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We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The
time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly con-
structed. The unitary inequivalence of the Fock space of basmixed eigenstates and the physical mixed
eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion
statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general
formulation and then applied to both two- and three-flavor cases. Especially, the mixing of &mntan
mesons and the Cabibbo-Kobayashi-Maskawa mixing phenomena in the standard model are discussed, em-
phasizing the nonperturbative vacuum effect in quantum field theory.
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I. INTRODUCTION rich structure of the interacting-field vacuum as an(3uU
coherent state and altered the oscillation formula including
The mixing of quantum fields plays an important role in the antiparticle degrees of freedom. Momentum dependence
the phenomenology of high-energy physjds-4]. Mixings  of mixing, the existence of correlated antiparticle beam, and
of both K°K® and B°B® bosons provide the evidence P  additional high-frequency oscillation terms have been found
violation in the weak interactiofb], and 5’ boson mixing and at the same time the vacuum condensates have been

[6] in the SU3) flavor group provides a unique opportunity analyzed for fermion$16,2_1—_23. Subsequent analyses for
to investigate the nontrivial QCD vacuum and fill the gapthe boson case revealed similar features but much more com-

between QCD and the constituent quark model. In the ferplicate.d vacuum structure for.interac.ting fielflss, 26,21.
mion sector, neutrino mixing and oscillations are the IikerESp;C'a”y’vthe p;;)lensdtrﬁi:tufrlevlnr t\t‘e mnn(:rv\gl)roiuctnget\r/]v;?n
resolution of the famous solar neutrino puzfle-10. In € mass vacuum a € flavor vacuu as found and re-

addition, the standard model incorporates the mixing of fer-Iated to the convergence limit of perturbation serfég].

mion fields through the Cabibbo-Kobayashi-MaskawaﬁgsgglfotgelggIz;rtri;hdeoaglggszgf the three-fermion case

(CKM) mixing of three quark flavors, a generalization of the | yis naner, we extend the previous analyses of mixing
original Cabibbo mixing matrix between thitands quarks  hhenomena and work out a unified theoretical framework for
[11-14. Therefore, careful theoretical analyses of the mix-5, arbitrary number of flavors with any integérosons or
ing problem in quantum field theory are an important stephaf-integer(fermions spin statistics. We build the represen-
toward understanding the many-body aspects of high-energtion of mixing transformation in the Fock space of quan-
phenomena and their relationship to other areas of physiagim fields and demonstrate how this can be used to obtain
involving phase transitions. exact oscillation effects. We then use the developed frame-
Moreover, the theory of mixing fields touches important,work to carry out calculations of two-field and three-field
yet not fully answered, fundamental questions about theinitary mixings for the typical spifi.e., 0, 1/2, and Jlcases.
guantization of the interacting fields. The mixing transforma-We also comment on the use of a mixed-field solution to
tion introduces very nontrivial relationships between the in-improve the perturbation series of mixing effects.
teracting and noninteractingfree) fields, which lead to a The paper is organized as follows. In Sec. I, we define
unitary inequivalence between the two Fock spddésl7]  the ladder operators for flavor fields and explicitly show the
of the interacting fields and the free fields. This is differentunitary inequivalence between the flavor Fock space and the
from the perturbation theories where the vacuum state ofFock space of mass eigenstates. In Sec. lll, we find the time
interacting fields is equal to the vacuum of free fields up to adynamics of the flavor ladder operators and derive general
less essential phase fac#to [18—20. The mixing of quan-  expressions for the particle condensations and the number
tum fields is one of the cases that can be solved nonpertupperators as functions of time. We also present some remarks
batively in the quantum field theory. Thus, it also allows uson the Green-function method in the mixing problem. We
to investigate the accuracy of perturbation theory. For inthen specifically consider, in Sec. IV, the mixing of two
stance, the dynamics of a mixed-field Hamiltonian can bespin-1 fields(vector mesonsalong with the mixing of spin-
used for a partial summation of regular perturbation series a$ fields and show the consistency with previously known
well as an improvement of the accuracy in perturbationresults. A summary and conclusion follow in Sec. V. In Ap-
theory. pendix A, the mixing parameters are shown explicitly for
Recently, the importance of the mixing transformationsspin 0,3, and 1. In Appendix B, we present a derivation of
has prompted a fundamental examination of them from ahe flavor vacuum state by solving an infinite system of
quantum field theoretic perspective. The investigation ofcoupled equations which appears as a condition of the
two-field unitary mixing in the fermion case demonstrated avacuum annihilation. In Appendix C, we summarize our re-

0556-2821/2002/69)/09601526)/$20.00 65 096015-1 ©2002 The American Physical Society



CHUENG-RYONG JI AND YURIY MISHCHENKO PHYSICAL REVIEW D65 096015

sults of the three-field mixing for spin @, and 1 using the (ﬁ-§)ui~ = ou- (ﬁ'§)vi~ —ov- (2.5
SU(3) Wolfenstein parametrization. ko ko ko ko?
wheres is the spin operator anu=k/|k|. We also define the

Il. THE THEORY OF QUANTUM FIELD MIXINGS following parameters that are useful in extracting the ladder

In this section, we consider the mixing problem fdr operators from the field operators:

fields of fermions or bosons. To discuss the dynamics of the i ptoi _ owpt ]
. . . . . H, 00,00 = Uy Uk, =0 v
flavor (mixed fields, we define a flavor fielgp,, as a mixture ko ko'~ V—k-0" k=o'’
of the free fieldsp; (j=1,2,...N); i.e.,
s (1 N helg, o=uttol 2.6
¢,= E U,i®j, (2.2 For the analysis of arbitrary flavor mass parametrizations, we
i

use the general notation given by E@.6) including both
flavor and mass degrees of freedom. Although both indices

whereU ,; is a unitary mixing matrix element. We use the andj are numbers running from 1 8, the mass for the first

latin indicesi ,j k - 1o label the fields of mass elgenstatesmdex should be used as the flavor mass while the second
and the greek |nd|_ceﬁ v,§, ... to label the flavor fields. ey s for the mass eigenvalug . One should note thad
We also denote¢ and ¢ as the entire columns$  andh are both symmetric for bosons whik is symmetric
=(¢1,¢5, ..., 0n) " and e=(¢1,05, ...,0N) ', respec- andhis antisymmetric for fermions. The explicit representa-
tively. The evolutlon of the fieldsp, is generated by the tions of H and h are presented in the Appendix A for the
Hamiltonian of the form spin-0, %, and -1 cases.

Now, if A(U,t) is the representation of the mixing trans-

H(b)=Hyed ©) =HiedUTd) =Ho( )+ pT Mo, formation defined in the equal-time quantization, then
(2.2 _ o o
P(H)=Uo(t)=A(U,H)Te(t)A(U,1). (2.7)

Whererree(;) is the free field Hamiltonian fop; with the

corresponding mass eigenvalumas, Hq(¢) is the free flavor

field Hamiltonian, andM is a mixing matrix. la,t)i=AU,0)a,t)n, (2.8
The existence of the explicit relationship between free

(¢) and flavor @) fields, given by Eq(2.1), allows us to  where the subscrigt(m) is used to denote the flavemas$

work out the quantum-field theoretical solution to the prob-Fock space. For the given timgEq. (2.2) can then be writ-

lem given by ten as

In the associate Fock space, this corresponds to

d H($(1)=A(U, ) H(e(t)A(U,1). (2.9
Gibu=ilH($).8,]. (2.3 | R
As noticed from the two-field mixing analysi45,16,26,27,

In fact, the solution of Eq2.3) is contained in Eq2.1) with ~ H(#(t)) and H(¢(t)) cannot be in general related by the
the free field ;) given by same operator at all times so thefU,t) is essentially time-

dependent. The vacuum state of the flavor fields, defined as
the state with the minimum energy, i&(U,t)"0),, and

2 J\/—[nga.kg(t)e'k“rvka (e 'kx] changes with time, satisfying
2.4 HalH(p(D)|a);
wherea,(t)=e™'“a;;, andbig,(t) =e ™'y, with the = w{@lH(@(D))| @)= m(O|H(@(1))| O
standard equal time commutation/anticommutation relation-
ships for bosons/fermions, i.e., =((O|H(¢(1))]0)s. (2.10
[aa(t),aT,(t)]t:[ba(t),bT,(t)]i= S0t - We now define the ladder operators for the flavor fields as

a,- i ke(t)=A(U, t)Ta,kg(t)A(U t). Using linearity of the
In Eq (2 4) u andvkr are the free par“c'e and an“par“c'e m|X|ng transformat|0n we then can solve the eXp|ICIt struc-
amplitudes, respecnvely, andis the helicity quantum num- ture ofa,,(t) without finding A (U, t) itself.
ber given by Such an approach in fact has been known for some time
for the fermion cas¢25], where it was noticed that fermion
ladder operators for spih can be extracted from quantum

When there is an additional interaction Hamiltonian a‘ngiven fields by means of

by H,= ¢TW¢ the Hamiltonian of the system is, of course, ex- \/—k
tended to FI(4)=H(4)+H =Ho($)+ #' M+ $'Wep. Then Ao () =" U i(b),
Hied @) is also extended tblyed @) + ¢ TUTWUe. Hi,

096015-2



GENERAL THEORY OF QUANTUM FIELD MIXING

)
i _k o rik
H.zg

+

—k-o(D)=

(2.11
Since the Fourier component
eik(1) = (IN2€R)[ug, i, (D +v' bl ¢ (D]
is obviously a linear combination (q:fi()?,t), one can express

ladder operators as linear combinations of the initial fields.
Using the linearity of Eq(2.7), we get

PHYSICAL REVIEW D65 096015

FZ[<_kU

+*

k—o” —k—0

!)*

€, (HH)*

€J' H A~

3

eM(h"j)*

Huw M

* At
uko') aj

*

1]\/2

U%ib—j

U*-a}'),

(2.19

~ V2e,i ot _
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(2.12
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] U*Jgojk(t)v o

For the bosons, however, the ladder operators are not

separated as in the fermion case, e.g.,

- 1
U ik(t)= \/?[a.kg(t)Jth'Ubl L (D] (213
ik

and in generah:;igaﬁo. Equation(2.13 implies that particles

and antiparticles in the boson case cannot be distinguished
unless time dynamics is considered. To deal with this prob-

lem, we define ladder operators for bosons by

it enz 1 .
ug, ?QDHZ(U‘F \/?%Z(t) ,
iK

b - o | it
i—k—o V—k—o 2 @Ik(t) \/E(Plk(t) .
| (2.14

With Egs.(2.11) and(2.14), we then derive for fermioris

~ \/26#
a,=—-~—

Boyem

Aiko™

wt L ut g t
> (ufluk a+ullo! o b

.)_“i
j,u" ! \26J'

e HH e h
=2 | VoVt Vo bl
j Gj H~~ €j H ~~

(2.15

Here, we abbreviate the notatioas;, and b] o 858 and
b",, respectively. A similar abbreviation is used foy andb_, .

and for bosons,

(2.1

E_“ HM])*U* b
( J73 gl

|5
€j

€ :
2 M(hm)*UZJ""‘JJr

(2.18
Denoting the spin of the mixed fields &we can unify the

expressions for both fermion and boson in an identical form
as

E (ayjaj+B,b *J)
(2.19
=2 [agb- (- )¥Ba]],
by defining
“m:ﬁiUm' Bui=YuiYui (2.20
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where and the flavor vacuum state satisfies
. .
HMJ ~
€2 " fermions, a,(1)|0t)=A(U,H)Ta () A(U,H) A(U,1)"|0),=0.
e Hee (2.26
.
Y j:< €, €j
a \/—_+ \/— While Eqg.(2.12 may be viewed as the result of expand-
H A~ I B bosons, ing flavor 'fields%(x.) in the basis parametrized by free-field
\ 2 massm;, it was noticed that one may as well expand flavor
. ) fields in the basis with the flavor mass parametejswhich
€p h* fermions correspond to choosingfy,v’fgo as free-field amplitudes
€j HAH ’ with the flavor massrf,) in Egs.(2.11) and(2.14 [24].
yo =4 c 6. In  other words, for any A(U,t), A’(U,t)
= A i =1(t)"*A(U,1)I(t), which can be obtained by means of a
hm% bosons. similarity transformation mixing,,,(t) andBerfU(t) but
\

leaving their combination irp(k) unchangedi.e., ¢ ,(k,t)
(2.21) . : . pA
=| (t)*lqs#(k,t)l(t)], is also a representation of the mixing

We also note from unitarity that group. The ladder operators, defined by E@s15—(2.18),
) ) 5 _ therefore depend on the choice I¢t) or, equivalently, the
|l *+1B,1°=1U ,]%, fermions, (2.22 “bare” massm,, assigned to the flavor fields, which is called
la,il?—B,l?=IU % bosons, ' as a mass parametrization.

Although there are different opinions about whether or
so that one can treat,; and B8,; as cosine and sine for not the measurable results of the theory depend on the mass
fermions(cosh and sinh for bosopsespectively, parameter$23,24,26,27 we note that the mass parametriza-
tion problem indeed is not specific to the quantum mixing,
but can be revealed in the free-field case as well as in the
cosh6,;) bosons, perturbation theory. As discussed[®i7], when dealing with

the free-field problem defined by the free Hamiltonian

cog 6,;) fermions,
Fuj= M ui

sin(6,;) fermions,

Pui U’”[sinrwm-) bosons. 2.23 T T
Hoi=2 (g, i, + eiby, biy), (2.27)
From the fact that Eqsi2.19—-(2.18 serve as the mixing ke
group representation, one can conclude that
one may still consider the change of the mass parametriza-
0uj = 0= Oj/ (224 tion m—m, defined in[26] by

7] wj’

regardless ofn, . Using the formulas, presented in Appen- -

dix A, this can be explicitly verified foS=0, 3, and 1 by Il(t)( )I(t)
calculating, for example,dy,;/dm,. In every case,

dv,/om, can be reduced toy, /om,=y! f(m,), e.g., for O o
ferlr%ionslf # we T . ( e'(fk_fk)tpE I(ek+ek)t)\a) a(0)
- —i(ep+ ety * —i(er—e T
asin(6,;) Isin(6,;) e (et ety i(ei—et,- | | bT(0) )’

am,, amM_Cos(gm,) cog6,))

=f(m,)—f(m,)=0

where'e,= Vk?+m? and e,= Jk?+m?. Indeed, as we ob-

serve in[27], the number operator for the free fields in this

so that 6. . where cosq,)= (1/2\/—)(m transformation is not conserved, e.g., for fermions,
J L
+e,— )and sing,)= (1/2¢—)(¢e +m —Je -m,).
The introduced ladder operators are consistent with the (NY=|{a,a"(1)}|2=|| pl2e T+ |\ ([ %€/ |2, (2.29
representation of the mixing transformation in the Fock
space:

which may lead to the obviously wrong conclusion that the

~ number of particles in the free-field case is not an observable
la,+1t)=2al ()], t) P

quantity.
=AU, Ta’ () AU DA Do 1) This can also be understood mathematically once we note
' b that the above transformation is equivalent to the splitting of
=AU ai+1)m, (2.29 the initial Lagrangian into
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Lo=Lgy+L, bation theory once one attempts to redefine the physical one-
particle states as shown in E(R.28. Indeed, in the free

I T N N S theory and the perturbation theory this issue is resolved by
_J’ d°pl{(py) (P) — M, i} the presence of the mass scale of well-defined asymptotic
’ 2\ ot physical states, which therefore fix the mass parameters. In

(M, —m) ], (230 the mixing problem, however, at least two feasible mass

where an additional self-interaction term, responsible for theScales may be suggested either by the mass scale of the en-
 1eSp ergy eigenstates or by the flavor mass scale which corre-

oscillation of (N), appears. Physically, the transformation, sponds to no self-interaction term in the Hamiltonian, given
given by Eq.(2.28, can be viewed as a redefinition of the 1,y £q.(2.2), and thus further discussion of this issue in the
physical one-particle states. The tilde quantities corresponghixing problem is clearly necessary. We think the mass ei-
then to some new quasiparticle objects so that the tilde ”U”'Eenvalues that can be measured from the experiments may

ber operator describes a different type of particles and thus fe the natural choice for the mass scale in the given physical
does not have to be invariant under such transformatiorsystem.

Nevertheless, the charge quantum number is still conserved |y any case, all the above unified formulation for any
in the transformation, given by E.28. The situation here nymper of fields with integer or half-integer spin holds for

may be analogous to the representation of physical obser\ff1e arbitrary mass parameter. when e — k2412 and
ables under the change of coordinate systems. Although the _ y P & €GN i

S =k’+m? in Egs. (2.19—(2.21) are understood as the
Casimir operatofe.g.,S? in the spin observablgsnust be N i as. (2.19-(2.21)

o
energies of the free fielg; and the flavor fiel , respec-
independent of the coordinate system, other physical oper%—vel)? i W P

tors(e.g.,S,, Sy, andS,) do depend on the coordinate sys- |1 the rest of this section, let us consider the explicit form

tem. To compare the eigenvalue 8f between theory and s the flavor vacuum state. We obtain its structure by solving
experiment, one should first fix the coordinate system. Slmldirecﬂy the infinite set of equations

larly, we think specific mass parameters should be selected
from the physical reasoning to compare theoretical results a,/0%=0, b,/0)=0. (2.3
(e.g., the occupation number expectatianth experiments.

From the above example, it is clear that the same mas#/e can express the flavor vacuum state as a linear combina-
parametrization problem is also present in the regular pertution of the mass eigenstates, i.e., in the most general form,

10)= 24, Aoyt~ g B (@)™ - (@)™(b1y)'s- - (b1 0), (2.32
|
with (n) =(nyn,nz---) andk=N for the mixing ofN fields. We see that the flavor vacuum state has a rich coherent
After applying Eq.(2.31) to Eq.(2.32, we get an infinite set  structure. This situation is different from the perturbative
of equations given by guantum field theory, where the adiabatic enabling of inter-
action is present anfD)iyeracting™ |0)ree- The nonperturba-
S (a,B +8,B _)=0 tive vacuum solution renders nontrivial effects in the flavor
= AT PO T PePm 1) dynamics, as we will show in Sec. IIl. In particular, the nor-

malization constang is always greater than 1 so that in the
for all sets of (n),(1), (2.33 infinite volume limit, when the density of states is going to

_ ~infinity, we have
where (;=1)=(nyn,---n;=1...). The solution of this

problem is presented in Appendix B. For the flavor vacuum vV
Zior=€xX

state, we find

(277)3J’ d|2|n(z,;)> —00, (2.39

1 N
|0>f:§eXP< > ZijainTj) [0} (2.34  Thus, any possible state for the flavor vacuum shall have an
b=l infinite norm in the free-field Fock space and therefore the
. . I ~A_qn flavor vacuum state cannot be found in original Fock space.
whereZ_ij IS an @.J) element_ of the matri€ = —a . The The unitary inequivalence of the flavor Fock space and the
normahzathnA constant? is fixed by f<0|0>f1' z original Fock space is therefore established, iQ|0),
=det’(1+2Z") for fermions andZ=det "((1-22") for  —(1/z,_)—0. The effect is essentially due to an infinite
bosons. The flavor Fock space is then built by applying théumber of momentum degrees of freedom, which is analo-
flavor-field creation operatorsaL,bI) to the vacuum state gous to the existence of a phase transition in the infinite
[0);. volume limit.
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ll. TIME DYNAMICS OF THE MIXED QUANTUM aiks» bi—g-,, and H.c) as a clustef), with a particular

FIELDS momentumk and a particular helicityo. It follows that
) Qg,’s are invariant under mixing transformatidn(U,t) and
~ Now we have a closer look at the dynamics of quantumye thus can treat each cluster independently of each other.
fields respresented by the ladder operators shown in Eq. The time dynamics of the flavor fields is determined by
(2.19. First of all, we note that onlg;c, andb;_;_, opera-  the nonequal time commutation/anticommutation relation-
tors and their conjugates are mixed together. We denote thships for boson/fermion fields that can be derived from Eq.
set of quantum fields formed by all linear combinations of(2.19 using the standard commutation/anticommutation re-
these operators and their productgalgebra on lationships for the original ladder operators,

Fut=[a,t),a)].= % (“ukatkf[ake_ifkt'alr]: + BB bl &b .

=2 [aueye ' = (= 1) B e ],
[b_,(t),b" 1. =F,.(1), 3.1

G, ()=[b_,(1),3,]. =2 {a%Bulb_re % b" T, +(—1)28% a,[ale'w,ay].}
k,k’

— —ieLt i€t
_Ek (a,/tkﬁvke '€k _Bltkavkelék)'

The two matricesk and G represent the only nontrivial ticle number average for a single definite-flavor particle ini-

commutators/anticommutators in the sense that all others aftal state, which is related in the Heisenberg picture to

either zero or can be written in terms of the elements of these —

matrices. It is useful to note that, for=0, Eq.(3.1) shall be Noo= u{plal(ta,(t)|o),,

reduced toF,,(0)=9,, andG,,(0)=0. We also note that o ~ B
Npvo=u(p[bL (DD _,(D)]0),,.

(3.2 The free-field particle condensates in the flavor vacuum
G,,()*=—G,,(t). state are computed from the explicit form of the ladder op-
nv Vi .
erators given by Eg2.19 as
Equation(3.1) allows us to compute many mixing quan-
tities directly. The time dynamics of the flavor-field ladder Zi,:; |ﬂij|2- (3.4)

operators can be derived by writing them as,(t)

- = Tt
_Ef’[f”aV(OHg’;Vb‘i(oH;',r']' Then, one can get |, following, the particle-antiparticle symmetry should
straightforwardlyf),, =[a,(0),a,(t)]. =F,,.(~1) andg,,  be accounted for, so that a corresponding antiparticle quan-
=[b_,(0),a,(t)]+-=G,,(—t) while all other coefficients tity can be found from the particle expression after a neces-
are zeros: sary substitution (particlesantiparticles and vice versa
Thus, the antiparticle condensate is given by the same quan-
~ ~ - tity in Eq. (3.4). The definite-flavor particle condensates in
a#(t):%‘* [Fw(t)a,,+Gw(—t)bi,,], the free-field vacuum are also given by E§.4).
3.3 Using Eq.(3.3), we get the flavor-field condensates in the
flavor vacuum Z,) as

Fu(O*=F, (=),

b, (=2 [F,.(0)b_,+(-1)%G,()a]].
Z,(1)=2 G, (D)% (3.9
We now consider the condensate densities of the definite- "

mass particles in the flavor  vacuum [Zj i is remarkable that this number is not zero but oscillates,
=1(0]aj (1)a;(1)[0)¢], the number of definite-flavor particles gemonstrating the oscillations of definite-flavor particles in
in the flavor vacuurrﬁZV=f<0|aI(t)aV(t)|0>f], and the par- the flavor vacuum. This effect reveals the unitary inequiva-

096015-6



GENERAL THEORY OF QUANTUM FIELD MIXING PHYSICAL REVIEW D65 096015

lence of the flavor Fock spaces for different times due to the Q,,,=N -N
time dynamics of the flavor vacuum. pro-Teres opve
. . . . _ 25
The evolution of the particle N,,,) and antiparticle =F3,(DF ()= (—1)2°G,,(1)G,,(D)*. (3.7

(ﬁpw) number with flavory can be found using the standard

technique of normal ordering, i.e., moving annihilation op-For a specific case of the number evolution in the beam with
erators to the right side and creation operators to the left sidg fixed 3-momentum, we find

of the expression. With this technique, we obtain
Nowo(D) =13, al(t)]=[a,(t),a}]- N,up=(0[a,a}(t)a,(t)a}|0)=|F ,,(t)[*+Z,(1),
+8,,(0[a}()a,(1)|0)

N,,,=(0[a,b" ()b_,(t)a’|0)
=F3,(DF () +8,,Z,(1),

—(_1)25 2
B o ) 3 (3.6 (=G, ,(D]*+Z,(1), (3.9
Nowo()=(—1)*Fa,,b_,()]-[bT,(1),a]]. ) N )
o Qpup=IFp(D[*=(=1)*G,,(1)[*.
+ pvp vp vp
+3,,(0[b,(1)b,(1)[0)
=(—1)5G,, ()G, (1)* +8,,Z,(1). We note thaiN,,,,'s as well asQ,,,’s are in general depen-
o dent on the choice of mass paramatey.
The flavor chargeQ,,,=N,,,—N,,, [22,23,26 is then We may explicitly see this in the example of the charge
given by operator. According to E(3.8), we get

— i 2S i * el 25 % L . .
Quuu=2 Lauwah@ W= (=128, Bhe ' W[ ok e Wi (= 1)%9B%, Bo € W= (= 1) (ahiBue '
k! 2
_ﬁ:kaukeifkt)(avk’B;k'eiEk,t_Byk'a:kre_iek/t)

_ —i ’r— * 2S * i = * 2S
=> e« ek)t[aﬂklavk’aukatk_(_l) ka'aﬂk’ﬂtkauk]—i_el(Ek Ek)t[ﬂﬂkﬂ:kﬁﬂk’lgvk/_(_l)
KK/

* 2Sg~i(e + et * * 2Sqi (e + €t
X o B @Bl — (= 1) 2% W9 B Bl s — aBukBukr ) — (— 1) %!+

* *
X [a',u.ka:kBMkHka’ - ﬁ:kauk%k'ﬁ#k/]

=> el _Ek)ta;kr a e al— (=128, B ]—(—1)2% (- Ek)tﬁﬂkﬁ;kr[%k' al— (=165 B ]
k'

2Sa—i(eyr * 2 (eps *
—(—1)e I(Ek+Ek)t:8,ukaﬂkl(ﬁtkavk’_atkﬁvk’)_(_1) e!(k +Ek)ta,uk:8,uk’(a:kﬁvk’_Btkavk’)

=2 [ayal—(—1)>BuBhdle” & Vay,, @, —(—1)%% (DB, 8% 1—(— 1)*( Bl
KK/

—af B (e KTNB ot — el Wy, BT ). 3.9
Taking into account Eq2.23, we can write, e.g., for fermionsSE 3)
@y @t B Bok=U i U €0 0,4) 0L 0,) +SIN( 0,4 ) SIN(6,,40) ]= Uy Uy €0 0,0 — 0,4) = U s Uy COS Oy,
Bk — B =U 1y U COK 0,40 )SIN(6,1) — COL 0,401 )SIN(0,4) 1= U 1y U SIN(0 4= 0,4 ) = U s U SIN( G ).

Thus, we find

QMVM: z U yk’U:kUﬂkU;k'[Cosz( gkkr)COkarkt) +i Coi gkrk)COE( 0Mk+ glukr)Sir(wkkrt)
K,k

+ S|r12( akrk)CO$rikt) —i S|n( ekrk)Sin( 0Mk+ ﬁﬂk,)sin(ﬂkk,t)], (31@

where();; = €+ €; and w;; = € — €; . This can be rewritten as
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Quuu= 2 Re(U o UBU iU %, [0S (b ) COL wierit) — (— 1) 2SI ( i) 08 Qyeri) 1+ 25 IM(U o UBU U %)
kK kK’
X[ O Ok ) COL 0,1+ 0,41 )SIN @rit) — (— 1) Z5SIN( Gy i) SIN 0,1+ 6, ) SIN Qi) 1. (3.11)
|
This formula is also valid for bosons with the substitution of 1e,e6—K e
cos—cosh, sin-sinh. Va3 m,m o
We see now tha@,,,, does not depend on the mass pa- :
rameters only for real mixing matrices , [22,24. Other-
wise, there is a nontrivial mass dependence from the imagi- - _ 1k*+e i ( [€u \f 4.2
nary part ofU. Interestingly, even in the latter case, there is YT 2 m LM '

no dependence on the mass of the flavor fieldm,) but

only on the mass of the initial flavor state for 0=0. For the free-field massn; basis, y;,= 5,
We also note that Eq3.8) may be viewed as a superpo- = Y= —Y==7- . We use this basis in Sec. IV.

sition of the two termsp— v propagation and background  The ladder mixing matrices and 8 are given by

vacuum contributionZ,. Thus, one may introduce the

particle-particle and particle-antiparticle propagation ampli- cog 6) y..Sin( 6)

tudes, respectively, defined by —( —y.sin0)  cos0) )

P, (k) =[a,t),a(0)].=F,, (1),
(KD =[a,(t),a)(0)].=F,,(t) _( . y_sm(a)>
Py k) =[B_,(1),3,(0)]- =G, (1). B=\_, sney o | 43

(3.12

Indeed, such propagation amplitudes appear from the flavo
field Green function ((0(t=0)|¢,(k, t)qb (k,0)|0(t=0));

for t>0. Propagation functions, deflned in this way, are
clearly the Green functions of the mixed-field problem and  Q,,,=1+sir?(26)
obey the causality features relevant to such Green functions.

For the flavor charge oscillation, we then obtain the result
that is not dependent on the mass parametrization:

e

y2 sinz(%zt) - sinz(g) }

IV. TWO-FIELD UNITARY MIXING .
Q11=Ssir%(26)

A. Vector meson mixing (S=1) (4.4

We now consider the unitary mixing of two fields with

spin 1(vector mesons U(2) parametrization consists of four We see that this result, with an exception of greater complex-
parameters: three phases that can be absorbed in the phidtyeof y. , is identical to the case of spin[@6,27]. Accord-
redefinition of fields and one essential real angle that is lefting to the above theory, in fact, this should be the case for the
so that two-field mixing with any integer spin. F@=1 we see that

) an essential difference from the scalar/pseudoscalar meson

_( cog ) S'”(a)) mixing, such as the complication of momentum dependence
—sin(#) cog0))’

of y., occurs only for the mixing of longitudinally polar-
ized particles. The mixing of transverse components is essen-
Using Appendix A, we then deflney i=3[V(e,/e) tially the same as in the case of spin-zero particles.
*V(eile,)] for o==1 and The details of non-equal-time commutators are given by

4.9

- e el cod(0) +e '2ly? sirP(9) —e'©2ly? sirP(8); v, sin(f)cog §)(e T2t —e et

| yasin(@)cog o)(e e —e il eIt cog(h) +e 4ty sint(6)—e'ty? sin(9) 49
- ( y+y- Si(9)(e”' =€) y_sin(g)cod 0)(e‘“1‘—e‘62t))
Ly-sin(g)cogg)(e7'F—elt)  y,y_sir(g)(elr—eTr) (49

3See Refs[21,24 for the discussion of the Green functions in the quantum theory of the mixed fields.
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The condensates of free-field particles are
Z1=25=1v" siré(6) 4.7

and the condensates of the flavor particles in the vacuum are

Z,= 42 sird(6) 1 +92 smz(a)smz(ﬂzzt”,

cos( e)smz(

4.9

Z,=4y" sir(0) cos’-(e)smz( t)+7+3|n2(9)3,n2( t”

The flavor vacuum structure is defined by the maltix

-1 (—‘y+‘y Sirf(6) vy cos{e)sin(e))

Z:[co§(9)+yisin2(a)] y_cog6)sin(6)  y.y_ sir(6)

4.9

with the normalization constant being

( . 2 Siré(9)
cog( )+ y> sirf(6)

-1
) =1+ 2 sir?(6).

The time evolution of the flavor particle numbgf No. 1 were emittedlis given by

N111—1+sm2(0>[8y cos(nsirt| "2 | - 472 cosorsir| "2 | 18722 S|n2(0)S|n2<022)]

(4.10
Nyp.=452 sird(0)

2y+sm2(6)sm2( t+cos?(6)sm2< t”

4y co§(9)s|n2( t)+47+7’2 sinz(e)sinz(%”,

3

Also we note that the scalar and pseudoscalar case follows immediately from the above presentatiomﬁiwhen
=3[\(e, /€)= (eil€,)]. In this respect, the spin-zero mixing is equivalent to the mixing of transverse components of vector
fields, described by Eq$4.4), (4.10, and(4.11). These results are consistent with the previously known reg2f27).

N1,,=Sin’( 0){ 4% cod( e)smz(
4.19)

Nig1= 47 sir(6) 12 + 92 sir?( 0)sir?

2 cog( 0)co§<

B. Fermion mixings (S=3)

We also present here the calculations$st 3 case. For the consistent notation with the previous wptks28,* we define

_ V(e +my)(ea+my)+(e3—my)(e2—my)

, 4.1
2\ €1€) ( 2
Veo V(er—my)(e,+my) — (e +my)(e,—my)
2\e € '
The charge fluctuations are then given by
Qi

Qq1,=1-sir’(26) U23|n2< +V?s nz(TH”

(4.13

4In our notationU=1y, , V=7y_.
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+V25in2(%”,

Q1=sir?(26)| U >

o . o W12t
sm2<—2

and the ladder mixing matrices are

cog 0) U sin(6)
:(—Usin(e) cog 0) )
(4.19
0 V sin( 6)
'8=<Vsin( 9 0 )

which are the same as the previously known requl6s2§.
We can also give more details on the fermion mixing dynamics. The non-equal-time anticommutators are given by

_[eTt1'cog () +e ! 2U?sin’(9) + €2V si(6); U sin(#)cod §) (e X —e L)
| Usin(@)cog 9)(e 't —eial); g7t cod(9) + e itUZ sind( ) + e V2 sird(9) | (4.19
_( UV sirP( ) (e '€t —gl<2t) vSin(a)cos(o)(eifﬂ—e‘fzt))
| Vsin(#)cog 0) (e <2t —ele1t) UV sir?(9)(e't—e ') (4.18
The condensates of the free-field particles are
Z1=2,=V?sirt(6) (4.17
and the condensates of the flavor particles are
1ot Qoo
Z,=4V?sirt(0)| cog( a)smz( )+U25|n2( a)smz(T”,
(4.18
Q4
Z,=4V?sirt(0) co§(0)sm2( +U23|n2(0)sm2(7”
The vacuum structure is defined by the matfix
5_ -1 ( —UVsird(6) Vcos(a)sin(a))
 co(6)+U2sir?(6) | VcogO)sin()  UVsiri(6)
with the normalization constant being
_ 1 B 1
 co2(0)+U2sirX(6) 1-V2sirk(6)
The time evolution of the flavor particle numb@l No. 1 were emittedlis then given by
. o[ @t
N;p=1—4U? sir?(6)cos( a)smz( T) ,
(4.19
Ny17= 4V sird( 0)co§(6)sm2( 12t)
N;,,=4 sirf( 0)[Uzco§( 0)sm2( +V? cos( 0)sm2( +U2V? siré( 0)sm2( llt)}'
(4.20

N1p1=4U2V2 sinf( 0)S|r12( llt)
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V. CONCLUSION in mixing degrees of freedom. For this purpose, considering

) - the covariant form of the above theory might be of great
The quantum field mixing effects may be understood byinterest. Consideration along this line is in progress.

considering the interplay between the two Fock spaces of the
free fields and the interacting fields. As demonstrated in the

two-field mixing treatment, this interplay is highly nontrivial ACKNOWLEDGMENTS
and gives rise to a deviation from the simple quantum-

mechanical approach due to the high-frequency oscillationﬁe“mcuI discussions. This work was supported by a grant

and the antiparticle component in t_he system. from the U.S. Department of EnergyDE-FG02-96ER
We have now extended the previous results and presente 947. The North Carolina Supercomputing Center and the
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son or fermion statistics. As one might have expected from
the previous two-field treatmept5,21,26,27, all results fall
into the same scheme and can be easily unified. We investi- APPENDIX A: ESSENTIAL CASES OF MIXING FIELD
gated the field time dynamics by calculating unequal-time PARAMETERS

commutators and discussed the propagation functions. We . . . .
found an explicit solution for the interacting field Fock space The most essential cases in mOdem particle phy3|cs are
and the corresponding vacuum structure that turned out to KeFa/ar or pseudoscal@pin 0, vector(spin 1) boson fields,

a generalized coherent state. We then showed the unita?}“d spin fermion fields. For these cases, mixing theory

We thank Professor G. Vitiello and Dr. M. Blasone for

inequivalence between the mixed-field Fock space and th arameters are explicitly derived from quantum figld theory
free-field Fock space in the infinite volume limit. After we 20,29. We then have for scalar or pseudoscalar figisn

built a formal calculational framework, we applied it to solve
mixing dynamics of two vector mesonS<£ 1) and fermions
(S=1%). We found that the scalar/pseudoscal@=Q) boson Ugo=vko=1, (A1)
mixing is the same as the mixing of transverse components
of the vector fields, while for the longitudinal component of and for vector fieldgspin 1)
the vector field we found a richer momentum dependence
than in the spin-zero case.

However, from the application of our approach to three- UQ’OZUQ’OZ(—,I —n),
fermion/boson mixing cases, which we summarize in Appen-
dix C, we saw a very complicated structure of more general
results. Oscillation formulas typically involve all possible Ui
low-frequency and high-frequency combination terms. The '
amplitudes of the oscillation terms are essentiall > o - - - -
mo?nentum-dependent. We have also discussed the existeﬁ\ﬁlg'ere_ n=kik=e, and n.== (1/\/2)1(e><i ley) form a
of the coherent antiparticle beam generated from the startingPerical basis. For bispinor fieléspin ;), we use the stan-
definite-flavor particle beam and presented its dynamics. 0ard representation of the matrices given by

Our general approach does not require us to use any spe-

1=vi+1=(0jn.), (A2)

I+

cific continuous parametrization of the mixing group but di- i o0 R 0 o

rectly takes the values of matrix elements. This allows an )/O:( A), =( - ) (A3)
analysis to be carried out in a unified closed form, as shown 0 -l —o 0

in Secs. Il and lll. In general, it may be preferable to solve

the mixing problems without going through the intermediateand the corresponding representations of spinors,
parametrization step for the mixing matrix. Even if one

wants to use a specific pa_\rametrization scheme for the mix- Ui o =[Ve(K) + M, ,Je(K) —m(n- &) w,],

ing matrix, it is rather straightforward to formulate our gen- ’ (A4)

eral framework into a symbolic calculation system, like oo

MAPLE Or MATHEMATICA, and carry out extensive calcula- V_ko=[—Ve(K)—m(n-o)w_,,Ve(k)+ mw_,],

tions involving mixing parameters in a short period of time.

Examples of such calculations are shown in Appendix C. wherew, is spinor satisfying - ) w, = o w, and o takes
The physical application of the above formalism can bevalues+1.

seen in investigating the neutrino mIXing, mixing of gauge TheH andh matrix parameters are then for the scalar case

vector bosons governed by the Weinberg angle in the elec-

troweak theory, as well as vector mesons such asdw. It . .

also seems possible to apply these results to consider non- H#=h*=1. (A5)

perturbative quark-mixing effects in the standard model and

provide partial summation of the regular perturbation theoryFor spin 1,
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i _ (R0 K h¥ = o{ e, (k) —m, (k) +m;]
Ko m,m; '
= - K)+m, ][ (k)—m;]}.
gk 0 (A6) VLeu(k)+m, JLe(k)—m;T}
kO m,m; ’
H =p =1g=+1,
k.x k.= APPENDIX B: THE FLAVOR VACUUM STATE
and for spin3, _ _ o
_ In this appendix, we explicitly solve the flavor vacuum
kafl =[ €,(K)+m, ][ (k) +m;] structure. We first consider the boson case.
7 We write the sought flavor vacuum state as the most gen-
+[ €,(K)—m, ][ &(k)—m;], (A7) eral linear combination from the original-field Fock space,
|
0= 2 oo Ba(@D™ - @0l ' (b Oy, (B1)

where k=N for the mixing of N fields. From the particle/ It is possible to rewrite this complicated expression in the

antiparticle symmetry, the part of E(R.31) involving anti-  more compact form

particle annihilation operators results in a dependent set of 1 1 ‘

equations and thus can be omitted. Expanding(Z&1), we _- L Attt |

f|nd |0>f Z % H k|' 2 leal b*] |0>m (BS)

that can be shown directly by expanding the above expres-
; (aiiB(”j+1)(')+'8iiB(“)('j—l))zo forall (n),(1) sion. It also can be argued that to obt8ig, ) from Eq.(B5)

(B2)  one needs to leave only those terms in the expansion that

give the correct power of particle and antiparticle creation

where (;+1) notation stands for ng,n,,....n; operators, i.e., total powers of ai|T’s aren;’s and biT’s are
+1,....ng andk is the number of flavor fields. To solve I;. But this is the same as extractiiy,, from Eq. (B3).
this infinite set of equations, we introduce symbolic opera-The constan is introduced instead @ 0)(0) and serves as
tors which decrease the subscript indexBafoefficients, i.e., a normalization factor determined hy0|0);=1.
dij(n)(I):B(n)(ijl)- Then solving each set of equations in  Equation(B5) can be further simplified as

Eq. (B2) with respect t(B(nj+1)(|), we find 1 1 K
03 3 1T | S 2", | Tohn

N
B(ni+1)(l)=(; Ziid—j)B(n)(l)

L
-2 3

and consequently K=

n; 1
Bwn=11 (2 Ziid—j> By (B3) =§exp(

1 ki
. W(; ZijainT—j) |0)m

N
2

i i,j=1

zijaﬁbij) 10) . (B6)

with matrix 2= — &~ 1. 3. Considering the momentum con- Let us now proceed to the fermion case.AWe employ the

servation and the original E¢B2), it can be shown that only Same idea as the symbolic shifting operator< ) stands

B(oyi=o0) Must be nonzero among all)( Thus, applying for a creation operator for the fermion stdt@), (1)), we

symbolic operatorsl_; and leaving only terms gy, in the ~ Want then

expansion, we get N .
aiBn,+ 1)1 Cn+ 0|0 m= % B+ 1)0) Cmyy| Om

n;!

_ il _ &
Boo= 2l e ABoer: =d+iBoynCrmmlOm,
(ip) LRI i ) (B7)
pip=ni b By, - 1yCmat, - 1| Om= =By, - C | 0m

Zilp=lp .
(B4) =d_iB(n\yCnyy| O)m
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with correct sign. EquatioiiB2) then can be written in the =N 7/a'"b’l, where a/,b’; satisfy the standard
form commutation/anticommutation relationship. Then, using the
binomial formula to expandX\,Z/a/Tb’!)", we find

E (@jjdyj+Bi;d—j)Bmy@y=0, (B8) ,

(2 Zl.a'Tb'fi) O)m

which binds together the shifting operators that increase and? L12
decrease the index. This set can be solved as

1
=2 X '2H —|<z a; ') 0)
d+i[B(n)(I)]:; Zi;d_i[Bnyn] (B9) T L!Zn+ Fng=L WE
. Nop2

with the same matriZ presented in the boson case. From =E E H J—2| J.'J.”il2
the definition of shifting operators it can be inferred that they Longtdng=L j=1 0yl
obey the anticommutation propertyii.e., d.;d.;=
—d.;d.;) and thus it can be shown further that figr>i, = > AR, (B15)
> >0, Nps ooy NN

dyi dei - dvi By =By where\;’s are eigenvalues afZ'. The summation limits in

(B10) Eg. (B15) are different for fermions and bosons. For bosons,
d_ild_iz- . ~d_i|B(n)(,)= Bmya-iy» n; runs from O toe, while for fermions they can only be 0 or

1. In either case, the sum can be evaluated to give

so that the solution can be written again as
2

N Tt
B(n)(|):H (; Z”d]> B(O)(l)! (Bll) %IE_]- lea b >|0>m

where onlyB g (o) survives. Heren; can be only 0 or 1 and IT (1+),) fermions
the anticommutation rules for the ordering are applied. It is i

remarkable that Eq(B5) can still be used for the fermion 1

vacuum. This can be verified by a direct expansion with the H 1 bosons

anticommutation nature of ladder operators. Thus, for either : :

thg boson or fermion case, the flavor vacuum state can be de(i+zZz" fermions

written as = . (B16)
det ¥(1-2Z") bosons.

1
|0)f:—exp< > Zjalb', )|o>m. (B12)
b=t APPENDIX C: UNITARY MIXING OF THREE FIELDS IN

We now proceed to find the normalization constanflo do WOLFENSTEIN PARAMETRIZATION

this, we consider We now present an application of the above general for-
5 malism to the specific case of mixing of three quantum
ex;{ E 7. aTbT )|O> fields. Calculations were carrled. out with the help of the
] m MATHEMATICA 3 symbolic calculational system.
We note that all time-dependent quantities in this section
are presented in the form of matrices, each entry of which
., (B13 corresponds to a certaif}j; = w; + w; or wj;=w;— w; fre-
quency. This means that each quantity is presented in the
where we use the fact that the states ofform
(=1,21Z;;a/b" ;)*|0),, are orthogonal for different’s. We
then employ the_ fact that _matr& can be tr_ansfo_rmed to a p=2 Re{ > [P2e 1%ty pee-iont] ]| (C1)
diagonal form with two unitary transformations, i.e., g J J

[10)¢I*=

2

=2 —

T |_|2

(2 Zijabl, ) [0)m

1

X2 0 where P and P® matrices are written as follows:
z=| 0 . 0 |=uzV. (B14)
(
0 X PY={{P3;,P1, Pia.{P5,P%, P9} {P5:, P, P},
We can now introduce additional unitary transformations of o e o e o e (€2
a’’=ufa’, b'"=V'b" to make 3=)_,Z;a'b’ PY={{P11,P15.P13.{P21,P5,, P33} .{P51,P5,, P53t}
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Since the diagonal elements Bf* correspond to the same 1 up U
constant termw;; =0, we can collect the diagonal elements H=| u 1 U
of P® as SpP®)=P%,+ P4+ P4 and express only the off- N =

diagonal elements as Uz Uz 1
Po={{0,Py,.Pya.{P51.0,P5a {P%.P%.0l}. (C3 0 vy vig
h=| —viz O U23 | . (Ch

1. The case of three fermion fields 0
—Ui13 ~Uz3

We now show our results for the unitary mixing of three
fields with spin; (bispinorg. Although an explicit param- Also, u;; ,v;; are defined in the same way as in the two-field
etrization is not needed in our formalism, we may use themixing
Wolfenstein parametrization as an explicit form of a mixing

matrix, _\/(€i+mi)(fj+mj)+\/(éi_mi)(ej—mj)
1-\2/2 N AN (p—in) ’ 2\eie; ’
U= -\ 1—-\?12 AN2
. Vie—my)(e+m)—/(e+m;)(e—m;)
AN3(1—p— —AN? 1 = L — 1
(1=p=in) o vij=0 e

(Co)
All results are then computed to a few lowest orders. in
For the bispinors, we redefine ot and h matrices as Then, the structure of the ladder operators is described by

HI—H1/(2ee), h'—h/(2\e€) so that and 8 matrices,
1-\%/2 Uph  UpAN3(p—inp)
a= —Up\ 1-N\?/2 UpgAN2 ,
UAN3(1—p—i7) —UxAN? 1
0 v v1ANY(p—in)
B= VN 0 v23AN? , (C7)
—01AN3(1—p—in) v AN 0

To make the results more compact, we defireA(p—in), e=—A(l—p—in), anda=A so that

1-N\%2  uph ugea®
a=| —uph  1-\%2 uy@aN? |,
—UeN®  —uyan? 1
(C8)
0 viph  v1CN3
B=| v\ 0 v5aN2
v18A3 vgaN? 0

For the case when the No. 2 flavor particle was initially present, the flavor charge oscillation formulas are as follows. The
flavor charge fluctuationQ,;4(t), is given by

)\ZUEZ )\Gavlgc*
Q%Z:[[Oa_ > (1_)\2),—T(U23U12+U12023),
)\Zviz 9 )\6a023 *
- (1=A )1OaT(u12vl3C —U01C) {,
)\GaU 13(:* }\6aU 23 .
_T(UZBU12+u12U23)vT(u120130 —Uy012€),0; |, (C9
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- \2uZ, \au,c
Q%z:HO,_ > (1-)\?), > (—UgUp3tv12023) [

\2uZ,
r (1— 2)0 (U12U130+012013C )]
Nbau,c* \®auy,, N
T(_U12U23+012023),T(U12U130 +v120150),07 1, (C10

SPQ410) = AN (uf,+vT)(1-\?).

Similarly, Q,,5(t) andQ,3t) are given by

12
ne]o

2\ 2 2.2\4
VTN a“v5N
( 1; (1-2\2),0—=—(1— )\2)+

o (U1t Ui ®
—\9), 5 AP,

2 2 2.2y4
a“(Uyzvtu a“v53N
( (Up3v 1o+ U320 23) A6 23 (1_)\2)’0”1

5 — (C11)

2,2 2 2
Ui N a“(UosUio— v 100
[0’ 1; (1_}\2), (U3 122 120 23) )\6}’

LIZ 2 2 2)\4
(1-7%),0——— > —(1- )¢,

a2(Upalpo— U009 . @2ud\?
(23 127 V12U 23 G 23 (1-22),0 |,

5 — (C12

SpQ%5y) = e G (3+2u12+4u 2012+2v12))\

NHHE,_H

and

aUlz)\ % )\Gavl3e*
0, > (EUvo3— Upgv 138 )aT(Uzsv12+U12023) ,

224 2246
av 12)\6 a“v 23)\ a“v 23)\
[ 2 (€Uygv 23— Uy 15€%),0,— 2 + 2 ,

Mlap e a%vint  a%2 )\’
U13€ 23 23 ol (C13

T(Uzavlz"‘ Ui 23), — > + 2

aupN® \bau,e*
0'_—(3013023+U13U23e )T(u12u23_012023) :

e* +Uq3Uyse),0,—
(€% V130231 Ug3Uzge) 5 2

| aup® a%ui\? .\ a2u§3)\6]
{ (C14

\au;e a?ui\®  a%ui\®
2 —(UgUp3=v1023), — >t 0f 1,
SP( QY5 =aZ(Usg+ 3 N4 (1—\%/2),
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respectively.
In more details, the dynamics is given by the following quantities. The non-equal-time anticommutators are given by

Fu(t)=e iate \2(—e iaty y2 e et 2 ety
St ity o 23912, et et
Fit)=Fa(t)=hug(e' 2 —e ') +\3"(e ' al—e 12,

Fia(t)=Fa(—t)* =\[ugg(ce 'S —e* e ') —auUye 2+ av 0, ']

(C19
Fat)=e ittt \3(—e it +u e at+p2elat),
Foa(t)=Fg(t)=\2au,ye 'st—e i<t
Fat)=e '
Gu(t) =Nug (e 2 —e'2),
Gio(t)=—[Gp(t)]* =h\v (e 'ert—gl2t) + )\3%12( _e iatygiet)
Giy(t)=—[Ga(1)]* =\ v x(ee "et—c* e/ Y + auyw 6/ 2 +au v e €2,
(C16
Goft) =N2up o —e 't ey,
Gaoa(t) = —(Galt))* =N2av,ye ' —e'<),
Gaa(t) =\"a’U g 52 —e™'<2).
The vacuum structure is defined by tAematrix:
Z11= U0 N2+ Ug(1—ud)v g,
Z1p= —vih— (3 —Ud)uN3=Zy,
Z15=—(Cviz— AU \°,  Zg=— (Al 1o+ €u g\’
Zpp=—Z11+ a9\, (C17)

— 2 1 2 4

Zy3= —avh“—[CUpw izt als —up)vasl\’,
- 2 4

Z3p=—avy3h“— (elyztaussz)v g\,
—_ 22 4

Z33= —aUpgva\ ™

P - : 242 2 2.2 - 2.2\\4
The normalization constant is obtained &s 1+ v N+ (vt @ Vo3~ VIUYN + - - - .

If the particle of sort No. 2 is originally present, then for the particle of sort No. 1 the mixing quantities are as follows. The
free-field particle condensate is

Zi=viN? (C18
and the flavor particle condensate is
2 6
U1o A
Z?: [ ( 0,_)\27(1_)\2),_ 7U13C*(auZ3U12+U]_3e*)] y

2 6

V1o A av 3
[ _)\27(1_)\2):_““%2”%2:_ T(Cu13012+ Ulzvlsc*)] )
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6 6
A
TSV 137 (AUpgv 1+ V187 ), — - av 23(CU g0 10+ Ugo0 15C% ), — @2CU U0 130 2oC* )\10] ] ; (C19

ac* U3 o N1 1L
‘ > S, 5 (2¢*ugolUs3— 3 auyy),0(; (C20

~u aelUigvo3  AClyguiolo3 a€* U0 13023 N80 4c* 1
21:H > S, > 7\6],[ > \%,0; 5 2CUgU13— Eauzs

SHZY)=N%v5,— (1—ui)viA*

The flavor particle number fluctuations are givenMyAt)=|F15(t)|?+ Z(t):

2 6
ACa
N212 H 20121_7\2 (1 \?), [v13023u12(e*_C*)_U12013u230*+2av12023u12u23]]a
a2
[ N2 12(1 \2),0,— 223>\4,
7\63 * * * 3.2053 4 4,2 2.8 .
T[Ul3v23u12(e —C*) =010 13UpC™ +2a0 120 23U 3], — 2 AT, —a’uposh ) (C2)

6

~ ACa
NngZ[ [ 0,—N2uZ(1-\%),— [012023(_11139*+U130_23U12U23)_CU12U13U23]]v

: N (1— )\2)0 u2 % (Cug st C* v e
12413 12V 13

)\6 )\GaU23
[T[Ulzvzs(_ulse+ Ulsc*_23U12U23)_C*U12U13U23]-T(C*U12U13+ Cv1013),0f [; (C22
SHNg;) = N (ufy+viy) + N [a%v3s— v i~ ufy(1-vi))],
and the flavor antiparticle number ﬂuctuatiothélz(t), are given by
—0 2 2.4 NPa€U 0o NPaU s N
N31,= {1 —UID A, > ) 2 (2auyv 1ot v1€%) ¢,
NPaeu 023 0 a%vs\*
2 H t 2 1
)\Gaulzvzg 32053)\4
[T(zaUZSUH_'—UlSe*)v_ 2 —atusin® (C23
= aeUw v’  aviweh®
212:”0 - > - > (2auquyztu ™)y,
ae*u 6 av 10 g\ °
ety | prpod e

SFXN 12~ )\4(U12U12+ 32033)
In the same initial condition, we obtain the following for the particle of sort No. 2. The free-field particle condensate is
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Z,= Uiz)\z'f' 6.2053)\4 (C29
and the flavor particle condensate is

o

22 \6a
(1 )\2) (23U12U23012023 C* U013+ €* Ulzvlsvzs)]

zv 127\4

a2p?

a"vos
N 4
),0, — A

T(Zau12u23012l}23 C*Upgv 120131 €% Us U 130 23), — 2 )\4:_34‘1%30337\8”? (C20

ae U120 1022\ Av 1o\ °
{ 0,— , > (Cujz—2augUys— e*Uls)],

-
-
{ \fa a%v5,
|
-

ae* ulZU 1028 AUy 01C* )\6}
1 1 2 H

(C27)

. auyg \°
(%(C* U3~ 2aUplps—€elyy), %’O] ] |

SHZ3)=vih?+[@%vst v uf,— DN
The flavor particle number fluctuationN,,(t) =|F(t)|2+ Z,(t), are given by

aelpi vz, \°a
NS,= H_eulzuls.vlzvlae*)\s,—z A° _[a(U23012+U12023) —Upgl 120 15C™ + U130 2" | 1,

|
{Aﬁa

2
T[a(uzsv 1277 U120 23) “— U 120 13C7 + U0 130 58™ |,

ae U Nav av
[ UlsZUlz 23)\6'0,_ - 23(0u13012+ 223

)\631) 23
2

av o3

CUqqU 1ot ——
13V12 2

,—a%CUyalpap 130 psC* )\10} ] ;
(C28

242 6
~w oM 5 A a ) N
N32= 0,—2 (1=A ):_2 [a(UgUp3— V120 23) "+ U1gl 120 23C— Uggv 120 23€™ |

i’ 21
[ 1307 5 }

\ba ) L atuz\t
T[a(u12u23_vlzv23) U130 120 25C— Ug0 10 238 |, 2 0

(C29
1 3 u‘l‘2 vi, .

and the flavor antiparticle number quctuatiotTBézz(t), are given by
— %18 Uiz 2 2 )\Ga % .
N22o= 1] ~€UrU1av1201€" A a_T(l_h ),7013(_11230120 +U25€") ([,
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v2\2 ) a%v3\? [ A\%a
- (1-19),0— > 12 5 V13— U0 12C* + Ug02€%),
224
a“v53N
T T a%CcC* Uyglp v 23}\10] ] ; (C30

= aeU o3 ¢ AU \°

* *y 6
{_ A€ Uj13023 4 Al 101" A ]

2 o 2
AU w0 °® aup 101N ° ||
— 5 (e ————0

(C3)
SF(szz) vih3+(afvis—vi N\

Again in the same initial condition, the mixing quantities for the particle of sort No. 3 are as follows. The free-field particle
condensate is

Z;=a%v3\* (C32

and the flavor particle condensate is

\Cv,e*
12 1
(Uyvoset u23v13e*),T(au12v23— 0130*)] ,

q s 8 Abav
Zy3= 1| —€Upliav 10137 N7, >

)\68.1) )\ a 023
(U13U239+ Upav 138* ), 22U Up30 150 20\ 8, 5
Ao \a?y?
( Ll aU12U23_0130*),_—2 2ot (C33
AU 10 238"
Z%,= ”0,3 U 3Uog0 130 38" N0, — f?\e],
AUz 12013C*
[azeu13u23v13v23e)\ 0,- fﬁ],
{ aU130120239)\6,_aU230212013C)\6'0”_
(C39
SH(Z55) =avi\".
The flavor particle number fluctuationNz(t) = |F3,(t)|2+ Z5(t), are given by
v \®a
N?sz—H_h 121)121_7\2_(1 A?) _[23012023U12U23 U 120 15C™ + U 13(Upgl 121 Ug 0 o3) €F ]}
2 2.2
V12 a"v33
N T PN N < N1
{?\2(1?\),0, 2?\,
6 2,2
)\_a _ * * _a 23 4,2 2yv80 1.
> [2a0 120 23U1 U3~ Upgl 120 135C™ +013(Upgv 1o Ug 0 23)€ |, AL —atuspsn® (s (C39
- auph® ba .
230 0:_—(013023e+Ulauzae )5 1120 2d Uga(C— €% ) — 2aUUp3] + UgliygUaq€™ |
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aupn® . a?u\*
- 2 (U13U23e+l)131)23e )101_ 2 y

\a . 2uZ N4
T{U12023[u13(c _e)_23U12U23]+U12U13U239},—T,O ;

2 2 2 2 2 (C39
Similarly, the flavor antiparticle number fluctuatiomzzg,z(t), are given by
242 6
— EPIN Nav U3
N§32= { { - Uiz”iz“: T (1-2\?), 5 (2av3u1—v 1) [,
3 iz)\z(l_)\z) O_<'J\C'~|13l112023)\6
2 1 y 2 t
Noaw Uy, acUyv 10\ °
(T(Zavzaulz—vlsc*):_fi_fﬁu%@)gs}\s ;
i (37
= av 123\
937= [ [ 0,0- T(Zaulzuzs_ U13C)] ,
au 01C* N6
[0,0, 23V 12V 13C ]
2
6 6
av (v aUygv A
[ AN e ulsc*),ﬂ,o] ] ;
2 2
(C39

SPNgs) =vEA2+ N v 2y uZ— 1).

2. The three-boson-field case

We now consider the application to bosons. The boson case is not much different from the fermion case. With the use of the
)ﬁ ,¥ij Matrices, one can write the ladder mixing matrices as

1-\%12 yih AN (p—in)
a= - ?’Irz)\ 1-\%12 7’2+3A)\2 )
YA (L—p—in) —yzAN? 1
(C39
0 YA Y AN (p—in)
B= Y12\ 0 Y2AN?
AN (L=p—in) AN 0
We see thatr and 8 indeed have the same form as in the fermion case with the corresponﬂ?n@aij and y;j —vj;
1—N\?/2 Uph  UgeN°
a=| —uph  1-M\%2 uyan?|,
—UeN®  —uyan? 1
(C40

0 1% 12)\ 1% 13C)\3

B= U1oN 0 02387\2
v18A3 van? 0
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This shows that the only difference appears in the quantities that have explicit spin dependenieg, iad everything
involving F . As a rule, the quantities for the boson case can be obtained from the fermion formulas by simply changing the
signs in the terms quadratic in; . We summarize them below.

The oscillation formulas are as follows. For the particle of sort NdQ4;(t) is

Nvi, \aw 5c*
Qb= { [ O:T(l— Nz),T(Uzsv 12+ U023) |

3
{ —\?),0,— (Ug15C* _Ulsvlzc)},
)\6av130 A® a023
—— (U 12+ Us023), — —5— (U0 15C* — U330 1€),0 (C4y
~. ,.  \laupc
Q212=110,— —\9),— 5 (Ul tviv3) [,
U23
[ —\?), 0 (U12U13C_012U130*)],
bau 3c Aauy, .
(UgUost 120 23), T(ulzulSC —v101L),0( [;
(C42
SHQ51) =M (ul—vi)(1-2\?).
For the particle of sort No. 29,,(t) is
2,2 2 2
EPIN a“(Upgv 121+ Uyl 23)
222_ 0,— (1_)\2)1_ )\6 f
2 2
2,2 2 2.4
Ulz)\ 2 a U23)\ 2
{ > (1-19),0, > (1=N9¢,
2 2 2.2 4
a“(u +u a“v5\
. (Up3v 15 U320 23) A, — 23 (1-12),0( | (C4a3
2 2
2,2 2 2
= up a%(UpaUiotv12023)
200 0, (1_)\2)1 )\6 )
2 2
24,2 2,214
UM ,, a’uj 5
{ > (1-X9),0; > (1=\9)¢,
a%(Upiptviv29)® a’uz ) 2 _
, (1-X\9),0¢ ¢;
2 2
(C449
S[Xszz)— A%+ = (3+2u12 4usp2,4+ 20 )\,

For the particle of sort No. 3,3.(t) is
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6 6 *
Ulz)\ N aU13e
0= [0,_ > (EUpgv3— Upgv13€™), — T(u23v12+ u12U23)}1
80127\6 . 32053)\4 a2v§3)\6
I (EU3v 23— Upav 12€™),0; > a ;
\Sap e a%vint  afwi\®
——— (U 12+ Us023), - 001 (C4H
2 2 4
- aupn® .. Nau e
Q23~= O:T(evlsvzs_ulsuzse )aT(Ulzuzs‘*'Ulezs) )
aulz)\6(e* )0 a%uin*  a%ui)®
2 V13V 237 U13U23c),Y, 2 4 )
\Sauyqe a?us\®  a%ui\®
[T(u12u23+012v23)1_ >t O
’ ) (C406)
SH(Q4s,) = a2(Uuss— v5INH(1—N?/2).
The non-equal-time commutators are given by
Fll(t):e*ielt+)\2(_efielt+uizefiezt_vizeiezt),
_ . u . .
Fio)=Fai(t) =hug(e "2 —e ta) 4\ 3F (e Tat—eied),
Fia(D)=[Fa(—1)]* =\3(cuige "'~ augliyge ™' —av v €' 2 —e* uge 1Y,
(C47
F22(t):efiezt+ )\2(_efi52t+uizefielt_vizeielt),
Faa(t)=Fgy(t)=Nauy(e ' —e '),
F33(t):e_i€3t;
Giy(t)=N2upw (e 2 —e'e2),
4 . v . .
Glz(t): —[621(t)]*=)\v12(e_'€1t—e'62t)+)\3712(—e_'51t+e'62t),
Gia()=—[Ga()]* =N} (alyg 1P +ev g e Ut auwe 2 —vc* e,
(C48

Goat) =N2Ugw 1o —e 't + e,
Godt) = —[Ga1) ]* = Nav, e 2 —e'<),
Gaa(t) =N*a’U g 5(e' 2 — e~ '<2).
The vacuum structure is given by the fermifdr[Eq. (C17)] with the normalization constant
Z=1+viN+ (01 + %5t v v iU+ -
If the particle of sort No. 2 was emitted initially, then the particle of sort No. 1 has the following free-field particle condensate:
Zi=viM\? (C49
and the flavor particle condensate identical to the fermion case, i.e.(EH8.and (C20).
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The flavor particle number fluctuatidd,;(t) is given by

2 6
a
Nglf” A u12U121_)\2 (1 7\2) [23U12U23012U23+U12U13023(e +C*) —Upgv101C ]]

azv %3)\4

2 ’

2
1%
“N2E(1-09),0,-

6 4
A"a * * * a 023)\ 4.2 2581,
7[231112“23012023"'Ulzvlavzs(e )~ Upv013C* ], — 5 AN (] (C50

alyg
—N2ui1-\?), 0 5 (CU12U13+C V113) [
\Ba ABau

- \%a
N31,= HO N2Uf(1-)\%),— 5 [Ulzvzs(ulae*—U13C+23“12“23)+CU12U13U23]]a
23
[ _T[Ulzv 23(Ugg8— U™ +2aUyoUpg) +C* u12u13u23],T(c* UgoUg3t Cug013) ,0] ] :

(C51)
SHNg;p) = N (uf+viy) + N [a%v3s—v i~ u(1-vi))].

The flavor antiparticle number quctuati(ﬁ\m(t) is given by
N2 2 234 242 2 roa * *
N1o= || —UI0 1A — 0N (1—A ):7[_2%3012013C +Ugv3(2aUxv 1ot U1 )] 1,

a%v 33)\4

6 4
\a 023)\ 4,2 248
T[ 2Upg0 120 13C% + U0 p5( 28Upg0 15T V167 ) ], — 5> 4 U0\~ [ (5 (C52

0,—- ; > (—2cuyz, 2aupUpst Ulse*)],

ae u 1zv A€ U103\ 2\ °
——5 08Uy 101" \°

_av 120 23)\

H an12U13023)\ v °
212

—5 (= 2C* U3, 2aUs lxgt Ugge)  alpg 10150 ° 0” (C53

For the same initial condition, the particle of sort No. 2 has the free-field condensate given by
Z,=vi % +a%wi\? (C59

and the flavor particle condensate identical to EGR6) and (C27).
The flavor particle number fluctuatidd,, (t) is

096015-23



CHUENG-RYONG JI AND YURIY MISHCHENKO PHYSICAL REVIEW D65 096015

6
N2 — 2224_221_2_)\a _ 2 *_ *
222 UL N, —U A (1—N9), 5 [a(Up30 12— U 23) “+ Upgb 120 15C* —Ug 0130 2€% |1,

{—v2A2(1-7?),0,—a%v3\"},

—_[a(Uzsvlz Ug0 29) 2+ Ugah 120 15C% — Ug0 130206 ], _320537\ 234“%3”%37\8”3 (C59

6

~ ACa
N3 = k 0—— (1 A, —- [CU13012023+a(U12U23—012023)2_U13012023e*]],

-
o
{m
|

224
a“usgh
(1-2%),0—2 }
\%a a%us\*
T[C Upa0 120 23+ &(UgUp3— 0120 29) 2 — Ugsh 120 28], T’O ; (C56
1 Uiz 4112
SRNgzz):E‘F(U%z_l))\Z"‘ Z+7—v§2+u%2v§2+7+azv§3 A
The flavor antiparticle number fluctuatiof,,t) is
24,2 6
N2 5 a U2t 2 Aa * 4 *
220~ ufvin®, > (1=\9), > [ —Up30 120 15C™ + Up0 p5(4aUpgv 1ot 0167 ) ]
i
2 1
)\Ga a2053)\4
T —Upg 120 15C* + Ug 0 p3(4aUpgv 1o+ 015€%) ], — Y —2a*ujpiN® (C57)
an12013023 av 0 25\ °
_ae U12013023 60au23vlzvlsc A®
2 H
av 029\ ° alpgy 120 13C\°
[ [(c* —e)usz—4au Uy, fio ;
(C58

SHNg) =N+ (82055~ vt 2uF )N,
Finally, for the same initial condition, the particle of sort No. 3 has the free-field particle condensate given by
Zi=a%vi\* (C59

and the flavor particle condensate identical to EG83) and(C34).
The flavor particle number fluctuatidd,;(t) is given by
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2 6
Nz, R MR *per)+2 +e*
U1z, 2 ( )s > [ —Upav 120 13(C* +€%) +2aUsUpg0 10 23+ €% Ug 0130 23] |

N |

2 2.2
212 3

a‘v
—N222(1-22),0- 22>\ ,

)\Ga * * * 32053 4 4,2 2.8 .
T[_UZSUlZUIS(C +€%)+2auU; o0 10 231 €% U130 23], — 2 AT, —atupoh T 1) (C60

aup\° \Sa
INC . 12 * * *
N232— ( 1 0,_ 2 (Ulgv 23e+ Uq3Ur3€ ), 2 {U 120 23[ U13(C_ e )_ 2au12U23] + Uq3UqoUosE }] y

aup\® . ausn?
5 (v13v 238" +U13Up20),0,~ 5 :

\Ca A4
* 23 .
> {v1v2d Uss(C* —€) — 2auyUps] + gl Usge}, — 5 ,0) ] ; (Ce

SN, =N 2,4+ N[ a2(uds+v3) —vi(1—u3)].
The flavor antiparticle number quctuaticDTszz(t) is given by
— vh \®
N%z: { { - )\4U§20 52, - )\27(1_ \?) ’T( —Upgl 120 13C* + 28U3Uo30 120 23+ 2€* Uy 0 130 23)] ,

N222 Viz (1-12),0,—a%2\*

\°a 22 4 42 2 8|].
7( Upgl 120 13C™ + 2aU1Up30 120 23+ 2€% U0 130 23), — @0 53N ", — @ U505\ % [ (C62

6au 3

—\Pauy w0 2€*,0; C* v 13],

\ba

N232 Hoa )\GaU12013023ey U1V d Ugg(C—2€%)— 23“12“23]]
\fa . Nlau,;
Tvlzvzs[uls(c —29)_23U12U23]’T(3012013a0 ;

® 2.2 4 2 (C63)
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