Contribution to muon $g-2$ from $\pi^{0} \gamma$ and $\eta \gamma$ intermediate states in the vacuum polarization

N. N. Achasov* and A. V. Kiselev ${ }^{\dagger}$
Laboratory of Theoretical Physics, Sobolev Institute for Mathematics, Novosibirsk 630090, Russia
(Received 14 February 2002; published 9 May 2002)

Abstract

Using new experimental data, we calculate the contribution to the anomalous magnetic moment of the muon from the $\pi^{0} \gamma$ and $\eta \gamma$ intermediate states in vacuum polarization with high precision: $a_{\mu}\left(\pi^{0} \gamma\right)+a_{\mu}(\eta \gamma)$ $=(54.7 \pm 1.5) \times 10^{-11}$. We also find a small contribution from $e^{+} e^{-} \pi^{0}, e^{+} e^{-} \eta$ and $\mu^{+} \mu^{-} \pi^{0}$ intermediate states equal to 0.5×10^{-11}.

DOI: 10.1103/PhysRevD.65.097302

New experimental data [1-3] allow us to calculate the contribution to the anomalous magnetic moment of the muon $a_{\mu} \equiv\left(g_{\mu}-2\right) / 2$ from the $\pi^{0} \gamma$ and $\eta \gamma$ intermediate states in vacuum polarization with high precision. We have also found the contribution from $e^{+} e^{-} \pi^{0}, e^{+} e^{-} \eta$, and $\mu^{+} \mu^{-} \pi^{0}$ intermediate states.

The contribution to a_{μ} from the arbitrary intermediate state X (hadrons, hadrons $+\gamma$, etc.) in the vacuum polarization can be obtained via the dispersion integral

$$
\begin{align*}
a_{\mu}= & \left(\frac{\alpha m_{\mu}}{3 \pi}\right)^{2} \int \frac{d s}{s^{2}} K(s) R(s), \tag{1}\\
R(s) \equiv & \frac{\sigma\left(e^{+} e^{-} \rightarrow X\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)}, \\
\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right) \equiv & \frac{4 \pi \alpha^{2}}{3 s}, \\
K\left(s>4 m_{\mu}^{2}\right)= & \frac{3 s}{m_{\mu}^{2}}\left\{x^{2}\left(1-\frac{x^{2}}{2}\right)+(1+x)^{2}\left(1+\frac{1}{x^{2}}\right)\right. \\
& \left.\times\left[\ln (1+x)-x+\frac{x^{2}}{2}\right]+\frac{1+x}{1-x} x^{2} \ln (x)\right\} \\
= & \frac{3}{a^{3}}\left(16(a-2) \ln \frac{a}{4}-2 a(8-a)\right. \\
& \left.-8\left(a^{2}-8 a+8\right) \frac{\operatorname{arctanh}(\sqrt{1-a})}{\sqrt{1-a}}\right), \\
x= & \frac{1-\sqrt{1-\frac{4 m_{\mu}^{2}}{s}}}{1+\sqrt{1-\frac{4 m_{\mu}^{2}}{s}}, \quad a=\frac{4 m_{\mu}^{2}}{s},}
\end{align*}
$$

[^0]

FIG. 1. (a) Plot of the dependence $\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \gamma\right.$), in nb upon \sqrt{s} in MeV (SND experimental data). (b) Comparison of the theoretical formulas for $\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \gamma\right)$. Equation (3) is shown with the solid line; the pointlike model prediction is shown with the dashed line.

Treating the data from CMD-2 [3] in the same way, we get a contribution of $\eta \gamma$:

$$
\begin{align*}
a_{\mu}(\eta \gamma)= & (7.1 \pm .2 \pm .3) \times 10^{-11} \\
& 720 \mathrm{MeV}<\sqrt{s}<1040 \mathrm{MeV} \tag{6}
\end{align*}
$$

According to the quark model (and the model of vector dominance also), the energy region $\sqrt{s}<720 \mathrm{MeV}$ is dominated by the ρ resonance, hence $\sigma\left(e^{+} e^{-} \rightarrow \eta \gamma\right) \cong \sigma\left(e^{+} e^{-}\right.$ $\rightarrow \rho \rightarrow \eta \gamma$). So we change Eq. (3) according to this fact, take into account the ρ width, and get the small contribution:

$$
\begin{equation*}
a_{\mu}(\eta \gamma)=0.1 \times 10^{-11}, \quad \sqrt{s}<720 \mathrm{MeV} \tag{7}
\end{equation*}
$$

Summing Eqs. (2), (5), (6), and (7), we can write

$$
\begin{equation*}
a_{\mu}\left(\pi^{0} \gamma\right)+a_{\mu}(\eta \gamma)=(54.7 \pm 0.6 \pm 1.4) \times 10^{-11} \tag{8}
\end{equation*}
$$

where statistical and systematic errors are separately added in quadrature. In Table I we present our results with statistical and systematic errors added in quadrature. Comparing Eq. (8) with the analogous calculation in [5] (see Table I), one can see that our result is 27% more and the error is 2.5 times less. The contribution (8) accounts for 1.37 of the projected error of the E821 experiment at Brookhaven National Laboratory $\left(40 \times 10^{-11}\right)$ or 36% of the reached accuracy (150×10^{-11} [6]).

We can also take into account the intermediate state $\pi^{0} e^{+} e^{-}$, using the obvious relation

$$
\begin{align*}
\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} e^{+} e^{-}, s\right)= & \frac{2}{\pi} \int_{2 m_{e}}^{\sqrt{s}-m} \frac{\pi^{0}}{m^{2}} \Gamma_{\gamma * \rightarrow e^{+} e^{-}(m)} \\
& \times \sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \gamma^{*}, s, m\right), \tag{9}
\end{align*}
$$

where m is the invariant mass of the $e^{+} e^{-}$system, $\Gamma_{\gamma * \rightarrow e^{+} e^{-}}(m)=(1 / 2) \alpha \beta_{e} m\left(1-\beta_{e}^{2} / 3\right), \quad \beta_{e}=\sqrt{1-4 m_{e}^{2} / m^{2}}$, $\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \gamma^{*}, s, m\right)=[p(m) / p(0)]^{3} \sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \gamma, s\right)$, and $\quad p(m)=(\sqrt{s} / 2) \sqrt{\left[1-\left(m_{\pi^{0}}+m\right)^{2} / s\right]\left[1-\left(m_{\pi^{0}}-m\right)^{2} / s\right]}$ is the momentum of γ^{*} in s.c.m.

In the same way we can calculate $a_{\mu}\left(\mu^{+} \mu^{-} \pi^{0}\right)$ and $a_{\mu}\left(e^{+} e^{-} \eta\right)$. The result is

$$
\begin{align*}
& a_{\mu}\left(e^{+} e^{-} \pi^{0}\right)+a_{\mu}\left(\mu^{+} \mu^{-} \pi^{0}\right)+a_{\mu}\left(e^{+} e^{-} \eta\right) \\
& \quad=(0.4+0.026+0.057) \times 10^{-11}=0.5 \times 10^{-11} \tag{10}
\end{align*}
$$

Note that if $m \gtrsim m_{\rho}$ we have the effect of the excitation of resonances in the reaction $e^{+} e^{-} \rightarrow \pi^{0}(\rho, \omega) \rightarrow \pi^{0} e^{+} e^{-}$. However, this effect increases the final result (10) less than by 10% because of the factor $[p(m) / p(0)]^{3}$, which suppresses the high m. So we ignore this correction. We also neglect $a_{\mu}\left(\mu^{+} \mu^{-} \eta\right)=2 \times 10^{-14}$.

As it was noted in [5] and [7], it is necessary to take into account also

$$
\begin{aligned}
a_{\mu}(\text { hadrons }+\gamma, \text { rest })= & a_{\mu}\left(\pi^{+} \pi^{-} \gamma\right)+a_{\mu}\left(\pi^{0} \pi^{0} \gamma\right) \\
& +a_{\mu}\left(\text { hadrons }+\gamma, s>1.2 \mathrm{GeV}^{2}\right)
\end{aligned}
$$

We take $a_{\mu}\left(\pi^{+} \pi^{-} \gamma\right)=(38.6 \pm 1.0) \times 10^{-11}$ from [7] (see also [5]), $a_{\mu}\left(\pi^{0} \pi^{0} \gamma\right)+a_{\mu}\left(\right.$ hadrons $\left.+\gamma, s>1.2 \quad \mathrm{GeV}^{2}\right)=(4$ $\pm 1) \times 10^{-11}$ from [5]. Adding this to Eq. (8), we get

$$
\begin{equation*}
a_{\mu}(\text { hadrons }+\gamma, \text { total })=(97.3 \pm 2.1) \times 10^{-11} \tag{11}
\end{equation*}
$$

The contribution (11) accounts for 2.43 of the projected error of the E821 experiment or 65% of the reached accuracy. In fact, the errors in Eqs. (8) and (11) are negligible for any imaginable $(g-2)_{\mu}$ measurement in the near future.

This work was supported in part by RFBR, Grant No. 02-02-16061.

TABLE I. Contribution to $a_{\mu} \times 10^{11}$.

State	Our value	Ref. [5]
$\pi^{0} \gamma$	47.5 ± 1.4	37 ± 3
$\eta \gamma$	$7.2 \pm .4$	6.1 ± 1.4
$\pi^{0} \gamma+\eta \gamma$	54.7 ± 1.5	43 ± 4
hadrons $+\gamma$, total	97.3 ± 2.1	93 ± 11

[1] M. N. Achasov et al., report Budker INP 2001-54, Novosibirsk, 2001 (in Russian), http://www.inp.nsk.su/publications
[2] M.N. Achasov et al., Eur. Phys. J. C 12, 25 (2000).
[3] R.R. Akhmetshin et al., Phys. Lett. B 509, 217 (2001).
[4] Particle Data Group, D.E. Groom et al., Eur. Phys. J. C 15,

1 (2000).
[5] J. F. de Troconiz and F. J. Yndurain, Phys. Rev. D 65, 093001 (2002).
[6] H.N. Brown et al., Phys. Rev. Lett. 86, 2227 (2001).
[7] A. Hoefer, J. Gluza, and F. Jegerlehner, hep-ph/0107154.

[^0]: *Email address: achasov@math.nsc.ru
 †Email address: kiselev@math.nsc.ru

