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Why do naked singularities form in gravitational collapse?
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We investigate the key physical features that cause the development of a naked singularity, rather than a
black hole, as the end state of spherical gravitational collapse. We show that sufficiently strong shearing effects
near the singularity delay the formation of the apparent horizon. This exposes the singularity to an external
observer, in contrast with a black hole, which is hidden behind an event horizon due to the early formation of
an apparent horizon.
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[. INTRODUCTION ds?=—e?"tNdt?+ 2/ (tNdr2+ R?(t,r)d Q2. (1)

In the past decade or so, several scenarios have been diEhe matter shear is
covered where the gravitational collapse of a massive matter
cloud results in the development of a naked singuldiily B o
The final outcome of gravitational collapse in general rela- Tap=€ V(ﬁ_ ‘ﬂ) (5hap—nanp), 2
tivity is an issue of great importance and interest from the
perspective of black hole physics as well as its astrophysicaihere h,,=g,,+ U,Up, is the induced metric on 3-surfaces
implications. When there is a continual collapse without anyorthogonal to the fluid 4-velocity?, andn? is a unit radial
final equilibrium, either a black hole forms when the super-vector.
dense regions of matter are hidden from the outside observer The initial data for collapse are the valuestent; of the
within an event horizon of gravity, or a naked singularity three metric functions, the density, the pressures, and the
results as the end product, depending on the nature of th®@ass function that arise from integrating the Einstein equa-

initial data from which the collapse develops. tions (for details see, e.d44]),
The theoretical and observational properties of a naked
singularity would be quite different from those of a black _ :j ‘ 2
hole (see[2] for further discussion of thjs Thus it is of F(t.r) p(ti,r)redr, )

crucial importance to understand the key physical character-

istics and dynamical features in collapse that give rise to §here 4rF(t;,r,)=M, the total mass of the collapsing
naked singularity, rather than a black hole. While many mod¢loud, and where >r,, is a Schwarzschild spacetime. We
els of naked singularity formation within dynamically devel- Use the rescaling freedom imto set

oping collapse scenarios have been found and anal&ed
not much attention has been given to understanding this im- R(t,r)=r, S
Eggt'ant aspect. We begin here an investigation of this quess—o that the physical area radiRancreases monotonically in

The main purpose of s pper i toceny he physical, S ORI L3 here v o el ossias on e i
process which exposes the singularity. We find that it is thl? . . PSR ony N
ocusing singularity aR=0,; =0 which is a gravitationally

T o o eap NG Uy, 85 oppose o the shl-cossing ones
; ’ : ’ . which are weak, and through which the spacetime may

_Of the apparent h_orlz_on S0 that the singularity be_comes_ VISsometimes be extendgdrhe evolution of the density and

ible anq communication from the very strong gravity regions, 5 g pressure are given by

to outside observers becomes possible. When the shear is

weak (and in the extreme case of no sheahe collapse

necessarily ends in a black hole, because an early formation p=

of the apparent horizon leads to the singularity being hidden R?R’

behind an event horizon.

For spherical gravitational collapse of a massive matteiThe central singularity at=0, where density and curvature
cloud, the interior metric in comoving coordinates is are infinite, is naked if there are outgoing nonspacelike geo-

= F
’ Pr=—=- (5)
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desics which reach outside observers in the future and termi- pi(r)=r"2F'(r). (10)
nate at the singularity in the past. Outgoing radial null geo-
desics of Eq(1) are given by The shell-focusing singularity appears along the curve
=ty(r) defined by
dt B
ar=e " (6) R(ty(r),r)=0. (1)

. ) . As the density grows without bound, trapped surfaces de-
_CotnS|dV?/r _I!rst ‘?S CEIESRC/JEEim(?{ﬁengqus}—Qensny th.)"aps%lop within the collapsing cloud. These can be traced ex-

p._p( ). 722'.'29 -€ » the &ns eln. equations plicitly via the outgoing null geodesics, and the equation of

give f—e”“"R°=—F/R. Then Eq.(6) can be written af5]  the apparent horizom:=t.(r), which marks the boundary of

the trapped region, is given by
dR 1 [f+F/R
du |7 V 1+f
If the apparent horizon starts developing earlier than the ep-

whereu=r< (a>1). If there are outgoing radial null geo- ,ch of singularity formation, then the event horizon can fully
desics terminating in the past at the singularity with a defi-coyer the strong gravity regions including the final singular-
nite tangent, then at the singularity we hal@/du>0. For iy "\hich will thus be hidden within a black hole. On the
homogeneous density, the entire mass of the cloud collaps@gher hand, if trapped surfaces form sufficiently later during
to the singularity simultaneously at the evett(s,r=0),  the evolution of collapse, then it is possible for the singular-
so thatF/R—c. By Eq.(7), dR/du— —, so that no radial "ty to communicate with outside observers.

null geodesics can emerge from the central singularity. It can” gor the sake of clarity, we consider marginally bound col-
be similarly shown that all the later epodiist are similarly lapse,f=0, although the conclusions can be generalized to

covered. _ o hold for the general case. Then H§) can be integrated to
We have thus shown théor spherical gravitational col-  giye

lapse with homogeneous density (and arbitrary pressures),

the final outcome is necessarily a black holige note that R¥2(t,r)=r—3(t—t;) F¥41), (13)

this conclusion does not require homogeneity of the pres-

suresp, andp, , and is independent of their behavior. The and Egs(11) and(12) lead to

result generalizes the well-known Oppenheimer-Snyder re-

sult for the special case of dust, where the homogeneous t(r)zt_Jrz

cloud collapses to form a black hole always. S '3
An immediate consequence is thhthe final outcome of

spherical gravitational collapse is not a black hole, then the

density must be inhomogeneours any physically realistic ta(1) =t(r) =3 F(r). (15)

scenario, the density will be typically higher at the center, so

that generically collapse is inhomogeneous. The central singularity at=0 appears at the time

R/

ara*l'

(7 R(t,{(r),r)=F(r). (12

F(r)

3 112
} , (14

II. INHOMOGENEOUS DUST

to=t(0)=t;+ ,

Consider now a collapsing inhomogeneous dust cloud ‘/TC
(p=0), with density higher at the center. The metric is
Tolman-Bondi-Lemare, given by Eq.(1) with »=0 and
e?’=R'?/(1+f), and

(16)

where p.=p;i(0). Unlike the homogeneous dust case
(Oppenheimer-Snydgrthe collapse is not simultaneous in
comoving coordinates, and the singularity is described by a

F( curve, the first point beingt&tg,r =0).

R2=f(r)+ r (8) For inhomogeneous dust, Eq2) and (13) give
=
. e 2 1 ab r 12
These models are fully characterized by the initial data, 0°=50apo ZW(?ﬁF—fF )< (17

specified on an initial surface=t; from which the collapse
develops, which consist of two free functions: the initial den-

sity pi(1) = p(t. ) [or equivalently, the mass functigh(r)], A generic(inhomogeneoysmass profile has the form

andf(r), which describes the initial velocities of collapsing F(r)=For3+Fr*+Frs+. .., (18)
matter shells. At the onset of collapse the spacetime is sin-
gularity free, so that by Eq5), near r=0, where Fo=pJ3. Homogeneous dust
o o (Oppenheimer-Snydgcollapse hag,=0 forn>0, and Eq.
F(r)=r3F(r), O<F(0)<>. (9 (17) implies 0=0. The converse is also true in this case: if
we impose vanishing shear=0, we getF,=0. Whenever
The initial densityp;(r) is there is a negative density gradient, e.g., when there is higher
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density at the center, thern,#0 for somen>0, and it fol- A naked singularity occurs when a comoving obsefegr
lows from Eq.(17) that the shear is then necessarily nonzerofixed r) does not encounter any trapped surfaces until the
Note that if we want the density profile to be analytic, we cantime of singularity formation, whereas for a black hole,
set all odd term&,,,_; to zero; however, we note that this is trapped surfaces form before the singularity. Thus for a black
not as such required by our own analysis, which is indepenhole, we require

dent of any assumptions d#,.

The important question is what is the effect of such a
shear on the evolution and development of the trapped sur-
faces? In other words, we want to determine the behavior of
the apparent horizon in the vicinity of the central singularity In the general cas@ot necessarily smooth initial density
at R=0,y=0. To this end, let the first nonvanishing deriva- this condition is violated fom=1,2, as follows from Eg.

ta(r)<ty for r>0, nearr=0. (24

tive of the density at =0 be thenth one (>0), i.e., (21). The apparent horizon curve initiates at the singularity

r=0 at the epocliy, and increases with increasingmoving
F(r)=For3+F,r""3+..., F,<0, (19 to the future, i.e.ty>t, for r>0 near the center. The be-

havior of the outgoing families of null geodesics has been

near the center. By Eq¢l7) and(15), analyzed in detail in these cases, and it is known that the
2e2 geodesics terminate at the singularity in the gd$t which

2 _n_Fn A li2e 2 _+32],2n results in a naked singularity. In such cases the extreme

ag’(t,r)= 1-3F5(t—t)+ - Fo(t—t)“|r A X . : .
6F, 4 strong gravity regions can communicate with outside observ-

ers. For the casa=3, Eq. (24) shows that we can have a

2n+1
O™, 29 plack hole if F3=—2F5?, or a naked singularity, if ;<
) - —2F32. This is illustrated in Fig. 1. Fon=4, Eq.(24) is
to(r)=tne —Far3——" npO(rn+ly. 21 always satisfied, and a.bla_ck hole forms.
a1 =to 30 3F32 ( ) @D When the dust density is homogeneous, the apparent ho-

rizon starts developing earlier than the epoch of singularity
The time-dependent factor in square brackets on the right dbrmation, which is then fully hidden within a black hole.
Eq. (20) decreases monotonically from 1 &tt; to 0 att There is no density gradient, and no shear. On the other
=ty. Thus the qualitative role of the shear in singularity hand, if a density gradient is present at the center, then the
formation can be seen by looking at the initial shear. Thetrapped surface development is delayed via shear, and, de-
initial shearo;= o (t;,r) on the surfacé=t; grows asr", n pending on the “strength” of the density gradient or shear at
=1, nearr=0. A dimensionless and covariant measure ofthe center, this may expose the singularity. It is the rate of

the shear is the relative shefw/®|, where decrease of shear as we approach the cemnted on the
initial surfacet=t;, given by Eq.(23), that determines the
R’ end state of collaps&Vhen the shear falls rapidly to zero at
=2 = (22)  the center, the result is necessarily a black hole; if shear falls

more slowly, there is a naked singularity.is thus seen that
naked singularities are caused by the sufficiently strong
shearing forces near the singularity, as generated by the in-
homogeneities in density distribution of the collapsing con-
_ —-nkF, r[1+0(r)]. (23) figuration. When shear decays rapidly near the singularity,
i 3\/§FO the situation is effectively like the shear-fréend homoge-
neous densitycase, with a black hole end state.

It is now possible to see how such an initial shear distri- It provides a useful insight to note that when a black hole
bution determines the growth and evolution of the trappedorms, the apparent horizon typically springs into being as a
surfaces, as prescribed by the apparent horizon dyf¢®,  finite-sized surface, at a finitg then moving to the center
given by Eq.(21). If we assume the initial density profile is r=0. This is what happens, for example, in the
smooth at the center, them(r)=pc+p,r?+---, with p,  Oppenheimer-Snyder black hole formation in homogeneous
<0, which corresponds té(r)=Fqr3+F,r>+.-., with  dust collapse. In such cases, the event horizon, which does
F,=<0. Now suppose thap, (and henceF,) is nonzero. typically start at a point, could have formed earlier than the
Then Eq.(21) implies that the apparent horizon curve ini- apparent horizon. On the other hand, in the case of a naked
tiates atr=0 at the epocl,, and increases near=0 with  singularity, it follows from Eqs(15) and(21) that the appar-
increasing, moving to the future. Note that as soonfgsis  ent horizon starts at=0, and then is future directed in time,
nonzero, even with very small magnitude, the behavior of the.e., t,;, grows with increasing coordinate radiuslong the
apparent horizon changes qualitatively. Rather than goingpparent horizon curv®&=F. These two behaviors of the
back into the past from the center, as would happen in thapparent horizon curve are very different, and governed by
homogeneous case with,=0, it is future pointed. This is shearing effects. A comoving observer wibht encounter any
what leads to a locally naked singularity. The singularity maytrapped surfaces until the time of singularity formation in the
be globally naked, i.e., visible to faraway observers, dependraked singularity case, whereas in the black hole case, the
ing on the nature of the density function at large apparent horizon typically developeforethe epoch of sin-

is the volume expansion. It follows that

(oa

c)

101501-3



RAPID COMMUNICATIONS

PANKAJ S. JOSHI, NARESH DADHICH, AND ROY MAARTENS PHYSICAL REVIEW 5 101501R)

1.2e-06 T T T T T T T T T

1e-06

8e-07

A - FIG. 1. Apparent horizon
6e-07 VA curves nearr=0 for the n=3

— F 3=_,'-26 case, withFy=1. The labels on

A the curves give the values &%,

4e-07 - ] the nonvanishing coefficient quan-
F3=-20 tifying the shear. A black hole
forms if F3=—2.
2e-07 B
0 F3=-2
F3=-0.5
'29'07 1 1 1 1 1 1 1 1 1

0 0.0006 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045 0.005
r

gularity formation. This is what we mean by delayed forma-provide two equivalent ways of expressing the result. This
tion of the apparent horizon, caused by shearing effects. specifies how much shear is sufficient to creatédoaally)
The relation between density gradients and shear may beaked singularity.
understood via the nonlocédr free gravitational field. Den- For the case of dust collapse, the role of shear in deciding
sity gradients act as a source for the electric Weyl tef@pr the end state of collapse is fairly transparent. To understand
) . how shear affects the formation of the apparent horizon for

DEap=73Dap, (259 general matter fields with pressures included is much more

complicated, in particular since=F(t,r), whereasF =0

for dust. In fact, even in some general classes of nondust

models(with nonzero pressujgit is possible to characterize

collapse covariantly. Above we showed tHa@mogeneous

densityimplies a black hole end state. The next logical step

would be to consider models for which thdtial density is

2 2
UV,0 gp+ §®Uab+ T ac0p— §azhab= —Eap. (260  homogeneous. For example, if the mass function is

where D) is the covariant spatial derivativ€The magnetic
Weyl tensor vanishes for spherical symmetiy turn, the
gravito-electric field is a source for she@quivalently, the
shear is a gravito-electric potentid]):

Thus density gradients may be directly related to shear, F(t,r)=f(r)—R3(t,r), f(r)=2r3, (29)

Dap=—40D,0— 20D 0,,— 3D°(UV,0,p) — 30,"D 0y
b . then Eq.(5) shows thafp; and (p,); are constants. The den-
—3D(0ac0p), (27) ity and pressure may however develop inhomogeneities as
, 5 the collapse proceeds, depending on the choice of the re-
where we have used the shear constraifiry=5D,0. maining functions, including in particular the initial veloci-
Equation(27) makes explicit the link between the behavior yjoq of the collapsing shells, and the collapse may then end
of density gradients and shear near the center, which Wa, i either a black hole or a naked singularity, depending on
discussed above. The free gravitational field, which mediateg, 5 (for a discussion on this for the case of dust collapse, we
this link, can also provide a covariant characterization Ofrefer to[5]). In fact, we can show thatero shear implies a
singularity formation. By Eqs(23) and (26), the relative  |5ck holefor these models. By Eq$2), (5), and (29), the
gravito-electric fieldE/®? (where E*=3E®°Eap) nearr  ghoarfree condition leads f&’'/R=1/r, and Eq.(5) then

=0 is given att=t; by shows thatp=p(t), i.e., the density evolution is necessarily
homogeneous. As shown above, the collapse thus necessarily
E) - — nFy r[1+0(r)] (28) ends in a black hole. For the class of models given by Eq.
0° i 18\/5F0 ’ (29), whenever the collapse ends in a naked singularity, the

shear must necessarily be nonvanishing. Although this class
Thus naked singularities in spherical dust collapse are sigef models is somewhat special, the result indicates that the
naled by a less rapid falloff of the relative gravito-electric behavior of the shear remains a crucial factor even when
field as we approach the singularity. Equatid23) and(28) pressures are nonvanishing.
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[1l. CONCLUSIONS shear near the singularity, its dispersive effect can play the
Si black hol d naked sinqulariti ¢ ti critical role of delaying formation of the apparent horizon,
Ince black holes and naked singuiarnties are of great Ng it directly hampering the process of collap$be dis-

. . . bersive effect of shear always tends to delay formation of the
to understandavhy these objects develop. The physics of th'sapparent horizon, but is only able to expose the singularity

needs to be probed carefully in order to make further,,.o e shear is strong enough near the singularity.

progress towards cosmic censorship, or to understand the \ye paye considered here spherical collapse. Very little is

physical implications of naked singulari.ties. . . known about nonspherical collapse, either analytically or nu-
ltWOUId ap_pear.that the only Wayasmgulanty can be Ialdmerically, towards determining the outcome in terms of

bare 1S by distorting the appafef‘t horlgon surface and SBlack holes and naked singularities. However, phenomena

delaying trapped surface formation suitably. As we havey, ., o5 trapped surface formation and apparent horizon are

shown here, the shear provides a rather natural explanatiQRyenendent of any spacetime symmetries, and it is also clear
for the occurrence oflocally) naked singularities. Our main hat a naked singularity will not develop in general unless

result i_s that sufficiently strong s_hearing effects in sphe_rica here is a suitable delay of the apparent horizon. This sug-
cholla%smg dUSt. del?]y the formatlon of th(f" appareﬂt ho”z‘?(;‘ ests that the shear will continue to be pivotal in determining
thereby exposing the strong gravity regions to the outsidg,g fing| fate of gravitational collapse, independently of any

world and Ieading to locally) _naked_singular_ity. \_Nhe_n fspacetime symmetries. In any case, our main purpose here
shear decays rapidly near the singularity, the situation is e Ras been to try to understand and find the physical mecha-

fectively like the shear-free case, with a black hole end stat&,is, \yhich leads the collapse to the development of a naked

An important point is that naked singularities can develop 'nsingularity rather than a black hole in some of the well-

qu'tE afnatural rlnarlmer! very much(;lvghm;he §tandfar1rd frameI'<nown classes exhibiting such behavior. What we find is that
work of general relativity, governed by shearing effects. o shear provides a covariant dynamical explanation of the

_In the case of spherical dust collapse, shear and density,oomenon of naked singularity formation in spherical
inhomogeneity are equivalent, i.e., the one implies the othe ravitational collapse

Although shear contributes positively to the focusing effect
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