist of two free functions: the initial de
sity r i(r )5r(t i ,r ) @or equivalently, the mass functionF(r )#,
and f (r ), which describes the initial velocities of collapsin
matter shells. At the onset of collapse the spacetime is
gularity free, so that by Eq.~5!,

F~r !5r 3F̄~r !, 0,F̄~0!,`. ~9!

The initial densityr i(r ) is
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r i~r !5r 22F8~r !. ~10!

The shell-focusing singularity appears along the curvt
5ts(r ) defined by

R„ts~r !,r …50. ~11!

As the density grows without bound, trapped surfaces
velop within the collapsing cloud. These can be traced
plicitly via the outgoing null geodesics, and the equation
the apparent horizon,t5tah(r ), which marks the boundary o
the trapped region, is given by

R„tah~r !,r …5F~r !. ~12!

If the apparent horizon starts developing earlier than the
och of singularity formation, then the event horizon can fu
cover the strong gravity regions including the final singul
ity, which will thus be hidden within a black hole. On th
other hand, if trapped surfaces form sufficiently later duri
the evolution of collapse, then it is possible for the singul
ity to communicate with outside observers.

For the sake of clarity, we consider marginally bound c
lapse,f 50, although the conclusions can be generalized
hold for the general case. Then Eq.~8! can be integrated to
give

R3/2~ t,r !5r 3/22 3
2 ~ t2t i!F

1/2~r !, ~13!

and Eqs.~11! and ~12! lead to

ts~r !5t i1
2

3F r 3

F~r !G
1/2

, ~14!

tah~r !5ts~r !2
2

3
F~r !. ~15!

The central singularity atr 50 appears at the time

t05ts~0!5t i1
2

A3rc

, ~16!

where rc5r i(0). Unlike the homogeneous dust ca
~Oppenheimer-Snyder!, the collapse is not simultaneous
comoving coordinates, and the singularity is described b
curve, the first point being (t5t0 ,r 50).

For inhomogeneous dust, Eqs.~2! and ~13! give

s2[
1

2
sabs

ab5
r

6R4R82F
~3F2rF 8!2. ~17!

A generic~inhomogeneous! mass profile has the form

F~r !5F0r 31F1r 41F2r 51•••, ~18!

near r 50, where F05rc/3. Homogeneous dus
~Oppenheimer-Snyder! collapse hasFn50 for n.0, and Eq.
~17! implies s50. The converse is also true in this case:
we impose vanishing shears50, we getFn50. Whenever
there is a negative density gradient, e.g., when there is hig
1-2
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density at the center, thenFnÞ0 for somen.0, and it fol-
lows from Eq.~17! that the shear is then necessarily nonze
Note that if we want the density profile to be analytic, we c
set all odd termsF2n21 to zero; however, we note that this
not as such required by our own analysis, which is indep
dent of any assumptions onFn .

The important question is what is the effect of such
shear on the evolution and development of the trapped
faces? In other words, we want to determine the behavio
the apparent horizon in the vicinity of the central singular
at R50,r 50. To this end, let the first nonvanishing deriv
tive of the density atr 50 be thenth one (n.0), i.e.,

F~r !5F0r 31Fnr n131•••, Fn,0, ~19!

near the center. By Eqs.~17! and ~15!,

s2~ t,r !5
n2Fn

2

6F0
F123F0

1/2~ t2t i!1
9

4
F0~ t2t i!

2G r 2n

1O~r 2n11!, ~20!

tah~r !5t02
2

3
F0r 32

Fn

3F0
3/2

r n1O~r n11!. ~21!

The time-dependent factor in square brackets on the righ
Eq. ~20! decreases monotonically from 1 att5t i to 0 at t
5t0. Thus the qualitative role of the shear in singular
formation can be seen by looking at the initial shear. T
initial shears i5s(t i ,r ) on the surfacet5t i grows asr n, n
>1, nearr 50. A dimensionless and covariant measure
the shear is the relative shear,us/Qu, where

Q52
Ṙ

R
1

Ṙ8

R8
~22!

is the volume expansion. It follows that

Us

QU
i

5
2nFn

3A6F0

r n@11O~r !#. ~23!

It is now possible to see how such an initial shear dis
bution determines the growth and evolution of the trapp
surfaces, as prescribed by the apparent horizon curvetah(r ),
given by Eq.~21!. If we assume the initial density profile i
smooth at the center, thenr i(r )5rc1r2r 21•••, with r2
<0, which corresponds toF(r )5F0r 31F2r 51•••, with
F2<0. Now suppose thatr2 ~and henceF2) is nonzero.
Then Eq.~21! implies that the apparent horizon curve in
tiates atr 50 at the epocht0, and increases nearr 50 with
increasingr, moving to the future. Note that as soon asF2 is
nonzero, even with very small magnitude, the behavior of
apparent horizon changes qualitatively. Rather than go
back into the past from the center, as would happen in
homogeneous case withF250, it is future pointed. This is
what leads to a locally naked singularity. The singularity m
be globally naked, i.e., visible to faraway observers, depe
ing on the nature of the density function at larger.
10150
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A naked singularity occurs when a comoving observer~at
fixed r ) does not encounter any trapped surfaces until
time of singularity formation, whereas for a black hol
trapped surfaces form before the singularity. Thus for a bl
hole, we require

tah~r !<t0 for r .0, near r 50. ~24!

In the general case~not necessarily smooth initial density!,
this condition is violated forn51,2, as follows from Eq.
~21!. The apparent horizon curve initiates at the singular
r 50 at the epocht0, and increases with increasingr, moving
to the future, i.e.,tah.t0 for r .0 near the center. The be
havior of the outgoing families of null geodesics has be
analyzed in detail in these cases, and it is known that
geodesics terminate at the singularity in the past@4#, which
results in a naked singularity. In such cases the extre
strong gravity regions can communicate with outside obse
ers. For the casen53, Eq. ~24! shows that we can have
black hole if F3>22F0

5/2, or a naked singularity, ifF3,

22F0
5/2. This is illustrated in Fig. 1. Forn>4, Eq. ~24! is

always satisfied, and a black hole forms.
When the dust density is homogeneous, the apparent

rizon starts developing earlier than the epoch of singula
formation, which is then fully hidden within a black hole
There is no density gradient, and no shear. On the o
hand, if a density gradient is present at the center, then
trapped surface development is delayed via shear, and
pending on the ‘‘strength’’ of the density gradient or shear
the center, this may expose the singularity. It is the rate
decrease of shear as we approach the centerr 50 on the
initial surfacet5t i , given by Eq.~23!, that determines the
end state of collapse.When the shear falls rapidly to zero a
the center, the result is necessarily a black hole; if shear fa
more slowly, there is a naked singularity.It is thus seen that
naked singularities are caused by the sufficiently stro
shearing forces near the singularity, as generated by the
homogeneities in density distribution of the collapsing co
figuration. When shear decays rapidly near the singula
the situation is effectively like the shear-free~and homoge-
neous density! case, with a black hole end state.

It provides a useful insight to note that when a black h
forms, the apparent horizon typically springs into being a
finite-sized surface, at a finiter, then moving to the cente
r 50. This is what happens, for example, in th
Oppenheimer-Snyder black hole formation in homogene
dust collapse. In such cases, the event horizon, which d
typically start at a point, could have formed earlier than t
apparent horizon. On the other hand, in the case of a na
singularity, it follows from Eqs.~15! and~21! that the appar-
ent horizon starts atr 50, and then is future directed in time
i.e., tah grows with increasing coordinate radiusr along the
apparent horizon curveR5F. These two behaviors of the
apparent horizon curve are very different, and governed
shearing effects. A comoving observer willnot encounter any
trapped surfaces until the time of singularity formation in t
naked singularity case, whereas in the black hole case,
apparent horizon typically developsbeforethe epoch of sin-
1-3
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FIG. 1. Apparent horizon
curves nearr 50 for the n53
case, withF051. The labels on
the curves give the values ofF3,
the nonvanishing coefficient quan
tifying the shear. A black hole
forms if F3>22.
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gularity formation. This is what we mean by delayed form
tion of the apparent horizon, caused by shearing effects.

The relation between density gradients and shear ma
understood via the nonlocal~or free! gravitational field. Den-
sity gradients act as a source for the electric Weyl tensor@6#

DbEab5 1
3 Dar, ~25!

where Da is the covariant spatial derivative.~The magnetic
Weyl tensor vanishes for spherical symmetry.! In turn, the
gravito-electric field is a source for shear~equivalently, the
shear is a gravito-electric potential@6#!:

uc¹csab1
2

3
Qsab1sacs b

c 2
2

3
s2hab52Eab . ~26!

Thus density gradients may be directly related to shear,

Dar524sDas22QDbsab23Db~uc¹csab!23sa
bDcsbc

23Db~sacs b
c !, ~27!

where we have used the shear constraint Dbsab5 2
3 DaQ.

Equation~27! makes explicit the link between the behavi
of density gradients and shear near the center, which
discussed above. The free gravitational field, which media
this link, can also provide a covariant characterization
singularity formation. By Eqs.~23! and ~26!, the relative
gravito-electric fieldE/Q2 ~where E25 1

2 EabEab) near r
50 is given att5t i by

S E

Q2D
i

5
27nFn

18A6F0

r n@11O~r !#. ~28!

Thus naked singularities in spherical dust collapse are
naled by a less rapid falloff of the relative gravito-elect
field as we approach the singularity. Equations~23! and~28!
10150
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provide two equivalent ways of expressing the result. T
specifies how much shear is sufficient to create a~locally!
naked singularity.

For the case of dust collapse, the role of shear in decid
the end state of collapse is fairly transparent. To underst
how shear affects the formation of the apparent horizon
general matter fields with pressures included is much m
complicated, in particular sinceF5F(t,r ), whereasḞ50
for dust. In fact, even in some general classes of nond
models~with nonzero pressure!, it is possible to characterize
collapse covariantly. Above we showed thathomogeneous
densityimplies a black hole end state. The next logical st
would be to consider models for which theinitial density is
homogeneous. For example, if the mass function is

F~ t,r !5 f ~r !2R3~ t,r !, f ~r !52r 3, ~29!

then Eq.~5! shows thatr i and (pr) i are constants. The den
sity and pressure may however develop inhomogeneitie
the collapse proceeds, depending on the choice of the
maining functions, including in particular the initial veloc
ties of the collapsing shells, and the collapse may then
up in either a black hole or a naked singularity, depending
that ~for a discussion on this for the case of dust collapse,
refer to @5#!. In fact, we can show thatzero shear implies a
black holefor these models. By Eqs.~2!, ~5!, and ~29!, the
shear-free condition leads toR8/R51/r , and Eq.~5! then
shows thatr5r(t), i.e., the density evolution is necessari
homogeneous. As shown above, the collapse thus necess
ends in a black hole. For the class of models given by
~29!, whenever the collapse ends in a naked singularity,
shear must necessarily be nonvanishing. Although this c
of models is somewhat special, the result indicates that
behavior of the shear remains a crucial factor even w
pressures are nonvanishing.
1-4
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III. CONCLUSIONS

Since black holes and naked singularities are of great
terest in gravitation theory and astrophysics, it is import
to understandwhy these objects develop. The physics of th
needs to be probed carefully in order to make furth
progress towards cosmic censorship, or to understand
physical implications of naked singularities.

It would appear that the only way a singularity can be la
bare is by distorting the apparent horizon surface and
delaying trapped surface formation suitably. As we ha
shown here, the shear provides a rather natural explana
for the occurrence of~locally! naked singularities. Our main
result is that sufficiently strong shearing effects in spher
collapsing dust delay the formation of the apparent horiz
thereby exposing the strong gravity regions to the outs
world and leading to a~locally! naked singularity. When
shear decays rapidly near the singularity, the situation is
fectively like the shear-free case, with a black hole end st
An important point is that naked singularities can develop
quite a natural manner, very much within the standard fram
work of general relativity, governed by shearing effects.

In the case of spherical dust collapse, shear and den
inhomogeneity are equivalent, i.e., the one implies the ot
Although shear contributes positively to the focusing eff
via the Raychaudhuri equation,

Q̇1
1

3
Q252

1

2
r22s2, ~30!

its dynamical action can make the collapse incoherent
dispersive.~It is this feature which also plays the crucial ro
in avoidance of the big-bang singularity in singularity-fr
cosmological models@7#.! Depending on the rate of falloff o
ys
.

T
.
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shear near the singularity, its dispersive effect can play
critical role of delaying formation of the apparent horizon
without directly hampering the process of collapse.The dis-
persive effect of shear always tends to delay formation of
apparent horizon, but is only able to expose the singula
when the shear is strong enough near the singularity.

We have considered here spherical collapse. Very little
known about nonspherical collapse, either analytically or
merically, towards determining the outcome in terms
black holes and naked singularities. However, phenom
such as trapped surface formation and apparent horizon
independent of any spacetime symmetries, and it is also c
that a naked singularity will not develop in general unle
there is a suitable delay of the apparent horizon. This s
gests that the shear will continue to be pivotal in determin
the final fate of gravitational collapse, independently of a
spacetime symmetries. In any case, our main purpose
has been to try to understand and find the physical mec
nism which leads the collapse to the development of a na
singularity rather than a black hole in some of the we
known classes exhibiting such behavior. What we find is t
the shear provides a covariant dynamical explanation of
phenomenon of naked singularity formation in spheri
gravitational collapse.
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