
PHYSICAL REVIEW D, VOLUME 65, 096015
General theory of quantum field mixing
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We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The
time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly con-
structed. The unitary inequivalence of the Fock space of base~unmixed! eigenstates and the physical mixed
eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion
statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general
formulation and then applied to both two- and three-flavor cases. Especially, the mixing of spin-1~vector!
mesons and the Cabibbo-Kobayashi-Maskawa mixing phenomena in the standard model are discussed, em-
phasizing the nonperturbative vacuum effect in quantum field theory.
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I. INTRODUCTION

The mixing of quantum fields plays an important role
the phenomenology of high-energy physics@1–4#. Mixings

of both K0K̄0 andB0B̄0 bosons provide the evidence ofCP
violation in the weak interaction@5#, andhh8 boson mixing
@6# in the SU~3! flavor group provides a unique opportuni
to investigate the nontrivial QCD vacuum and fill the g
between QCD and the constituent quark model. In the
mion sector, neutrino mixing and oscillations are the like
resolution of the famous solar neutrino puzzle@7–10#. In
addition, the standard model incorporates the mixing of
mion fields through the Cabibbo-Kobayashi-Maska
~CKM! mixing of three quark flavors, a generalization of t
original Cabibbo mixing matrix between thed ands quarks
@11–14#. Therefore, careful theoretical analyses of the m
ing problem in quantum field theory are an important s
toward understanding the many-body aspects of high-en
phenomena and their relationship to other areas of phy
involving phase transitions.

Moreover, the theory of mixing fields touches importa
yet not fully answered, fundamental questions about
quantization of the interacting fields. The mixing transform
tion introduces very nontrivial relationships between the
teracting and noninteracting~free! fields, which lead to a
unitary inequivalence between the two Fock spaces@15,17#
of the interacting fields and the free fields. This is differe
from the perturbation theories where the vacuum state
interacting fields is equal to the vacuum of free fields up t
less essential phase factoreiS0 @18–20#. The mixing of quan-
tum fields is one of the cases that can be solved nonpe
batively in the quantum field theory. Thus, it also allows
to investigate the accuracy of perturbation theory. For
stance, the dynamics of a mixed-field Hamiltonian can
used for a partial summation of regular perturbation serie
well as an improvement of the accuracy in perturbat
theory.

Recently, the importance of the mixing transformatio
has prompted a fundamental examination of them from
quantum field theoretic perspective. The investigation
two-field unitary mixing in the fermion case demonstrated
0556-2821/2002/65~9!/096015~26!/$20.00 65 0960
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rich structure of the interacting-field vacuum as an SU~2!
coherent state and altered the oscillation formula includ
the antiparticle degrees of freedom. Momentum depende
of mixing, the existence of correlated antiparticle beam, a
additional high-frequency oscillation terms have been fou
and at the same time the vacuum condensates have
analyzed for fermions@16,21–25#. Subsequent analyses fo
the boson case revealed similar features but much more c
plicated vacuum structure for interacting fields@15,26,27#.
Especially, the pole structure in the inner product betwe
the mass vacuum and the flavor vacuum was found and
lated to the convergence limit of perturbation series@27#.
Attempts to look at the mixings of the three-fermion ca
have also been carried out@16,22,25#.

In this paper, we extend the previous analyses of mix
phenomena and work out a unified theoretical framework
an arbitrary number of flavors with any integer~bosons! or
half-integer~fermions! spin statistics. We build the represe
tation of mixing transformation in the Fock space of qua
tum fields and demonstrate how this can be used to ob
exact oscillation effects. We then use the developed fra
work to carry out calculations of two-field and three-fie
unitary mixings for the typical spin~i.e., 0, 1/2, and 1! cases.
We also comment on the use of a mixed-field solution
improve the perturbation series of mixing effects.

The paper is organized as follows. In Sec. II, we defi
the ladder operators for flavor fields and explicitly show t
unitary inequivalence between the flavor Fock space and
Fock space of mass eigenstates. In Sec. III, we find the t
dynamics of the flavor ladder operators and derive gen
expressions for the particle condensations and the num
operators as functions of time. We also present some rem
on the Green-function method in the mixing problem. W
then specifically consider, in Sec. IV, the mixing of tw
spin-1 fields~vector mesons! along with the mixing of spin-
1
2 fields and show the consistency with previously know
results. A summary and conclusion follow in Sec. V. In A
pendix A, the mixing parameters are shown explicitly f
spin 0, 1

2 , and 1. In Appendix B, we present a derivation
the flavor vacuum state by solving an infinite system
coupled equations which appears as a condition of
vacuum annihilation. In Appendix C, we summarize our
©2002 The American Physical Society15-1
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sults of the three-field mixing for spin 0,1
2 , and 1 using the

SU~3! Wolfenstein parametrization.

II. THE THEORY OF QUANTUM FIELD MIXINGS

In this section, we consider the mixing problem forN
fields of fermions or bosons. To discuss the dynamics of
flavor ~mixed! fields, we define a flavor fieldfm as a mixture
of the free fieldsw j ( j 51,2, . . . ,N); i.e.,

fm5(
j

Um jw j , ~2.1!

whereUm j is a unitary mixing matrix element. We use th
latin indicesi , j ,k, . . . to label the fields of mass eigenstat
and the greek indicesm,n,j, . . . to label the flavor fields
We also denotef̄ and w̄ as the entire columnsf̄
5(f1 ,f2 , . . . ,fN)Á and w̄5(w1 ,w2 , . . . ,wN)Á, respec-
tively. The evolution of the fieldsfm is generated by the
Hamiltonian of the form1

H~f̄ !5H free~ w̄ !5H free~U†f̄ !5H0~f̄ !1f̄†Mf̄,
~2.2!

whereH free(w̄) is the free field Hamiltonian forw i with the
corresponding mass eigenvaluesmi , H0(f̄) is the free flavor
field Hamiltonian, andM is a mixing matrix.

The existence of the explicit relationship between fr
(w) and flavor (f) fields, given by Eq.~2.1!, allows us to
work out the quantum-field theoretical solution to the pro
lem given by

d

dt
fm5 i @H~f̄ !,fm#. ~2.3!

In fact, the solution of Eq.~2.3! is contained in Eq.~2.1! with
the free field (w i) given by

w i5(
s

E dkW

A2e ikW
@ukWs

i
aikWs~ t !eikWxW1vkWs

i
bikWs

†
~ t !e2 ikWxW#,

~2.4!

whereaikWs(t)5e2 i e ikW taikWs andbikWs(t)5e2 i e ikW tbikWs with the
standard equal time commutation/anticommutation relati
ships for bosons/fermions, i.e.,

@aa~ t !,aa8
†

~ t !#65@ba~ t !,ba8
†

~ t !#65da,a8 .

In Eq. ~2.4!, ukWs
i andvkWs

i are the free particle and antipartic
amplitudes, respectively, ands is the helicity quantum num
ber given by

1When there is an additional interaction Hamiltonian forf̄ given

by HI5f̄†Wf̄, the Hamiltonian of the system is, of course, e

tended to H̃(f̄)5H(f̄)1HI5H0(f̄)1f̄†Mf̄1f̄†Wf̄. Then

H free(w̄) is also extended toH free(w̄)1w̄†U†WUw̄.
09601
e
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~nW •sW !ukWs
i

5sukWs
i , ~nW •sW !vkWs

i
5svkWs

i , ~2.5!

wheresW is the spin operator andnW 5kW /ukW u. We also define the
following parameters that are useful in extracting the lad
operators from the field operators:

HkWs
m j ds,s85ukWs

m†
ukWs8

j
5v2kW2s

m† v2kW2s8
j ,

hkWs
m j ds,s85ukWs

m†v2kW2s8
j . ~2.6!

For the analysis of arbitrary flavor mass parametrizations,
use the general notation given by Eq.~2.6! including both
flavor and mass degrees of freedom. Although both indicem
and j are numbers running from 1 toN, the mass for the first
index should be used as the flavor mass while the sec
index is for the mass eigenvaluemj . One should note thatH
and h are both symmetric for bosons whileH is symmetric
andh is antisymmetric for fermions. The explicit represent
tions of H and h are presented in the Appendix A for th
spin-0, -12 , and -1 cases.

Now, if L(U,t) is the representation of the mixing tran
formation defined in the equal-time quantization, then

f̄~ t !5Uw̄~ t !5L~U,t !†w̄~ t !L~U,t !. ~2.7!

In the associate Fock space, this corresponds to

ua,t& f5L~U,t !†ua,t&m , ~2.8!

where the subscriptf (m) is used to denote the flavor~mass!
Fock space. For the given timet, Eq. ~2.2! can then be writ-
ten as

H„f̄~ t !…5L~U,t !†H„w̄~ t !…L~U,t !. ~2.9!

As noticed from the two-field mixing analysis@15,16,26,27#,
H„f̄(t)… and H„w̄(t)… cannot be in general related by th
same operator at all times so thatL(U,t) is essentially time-
dependent. The vacuum state of the flavor fields, define
the state with the minimum energy, isL(U,t)†u0&m and
changes with time, satisfying

f^auH„f̄~ t !…ua& f

5m^auH„w̄~ t !…ua&m>m^0uH„w̄~ t !…u0&m

5 f^0uH„f̄~ t !…u0& f . ~2.10!

We now define the ladder operators for the flavor fields
ãm5 i ,kWs(t)5L(U,t)†aikWs(t)L(U,t). Using linearity of the
mixing transformation, we then can solve the explicit stru
ture of ãmkWs(t) without findingL(U,t) itself.

Such an approach in fact has been known for some t
for the fermion case@25#, where it was noticed that fermion
ladder operators for spin12 can be extracted from quantum
fields by means of

aikWs~ t !5
A2e ikW

HkWs
i i ukWs

i†
w ikW~ t !,
5-2
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bi 2kW2s~ t !5FA2e ikW

HkWs
i i v2kW2s

i†
w ikW~ t !G †

.

~2.11!

Since the Fourier component

w ikW~ t !5(s~1/A2e ikW !@ukWs
i

aikWs~ t !1v2kWs
i

bi 2kWs
†

~ t !#

is obviously a linear combination ofw i(xW ,t), one can express
ladder operators as linear combinations of the initial fiel
Using the linearity of Eq.~2.7!, we get

ãmkWs~ t !5
A2emkW

HkWs
mm ukWs

m†
@L~U,t !†w̄kW~ t !L~U,t !#m

5(
j

A2emkW

HkWs
mm ukWs

m†
Um jw jkW~ t !,

~2.12!

b̃m2kW2s~ t !5(
j

A2emkW

HkWs
mm Um j* w jkW

†
~ t !v2kW2s

m .

For the bosons, however, the ladder operators are
separated as in the fermion case, e.g.,

ukWs
i†

w ikW~ t !5
1

A2e ikW
@aikWs~ t !1hkWs

i i
bi 2kW2s

†
~ t !# ~2.13!

and in generalhkWs
i i

Þ0. Equation~2.13! implies that particles
and antiparticles in the boson case cannot be distinguis
unless time dynamics is considered. To deal with this pr
lem, we define ladder operators for bosons by

aikWs5ukWs
i† SAe ikW

2
w ikW~ t !1

1

A2e ikW
ẇ ikW~ t !D ,

bi 2kW2s
†

5v2kW2s
i† SAe ikW

2
w ikW~ t !2

1

A2e ikW
ẇ ikW~ t !D .

~2.14!

With Eqs.~2.11! and ~2.14!, we then derive for fermions2

ãm5
A2em

Hmm (
j ,s8

~ukWs
m†

ukWs8
j

aj1ukWs
m†v2kW2s8

j
b2 j

† !
Um j

A2e j

5(
j

SAem

e j

Hm j

Hmm
Um jaj1Aem

e j

hm j

Hmm
Um jb2 j

† D ,

~2.15!

2Here, we abbreviate the notationsajkWs and bj 2kW2s
† as aj and

b2 j
† , respectively. A similar abbreviation is used forãm and b̃2m .
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b̃2m5
A2em

Hmm (
j ,s8

@~v2kW2s
m†

ukWs8
j

!* aj
†

1~v2kW2s
m† v2kW2s8

j
!* b2 j #

Um j*

A2e j

5(
j

SAem

e j

~Hm j !*

Hmm
Um j* b2 j

2Aem

e j

~hm j !*

Hmm
Um j* aj

†D , ~2.16!

and for bosons,

ãm5
A2em

2 (
j ,s8

S ukWs
m†

ukWs8
j em1e j

em
aj

1ukWs
m†v2kW2s8

j em2e j

em
b2 j

† D Um j

A2e j

5(
j

SAem

e j
1Ae j

em

2
Hm jUm jaj

1

Aem

e j
2Ae j

em

2
hm jUm jb2 j

† D , ~2.17!

b̃2m5
A2em

2 (
j ,s8

S v2kW2s
m†

ukWs8
j em2e j

em
aj

†

1v2kW2s
m† v2kW2s8

j em1e j

em
b2 j D * Um j*

A2e j

5(
j

SAem

e j
1Ae j

em

2
~Hm j !* Um j* b2 j

1

Aem

e j
2Ae j

em

2
~hm j !* Um j* aj

†D . ~2.18!

Denoting the spin of the mixed fields asS, we can unify the
expressions for both fermion and boson in an identical fo
as

ãm5(
j

~am jaj1bm jb2 j
† !,

~2.19!

b̃2m5(
j

@am j* b2 j1~21!2Sbm j* aj
†#,

by defining

am j5gm j
1 Um j , bm j5gm j

2 Um j , ~2.20!
5-3
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where

gm j
1 55

Aem

e j

Hm j

Hmm
fermions,

Hm j

Aem

e j
1Ae j

em

2
bosons,

gm j
2 55

Aem

e j

hm j

Hmm
fermions,

hm j

Aem

e j
2Ae j

em

2
bosons.

~2.21!

We also note from unitarity that

H uam j u21ubm j u25uUm j u2, fermions,

uam j u22ubm j u25uUm j u2, bosons,
~2.22!

so that one can treatam j and bm j as cosine and sine fo
fermions~cosh and sinh for bosons!, respectively,

am j5Um j H cos~um j ! fermions,

cosh~um j ! bosons,

bm j5Um j H sin~um j ! fermions,

sinh~um j ! bosons.
~2.23!

From the fact that Eqs.~2.15!–~2.18! serve as the mixing
group representation, one can conclude that

um j2um j 85u j 8 j ~2.24!

regardless ofmm . Using the formulas, presented in Appe

dix A, this can be explicitly verified forS50, 1
2 , and 1 by

calculating, for example,]gm j
2 /]mm . In every case,

]gm j
2 /]mm can be reduced to]gm j

2 /]mm5gm j
1 f (mm), e.g., for

fermions,

]um j 8
]mm

2
]um j

]mm
5

] sin~um j 8!

]mm

cos~um j 8!
2

] sin~um j !

]mm

cos~um j !

5 f ~mm!2 f ~mm!50

so that um j5um2u j , where cos(um)5(1/2Aem)(Aem1mm

1Aem2mm) and sin(um)5(1/2Aem)(Aem1mm2Aem2mm).
The introduced ladder operators are consistent with

representation of the mixing transformation in the Fo
space:

uam11,t& f5ãm
† ~ t !uam ,t& f

5L~U,t !†ai
†~ t !L~U,t !L~U,t !†ua i ,t&m

5L~U,t !†ua i11,t&m , ~2.25!
09601
e

and the flavor vacuum state satisfies

ãm~ t !u0,t& f5L~U,t !†ai~ t !L~U,t !L~U,t !†u0&m50.
~2.26!

While Eq. ~2.12! may be viewed as the result of expan
ing flavor fieldsfm(x) in the basis parametrized by free-fie
massmi , it was noticed that one may as well expand flav
fields in the basis with the flavor mass parametersmm which
correspond to choosingukWs

m ,v2kWs
m as free-field amplitudes

with the flavor mass (mm) in Eqs.~2.11! and ~2.14! @24#.
In other words, for any L(U,t), L8(U,t)

5I (t)21L(U,t)I (t), which can be obtained by means of
similarity transformation mixingãmkWs(t) andb̃m2kW2s

† (t) but

leaving their combination inf(kW ) unchanged@i.e., fm(kW ,t)
5I (t)21fm(kW ,t)I (t)#, is also a representation of the mixin
group. The ladder operators, defined by Eqs.~2.15!–~2.18!,
therefore depend on the choice ofI (t) or, equivalently, the
‘‘bare’’ massmm assigned to the flavor fields, which is calle
as a mass parametrization.

Although there are different opinions about whether
not the measurable results of the theory depend on the m
parameters@23,24,26,27# we note that the mass parametriz
tion problem indeed is not specific to the quantum mixin
but can be revealed in the free-field case as well as in
perturbation theory. As discussed in@27#, when dealing with
the free-field problem defined by the free Hamiltonian

:H0:5(
kWs

~ekWakWs
†

akWs1ekWbkWs
†

bkWs!, ~2.27!

one may still consider the change of the mass parametr
tion m→mm defined in@26# by

S ã

b̃†D 5I 21~ t !S a

b†D I ~ t !

5S ei ( ẽkW2ekW)trkW
* ei ( ẽkW1ekW)tlkW

e2 i ( ẽkW1ekW)tlkW
* e2 i ( ẽkW2ekW)trkW

D S a~0!

b†~0!
D ,

~2.28!

where ẽk5Ak21mm
2 and ek5Ak21m2. Indeed, as we ob-

serve in@27#, the number operator for the free fields in th
transformation is not conserved, e.g., for fermions,

^Ñ&5u$ã,ã†~ t !%u25uurku2e2 i ekt1ulku2ei ektu2, ~2.29!

which may lead to the obviously wrong conclusion that t
number of particles in the free-field case is not an observa
quantity.

This can also be understood mathematically once we n
that the above transformation is equivalent to the splitting
the initial Lagrangian into
5-4
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5E d3p@$~ p̂c!†~ p̂c!2mm
2 c†c%

1~mm
2 2m2!c†c#, ~2.30!

where an additional self-interaction term, responsible for
oscillation of ^Ñ&, appears. Physically, the transformatio
given by Eq.~2.28!, can be viewed as a redefinition of th
physical one-particle states. The tilde quantities corresp
then to some new quasiparticle objects so that the tilde n
ber operator describes a different type of particles and thu
does not have to be invariant under such transformat
Nevertheless, the charge quantum number is still conse
in the transformation, given by Eq.~2.28!. The situation here
may be analogous to the representation of physical obs
ables under the change of coordinate systems. Although
Casimir operator~e.g.,SW 2 in the spin observables! must be
independent of the coordinate system, other physical op
tors ~e.g.,Sx , Sy , andSz! do depend on the coordinate sy
tem. To compare the eigenvalue ofSz between theory and
experiment, one should first fix the coordinate system. Si
larly, we think specific mass parameters should be sele
from the physical reasoning to compare theoretical res
~e.g., the occupation number expectation! with experiments.

From the above example, it is clear that the same m
parametrization problem is also present in the regular per
um

th
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bation theory once one attempts to redefine the physical o
particle states as shown in Eq.~2.28!. Indeed, in the free
theory and the perturbation theory this issue is resolved
the presence of the mass scale of well-defined asymp
physical states, which therefore fix the mass parameters
the mixing problem, however, at least two feasible ma
scales may be suggested either by the mass scale of th
ergy eigenstates or by the flavor mass scale which co
sponds to no self-interaction term in the Hamiltonian, giv
by Eq. ~2.2!, and thus further discussion of this issue in t
mixing problem is clearly necessary. We think the mass
genvalues that can be measured from the experiments
be the natural choice for the mass scale in the given phys
system.

In any case, all the above unified formulation for a
number of fields with integer or half-integer spin holds f
the arbitrary mass parametermm when e i5Ak21mi

2 and
em5Ak21mm

2 in Eqs. ~2.19!–~2.21! are understood as th
energies of the free fieldw i and the flavor fieldfm , respec-
tively.

In the rest of this section, let us consider the explicit fo
of the flavor vacuum state. We obtain its structure by solv
directly the infinite set of equations

ãnu0& f50, b̃nu0& f50. ~2.31!

We can express the flavor vacuum state as a linear comb
tion of the mass eigenstates, i.e., in the most general for
u0& f5 (
(n),(l )

1

n1!n2! •••nk!
B(n)( l )~a1

†!n1
•••~ak

†!nk~b21
† ! l 1

•••~b2k
† ! l ku0&m , ~2.32!
rent
ve
er-

or
r-
e
to

an
the
ce.
the

te
lo-
ite
with (n)5(n1n2n3•••) andk5N for the mixing ofN fields.
After applying Eq.~2.31! to Eq.~2.32!, we get an infinite set
of equations given by

(
j

~am jB(nj 11)(l )1bm jB(n)( l j 21)!50

for all sets of ~n!,~ l !, ~2.33!

where (nj61)5(n1n2•••nj61•••). The solution of this
problem is presented in Appendix B. For the flavor vacu
state, we find

u0& f5
1

ZexpS (
i , j 51

N

Zi j ai
†b2 j

† D u0&m , ~2.34!

whereZi j is an (i , j ) element of the matrixẐ52â21b̂. The
normalization constantZ is fixed by f^0u0& f51; Z
5det1/2(11ẐẐ†) for fermions andZ5det21/2(12ẐẐ†) for
bosons. The flavor Fock space is then built by applying
flavor-field creation operators (ãm

† ,b̃n
†) to the vacuum state

u0& f .
e

We see that the flavor vacuum state has a rich cohe
structure. This situation is different from the perturbati
quantum field theory, where the adiabatic enabling of int
action is present andu0& interacting;u0& free. The nonperturba-
tive vacuum solution renders nontrivial effects in the flav
dynamics, as we will show in Sec. III. In particular, the no
malization constantZ is always greater than 1 so that in th
infinite volume limit, when the density of states is going
infinity, we have

Ztot5expS V

~2p!3E dkW ln~ZkW !D→`. ~2.35!

Thus, any possible state for the flavor vacuum shall have
infinite norm in the free-field Fock space and therefore
flavor vacuum state cannot be found in original Fock spa
The unitary inequivalence of the flavor Fock space and
original Fock space is therefore established, i.e.,f^0u0&m
5(1/Ztot)→0. The effect is essentially due to an infini
number of momentum degrees of freedom, which is ana
gous to the existence of a phase transition in the infin
volume limit.
5-5
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III. TIME DYNAMICS OF THE MIXED QUANTUM
FIELDS

Now we have a closer look at the dynamics of quant
fields respresented by the ladder operators shown in
~2.19!. First of all, we note that onlyaikWs andbi 2kW2s opera-
tors and their conjugates are mixed together. We denote
set of quantum fields formed by all linear combinations
these operators and their products~algebra on
l
a

es

-
er

t

it

s

09601
q.

he
f

aikWs , bi 2kW2s , and H.c.! as a clusterVkWs with a particular
momentumkW and a particular helicitys. It follows that
VkWs’s are invariant under mixing transformationL(U,t) and
we thus can treat each cluster independently of each oth

The time dynamics of the flavor fields is determined
the nonequal time commutation/anticommutation relatio
ships for boson/fermion fields that can be derived from E
~2.19! using the standard commutation/anticommutation
lationships for the original ladder operators,
Fmn~ t !5@ ãm~ t !,ãn
†#65(

k,k8
~amkank8

* @ake
2 i ekt,ak8

†
#61bmkbnk8

* @b2k
† ei ekt,b2k8#6!

5(
k

@amkank* e2 i ekt2~21!2Sbmkbnk* ei ekt#,

@ b̃2m~ t !,b̃2n
† #65Fnm~ t !, ~3.1!

Gmn~ t !5@ b̃2m~ t !,ãn#65(
k,k8

$amk* bnk8@b2ke
2 i ekt,b2k8

†
#61~21!2Sbmk* ank8@ak

†ei ekt,ak8#6%

5(
k

~amk* bnke
2 i ekt2bmk* anke

i ekt!.
ni-

um
p-
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es,
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The two matricesF̂ and Ĝ represent the only nontrivia
commutators/anticommutators in the sense that all others
either zero or can be written in terms of the elements of th
matrices. It is useful to note that, fort50, Eq.~3.1! shall be
reduced toFmn(0)5dmn andGmn(0)50. We also note that

Fmn~ t !* 5Fnm~2t !,
~3.2!

Gmn~ t !* 52Gnm~ t !.

Equation~3.1! allows us to compute many mixing quan
tities directly. The time dynamics of the flavor-field ladd
operators can be derived by writing them asãm(t)
5(n@ f mnãn(0)1gmnb̃2n

† (0)1•••#. Then, one can ge

straightforwardly f mn* 5@ ãn(0),ãm
† (t)#65Fnm(2t) and gmn

5@ b̃2n(0),ãm(t)#65Gnm(2t) while all other coefficients
are zeros:

ãm~ t !5(
n

@Fmn~ t !ãn1Gnm~2t !b̃2n
† #,

~3.3!

b̃2m~ t !5(
n

@Fnm~ t !b̃2n1~21!2SGmn~ t !ãn
†#.

We now consider the condensate densities of the defin
mass particles in the flavor vacuum @Zi8
5 f^0uai

†(t)ai(t)u0& f #, the number of definite-flavor particle

in the flavor vacuum@Zn5 f^0uãn
†(t)ãn(t)u0& f #, and the par-
re
e

e-

ticle number average for a single definite-flavor particle i
tial state, which is related in the Heisenberg picture to

Nrns5m^ruãn
†~ t !ãn~ t !us&m ,

N̄rns5m^rub̃2n
† ~ t !b̃2n~ t !us&m .

The free-field particle condensates in the flavor vacu
state are computed from the explicit form of the ladder o
erators given by Eq.~2.19! as

Zi85(
j

ub i j u2. ~3.4!

In the following, the particle-antiparticle symmetry shou
be accounted for, so that a corresponding antiparticle qu
tity can be found from the particle expression after a nec
sary substitution (particles→antiparticles and vice versa!.
Thus, the antiparticle condensate is given by the same q
tity in Eq. ~3.4!. The definite-flavor particle condensates
the free-field vacuum are also given by Eq.~3.4!.

Using Eq.~3.3!, we get the flavor-field condensates in th
flavor vacuum (Zn) as

Zn~ t !5(
m

uGnm~2t !u2. ~3.5!

It is remarkable that this number is not zero but oscillat
demonstrating the oscillations of definite-flavor particles
the flavor vacuum. This effect reveals the unitary inequiv
5-6
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lence of the flavor Fock spaces for different times due to
time dynamics of the flavor vacuum.

The evolution of the particle (Nrns) and antiparticle
(N̄rns) number with flavorn can be found using the standa
technique of normal ordering, i.e., moving annihilation o
erators to the right side and creation operators to the left
of the expression. With this technique, we obtain

Nrns~ t !5@ ãr ,ãn
†~ t !#6@ ãn~ t !,ãs

† #6

1drs^0uãn
†~ t !ãn~ t !u0&

5Fnr* ~ t !Fns~ t !1drsZn~ t !,
~3.6!

N̄rns~ t !5~21!2S@ ãr ,b̃2n~ t !#6@ b̃2n
† ~ t !,ãs

† #6

1drs^0ub̃n
†~ t !b̃n~ t !u0&

5~21!2SGnr~ t !Gns~ t !* 1drsZn~ t !.

The flavor chargeQrns5Nrns2N̄rns @22,23,26# is then
given by
09601
e

-
e

Qrns5Nrns2N̄rns

5Fnr* ~ t !Fns~ t !2~21!2SGnr~ t !Gns~ t !* . ~3.7!

For a specific case of the number evolution in the beam w
a fixed 3-momentum, we find

Nrnr5^0uãrãn
†~ t !ãn~ t !ãr

†u0&5uFnr~ t !u21Zn~ t !,

N̄rnr5^0uãrb̃2n
† ~ t !b̃2n~ t !ãr

†u0&

5~21!2SuGnr~ t !u21Zn~ t !, ~3.8!

Qrnr5uFnr~ t !u22~21!2SuGnr~ t !u2.

We note thatNrnr’s as well asQrnr’s are in general depen
dent on the choice of mass parametermm .

We may explicitly see this in the example of the char
operator. According to Eq.~3.8!, we get
Qmnm5(
k,k8

@amkank* ei ekt2~21!2Sbmkbnk* e2 i ekt#@amk8
* ank8e

2 i ek8t2~21!2Sbmk8
* bnk8e

i ek8t#2~21!2S(
k,k8

~ank* bmke
2 i ekt

2bnk* amke
i ekt!~ank8bmk8

* ei ek8t2bnk8amk8
* e2 i ek8t!

5(
k,k8

e2 i (ek82ek)t@amk8
* ank8amkank* 2~21!2Sbnk8amk8

* bnk* amk#1ei (ek82ek)t@bmkbnk* bmk8
* bnk82~21!2S

3ank8bmk8
* ank* bmk#2~21!2Se2 i (ek81ek)t~bmkbnk* amk8

* ank82ank* bmkbnk8amk8
* !2~21!2Sei (ek81ek)t

3@amkank* bmk8
* bnk82bnk* amkank8bmk8

* #

5(
k,k8

e2 i (ek82ek)tamk8
* amk@ank8ank* 2~21!2Sbnk8bnk* #2~21!2Sei (ek82ek)tbmkbmk8

* @ank8ank* 2~21!2Sbnk* bnk8#

2~21!2Se2 i (ek81ek)tbmkamk8
* ~bnk* ank82ank* bnk8!2~21!2Sei (ek81ek)tamkbmk8

* ~ank* bnk82bnk* ank8!

5(
k,k8

@ank8ank* 2~21!2Sbnk8bnk* #@e2 i (ek82ek)tamk8
* amk2~21!2Sei (ek82ek)tbmkbmk8

* #2~21!2S~bnk* ank8

2ank* bnk8!~e2 i (ek81ek)tbmkamk8
* 2ei (ek81ek)tamkbmk8

* !. ~3.9!

Taking into account Eq.~2.23!, we can write, e.g., for fermions (S5 1
2 )

ank8ank* 1bnk8bnk* 5Unk8Unk* @cos~unk8!cos~unk!1sin~unk8!sin~unk!#5Unk8Unk* cos~unk82unk!5Unk8Unk* cos~ukk8!,

bnk* ank82ank* bnk85Unk8Unk* @cos~unk8!sin~unk!2cos~unk8!sin~unk!#5Unk8Unk* sin~unk2unk8!5Unk8Unk* sin~uk8k!.

Thus, we find

Qmnm5(
k,k8

Unk8Unk* UmkUmk8
* @cos2~ukk8!cos~vk8kt !1 i cos~uk8k!cos~umk1umk8!sin~vkk8t !

1sin2~uk8k!cos~Vk8kt !2 i sin~uk8k!sin~umk1umk8!sin~Vkk8t !#, ~3.10!

whereV i j 5e i1e j andv i j 5e i2e j . This can be rewritten as
5-7
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Qmnm5(
k,k8

Re~Unk8Unk* UmkUmk8
* !@cos2~ukk8!cos~vk8kt !2~21!2Ssin2~uk8k!cos~Vk8kt !#1(

k,k8
Im~Unk8Unk* UmkUmk8

* !

3@cos~ukk8!cos~umk1umk8!sin~vk8kt !2~21!2Ssin~uk8k!sin~umk1umk8!sin~Vk8kt !#. ~3.11!
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This formula is also valid for bosons with the substitution
cos→cosh, sin→sinh.

We see now thatQmnm does not depend on the mass p
rameters only for real mixing matricesUmk @22,24#. Other-
wise, there is a nontrivial mass dependence from the im
nary part ofU. Interestingly, even in the latter case, there
no dependence on the mass of the flavor fieldn (mn) but
only on the mass of the initial flavor statem.

We also note that Eq.~3.8! may be viewed as a superpo
sition of the two terms:r→n propagation and backgroun
vacuum contributionZn . Thus, one may introduce th
particle-particle and particle-antiparticle propagation am
tudes, respectively, defined by

Pr→n~k,t !5@ ãn~ t !,ãr
†~0!#65Fnr~ t !,

Pr→2 n̄~k,t !5@ b̃2n~ t !,ãr~0!#65Gnr~ t !.
~3.12!

Indeed, such propagation amplitudes appear from the fla
field Green function f^0(t50)ufn(k,t)fr

†(k,0)u0(t50)& f

for t.0. Propagation functions, defined in this way, a
clearly the Green functions of the mixed-field problem a
obey the causality features relevant to such Green functio3

IV. TWO-FIELD UNITARY MIXING

A. Vector meson mixing „SÄ1…

We now consider the unitary mixing of two fields wit
spin 1~vector mesons!. U~2! parametrization consists of fou
parameters: three phases that can be absorbed in the
redefinition of fields and one essential real angle that is l
so that

U5S cos~u! sin~u!

2sin~u! cos~u!
D . ~4.1!

Using Appendix A, we then definegm i
6 5 1

2 @A(em /e i)
6A(e i /em)# for s561 and
09601
f

-

i-

-

r-

s.

ase
t,

gm i
1 5

1

2

eme i2k2

mmmi
SAem

e i
1A e i

em
D ,

gm i
2 5

1

2

k21eme i

mmmi
SAem

e i
2A e i

em
D ~4.2!

for s50. For the free-field massmi basis, g12
1 5g21

1

5g1 , g12
2 52g21

2 5g2 . We use this basis in Sec. IV.
The ladder mixing matricesa andb are given by

a5S cos~u! g1sin~u!

2g1 sin~u! cos~u!
D ,

b5S 0 g2 sin~u!

2g2 sin~u! 0 D . ~4.3!

For the flavor charge oscillation, we then obtain the res
that is not dependent on the mass parametrization:

Q111511sin2~2u!Fg2
2 sin2S V12t

2 D2g1
2 sin2S v12t

2 D G ,
Q1215sin2~2u!Fg1

2 sin2S v12t

2 D2g2
2 sin2S V12t

2 D G .
~4.4!

We see that this result, with an exception of greater comp
ity of g6 , is identical to the case of spin 0@26,27#. Accord-
ing to the above theory, in fact, this should be the case for
two-field mixing with any integer spin. ForS51 we see that
an essential difference from the scalar/pseudoscalar m
mixing, such as the complication of momentum depende
of g6 , occurs only for the mixing of longitudinally polar
ized particles. The mixing of transverse components is es
tially the same as in the case of spin-zero particles.

The details of non-equal-time commutators are given
F5H e2 i e1t cos2~u!1e2 i e2tg1
2 sin2~u!2ei e2tg2

2 sin2~u!; g1 sin~u!cos~u!~e2 i e2t2e2 i e1t!

g1 sin~u!cos~u!~e2 i e2t2e2 i e1t!; e2 i e2t cos2~u!1e2 i e1tg1
2 sin2~u!2ei e1tg2

2 sin2~u!
J , ~4.5!

G5S g1g2 sin2~u!~e2 i e2t2ei e2t! g2 sin~u!cos~u!~e2 i e1t2ei e2t!

g2 sin~u!cos~u!~e2 i e2t2ei e1t! g1g2 sin2~u!~ei e1t2e2 i e1t!
D . ~4.6!

3See Refs.@21,24# for the discussion of the Green functions in the quantum theory of the mixed fields.
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The condensates of free-field particles are

Z185Z285g2
2 sin2~u! ~4.7!

and the condensates of the flavor particles in the vacuum are

Z154g2
2 sin2~u!Fcos2~u!sin2S V12t

2 D1g1
2 sin2~u!sin2S V22t

2 D G ,
~4.8!

Z254g2
2 sin2~u!Fcos2~u!sin2S V12t

2 D1g1
2 sin2~u!sin2S V11t

2 D G .
The flavor vacuum structure is defined by the matrixẐ:

Ẑ5
21

@cos2~u!1g1
2 sin2~u!#

S 2g1g2 sin2~u! g2 cos~u!sin~u!

g2 cos~u!sin~u! g1g2 sin2~u!
D ~4.9!

with the normalization constant being

Z5S 12
g2

2 sin2~u!

cos2~u!1g1
2 sin2~u!

D 21

511g2
2 sin2~u!.

The time evolution of the flavor particle number~if No. 1 were emitted! is given by

N111511sin2~u!H 8g2
2 cos2~u!sin2S V12t

2 D24g1
2 cos2~u!sin2S v12t

2 D18g1
2 g2

2 sin2~u!sin2S V22t

2 D J ,

~4.10!

N̄11154g2
2 sin2~u!F2g1

2 sin2~u!sin2S V22t

2 D1cos2~u!sin2S V12t

2 D G ,
N1215sin2~u!H 4g1

2 cos2~u!sin2S v12t

2 D14g2
2 cos2~u!sin2S V12t

2 D14g1
2 g2

2 sin2~u!sin2S V11t

2 D J ,

~4.11!

N̄12154g2
2 sin2~u!F2 cos2~u!cos2S V12t

2 D1g1
2 sin2~u!sin2S V11t

2 D G .
Also we note that the scalar and pseudoscalar case follows immediately from the above presentation wgm i

6

5 1
2 @A(em /e i)6A(e i /em)#. In this respect, the spin-zero mixing is equivalent to the mixing of transverse components of

fields, described by Eqs.~4.4!, ~4.10!, and~4.11!. These results are consistent with the previously known results@26,27#.

B. Fermion mixings „SÄ 1
2 …

We also present here the calculations forS5 1
2 case. For the consistent notation with the previous works@16,28#,4 we define

U5
A~e11m1!~e21m2!1A~e12m1!~e22m2!

2Ae1e2

, ~4.12!

V5s
A~e12m1!~e21m2!2A~e11m1!~e22m2!

2Ae1e2

.

The charge fluctuations are then given by

Q111512sin2~2u!FU2 sin2S v12t

2 D1V2 sin2S V12t

2 D G ,
~4.13!

4In our notation,U5g1 , V5g2.
096015-9
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Q1215sin2~2u!FU2 sin2S v12t

2 D1V2 sin2S V12t

2 D G ,
and the ladder mixing matrices are

a5S cos~u! U sin~u!

2U sin~u! cos~u!
D ,

~4.14!

b5S 0 V sin~u!

V sin~u! 0 D ,

which are the same as the previously known results@16,28#.
We can also give more details on the fermion mixing dynamics. The non-equal-time anticommutators are given b

F5H e2 i e1t cos2~u!1e2 i e2tU2 sin2~u!1ei e2tV2 sin2~u!; U sin~u!cos~u!~e2 i e2t2e2 i e1t!

U sin~u!cos~u!~e2 i e2t2e2 i e1t!; e2 i e2t cos2~u!1e2 i e1tU2 sin2~u!1ei e1tV2 sin2~u!
J , ~4.15!

G5S UV sin2~u!~e2 i e2t2ei e2t! V sin~u!cos~u!~e2 i e1t2ei e2t!

V sin~u!cos~u!~e2 i e2t2ei e1t! UV sin2~u!~ei e1t2e2 i e1t!
D . ~4.16!

The condensates of the free-field particles are

Z185Z285V2 sin2~u! ~4.17!

and the condensates of the flavor particles are

Z154V2 sin2~u!Fcos2~u!sin2S V12t

2 D1U2 sin2~u!sin2S V22t

2 D G ,
~4.18!

Z254V2 sin2~u!Fcos2~u!sin2S V12t

2 D1U2 sin2~u!sin2S V11t

2 D G .
The vacuum structure is defined by the matrixẐ:

Ẑ5
21

cos2~u!1U2 sin2~u!
S 2UV sin2~u! V cos~u!sin~u!

V cos~u!sin~u! UV sin2~u!
D

with the normalization constant being

Z5
1

cos2~u!1U2 sin2~u!
5

1

12V2 sin2~u!
.

The time evolution of the flavor particle number~if No. 1 were emitted! is then given by

N1115124U2 sin2~u!cos2~u!sin2S v12t

2 D ,

~4.19!

N̄11154V2 sin2~u!cos2~u!sin2S V12t

2 D ,

N12154 sin2~u!H U2 cos2~u!sin2S v12t

2 D1V2 cos2~u!sin2S V12t

2 D1U2V2 sin2~u!sin2S V11t

2 D J ,

~4.20!

N̄12154U2V2 sin4~u!sin2S V11t

2 D .
096015-10
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V. CONCLUSION

The quantum field mixing effects may be understood
considering the interplay between the two Fock spaces of
free fields and the interacting fields. As demonstrated in
two-field mixing treatment, this interplay is highly nontrivia
and gives rise to a deviation from the simple quantu
mechanical approach due to the high-frequency oscillati
and the antiparticle component in the system.

We have now extended the previous results and prese
a solution without approximations for the quantum fie
theory of mixings in the arbitrary number of fields with b
son or fermion statistics. As one might have expected fr
the previous two-field treatment@15,21,26,27#, all results fall
into the same scheme and can be easily unified. We inv
gated the field time dynamics by calculating unequal-ti
commutators and discussed the propagation functions.
found an explicit solution for the interacting field Fock spa
and the corresponding vacuum structure that turned out t
a generalized coherent state. We then showed the un
inequivalence between the mixed-field Fock space and
free-field Fock space in the infinite volume limit. After w
built a formal calculational framework, we applied it to solv
mixing dynamics of two vector mesons (S51) and fermions
(S5 1

2 ). We found that the scalar/pseudoscalar (S50) boson
mixing is the same as the mixing of transverse compone
of the vector fields, while for the longitudinal component
the vector field we found a richer momentum depende
than in the spin-zero case.

However, from the application of our approach to thre
fermion/boson mixing cases, which we summarize in App
dix C, we saw a very complicated structure of more gene
results. Oscillation formulas typically involve all possib
low-frequency and high-frequency combination terms. T
amplitudes of the oscillation terms are essentia
momentum-dependent. We have also discussed the exis
of the coherent antiparticle beam generated from the star
definite-flavor particle beam and presented its dynamics.

Our general approach does not require us to use any
cific continuous parametrization of the mixing group but
rectly takes the values of matrix elements. This allows
analysis to be carried out in a unified closed form, as sho
in Secs. II and III. In general, it may be preferable to so
the mixing problems without going through the intermedia
parametrization step for the mixing matrix. Even if on
wants to use a specific parametrization scheme for the m
ing matrix, it is rather straightforward to formulate our ge
eral framework into a symbolic calculation system, li
MAPLE or MATHEMATICA , and carry out extensive calcula
tions involving mixing parameters in a short period of tim
Examples of such calculations are shown in Appendix C

The physical application of the above formalism can
seen in investigating the neutrino mixing, mixing of gau
vector bosons governed by the Weinberg angle in the e
troweak theory, as well as vector mesons such asr andv. It
also seems possible to apply these results to consider
perturbative quark-mixing effects in the standard model a
provide partial summation of the regular perturbation the
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in mixing degrees of freedom. For this purpose, consider
the covariant form of the above theory might be of gre
interest. Consideration along this line is in progress.
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APPENDIX A: ESSENTIAL CASES OF MIXING FIELD
PARAMETERS

The most essential cases in modern particle physics
scalar or pseudoscalar~spin 0!, vector~spin 1! boson fields,
and spin-12 fermion fields. For these cases, mixing theo
parameters are explicitly derived from quantum field theo
@20,29#. We then have for scalar or pseudoscalar fields~spin
0!

ukW ,05vkW ,051, ~A1!

and for vector fields~spin 1!

ukW ,05vkW ,05S k

m
,i

e~k!

m
nW D ,

ukW ,615vkW ,615~0,inW 6!, ~A2!

where nW 5kW /k5eW z and nW 657(1/A2)(eW x6 ieW y) form a
spherical basis. For bispinor fields~spin 1

2 ), we use the stan-
dard representation of theg matrices given by

g05S Î 0

0 2 Î
D , gW 5S 0 sW

2sW 0
D , ~A3!

and the corresponding representations of spinors,

ukW ,s5@Ae~k!1mvs ,Ae~k!2m~nW •sW !vs#,
~A4!

v2kW ,s5@2Ae~k!2m~nW •sW !v2s ,Ae~k!1mv2s#,

wherevs is spinor satisfying (nW •sW )vs5s•vs ands takes
values61.

TheH andh matrix parameters are then for the scalar ca

Hm j5hm j51. ~A5!

For spin 1,
5-11
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H HkW ,0
m j

5
em~k!e j~k!2k2

mmmj
,

hkW ,0
m j

5
em~k!e j~k!1k2

mmmj
,

s50 ~A6!

HkW ,6
m j

5hkW ,6
m j

51,s561,

and for spin1
2 ,

HkW ,s
m j

5A@em~k!1mm#@e j~k!1mj #

1A@em~k!2mm#@e j~k!2mj #, ~A7!
/

t

e
ra

in

-

09601
hkW ,s
m j

5s$A@em~k!2mm#@e j~k!1mj #

2A@em~k!1mm#@e j~k!2mj #%.

APPENDIX B: THE FLAVOR VACUUM STATE

In this appendix, we explicitly solve the flavor vacuu
structure. We first consider the boson case.

We write the sought flavor vacuum state as the most g
eral linear combination from the original-field Fock space
u0& f5 (
(n),(l )

1

n1!n2! •••nk!
B(n)( l )~a1

†!n1
•••~ak

†!nk~b21
† ! l 1

•••~b2k
† ! l ku0&m , ~B1!
he

res-

that
ion

the
wherek5N for the mixing of N fields. From the particle
antiparticle symmetry, the part of Eq.~2.31! involving anti-
particle annihilation operators results in a dependent se
equations and thus can be omitted. Expanding Eq.~2.31!, we
find

(
j

~a i j B(nj 11)(l )1b i j B(n)( l j 21)!50 for all ~n!,~ l !

~B2!

where (nj11) notation stands for (n1 ,n2 , . . . ,nj
11, . . . ,nk) and k is the number of flavor fields. To solv
this infinite set of equations, we introduce symbolic ope
tors which decrease the subscript index ofB coefficients, i.e.,
d2 jB(n)( l )5B(n)( l j 21) . Then solving each set of equations

Eq. ~B2! with respect toB(nj 11)(l ) , we find

B(ni11)(l )5S (
j

Zi j d2 j DB(n)( l )

and consequently

B(n)( l )5)
i

S (
j

Zi j d2 j D ni

B(0)(l ) ~B3!

with matrix Ẑ52â21
•b̂. Considering the momentum con

servation and the original Eq.~B2!, it can be shown that only
B(0)(l 50) must be nonzero among all (l ). Thus, applying
symbolic operatorsd2 j and leaving only termsB(0)(0) in the
expansion, we get

B(n)( l )5 (

H ( j p
i )

(pj p
i

5ni

( i j p
i

5 l p

J
)

i

ni !

j 1
i ! ••• j k

i !
Z

i1
j 1
i

•••Z
ik

j k
i

B(0)(0) .

~B4!
of

-

It is possible to rewrite this complicated expression in t
more compact form

u0& f5
1

Z (
(k)

)
i

1

ki !
S (

j
Zi j ai

†b2 j
† D ki

u0&m ~B5!

that can be shown directly by expanding the above exp
sion. It also can be argued that to obtainB(n)( l ) from Eq.~B5!
one needs to leave only those terms in the expansion
give the correct power of particle and antiparticle creat
operators, i.e., total powers of allai

†’s areni ’s andbi
†’s are

l i . But this is the same as extractingB(n)( l ) from Eq. ~B3!.
The constantZ is introduced instead ofB(0)(0) and serves as
a normalization factor determined byf^0u0& f51.

Equation~B5! can be further simplified as

u0& f5
1

Z (
(k)

)
i

1

ki !
S (

j
Zi j ai

†b2 j
† D ki

u0&m

5
1

Z)
i

(
ki50

`
1

ki !
S (

j
Zi j ai

†b2 j
† D ki

u0&m

5
1

ZexpS (
i , j 51

N

Zi j ai
†b2 j

† D u0&m . ~B6!

Let us now proceed to the fermion case. We employ
same idea as the symbolic shifting operators. IfĈ(n)( l ) stands
for a creation operator for the fermion stateu(n),(l )&, we
want then

aiB(ni11)(l )Ĉ(ni11)(l )u0&m56B(ni11)(l )Ĉ(n)( l )u0&m

5d1 iB(n)( l )Ĉ(n)( l )u0&m ,
~B7!

bi
†B(n)( l i21)Ĉ(n)( l i21)u0&m56B(n)( l i21)Ĉ(n)( l )u0&m

5d2 iB(n)( l )Ĉ(n)( l )u0&m ,
5-12
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with correct sign. Equation~B2! then can be written in the
form

(
j

~a i j d1 j1b i j d2 j !B(n)( l )50, ~B8!

which binds together the shifting operators that increase
decrease the index. This set can be solved as

d1 i@B(n)( l )#5(
j

Zi j d2 j@B(n)( l )# ~B9!

with the same matrixẐ presented in the boson case. Fro
the definition of shifting operators it can be inferred that th
obey the anticommutation property~i.e., d6 id6 j5
2d6 jd6 i) and thus it can be shown further that fori 1. i 2
.•••. i n ,

d1 i n
d1 i n21

•••d1 i 1
B(0)(l )5B( i )( l ) ,

~B10!
d2 i 1

d2 i 2
•••d2 i l

B(n)( l )5B(n)( l 2 i ) ,

so that the solution can be written again as

B(n)( l )5)
i

S (
j

Zi j d2 j D ni

B(0)(l ) , ~B11!

where onlyB(0)(0) survives. Here,ni can be only 0 or 1 and
the anticommutation rules for the ordering are applied. I
remarkable that Eq.~B5! can still be used for the fermion
vacuum. This can be verified by a direct expansion with
anticommutation nature of ladder operators. Thus, for eit
the boson or fermion case, the flavor vacuum state can
written as

u0& f5
1

ZexpS (
i , j 51

N

Zi j ai
†b2 j

† D u0&m . ~B12!

We now proceed to find the normalization constantZ. To do
this, we consider

zu0& f z25UexpS (
i , j 51

N

Zi j ai
†b2 j

† D u0&mU2

5(
L

1

L! 2US (
i , j 51

N

Zi j ai
†b2 j

† D L

u0&mU2

, ~B13!

where we use the fact that the states
(( i , j 51

N Zi j ai
†b2 j

† )Lu0&m are orthogonal for differentL ’s. We

then employ the fact that matrixẐ can be transformed to
diagonal form with two unitary transformations, i.e.,

Z85S x1 0 . . .

0 � 0

. . . 0 xN

D 5UZV†. ~B14!

We can now introduce additional unitary transformations
a8†5U†a†, b8†5V†b† to make ( i , j 51

N Zi j ai
†b2 j

†

09601
d

y

s

e
r

be

f

f

5(i51
N Zii8ai8

†b2i8† , where ai8 ,b2 j8 satisfy the standard
commutation/anticommutation relationship. Then, using
binomial formula to expand (( i 51

N Zii8ai8
†b2 i8†)L, we find

(
L

1

L! 2US (i 51

N

Zii8ai8
†b2 i8† D L

u0&mU2

5(
L

1

L! 2 (
n11•••1nN5L

L! 2)
j 51

N
1

nj !
2
z~Zj j8 aj8

†b2 j8† !nj u0&mz2

5(
L

(
n11•••1nN5L

)
j 51

N
nj !

2

nj !
2

uZj j
8nj u2

5 (
n1 , . . . ,nN

l1
n1
•••lN

nN , ~B15!

wherel i ’s are eigenvalues ofZZ†. The summation limits in
Eq. ~B15! are different for fermions and bosons. For boso
ni runs from 0 tò , while for fermions they can only be 0 o
1. In either case, the sum can be evaluated to give

UexpS (
i , j 51

N

Zi j ai
†b2 j

† D u0&mU2

55 )
i

~11l i ! fermions

)
i

1

12l i
bosons

5H det~ 1̂1ZZ†! fermions

det21~ 1̂2ZZ†! bosons.
~B16!

APPENDIX C: UNITARY MIXING OF THREE FIELDS IN
WOLFENSTEIN PARAMETRIZATION

We now present an application of the above general
malism to the specific case of mixing of three quantu
fields. Calculations were carried out with the help of t
MATHEMATICA 3 symbolic calculational system.

We note that all time-dependent quantities in this sect
are presented in the form of matrices, each entry of wh
corresponds to a certainV i j 5v i1v j or v i j 5v i2v j fre-
quency. This means that each quantity is presented in
form

P52 ReS (
i j

@Pi j
Ve2 iV i j t1Pi j

ve2 iv i j t# D , ~C1!

wherePV andPv matrices are written as follows:

PV5$$P11
V ,P12

V ,P13
V %,$P21

V ,P22
V ,P23

V %,$P31
V ,P32

V ,P33
V %%,

~C2!

Pv5$$P11
v ,P12

v ,P13
v %,$P21

v ,P22
v ,P23

v %,$P31
v ,P32

v ,P33
v %%.
5-13
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Since the diagonal elements ofPv correspond to the sam
constant termv i i 50, we can collect the diagonal elemen
of Pv as Sp(Pv)5P11

v 1P22
v 1P33

v and express only the off
diagonal elements as

P̃v5ˆ$0,P12
v ,P13

v %,$P21
v ,0,P23

v %,$P31
v ,P32

v ,0%‰. ~C3!

1. The case of three fermion fields

We now show our results for the unitary mixing of thre
fields with spin 1

2 ~bispinors!. Although an explicit param-
etrization is not needed in our formalism, we may use
Wolfenstein parametrization as an explicit form of a mixi
matrix,

U5S 12l2/2 l Al3~r2 ih!

2l 12l2/2 Al2

Al3~12r2 ih! 2Al2 1
D .

~C4!

All results are then computed to a few lowest orders inl.
For the bispinors, we redefine ourH and h matrices as

Hi j →Hi j /(2Ae ie j ), hi j →hi j /(2Ae ie j ) so that
09601
e

H5S 1 u12 u13

u12 1 u23

u13 u23 1
D ,

h5S 0 v12 v13

2v12 0 v23

2v13 2v23 0
D . ~C5!

Also, ui j ,v i j are defined in the same way as in the two-fie
mixing

ui j 5
A~e i1mi !~e j1mj !1A~e i2mi !~e j2mj !

2Ae ie j

,

v i j 5s
A~e i2mi !~e j1mj !2A~e i1mi !~e j2mj !

2Ae ie j

.

~C6!

Then, the structure of the ladder operators is described ba
andb matrices,
s. The
a5S 12l2/2 u12l u13Al3~r2 ih!

2u12l 12l2/2 u23Al2

u13Al3~12r2 ih! 2u23Al2 1
D ,

b5S 0 v12l v13Al3~r2 ih!

v12l 0 v23Al2

2v13Al3~12r2 ih! v23Al2 0
D . ~C7!

To make the results more compact, we definec5A(r2 ih), e52A(12r2 ih), anda5A so that

a5S 12l2/2 u12l u13cl3

2u12l 12l2/2 u23al2

2u13el3 2u23al2 1
D ,

~C8!

b5S 0 v12l v13cl3

v12l 0 v23al2

v13el3 v23al2 0
D .

For the case when the No. 2 flavor particle was initially present, the flavor charge oscillation formulas are as follow
flavor charge fluctuation,Q212(t), is given by

Q212
V 5H H 0,2

l2v12
2

2
~12l2!,2

l6av13c*

2
~u23v121u12v23!J ,

H 2
l2v12

2

2
~12l2!,0,

l6av23

2
~u12v13c* 2u13v12c!J ,

H 2
l6av13c*

2
~u23v121u12v23!,

l6av23

2
~u12v13c* 2u13v12c!,0J J , ~C9!
5-14
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Q̃212
v 5H H 0,2

l2u12
2

2
~12l2!,

l6au13c

2
~2u12u231v12v23!J ,

H 2
l2u12

2

2
~12l2!,0,

l6au23

2
~u12u13c1v12v13c* !J ,

H l6au13c*

2
~2u12u231v12v23!,

l6au23

2
~u12u13c* 1v12v13c!,0J J , ~C10!

Sp~Q212
v !5l2~u12

2 1v12
2 !~12l2!.

Similarly, Q222(t) andQ232(t) are given by

Q222
V 5H H 0,

v12
2 l2

2
~12l2!,

a2~u23v121u12v23!
2

2
l6J ,

H v12
2 l2

2
~12l2!,0,

a2v23
2 l4

2
~12l2!J ,

H a2~u23v121u12v23!
2

2
l6,

a2v23
2 l4

2
~12l2!,0J J , ~C11!

Q̃222
v 5H H 0,

u12
2 l2

2
~12l2!,

a2~u23u122v12v23!
2

2
l6J ,

H u12
2 l2

2
~12l2!,0,

a2u23
2 l4

2
~12l2!J ,

H a2~u23u122v12v23!
2

2
l6,

a2u23
2 l4

2
~12l2!,0J J , ~C12!

Sp~Q222
v !5

1

2
2l21

1

4
~312u12

4 14u12
2 v12

2 12v12
4 !l4,

and

Q232
V 5H H 0,

av12l
6

2
~eu13v232u23v13e* !,

l6av13e*

2
~u23v121u12v23!J ,

H av12l
6

2
~eu13v232u23v13e* !,0,2

a2v23
2 l4

2
1

a2v23
2 l6

4 J ,

H l6av13e*

2
~u23v121u12v23!,2

a2v23
2 l4

2
1

a2v23
2 l6

4
,0J J , ~C13!

Q̃232
v 5H H 0,2

au12l
6

2
~ev13v231u13u23e* !,

l6au13e*

2
~u12u232v12v23!J ,

H 2
au12l

6

2
~e* v13v231u13u23e!,0,2

a2u23
2 l4

2
1

a2u23
2 l6

4 J ,

H l6au13e

2
~u12u232v12v23!,2

a2u23
2 l4

2
1

a2u23
2 l6

4
,0J J , ~C14!

Sp~Q232
v !5a2~u23

2 1v23
2 !l4~12l2/2!,
096015-15



by

s. The

CHUENG-RYONG JI AND YURIY MISHCHENKO PHYSICAL REVIEW D65 096015
respectively.
In more details, the dynamics is given by the following quantities. The non-equal-time anticommutators are given

F11~ t !5e2 i e1t1l2~2e2 i e1t1u12
2 e2 i e2t1v12

2 ei e2t!,

F12~ t !5F21~ t !5lu12~e2 i e2t2e2 i e1t!1l3
u12

2
~e2 i e1t2e2 i e2t!,

F13~ t !5F31~2t !* 5l3@u13~ce2 i e3t2e* e2 i e1t!2au12u23e
2 i e2t1av12v23e

i e2t#

~C15!

F22~ t !5e2 i e2t1l2~2e2 i e2t1u12
2 e2 i e1t1v12

2 ei e1t!,

F23~ t !5F32~ t !5l2au23~e2 i e3t2e2 i e2t!,

F33~ t !5e2 i e3t;

G11~ t !5l2u12v12~e2 i e2t2ei e2t!,

G12~ t !52@G21~ t !#* 5lv12~e2 i e1t2ei e2t!1l3
v12

2
~2e2 i e1t1ei e2t!,

G13~ t !52@G31~ t !#* 5l3@v13~ee2 i e1t2c* ei e3t!1au23v12e
i e2t1au12v23e

2 i e2t#,
~C16!

G22~ t !5l2u12v12~2e2 i e1t1ei e1t!,

G23~ t !52~G32~ t !!* 5l2av23~e2 i e2t2ei e3t!,

G33~ t !5l4a2u23v23~ei e2t2e2 i e2t!.

The vacuum structure is defined by theẐ matrix:

Z115u12v12l
21u12~12u12

2 !v12l
4,

Z1252v12l2~ 1
2 2u12

2 !v12l
35Z21,

Z1352~cv132au12v23!l
3, Z3152~au23v121ev13!l

3,

Z2252Z111a2u23v23l
4, ~C17!

Z2352av23l
22@cu12v131a~ 1

2 2u12
2 !v23#l

4,

Z3252av23l
22~eu131au12u23!v12l

4,

Z3352a2u23v23l
4.

The normalization constant is obtained asZ'11v12
2 l21(v12

2 1a2v23
2 2v12

2 u12
2 )l41••• .

If the particle of sort No. 2 is originally present, then for the particle of sort No. 1 the mixing quantities are as follow
free-field particle condensate is

Z185v12
2 l2 ~C18!

and the flavor particle condensate is

Z1
V5H H 0,2l2

v12
2

2
~12l2!,2

l6

2
v13c* ~au23v121v13e* !J ,

H 2l2
v12

2

2
~12l2!,2l4u12

2 v12
2 ,2

l6av23

2
~cu13v121u12v13c* !J ,
096015-16
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H 2
l6

2
v13c* ~au23v121v13e* !,2

l6

2
av23~cu13v121u12v13c* !,2a2cu13u23v13v23c* l10J J , ~C19!

Z̃1
v5H H 0,

aeu12v13v23

2
l6,

acu13v12v23

2
l6J ,H ae* u12v13v23

2
l6,0,

l8v12v13c*

2 S 2cu12u132
1

2
au23D J ,

H ac* u13v12v23

2
l6,

l8v12v13c

2
~2c* u12u132

1
2 au23!,0J ; ~C20!

Sp~Z1
v!5l2v12

2 2~12u12
2 !v12

2 l4.

The flavor particle number fluctuations are given byN212(t)5uF12(t)u21Z1(t):

N212
V 5H H 2l4u12

2 v12
2 ,2l2

v12
2

2
~12l2!,

l6a

2
@v13v23u12~e* 2c* !2v12v13u23c* 12av12v23u12u23#J ,

H 2l2
v12

2

2
~12l2!,0,2

a2v23
2

2
l4J ,

H l6a

2
@v13v23u12~e* 2c* !2v12v13u23c* 12av12v23u12u23#,2

a2v23
2

2
l4,2a4u23

2 v23
2 l8J J ; ~C21!

Ñ212
v 5H H 0,2l2u12

2 ~12l2!,
l6a

2
@v12v23~2u13e* 1u13c22au12u23!2cu12u13u23#J ,

H 2l2u12
2 ~12l2!,0,

l6au23

2
~cu12u131c* v12v13!J ,

H l6a

2
@v12v23~2u13e1u13c* 22au12u23!2c* u12u13u23#,

l6au23

2
~c* u12u131cv12v13!,0J J ; ~C22!

Sp~N212
v !5l2~u12

2 1v12
2 !1l4@a2v23

2 2v12
2 2u12

2 ~12v12
2 !#,

and the flavor antiparticle number fluctuations,N̄212(t), are given by

N̄212
V 5H H 2u12

2 v12
2 l4,

l6aeu13v12v23

2
,
l6au12v23

2
~2au23v121v13e* !J ,

H l6aeu13v12v23

2
,0,2

a2v23
2 l4

2 J ,

H l6au12v23

2
~2au23v121v13e* !,2

a2v23
2 l4

2
,2a4u23

2 v23
2 l8J J ; ~C23!

N! 212
v 5H H 0,2

aeu12v13v23l
6

2
,2

av12v23l
6

2
~2au12u231u13e* !J ,

H 2
ae* u12v13v23l

6

2
,0,0J ,H 2

av12v23l
6

2
~2au12u231u13e!,0,0J J ; ~C24!

Sp~N̄212
v !5l4~u12

2 v12
2 1a2v23

2 !.

In the same initial condition, we obtain the following for the particle of sort No. 2. The free-field particle condensa
096015-17
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Z285v12
2 l21a2v23

2 l4 ~C25!

and the flavor particle condensate is

Z2
V5H H 2u12

2 v12
2 l4,2

v12
2 l2

2
~12l2!,

l6a

2
~2au12u23v12v232c* u23v12v131e* u12v13v23!J ,

H 2
v12

2 l2

2
~12l2!,0,2

a2v23
2

2
l4J ,

H l6a

2
~2au12u23v12v232c* u23v12v131e* u12v13v23!,2

a2v23
2

2
l4,2a4u23

2 v23
2 l8J J ; ~C26!

Z̃2
v5H H 0,2

aeu12v13v23l
6

2
,
av12v23l

6

2
~cu1322au12u232e* u13!J ,

H 2
ae* u12v13v23l

6

2
,0,

au23v12v13c* l6

2 J ,

H av12v23l
6

2
~c* u1322au12u232eu13!,

au23v12v13cl6

2
,0J J ; ~C27!

Sp~Z2
v!5v12

2 l21@a2v23
2 1v12

2 ~u12
2 21!#l4.

The flavor particle number fluctuations,N222(t)5uF22(t)u21Z2(t), are given by

N222
V 5H H 2eu12u13v12v13e* l8,

aeu13v12v23

2
l6,

l6a

2
@a~u23v121u12v23!

22u23v12v13c* 1u12v13v23e* #J ,

H aeu13v12v23

2
l6,0,2

l6av23

2 S cu13v121
av23

2 D J ,

H l6a

2
@a~u23v121u12v23!

22u23v12v13c* 1u12v13v23e* #,

2
l6av23

2 S cu13v121
av23

2 D ,2a2cu13u23v13v23c* l10J J ;

~C28!

Ñ222
v 5H H 0,

u12
2 l2

2
~12l2!,

l6a

2
@a~u12u232v12v23!

21u13v12v23c2u13v12v23e* #J ,

H u12
2 l2

2
~12l2!,0,

a2u23
2 l4

2 J ,

H l6a

2
@a~u12u232v12v23!

21u13v12v23c2u13v12v23e* #,
a2u23

2 l4

2
,0J J

~C29!

Sp~N222
v !5

1

2
1~v12

2 21!l21S 3

4
1

u12
4

2
2v12

2 1u12
2 v12

2 1
v12

4

2
1a2v23

2 Dl4,

and the flavor antiparticle number fluctuations,N̄222(t), are given by

N̄222
V 5H H 2eu12u13v12v13e* l8,2

v12
2 l2

2
~12l2!,

l6a

2
v13~2u23v12c* 1u12v23e* !J ,
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H 2
v12

2 l2

2
~12l2!,0,2

a2v23
2 l4

2 J ,H l6a

2
v13~2u23v12c* 1u12v23e* !,

2
a2v23

2 l4

2
,2a2cc* u13u23v13v23l

10J J ; ~C30!

N! 222
v 5H H 0,2

aeu12v13v23

2
l6,

au13v12v23l
6

2
~c2e* !J ,

H 2
ae* u12v13v23

2
l6,0,

au23v12v13c* l6

2 J ,

H au13v12v23l
6

2
~c* 2e!,

au23v12v13cl6

2
,0J J ;

~C31!
Sp~N̄222

v !5v12
2 l21~a2v23

2 2v12
2 !l4.

Again in the same initial condition, the mixing quantities for the particle of sort No. 3 are as follows. The free-field p
condensate is

Z185a2v23
2 l4 ~C32!

and the flavor particle condensate is

Z232
V 5H H 2eu12u13v12v13e* l8,

l6av12

2
~u13v23e1u23v13e* !,

l6v13e*

2
~au12v232v13c* !J ,

H l6av12

2
~u13v23e1u23v13e* !,a2u12u23v12v23l

6,2
l4a2v23

2

2 J
H l6v13e*

2
~au12v232v13c* !,2

l4a2v23
2

2
,0J J ; ~C33!

Z̃232
v 5H H 0,a2eu13u23v13v23e* l10,2

au13v12v23e*

2
l6J ,

H a2eu13u23v13v23e* l10,0,2
au23v12v13c*

2
l6J ,

H 2
au13v12v23e

2
l6,2

au23v12v13c

2
l6,0J J ;

~C34!
Sp~Z232

v !5a2v23
2 l4.

The flavor particle number fluctuations,N232(t)5uF32(t)u21Z3(t), are given by

N232
V 5H H 2l4u12

2 v12
2 ,2l2

v12
2

2
~12l2!,

l6a

2
@2av12v23u12u232u23v12v13c* 1v13~u23v121u12v23!e* #J ,

H 2l2
v12

2

2
~12l2!,0,2

a2v23
2

2
l4J ,

H l6a

2
@2av12v23u12u232u23v12v13c* 1v13~u23v121u12v23!e* #,2

a2v23
2

2
l4,2a4u23

2 v23
2 l8J J ; ~C35!

Ñ232
v 5H H 0,2

au12l
6

2
~v13v23e1u13u23e* !,

l6a

2
$v12v23@u13~c2e* !22au12u23#1u12u13u23e* %J ,
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H 2
au12l

6

2
~u13u23e1v13v23e* !,0,2

a2u23
2 l4

2 J ,

H l6a

2
$v12v23@u13~c* 2e!22au12u23#1u12u13u23e%,2

a2u23
2 l4

2
,0J J ;

~C36!
Sp~N232

v !5l2v12
2 1l4@a2~v23

2 1u23
2 !2v12

2 ~12u12
2 !#.

Similarly, the flavor antiparticle number fluctuations,N̄232(t), are given by

N̄232
V 5H H 2u12

2 v12
2 l4,2

v12
2 l2

2
~12l2!,

l6av12u23

2
~2av23u122v13c* !J ,

H 2
v12

2 l2

2
~12l2!,0,2

acu13v12v23l
6

2 J ,

H l6av12u23

2
~2av23u122v13c* !,2

acu13v12v23l
6

2
,2a4u23

2 v23
2 l8J J ;

~C37!

N! 232
v 5H H 0,0,2

av12v23l
6

2
~2au12u232u13c!J ,

H 0,0,
au23v12v13c* l6

2 J ,

H 2
av12v23l

6

2
~2au12u232u13c* !,

au23v12v13cl6

2
,0J J ;

~C38!
Sp~N̄232

v !5v12
2 l21l4v12

2 ~u12
2 21!.

2. The three-boson-field case

We now consider the application to bosons. The boson case is not much different from the fermion case. With the u
g i j

1 ,g i j
2 matrices, one can write the ladder mixing matrices as

a5S 12l2/2 g12
1 l g13

1 Al3~r2 ih!

2g12
1 l 12l2/2 g23

1 Al2

g13
1 Al3~12r2 ih! 2g23

1 Al2 1
D ,

~C39!

b5S 0 g12
2 l g13

2 Al3~r2 ih!

g12
2 l 0 g23

2 Al2

2g13
2 Al3~12r2 ih! g23

2 Al2 0
D .

We see thata andb indeed have the same form as in the fermion case with the correspondenceg i j
1→ui j andg i j

2→v i j :

a5S 12l2/2 u12l u13cl3

2u12l 12l2/2 u23al2

2u13el3 2u23al2 1
D ,

~C40!

b5S 0 v12l v13cl3

v12l 0 v23al2

v13el3 v23al2 0
D .
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This shows that the only difference appears in the quantities that have explicit spin dependence, i.e.,Fmn and everything
involving Fmn . As a rule, the quantities for the boson case can be obtained from the fermion formulas by simply chang
signs in the terms quadratic inv i j . We summarize them below.

The oscillation formulas are as follows. For the particle of sort No. 1,Q212(t) is

Q212
V 5H H 0,

l2v12
2

2
~12l2!,

l6av13c*

2
~u23v121u12v23!J ,

H l2v12
2

2
~12l2!,0,2

l6av23

2
~u12v13c* 2u13v12c!J ,

H l6av13c*

2
~u23v121u12v23!,2

l6av23

2
~u12v13c* 2u13v12c!,0J J ; ~C41!

Q̃212
v 5H H 0,2

l2u12
2

2
~12l2!,2

l6au13c

2
~u12u231v12v23!J ,

H 2
l2u12

2

2
~12l2!,0,

l6au23

2
~u12u13c2v12v13c* !J ,

H 2
l6au13c*

2
~u12u231v12v23!,

l6au23

2
~u12u13c* 2v12v13c!,0J J ;

~C42!

Sp~Q212
v !5l2~u12

2 2v12
2 !~12l2!.

For the particle of sort No. 2,Q222(t) is

Q222
V 5H H 0,2

v12
2 l2

2
~12l2!,2

a2~u23v121u12v23!
2

2
l6J ,

H 2
v12

2 l2

2
~12l2!,0,2

a2v23
2 l4

2
~12l2!J ,

H 2
a2~u23v121u12v23!

2

2
l6,2

a2v23
2 l4

2
~12l2!,0J J ; ~C43!

Q̃222
v 5H H 0,

u12
2 l2

2
~12l2!,

a2~u23u121v12v23!
2

2
l6J ,

H u12
2 l2

2
~12l2!,0,

a2u23
2 l4

2
~12l2!J ,

H a2~u23u121v12v23!
2

2
l6,

a2u23
2 l4

2
~12l2!,0J J ;

~C44!

Sp~Q222
v !5

1

2
2l21

1

4
~312u12

4 24u12
2 v12

2 12v12
4 !l4.

For the particle of sort No. 3,Q232(t) is
096015-21



nsate:

CHUENG-RYONG JI AND YURIY MISHCHENKO PHYSICAL REVIEW D65 096015
Q232
V 5H H 0,2

av12l
6

2
~eu13v232u23v13e* !,2

l6av13e*

2
~u23v121u12v23!J ,

H 2
av12l

6

2
~eu13v232u23v13e* !,0,

a2v23
2 l4

2
2

a2v23
2 l6

4 J ,

H 2
l6av13e*

2
~u23v121u12v23!,

a2v23
2 l4

2
2

a2v23
2 l6

4
,0J J ; ~C45!

Q̃232
v 5H H 0,

au12l
6

2
~ev13v232u13u23e* !,

l6au13e*

2
~u12u231v12v23!J ,

H au12l
6

2
~e* v13v232u13u23e!,0,2

a2u23
2 l4

2
1

a2u23
2 l6

4 J ,

H l6au13e

2
~u12u231v12v23!,2

a2u23
2 l4

2
1

a2u23
2 l6

4
,0J J ;

~C46!
Sp~Q232

v !5a2~u23
2 2v23

2 !l4~12l2/2!.

The non-equal-time commutators are given by

F11~ t !5e2 i e1t1l2~2e2 i e1t1u12
2 e2 i e2t2v12

2 ei e2t!,

F12~ t !5F21~ t !5lu12~e2 i e2t2e2 i e1t!1l3
u12

2
~e2 i e1t2e2 i e2t!,

F13~ t !5@F31~2t !#* 5l3~cu13e
2 i e3t2au12u23e

2 i e2t2av12v23e
i e2t2e* u13e

2 i e1t!,
~C47!

F22~ t !5e2 i e2t1l2~2e2 i e2t1u12
2 e2 i e1t2v12

2 ei e1t!,

F23~ t !5F32~ t !5l2au23~e2 i e3t2e2 i e2t!,

F33~ t !5e2 i e3t;

G11~ t !5l2u12v12~e2 i e2t2ei e2t!,

G12~ t !52@G21~ t !#* 5lv12~e2 i e1t2ei e2t!1l3
v12

2
~2e2 i e1t1ei e2t!,

G13~ t !52@G31~ t !#* 5l3~au23v12e
i e2t1ev13•e2 i e1t1au12v23e

2 i e2t2v13c* ei e3t!,
~C48!

G22~ t !5l2u12v12~2e2 i e1t1ei e1t!,

G23~ t !52@G32~ t !#* 5l2av23~e2 i e2t2ei e3t!,

G33~ t !5l4a2u23v23~ei e2t2e2 i e2t!.

The vacuum structure is given by the fermionẐ @Eq. ~C17!# with the normalization constant

Z'11v12
2 l21~v12

2 1a2v23
2 1v12

4 2v12
2 u12

2 !l41••• .

If the particle of sort No. 2 was emitted initially, then the particle of sort No. 1 has the following free-field particle conde

Z185v12
2 l2 ~C49!

and the flavor particle condensate identical to the fermion case, i.e., Eqs.~C19! and ~C20!.
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The flavor particle number fluctuationN212(t) is given by

N212
V 5H H 2l4u12

2 v12
2 ,2l2

v12
2

2
~12l2!,

l6a

2
@2au12u23v12v231u12v13v23~e* 1c* !2u23v12v13c* #J ,

H 2l2
v12

2

2
~12l2!,0,2

a2v23
2 l4

2 J ,

H l6a

2
@2au12u23v12v231u12v13v23~e* 1c* !2u23v12v13c* #,2

a2v23
2 l4

2
,2a4u23

2 v23
2 l8J J ; ~C50!

Ñ212
v 5H H 0,2l2u12

2 ~12l2!,2
l6a

2
@v12v23~u13e* 2u13c12au12u23!1cu12u13u23#J ,

H 2l2u12
2 ~12l2!,0,

l6au23

2
~cu12u131c* v12v13!J ,

H 2
l6a

2
@v12v23~u13e2u13c* 12au12u23!1c* u12u13u23#,

l6au23

2
~c* u12u131cv12v13!,0J J ;

~C51!
Sp~N212

v !5l2~u12
2 1v12

2 !1l4@a2v23
2 2v12

2 2u12
2 ~12v12

2 !#.

The flavor antiparticle number fluctuationN̄212(t) is given by

N̄212
V 5H H 2u12

2 v12
2 l4,2v12

2 l2~12l2!,
l6a

2
@22u23v12v13c* 1u12v23~2au23v121v13e* !#J ,

H 2v12
2 l2~12l2!,0,2

a2v23
2 l4

2 J ,

H l6a

2
@22u23v12v13c* 1u12v23~2au23v121v13e* !#,2

a2v23
2 l4

2
,2a4u23

2 v23
2 l8J J ; ~C52!

N! 212
v 5H H 0,2

aeu12v13v23l
6

2
,2

av12v23l
6

2
~22cu1312au12u231u13e* !J ,

H 2
ae* u12v13v23l

6

2
,0,au23v12v13c* l6J ,

H 2
av12v23l

6

2
~22c* u1312au12u231u13e!,au23v12v13cl6,0J J ; ~C53!

Sp~N̄212
v !52v12

2 l21l4~u12
2 v12

2 1a2v23
2 22v12

2 !.

For the same initial condition, the particle of sort No. 2 has the free-field condensate given by

Z285v12
2 l21a2v23

2 l4 ~C54!

and the flavor particle condensate identical to Eqs.~C26! and ~C27!.
The flavor particle number fluctuationN222(t) is
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N222
V 5H H 22u12

2 v12
2 l4,2v12

2 l2~12l2!,2
l6a

2
@a~u23v122u12v23!

21u23v12v13c* 2u12v13v23e* #J ,

$2v12
2 l2~12l2!,0,2a2v23

2 l4%,

H 2
l6a

2
@a~u23v122u12v23!

21u23v12v13c* 2u12v13v23e* #,2a2v23
2 l4,22a4u23

2 v23
2 l8J J ; ~C55!

Ñ222
v 5H H 0,

u12
2 l2

2
~12l2!,

l6a

2
@cu13v12v231a~u12u232v12v23!

22u13v12v23e* #J ,

H u12
2 l2

2
~12l2!,0,

a2u23
2 l4

2 J ,

H H l6a

2
@c* u13v12v231a~u12u232v12v23!

22u13v12v23e#,
a2u23

2 l4

2
,0J J ; ~C56!

Sp~N222
v !5

1

2
1~v12

2 21!l21S 3

4
1

u12
4

2
2v12

2 1u12
2 v12

2 1
v12

4

2
1a2v23

2 Dl4.

The flavor antiparticle number fluctuationN̄222(t) is

N̄222
V 5H H 22u12

2 v12
2 l4,2

v12
2 l2

2
~12l2!,

l6a

2
@2u23v12v13c* 1u12v23~4au23v121v13e* !#J ,

H 2
v12

2 l2

2
~12l2!,0,2

a2v23
2 l4

2 J ,

H l6a

2
@2u23v12v13c* 1u12v23~4au23v121v13e* !#,2

a2v23
2 l4

2
,22a4u23

2 v23
2 l8J J ; ~C57!

N! 222
v 5H H 0,2

aeu12v13v23

2
l6,

av12v23l
6

2
@~c2e* !u1324au12u23#J ,

H 2
ae* u12v13v23

2
l6,0,

au23v12v13c* l6

2 J ,

H av12v23l
6

2
@~c* 2e!u1324au12u23#,

au23v12v13cl6

2
,0J J ;

~C58!

Sp~N̄222
v !5v12

2 l21~a2v23
2 2v12

2 12u12
2 v12

2 !l4.

Finally, for the same initial condition, the particle of sort No. 3 has the free-field particle condensate given by

Z185a2v23
2 l4 ~C59!

and the flavor particle condensate identical to Eqs.~C33! and ~C34!.
The flavor particle number fluctuationN232(t) is given by
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N232
V 5H H 2l4u12

2 v12
2 ,2l2

v12
2

2
~12l2!,

l6a

2
@2u23v12v13~c* 1e* !12au12u23v12v231e* u12v13v23#J ,

H 2l2
v12

2

2
~12l2!,0,2

a2v23
2

2
l4J ,

H l6a

2
@2u23v12v13~c* 1e* !12au12u23v12v231e* u12v13v23#,2

a2v23
2

2
l4,2a4u23

2 v23
2 l8J J ; ~C60!

Ñ232
v 5H H 0,2

au12l
6

2
~v13v23e1u13u23e* !,

l6a

2
$v12v23@u13~c2e* !22au12u23#1u13u12u23e* %J ,

H 2
au12l

6

2
~v13v23e* 1u13u23e!,0,2

a2u23
2 l4

2 J ,

H l6a

2
$v12v23@u13~c* 2e!22au12u23#1u13u12u23e%,2

a2u23
2 l4

2
,0J J ; ~C61!

Sp~N232
v !5l2v12

2 1l4@a2~u23
2 1v23

2 !2v12
2 ~12u12

2 !#.

The flavor antiparticle number fluctuationN̄232(t) is given by

N̄232
V 5H H 2l4u12

2 v12
2 ,2l2

v12
2

2
~12l2!,

l6a

2
~2u23v12v13c* 12au12u23v12v2312e* u12v13v23!J ,

H 2l2
v12

2

2
~12l2!,0,2a2v23

2 l4J ,

H l6a

2
~2u23v12v13c* 12au12u23v12v2312e* u12v13v23!,2a2v23

2 l4,2a4u23
2 v23

2 l8J J ; ~C62!

N! 232
v 5H H 0,2l6au12v13v23e,

l6a

2
v12v23@u13~c22e* !22au12u23#J ,

H 2l6au12v13v23e* ,0,
l6au23

2
c* v12v13J ,

H l6a

2
v12v23@u13~c* 22e!22au12u23#,

l6au23

2
cv12v13,0J J ;

~C63!
Sp~N232

v !5l2v12
2 1l4@2a2v23

2 2v12
2 ~12u12

2 !#.
ys
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