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Scale dependent spectral index in slow roll inflation
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Recent observations suggest that the spectral index of the primordial perturbations is very close to unity, as
expected in models of slow roll inflation. It is still possible for such models to produce spectra which are scale
dependent. We present a formula for the spectrum produced by an arbitrary inflaton pdteittial the
context of slow roll models This formula explicitly accounts for the possiblity of scale dependence agreeing
with previous results when the running is small, but also giving accurate rgssltepposed to previous
formulag in the more interesting case when running is non-negligible.
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[. INTRODUCTION dial perturbations are Gaussian, adiabatic, and have a nearly
scale invariant spectrum. The degree to which slow roll in-
A wide variety of cosmological observations have re-flation predicts a scale invariant spectrum depends upon the
cently converged on a standard model of cosmologydynamics of the scalar fiels) controlling inflation. The sim-
Anisotropies in the cosmic microwave background havePlest possibility is a single “inflaton,” slowing rolling down
been measured on scales ranging from the horizon down # Potential with its kinetic energy strongly damped by the
several arcminutes. Inhomogeneities in the universe havgubble expansion. in the limit in which the rolling is infi-
been probed by galaxy survej&] and by observations of nitely slow and the damping infinitely strong, the primordial
the Lymana forest[2] in the spectra of distant quasars. The SPECTUM is a power law, with the indexexactly equal to
background cosmology has been explored most notably witQ"€: Deviations frorm =1 are measures of how slowly the
the aid of type la supernovd@]. These observation@nd ield rolled and how strongly its motion was damped during

. ; S : inflation. Equivalently, different inflationary models predict
many otherspoint to a flat universg4] with (i) nonbaryonic different values ofn or more generally of the shape of the
dark matter,(ii) dark energy, andiii) primordial adiabatic

) : | . spectrum; measurements of this primordial spectrum enable
perturbations with a spectral index very close to unity. Herg, e ¢4 giscriminate among different inflationary models.

we focus on the implications of the last of these, the nature There is another reason why precise measurements of the
of the primordial perturbations responsible for structure inprimordial spectrum are important to proponents of inflation.
the universe. Even before inflation was proposed, Harrison and Zel'dovich
The Cosmic Background ExplordCOBE) experiment introduced the notion that scale free= 1) adiabatic pertur-
first placed strong constraints on the slope of the primordiabations represent natural initial conditions. So a purel
power spectrum by measuring the anisotropies on largepectrum would not be a unique signature of inflation. On the
scales. It restricted the spectral indexo be 1.2£0.3 [5]. other hand, a spectrum with not exactly equal to one, or
Combining these large angle results with recent measuresven more telling, one with deviations from a pure power
ments of anisotropies on small angular scéfs9] leads to  |Jaw form, would be a unique signature of inflation.
even stronger constraints. For example, combining COBE |n the slow roll approximationjn— 1| is small. It is often
with DASI [6] leads ton=1.01"3¢¢. Similar constraints assumed11] that deviations from a pure power law are of
emerge from Boomerang] and Maxima[8]. These experi- order (n—1)2. If true, this would mean that the recent mea-
ments cover physical scales ranging fronk~5  surements indicatingn— 1| is smaller than about 0.1 imply
x10 % hMpc ! down tok~0.1 hMpc . The Microwave that deviations from a power law would only show up at the
Anisotropy Probe(MAP) and Planck satellites will probe percent level at best.
this region with even greater sensitivity, reducing the error Here we (i) show that power law deviations might be
bars further. It is even possible to get information about thesignificantly larger than this even within the context of slow
primordial power spectrum from smaller scales. The Lymanvoll inflation; (i) give explicit formulas for these deviations
« forest for example contains relatively unprocessed inforin terms of the inflaton potential; ar(di) illustrate the use-
mation about the spectrum on scales even smaller khan fulness of these formulas with a class of examples. These
=1 hMpc 1[2]. The current constraints on the shape of theexamples serve as a warning against extrapolating current
primordial spectrum, therefore, will only get stronger overmeasurements beyond their regime of applicability. For, if
the coming decade. the primordial spectrum is not a pure power law, as we argue
The theory of inflatio{10] has faired well in this latest it may not be, then we do not have much independent infor-
round of cosmological discoveries. Generically, slow roll in- mation beyonck~1 hMpc . We conclude by mentioning
flation predicts that the universe is flat, and that the primorseveral ramifications of this ignorance.
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Il. SLOW ROLL EXPANSION spectrum from a power law is often described by rinening

L . : . of the spectral index. This running is equal(&gain in the
During inflation, the inflatorp(t), which we assume here slow roll approximatiof

is a single real scalar field, has time dependence character-

ized by the dimensionless parameters dn o
_ =-22 dydyint O(£2). @)
1/ ¢\’ 1 [d\P. dink "% "PTPT2
GEE ﬁ y 5p5—. a ¢, (1) ) )
HP¢ The parameterg and §; appear only quadratically in the

o ) o running, represented by thi(&?) on the right. Therefore, if
where a dot denotes the derivative with respect to tifhes 5p:(r)(§p), the running will also be of orde#?, on the bor-

the Hubble rate, and we have set@=1. 5;, which mea-  ger of detectabilityf11]. On the other hand, models in which

sures the secpnd derivative &f is somgtlmes simply called 5,=0(¢) still satisfy slow roll, but produce significant run-

6. The evolution of these parameters is governed by ning. Indeed, in these models, the running is expected to be
of orderé, i.e., as large as the deviation mffrom one.

dlna=2(e+51)e (2
I1l. SLOW ROLL RESULTS
and It behooves us therefore to determine the spectral index
and its running in the general case in whigf= O(¢). Here
dép =5, 1+ (pe—8y)5 3 e simply present the results; a companion pdp8ér gives
dina  “P*1 Pe™01) 0% derivations. There it is shown that thig are best determined

o via a generating function. Explicitly,
The slow roll approximation assumes, for some small param-

eter¢, which observations suggest is of order 0.1 or smaller,
e=0(§), 6,=0(§). (4)

The first of these implies that the energy dengity 3H?
=V+ ¢?/2=V, and the second that the equation of motion
2 2

é+3H ¢+V’=0 reduces to the slow roll equation of mo- a° T
dO:l, d]_: —a, d2:

TX

- I'(2—x
> dpxp=2xco{— ¥
p=0 2

1+Xx ®)

This relation uniquely determines the coefficiedfs Some
explicit values are

tion 3H ¢+ V’=0. Using Eqs(2) and(3), for this to remain 2 24
true over a number of-folds we also require
o am® 2 {(3)
3,=0(&) 5) =g+ %5 3" 3 ©

for p>1. In this approximation, the spectral index is where a=2—In2—y=0.730, y is the Euler-Mascheroni

oc constant, and is the Riemann zeta function.
n—1= _46_251_22 d.6, . 1+ O(&2) (6) Perhaps even more important for the purposes of testing
p=1 PP ' inflationary models are expressions for the spectral index and

_ o _ its running in terms of the inflaton potential(¢). Refer-
where thed,, are numerical coefficients of order unity. The ence[13] shows that

first two terms on the right represent the textbdelg. Ref.
[12]) result. The class of terms i@(£?) includes the terms V& 7\ /v 2
€%, €5, and &7 with some numerical coefficients. The sum P= 2—(1)2[ l+<3CI1— g)( )

includes the higher derivatives @f; it is these we will be 12a=(V)

\Y,

most concerned with here. The most important point about o V(D) p=1y/(p+1)
Eq. (6) is that it shows that the recent determinations thiat -2 q,,( —) +O( 52)] . (10
close to one verify slow roll. That is, at least in the absence p=1 v v

of surprising cancellationswvhich will not concern us all
the terms on the right must be small since the left hand sid
has been measured to be small.

ere,V(P) denotes theth derivative ofV with respect tap.

he potential and its derivatives in E.0) are to be evalu-
Given the validity of the slow roll approximation, an im- ate?' at the _valu_eﬁ ha_‘d at the time V\_/hen the m_oct{deft the

portant question remains about the terms in the sum in Eq1°rizon during inflation, to be precise at the time wiea

6). Is 8,=O(£P) or is 6,=O(£)? Either condition would =k; that is, different scalek correspond to different values
. 1s &, . . T : . ;

still satisfy slow roll, so there is as yet no experimental way®f ¢ The coefficientsy, are again best determined via a

to favor one over the other. The former is often assumed. [f€nerating function. In this case

this assumption is incorrect, then an analyst using it will map o
an observatioriof n) onto the wrong set of parameterss;. 2 q Xp:Q(X)szCOS( W_X) 3l'(2+x) G
More importantly, the deviation of the primordial power p=o " 2 ](1-x)(3—x)
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The spectral index and its running can also be expressed in

terms of the potential and its derivatives, by differentiating
the power spectrum with respect toknusing ¢/JIn k—

L t = 2|
—(V®N\)dlag. The spectral index is L2r ]
vz o= V(D) P/ (P+2) 1F 4
n—-1=-3 7) qp<_) VAR (13) [ ]
. , . 0.8} .
where we now explicitly drop allD(&9) corrections. The T N B B I
running is 0.1 1 10
dn V(D) P+1y/(p+3) k/k.
dink Ink 22 qp( ) v (14 FIG. 1. Power spectrum of the gravitational potential in two

inflationary models corresponding to potentials of the form in Eq.
(19). k,, is a fiducial wave number depending on the dynamics of
the inflaton. The Harrison-Zel'dovich spectrum is flat. The thick
solid line is the result of Eq(10); the thin line is the standard slow

Settingq,=0 for all p>0 corresponds to the standard slow
roll result [11,12,14. The next two terms have also been
de”\ied ?rgwfmizly: tﬂﬁ v(;;lluesdmfl anda, aghres }Nig the roll approximation in whichQ—1; and the dashed line is the as-
results of Ref[14], while d, andq, agree with Ref[15]. sumption of no running. The top panel has parameter$.03p
These results can also be expressefilap =1/x while the bottom hag=7\=0.3. In both casesA=\%/v.

Since&=\?, O(£?) corrections are irrelevant in these cases.

3 1 V(l)
= m[ 1+ ( 3a— g) (T) \{vhere)\ and.A.are small,v is large, and is a smooth func-
tion. A surprisingly large number of model6] can be pa-
=d(aH) k 2 rametrized in this way.
—Zf W|—|—6(aH—k)|—}, (15 Referencg 13] uses Eq.(10) and Eq.(15) to derive ex-
o aH aH V - . - o
plicit expressions for the power spectrum and its derivatives

when the potential is of the form E@18). Figure 1 shows
the power spectrur(of the gravitational potentiab) in two
examples. In each case, three curves are plotted: the exact

where 6(x) =0 for x<0 and#(x)=1 for x>0,

1)\ 2 . 2
n—1= _3(£) _ZJ d(aH) LW L E result of Eq.(10), the standard slow roll result corresponding
v o aH aH aH/ Vv to settingq,=0 for all p>0, and the “no running” approxi-
(16) mation in which the power spectrum is assumed to be a pure
power law.

and There are two important lessons to be learned from Fig. 1.
(1) \(3) First, and most important, running can be significant, even if

dn _ jwd(aH) L k \VPV 17) deviations from slow roll—as determined by measuring the

dink o aH aH aH/ v Vv spectral index on large scales—are small. WHém¢)

=13¢3 (top pane), measuring) on large scales and extrapo-
where W(x)=4j,(2x)+jo(2x). Here, standard slow roll lating to small scales with a pure power law underestimates
would correspond to setting®/V andV(YVE)/V? to con-  the power significantly. We emphasize that this serious
stants. misestimate takes place even thoughon large scales is

close to one £0.94) and(ii) depending on the parameters in

V. EXAMPLES th.e potential, the e;timate could have gone the o_ther way
with a large overestimate of the power. The second important
For the purposes of illustration, we now introduce a clasdeature of Fig. 1 is that the standard slow roll approximation

of models in which the spectral indexnet a constant. Con- is not particularly good. This shows up for thé potential,

sider the potential but even more dramatically for the bump potential in the
bottom panel. Besides the incorrect placement of the bump
V=Veer[1+Af(ve)], (18 in the power spectrum and the too-small amplitude, standard
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slow roll does not produce any ringing in the spectrum.running is extremely small(n—1)?]. That is, in all al-

These are already evident for the parameter choice in Fig. bwed cases where running is significant, Eq€) and(15)

and become even more pronounced for larger values. of should be used when comparing with inflationary models.

Many groups have studied bumps, dips, and steps in the If running is important, then a number of cosmological

power spectrum. Equatiori§0) and (15) are good ways to results must be reconsidered. For example, our measure-

analyze these models: simpler than full numerical solutionsnents to date have been predominantly on large scales. It is

and more accurate than standard slow roll. dangerous to extrapolate these large scale measures of the
power to small scales, assuming a pure power law. Thus,
limits on the spectral index from, e.g., primordial black holes

V. CONCLUSIONS [17] would be relaxed if the primordial spectrum is not a

Inflation, and in particular slow roll inflation, has emerged Pure power law. More intriguing is the idea that running may
from the recent confrontation with data in marvelous shapeh€lp solve some of the small scale problems currently facing
Current data support the idea that the universe is flat, angold dark mattef18]. It has been suggest¢d9] that these
that the primordial power spectrum was close to scale invariProblems could be alleviated by reducing the small scale
ant. We have shown here that these successemtzeces- Power. Running of the spectral index provides a clean way of
sarily imply that the spectrum is a pure power law on alldoing this.
scales. Deviations from power law behavior, i.e., running of
the spectral index, can be as large as the deviation of the
spectral indexn from unity. They donot have to scale as
(n—1)? as is often assumed. This is exciting, for it suggests This work was supported by the DOE, by NASA grant
that future experiments may be able to measure this runningdAG 5-10842 at Fermilab, by NSF Grant PHY-0079251 at
Equations(10) and (15) are valid for all slow-roll models Chicago, by Brain Korea 21 and KRF grant 2000-015-
(i.e., all models compatible with the observation timats =~ DPO0080. E.D.S. thanks the SFO1 Cosmology Summer Work-
close to ong They differ significantly from previous results shop and the Fermilab Theoretical Astrophysics Group for
(which setq,=0Vp=1), agreeing only in the event that hospitality.

ACKNOWLEDGMENTS

[1] For example, 2DF: W. Percivat al., astro-ph/0105252; and 1739(1995.

SDSS: D.G. Yorket al,, Astron. J.120, 1579(2000. [12] A. R. Liddle and D. H. LythCosmological Inflation and Large
[2] R.A.C. Croftet al, astro-ph/0012324. Scale StructuréCambridge University Press, Cambridge, En-
[3] S. Perimutteret al, Nature (London 391, 51 (1998; A.G. gland 2000.

Reisset al, Astron. J.116, 1009(1998. [13] E. D. Stewart, astro-ph/0110322.

[4] S. Dodelson and L. Knox, Phys. Rev. Ledtl, 3523(2000; S. [14] E.D. Stewart and D.H. Lyth, Phys. Lett. 82 171(1993.
Hananyet al, Astrophys. J. Lett545 L5 (2000; P. de Ber- [15] E.D. Stewart and J.-O. Gong, Phys. Lett5B0, 1 (200J).

nardis,et al, Nature(London 404, 955 (2000. [16] This is especially true when the exponential can be approxi-
[5] C.L. Bennettet al, Astrophys. J. Lett464, L1 (1996. mated as +\¢. See, e.g., E.D. Stewart, Phys. Lett.385
[6] E.M. Leitch et al,, astro-ph/0104488; N.W. Halversat al.,, 414(1995; J.A. Adams, G.G. Ross, and S. Sarkar, Nucl. Phys.
astro-ph/0104489; C. Pryket al., astro-ph/0104490. B503 405 (1997; D.J.H. Chung, E.W. Kolb, A. Riotto, and
[7] C.B. Netterfield et al, astro-ph/0104460; P. de Bernardis I.I. Tkachev, Phys. Rev. B2, 043508(2000; J.A. Adams, B.
et al, astro-ph/0105296. Cresswell, and R. Eastheihid. 64, 123514 (2001); Some
[8] A.T. Leeet al, Astrophys. J. Lett561, L1 (200D; R. Stompor quintessence models which use a potential of this form include
et al, ibid. 561, L7 (2001). A. Albrecht and C. Skordis, Phys. Rev. Le#g, 2076(2000);
[9] M. Tegmark, M. Zaldarriaga, and A.J.S. Hamilton, Phys. Rev. S. Dodelson, M. Kaplinghat, and E. Stewailiid. 85, 5276
D 63, 043007(2001); S. Hannestacet al, astro-ph/0103047; (2000.

have recently fit to the data allowing for running of the pri- [17] B.J. Carr, J.H. Gilbert, and J.E. Lidsey, Phys. Re\6@4853
mordial spectrum. See also D.H. Lyth and L. Covi, Phys. Rev. (1994; A.R. Liddle and A.M. Green, astro-ph/9710235.
D 62, 103504(2000; S. Hannestad, S.H. Hansen, and F.L.[18] See, e.g., B. Moore, astro-ph/0103100.

Villante, Astropart. Phys16, 137 (2001). [19] M. Kamionkowski and A.R. Liddle, Phys. Rev. Le&4, 4525
[10] A. Guth, Phys. Rev. 23, 347 (198)). (2000. But see also M. White and R.A.C. Croft, Astrophys. J.
[11] See, e.g., A. Kosowsky and M.S. Turner, Phys. Revsd) 539, 497 (2000.

101301-4



