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Lepton flavor violating processes in the bimaximal texture of neutrino mixings
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We investigate lepton flavor violation in the framework of the minimal supersymmetric standard model with
right-handed neutrinos taking the large mixing angle Mikheyev-Smirnov-Wolfenstein solution in the quaside-
generate and inverse-hierarchical neutrino masses. We predict the branching ratio ofm→e1g and t→m
1g processes assuming degenerate right-handed Majorana neutrino masses. We find that the branching ratio in
the quasidegenerate neutrino mass spectrum is 100 times smaller than the ones in the inverse-hierarchical and
hierarchical neutrino spectra. We emphasize that the magnitude ofUe3 is one of the important ingredients to
predict BR(m→e1g). The effect of the deviation from the completely degenerate right-handed Majorana
neutrino masses is also estimated. Furtheremore, we examine theS3L3S3R model, which gives the quaside-
generate neutrino masses, and the Shafi-Tavartkiladze model, which gives the inverse-hierarchical neutrino
masses. Both predicted branching ratios ofm→e1g are smaller than the experimental bound.
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I. INTRODUCTION

The Super-Kamiokande Collaboration has almost c
firmed neutrino oscillation in atmospheric neutrinos, whi
favors thenm→nt process@1#. For solar neutrinos@2,3#, the
recent data of the Super-Kamiokande and Sudbury Neut
Observatory experiments also suggest the neutrino osc
tion ne→nx with the large mixing angle~LMA ! Mikheyev-
Smirnov-Wolfenstein~MSW! solution, although other solu
tions are still allowed@4,5#. If we take the LMA MSW
solution, neutrinos are massive and the flavor mixings
almost bimaximal in the lepton sector.

If neutrinos are massive and mixed in the standard mo
~SM!, there exists a source of lepton flavor violation~LFV!
through the off-diagonal elements of the neutrino Yuka
coupling matrix. However, because of the smallness of
neutrino masses, the predicted branching ratios for these
cesses are so tiny that they are completely unobservable@6#.

On the other hand, in the supersymmetric framework
situation is quite different. Many authors have already st
ied LFV in the minimal supersymmetric standard mod
~MSSM! with right-handed neutrinos assuming the relev
neutrino mass matrix@7–10#. In the MSSM with soft break-
ing terms, there exist lepton flavor violating terms such
off-diagonal elements of slepton mass matrices (mL̃

2) i j ,

(mẽR

2 ) i j and trilinear couplingsA i j
e . Strong bounds on thes

matrix elements come from requiring branching ratios
LFV processes to be below observed ratios. For the pres
the most stringent bound comes from them→e1g decay
@BR(m→e1g),1.2310211# @11#. However, if the LFV oc-
curs at the tree level in the soft breaking terms, the branch
ratio of this process exceeds the experimental bound con
erably. Therefore one assumes that the LFV does not occ
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the tree level in the soft parameters. This is realized by m
ing the assumption that soft parameters such as (mL̃

2) i j ,

(mẽR

2 ) i j , andA i j
e , are universal, i.e., proportional to the un

matrix. This assumption follows from minimal supergravi
~MSUGRA!. However, even though there is no flavor viol
tion at the tree level, it is generated by the effect of t
renormalization group equations~RGE’s! via neutrino
Yukawa couplings. Suppose that neutrino masses are
duced by the seesaw mechanism@12#; there are right-handed
neutrinos above a scaleMR . Then neutrinos have the
Yukawa coupling matrixYn with off-diagonal entries in the
basis of the diagonal charged-lepton Yukawa couplings. T
off-diagonal elements ofYn drive off-diagonal ones in the
(mL̃

2) i j andA i j
e matrices through running of the RGE’s@13#.

One can constructYn from the recent data of neutrin
oscillations. Assuming that oscillations need only account
the solar and atmospheric neutrino data, we take the L
MSW solution for the solar neutrino. Then the lepton mixin
matrix, which may be called the Maki-Nakagawa-Saka
~MNS! matrix or the MNS-Pontecorvo~MNSP! matrix
@14,15#, is given in Ref.@16#. Since the data for neutrino
oscillations only indicate the differences of the mass squ
Dmi j

2 , neutrinos have three possible mass spectra: the h
archical spectrummn3@mn2@mn1, the quasidegenerate on
mn1.mn2.mn3, and the inverse-hierarchical onemn1
.mn2@mn3.

We have already analyzed the effect of neutrino Yuka
couplings for them→e1g process assuming the quasid
generate and inverse-hierarchical spectra@17#. In this paper,
we present the detailed formulas in our calculations ofm
→e1g and discuss the dependence of the supersymm
~SUSY! breaking parameters on the branching ratio. In
@17#, the right-handed Majorana neutrino masses were
sumed to be completely degenerate. We study the effec
deviation from this degeneracy in this work. The correlati
between BR(m→e1g) and BR(t→m1g) is also calcu-
lated. Furthermore, two specific models of the neutrino m
matrix are examined in them→e1g process.
©2002 The American Physical Society10-1
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This paper is organized as follows. In Sec. II, we give t
general form ofYn andYn

†Yn , which play a crucial role in
generating the LFV through the running RGE’s. In Sec.
we calculate the branching ratios of the processesm→e
1g andt→m1g in the three neutrino mass spectra. In S
IV, we examine theS3L3S3R model, which gives the
quasidegenerate neutrino masses, and the Shafi-Tavartki
model, which gives the inverse-hierarchical neutrino mas
In Sec. V, we summarize our results and give a discussi

II. LFV IN THE MSSM WITH RIGHT-HANDED
NEUTRINOS

A. Yukawa couplings

In this section, we introduce the general expression for
neutrino Yukawa couplingYn , which is useful in the follow-
ing arguments, and investigate the LFV triggered by the n
trino Yukawa couplings. The superpotential of the lepton s
tor is described as follows:

Wlepton5YeLHdeR
c 1YnLHunR

c 1
1

2
nR

cTMRnR
c , ~2.1!

whereHu ,Hd are chiral superfields for Higgs doublets,L is
the left-handed lepton doublet, andeR andnR are the right-
handed charged lepton and the neutrino superfields, res
tively. Ye is the Yukawa coupling matrix for the charge
lepton andMR is the Majorana mass matrix of the righ
handed neutrinos. We takeYe andMR to be diagonal.

It is well known that the neutrino mass matrix is given

mn5~Ynvu!TMR
21~Ynvu!, ~2.2!

via the seesaw mechanism, wherevu is the vacuum expecta
tion value~VEV! of the Higgs particleHu . In Eq. ~2.2!, the
Majorana mass term for left-handed neutrinos is not inclu
since we consider the minimal extension of the MSSM.

The neutrino mass matrixmn is diagonalized by a single
unitary matrix:

mn
diag[UMNS

T mnUMNS, ~2.3!

whereUMNS is the lepton mixing matrix. Following the ex
pression in Ref.@10#, we write the neutrino Yukawa couplin
as

Yn5
1

vu
AMR

diagRAmn
diagUMNS

T , ~2.4!

or explicitly

Yn5
1

vu
S AMR1 0 0

0 AMR2 0

0 0 AMR3

D R

3S Amn1 0 0

0 Amn2 0

0 0 Amn3

D UMNS
T , ~2.5!
09601
e

,

.

dze
s.
.

e

u-
-

ec-

d

whereR is a 333 orthogonal matrix, which depends on th
model. Details are given in Appendix A.

First, let us take the degenerate right-handed Major
massesMR15MR25MR3[MR . This assumption is reason
able for the case of quasidegenerate neutrino masses. O
wise close agreement would be needed betweenYn andMR .
This assumption is also made for the cases of inve
hierarchical and hierarchical neutrino masses. We also
cuss later the effect of the deviation from the degener
right-handed Majonara neutrino masses.

Then we get

Yn5
AMR

vu
RS Amn1 0 0

0 Amn2 0

0 0 Amn3

D UMNS
T , ~2.6!

and

Yn
†Yn5

MR

vu
2

UMNSS mn1 0 0

0 mn2 0

0 0 mn3

D UMNS
T , ~2.7!

or equivalently

~Yn
†Yn!ab5

MR

vu
2 (

i 51

3

mn iUa iUb i* , ~2.8!

where theUab’s are the elements ofUMNS. It is remarked
that Yn

†Yn is independent ofR in the case ofMR15MR2

5MR3[MR . It may be important to consider the deviatio
from the degenerate right-handed Majonara neutrino mas
A detailed discussion is given in Sec. III B.

Note that this representation of the Yukawa coupling
given at the electroweak scale. Since we need the Yuk
coupling at the grand unified theory~GUT! scale, Eq.~2.5!
should be modified by taking account of the effect of t
RGE’s @18–20#. Modified Yukawa couplings at the scaleMR
are given by

Yn5
AMR

vu
RS Amn1 0 0

0 Amn2 0

0 0 Amn3

D
3UMNS

T AI gI tS 1 0 0

0 1 0

0 0 AI t

D ~2.9!

with

I g5expF 1

8p2EtZ

tR
2cigi

2dtG ,

I t5expF 1

8p2EtZ

tR
yt

2dtG ,
0-2
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I t5expF 1

8p2EtZ

tR
yt

2dtG , ~2.10!

wheretR5 ln MR and tZ5 ln MZ . Here, thegi ’s ( i 51,2) are
gauge couplings andyt andyt are Yukawa couplings, and th

ci ’s are constants (35 ,3). We shall calculate the LFV numer
cally by using the modified Yukawa coupling in the follow
ing sections.

As mentioned in the previous section, there are three p
sible neutrino mass spectra. The hierarchical type (mn1
!mn2!mn3) gives the neutrino mass spectrum as

mn1;0, mn25ADm(
2 ,

mn35ADmatm
2 , ~2.11!

the quasidegenerate type (mn1;mn2;mn3) gives
of
gh

t
ve

n

d

om
o
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mn1[mn , mn25mn1
1

2mn
Dm(

2 ,

mn35mn1
1

2mn
Dmatm

2 , ~2.12!

and the inverse-hierarchical type (mn1;mn2@mn3) gives

mn2[ADmatm
2 , mn15mn22

1

2mn2
Dm(

2 ,

mn3.0. ~2.13!

We take the typical valuesDmatm
2 5331023 eV2 and

Dm(
2 5731025 eV2 in our calculation of the LFV.

We take typical mixing angles of the LMA MSW solutio
such ass2351/A2 and s1250.6 @16#, in which the lepton
mixing matrix is given in terms of the standard parametriz
tion of the mixing matrix@23# as follows:
Z

,

UMNS5S c13c12 c13s12 s13e
2 if

2c23s122s23s13c12e
if c23c122s23s13s12e

if s23c13

s23s122c23s13c12e
if 2s23c122c23s13s12e

if c23c13

D , ~2.14!

wheresi j [sinuij andci j [cosuij are mixings in vacuum, andf is theCP violating phase. The reacter experiment of CHOO
@21# presented an upper bound ons13. We use the constraint from the two-flavor analysis, which iss13<0.2 in our calculation.
If we take account of the recent result of the three-flavor analysis@22#, the upper bound ofs13 may be smaller than 0.2. Then
if we use the results in@22#, our results form→e1g are reduced at most by a factor of 2. In our calculation, theCP violating
phase is neglected for simplicity.

B. LFV in slepton masses

Since SUSY is spontaneously broken at low energy, we consider the MSSM with the soft SUSY breaking terms:

2Lsoft5~mQ̃
2

! i j Q̃i
†Q̃j1~mũ

2
! i j ũRi* ũR j1~md̃

2
! i j d̃Ri* d̃R j1~mL̃

2
! i j L̃ i

†L̃ j1~mẽ
2
! i j ẽRi* ẽR j1~mñ

2
! i j ñRi* ñR j1m̃Hd

2 Hd
†Hd1m̃Hu

2 Hu
†Hu

1~BmHdHu1 1
2 Bn i j MRi jñRi* ñR j* 1H.c.!1S A i j

d Hdd̃Ri* Q̃j1A i j
u HuũRi* Q̃j1A i j

e HdẽRi* L̃ j1A i j
n HuñRi* L̃ j1

1
2 M1B̃L

0B̃L
0

1
1

2
M2W̃L

aW̃L
a1

1

2
M3G̃aG̃a1H.c.D , ~2.15!
we
ng
wheremQ̃
2 ,mũ

2 ,md̃
2 ,mL̃

2 ,mẽ
2 andmñ

2 are the mass squares
the left-handed squark, the right-handed up squark, the ri
handed down squark, the left-handed charged slepton,
right-handed charged slepton, and the sneutrino, respecti

m̃Hd

2 and m̃Hu

2 are the mass squares of the Higgs boso

Ad ,Au ,Ae , and An are theA parameters for squarks an
sleptons, andM1 ,M2, andM3 are the gaugino masses.

Note that the lepton flavor violating processes come fr
diagrams including nonzero off-diagonal elements of the s
t-
he
ly.

s,

ft

parameter. In this paper we assume MSUGRA; therefore
put the assumption of universality for soft SUSY breaki
terms at the unification scale:

~mL̃
2
! i j 5~mẽ

2
! i j 5~mñ

2
! i j 5•••5d i j m0

2 ,

m̃Hd

25m̃Hu

25m0
2 ,

An5Yna0m0 , Ae5Yea0m0 ,
0-3
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Au5Yua0m0 , Ad5Yda0m0 , ~2.16!

wherem0 anda0 stand for the universal scalar mass and
universalA parameter, respectively. Because of universal
LFV is not caused at the unification scale.

To estimate the soft parameters at low energy, we nee
know the effect of radiative corrections. As a result, lept
flavor conservation is violated at low energy.

The RGE’s for the left-handed slepton soft mass are gi
by

m
d

dm
~mL̃

2
! i j 5m

d

dm
~mL̃

2
! i jU

MSSM

1
1

16p2
@~mL̃

2Yn
†Yn

1Yn
†YnmL̃

2
! i j 12~Yn

†mñYn

1m̃Hu

2 Yn
†Yn1An

†An! i j #, ~2.17!

while the first term in the right-hand side is the norm
MSSM term which has no LFV, and the second one is
source of LFV through the off-diagonal elements of the n
trino Yukawa couplings. The RGE’s are summarized in A
pendix B.

III. NUMERICAL ANALYSES OF BRANCHING RATIOS

Let us calculate the branching ratio ofei→ej1g( j , i ).
The amplitude of this process is given by

T5eea* ~q!ū j~p!mei
isabqb~ALPL1ARPR!

3ui~q2p!, ~3.1!

whereui is the wave function of thei th charged leptonei , p
andq are the momenta ofej and the photon, respectively,e is
the electric charge,e is the polarization vector of the photon
and PL,R are projection operators:PL,R5(17g5)/2. AL,R

are decay amplitudes and explicit forms are given in App
dix C. It is easy to see that this process changes the chir
of the charged lepton. The decay rate can be calculated u
AL,R as

G~ei→ej1g!5
e2

16p
mei

5 ~ uALu21uARu2!. ~3.2!

Since we know the relationmei

2 @mej

2 , then we can expec

uARu@uALu. The AL,R contain the contribution of the neu
tralino loop and the chargino loop as seen in Fig. 1.
calculate the branching ratio using Eq.~3.2! and the formulas
in Appendix C. In order to clarify parameter dependence,
us present an approximate estimation. The decay ampli
is approximated as

uARu2.
a2

2

16p2

u~DmL̃
2
! i j u2

mS
8

tan2b, ~3.3!

wherea2 is the gauge coupling constant of SU(2)L andmS
is a SUSY particle mass. The RGE’s develop the o
09601
e
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diagonal elements of the slepton mass matrix andA term.
These terms at low energy are approximated by

~DmL̃
2
! i j .2

~612a0
2!m0

2

16p2
~Yn

†Yn! i j ln
MX

MR
, ~3.4!

whereMX is the GUT scale. Therefore, the off-diagonal e
ements of (Yn

†Yn) i j are the crucial quantities to estimate th
branching ratio.

As discussed in Sec. II, (Yn
†Yn) i j is given by neutrino

masses and mixings at the electroweak scale. Therefore
can compare the quantity (Yn

†Yn) i j among the three neutrino
mass spectra: the degenerate, the inverse-hierarchical,
the hierarchical masses. In this section, we present nume
results in these three cases. Here, we use Eq.~3.2! and the
vertex functions in Appendix C for the calculation of th
branching ratio including the RGE effect.

A. µ\e¿g

We present a qualitative discussion of (Yn
†Yn)21 before

predicting the branching ratio BR(m→e1g). This is given
in terms of neutrino masses and mixings at the electrow
scale as follows:

~Yn
†Yn!215

MR

vu
2 @Um2Ue2* ~mn22mn1!

1Um3Ue3* ~mn32mn1!#, ~3.5!

wherevu[v sinb with v5174 GeV is taken as the usua
notation and the unitarity condition of the lepton mixing m
trix elements is used. Taking the three cases of neutrino m
spectra, the degenerate, the inverse-hierarchical, and the
mal hierarchical masses, one obtains the following form
respectively:

~Yn
†Yn!21.

MR

A2vu
2

Dmatm
2

2mn

3F 1

A2
Ue2*

Dm(
2

Dmatm
2

1Ue3* G ~degenerate!

FIG. 1. Feynman diagrams that contribute to the branching r
of ei→ej1g. There are two types of diagram,~a! neutralino-
slepton loop and~b! chargino-sneutrino loop.
0-4
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.
MR

A2vu
2
ADmatm

2

3F 1

2A2
Ue2*

Dm(
2

Dmatm
2

2Ue3* G ~ inverse!

.
MR

A2vu
2
ADmatm

2

3F 1

A2
Ue2* A Dm(

2

Dmatm
2

1Ue3* G ~hierarchy!, ~3.6!

where we take the maximal mixing for the atmospheric n
trinos. SinceUe2.1/A2 for the bimaximal mixing matrix,
the first terms in the square brackets on the right-hand s
of Eqs.~3.6! can be estimated by putting in the experimen
data. For the case of degenerate neutrino masses, (Yn

†Yn)21

depends on the unknown neutrino mass scalemn . As one
takes smallermn , one predicts a larger branching ratio.
our calculation, we takemn50.3 eV,1 which is close to the
upper bound from the neutrinoless double beta decay exp
ment @25#, and also leads to the smallest branching ratio.

We also note that the degenerate case gives the sma
branching ratio BR(m→e1g) among the three cases as se
in Eqs.~3.6! owing to the scale ofmn . It is easy to see the
fact that the second terms in Eqs.~3.6! are dominant up to
Ue3*0.01 (degenerate), 0.01 (inverse), and 0.07~hierar-
chy!, respectively. The magnitude and the phase ofUe3 are
important in the comparison between the cases of
inverse-hierarchical and the normal hierarchical masses
the limit of Ue350, the predicted branching ratio in the ca
of the normal hierarchical masses is larger than the o
one. However, forUe3.0.2 the predicted branching ratio
are almost the same in both cases.

First, we present numerical results in the case of deg
erate neutrino masses assumingMR5MR1. The magnitude
of MR is considerably constrained if we impose theb-t uni-
fication of Yukawa couplings@26#. In the case of tanb<30,
the lower bound ofMR is approximately 1012 GeV. We
also takeMR<1014 GeV, in order that neutrino Yukawa
couplings remain belowO(1). Therefore, we useMR
51012, 1014 GeV in our following calculation.

We take a universal scalar mass (m0) for all scalars and
a050 as a universalA term at the GUT scale (MX52
31016 GeV. The branching ratio ofm→e1g is given ver-
sus the left-handed selectron massmẽL

for each tanb

53,10,30 and a fixedW-ino massM2 at the electroweak
scale. In Fig. 2, the branching ratios are shown forM2
5150,300 GeV in the case ofUe350.2 with MR
51014 GeV andmn50.3 eV; the solid curves correspon
to M25150 GeV and the dashed ones toM25300 GeV.

1Recently, a positive observation of the neutrinoless double b
decay was reported in@24#, where the degenerate neutrino mass
mn50.3 eV is a typical one.
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The threshold of the selectron mass is determined by
recent CERN e1e2 collider LEP2 data @27# for M2
5150 GeV, but forM25300 GeV by the constraint tha
the left-handed slepton should be heavier than the neut
nos. As tanb increases, the branching ratio increases beca
the decay amplitude from the SUSY diagrams is appro
mately proportional to tanb @7#. It is found that the branch-
ing ratio is almost larger than the experimental upper bou
in the case ofM25150 GeV. On the other hand, the pr
dicted values are smaller than the experimental bound ex
for tanb530 in the case ofM25300 GeV.

Our predictions depend strongly onMR , because the
magnitude of the neutrino Yukawa coupling is determined
MR as seen in Eq.~2.5!. If MR is reduced to 1012 GeV, the
branching ratio becomes 104 times smaller since it is propor
tional to MR

2 . The numerical result is shown in Fig. 3. W
will examine a model@28,29# that gives the degenerate ne
trino masses withUe3;0.05 in Sec. IV.

Next we show results in the case of the invers
hierarchical neutrino masses. As expected from Eq.~3.6!, the
branching ratio is much larger than the one in the degene
case. In Fig. 4, the branching ratio is shown forM2
5150,300 GeV in the case ofUe350.2 with MR
51014 GeV. In Fig. 5, the branching ratio is shown fo
Ue350.05 withMR51014 GeV. TheMR dependence is the
same as in the case of quasidegenerate neutrino masses
predictions almost exceed the experimental bound as lon
Ue3>0.05, tanb>10, andMR.1014 GeV. This result is
based on the assumptionMR5MR1; however, it is not guar-
anteed in the case of the inverse-hierarchical neutr

ta
f

FIG. 2. Predicted branching ratio BR(m→e1g) versus the left-
handed selectron mass for tanb53,10,30 in the case of degenera
neutrino masses. HereMR51014 GeV andUe350.2 are taken. The
solid curves correspond toM25150 GeV and the dashed ones
M25300 GeV. The horizontal dotted line denotes the experime
upper bound.
0-5
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masses. We will examine a typical model@30# that gives
MRÞMR1 in Sec. IV.

For comparison, we show the branching ratio in the c
of hierarchical neutrino masses in Fig. 6. It is similar to t
case of the inverse-hierarchical neutrino masses. The bra
ing ratio in the case of degenerate neutrino masses is2

times smaller than that for the inverse-hierarchical and h
archical neutrino spectra.

In our numerical analyses we assumeda050 at the GUT
scaleMX for simplicity. Let us comment on theA-term de-
pendence, namely,a0Þ0 at MX . We estimate the branchin
ratio for a0561 at MX (A5Ya0m0). In the degenerate
type, the predicted branching ratio is 1.02 (a051) or 1.07
(a0521) times as large as the one in the case ofa050
(tanb530,Ue350.2). In the inverse-hierarchical type, th
predicted branching ratios are 1.56 (a051) and 1.54 (a05
21) times as large as the one in the case ofa050 (tanb
530,Ue350.2). Therefore theA-term dependence is insig
nificant in our analyses.

In our calculations, we use the universality condition
MX . We also examine the no-scale conditionm050 at MX .
It is found that the predicted branching ratio is 10 tim
smaller than the one in the case of nonzero universal sc
mass.

B. Nondegeneracy effect of MR

The analyses in the previous section depend on the
sumption of MR15MR25MR3[MR . In the case of the
quasidegenerate neutrino masses in Eq.~2.12! this complete
degeneracy ofMR may deviate with the following magnitud
without fine-tuning:

FIG. 3. Predicted branching ratio BR(m→e1g) versus the left-
handed selectron mass for tanb53,10,30 in the case of degenera
neutrino masses. HereMR51012 GeV andUe350.2 are taken. The
solid curves correspond toM25150 GeV and the dashed ones
M25300 GeV.
09601
e

ch-
0
r-

t

lar

s-

MR3
2

MR1
2

.16
Dmatm

2

mn
2

,
MR2

2

MR1
2

.16
Dm(

2

mn
2

. ~3.7!

Therefore, we parametrizeMR as

MR5MRS 1 0 0

0 11«2 0

0 0 11«3

D , ~3.8!

where «2.Dm(
2 /2mn

2 and «3.Dmatm
2 /2mn

2 . By using Eq.
~2.6!, we obtain

Yn
†Yn5

MR

vu
2

UMNSS Amn1 0 0

0 Amn2 0

0 0 Amn3

D
3KS Amn1 0 0

0 Amn2 0

0 0 Amn3

D UMNS
T , ~3.9!

where

K[R†S 1 0 0

0 11«2 0

0 0 11«3

D R. ~3.10!

Thus, we have

FIG. 4. Predicted branching ratio BR(m→e1g) versus the left-
handed selectron mass for tanb53,10,30 in the case of inverse
hierarchical neutrino masses. HereMR51014 GeV andUe350.2
are taken. The solid curves correspond toM25150 GeV and the
dashed ones toM25300 GeV.
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~Yn
†Yn!215

MR

vu
2 (

i , j

3

U2iU1 j~Ki jAmn iAmn j !, ~3.11!

with

Ki j 5d i j 1«2R2iR2 j1«3R3iR3 j , ~3.12!

where we usedRTR51.2 So, we get

~Yn
†Yn!215~Yn

†Yn!21uMR}1
1D~Yn

†Yn!21, ~3.13!

where the first term is the (Yn
†Yn)21 element in Eq.~3.5!,

which corresponds to theMR}1, while the second term
stands for the deviation from it as follows:

D~Yn
†Yn!215

MR

vu
2 (

i , j

3

U2iU1 jAmn iAmn j

3~«2R2iR2 j1«3R3iR3 j !. ~3.14!

In order to estimate the second term, we use«250.0001 and
«350.01, taking account of «2.Dm(

2 /2mn
2 and «3

.Dmatm
2 /2mn

2 , where we usemn50.3 eV. Sincemn i.mn j

andRi j <1, we get

D~Yn
†Yn!21;

MR

vu
2 (

i , j

3

U2iU1 jmn«3R3iR3 j

2We assumeR to be real for simplicity.

FIG. 5. Predicted branching ratio BR(m→e1g) versus the left-
handed selectron mass for tanb53,10,30 in the case of the inverse
hierarchical neutrino masses. HereMR51014 GeV andUe350.05
are taken. The solid curves correspond toM25150 GeV and the
dashed ones toM25300 GeV.
09601
<
MR

vu
2

1

2A2
mn«3;3.531023. ~3.15!

Taking this maximal value, we can estimate the branch
ratio as follows:

BR~nondegenerateMR!

BR~degenerateMR!
<S 2.613.5

2.6 D 2

.5.5. ~3.16!

Therefore, the enhancement due to the second term is at
a factor of 5. This conclusion does not depend on the spe
form of R.

Consider the case of the inverse-hierarchical type of n
trino masses. We take«2;0.01 with a similar argument to
that for the quasidegenerate type neutrino masses, bec
mn1 andmn2 are almost degenerate and«2.Dm(

2 /2Dmatm
2 in

this case. Then we get

D~Yn
†Yn!215

MR

vu
2 (

i , j

2

U2iU1 jmn1«2R2iR2 j

<
MR

vu
2

1

2A2
mn1«2;0.06331022,

~3.17!

where we assume«2>«3 and use mn3.0, mn1.mn2
.0.054 eV, andRi j <1. Taking the maximal value, we ge

FIG. 6. Predicted branching ratio BR(m→e1g) versus the left-
handed selectron mass for tanb53,10,30 in the case of the hiera
chical neutrino masses. HereMR51014 GeV and Ue350.2 are
taken. The solid curves correspond toM25150 GeV and the
dashed ones toM25300 GeV.
0-7
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BR~nondegenerateMR!

BR~degenerateMR!
<S 2.710.063

2.7 D 2

.1.04.

~3.18!

Thus, the effect of theD(Yn
†Yn)21 is very small in the case o

inverse-hierarchical neutrino masses.
These discussions in this subsection are also qualitati

applicable for thet→m1g process.

C. t\µ¿g

Let us study thet→m1g process. In this case, we shou
discuss

~Yn
†Yn!325

MR

vu
2 @Ut2Um2* ~mn22mn1!

1Ut3Um3* ~mn32mn1!#. ~3.19!

It should be stressed that it is independent ofUe3, in contrast
to (Yn

†Yn)21. Therefore we can determine the following for
of (Yn

†Yn)32 at the electroweak scale by using the bimaxim
mixing matrix:

~Yn
†Yn!32.

MR

vu
2 F2

1

4

Dm(
2

2mn
1

1

2

Dmatm
2

2mn
G

.
MR

4vu
2

Dmatm
2

mn
~degenerate!

.
MR

vu
2 F1

8

Dm(
2

ADmatm
2

2
1

2
ADmatm

2 G
.2

MR

2vu
2
ADmatm

2 ~ inverse!

.
MR

vu
2 F2

1

4
ADm(

2 1
1

2
ADmatm

2 G
.

MR

2vu
2
ADmatm

2 ~hierarchy!. ~3.20!

We see that the cases of the inverse-hierarchical masse
the hierarchical masses are almost the same as seen in
~3.20!.

Let us present the numerical results for BR(t→m1g)
@31# versus BR(m→e1g) @11# in the case of degenerat
neutrino mass, where tanb53,10,30 are taken. In Fig. 7, th
branching ratio is plotted forM25150,300 GeV forUe3
50.2 with MR51014 GeV. Dotted lines are the experimen
tal upper bounds for BR(t→m1g) and BR(m→e1g), re-
spectively. The dependence on tanb is the same as in the
case ofm→e1g. It is found that the branching ratio is a
ways smaller than the experimental upper bound in the c
of t→m1g in contrast with the case ofm→e1g.
09601
ly

l

and
qs.

se

Next we show the results in the case of the inver
hierarchical neutrino masses. As expected from Eqs.~3.20!,
the branching ratio is much larger than the one in the deg
erate case. In Fig. 8, the branching ratio is shown forM2
5150,300 GeV in the case ofUe350.2 with MR
51014 GeV. In conclusion, the predicted branching ratio
larger than the one in the case of degenerate neutrino m
and it is smaller than the experimental upper bound fot
→m1g in contrast with m→e1g. The constraint for
BR(m→e1g) is always more severe than the one in t
case of BR(t→m1g).

IV. TYPICAL MODELS AND NUMERICAL ANALYSES

A. S3LÃS3R flavor symmetry model—degenerate type

In this section we examine the neutrino model propos
by Fukugita, Tanimoto, and Yanagida@28#, which derives the
quasidegenerate massesmn1;mn2;mn3. This model is
based on theS3L3S3R flavor symmetry@32#. Taking MR
5MR1, the neutrino Yukawa coupling is given as follows

Yn5Yn0F S 1 0 0

0 1 0

0 0 1
D 1S 0 0 0

0 en 0

0 0 dn

D G , ~4.1!

where we take the diagonal basis for the neutrino sector.
first matrix is theS3L invariant one, and the second one is t
symmetry breaking term. The parametersYn0 ,en , anddn are
constrained by the experimental values ofDmatm

2 andDm(
2 .

Therefore, the flavor mixings come from the charged lep
Yukawa couplings.

FIG. 7. Predicted branching ratio BR(t→m1g) versus BR(m
→e1g) for tanb53,10,30 in the case of degenerate neutri
masses. HereMR51014 GeV, mn50.3 eV, and Ue350.2 are
taken and the left-handed selectron mass is taken the same
Figs. 2–4.
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The charged lepton Yukawa coupling is given by the sy
metry breaking parameterse l ,d l as follows:

Ye5Ye0F S 1 1 1

1 1 1

1 1 1
D 1S 2e l 0 0

0 1e l 0

0 0 1d l

D G .

~4.2!

SinceYe0 ,e l andd l are fixed by the charged lepton mass
one gets the lepton mixing matrix elements as follows:

UMNS.S 1/A2 21/A2 A2/3Ame /mm

1/A6 1/A6 22/A6

1/A3 1/A3 1/A3
D . ~4.3!

As a result, we see thatUe35A2/3Ame /mm;0.05 from Eq.
~4.3!.

We estimated the branching ratio of the processesm→e
1g andt→m1g by usingUe350.05. We show the branch
ing ratio forM25150 and 300 GeV taking tanb53,10,30 in
Fig. 9. Because of the smallness ofUe3, we see that BR(m
→e1g) is smaller than the experimental upper bound
cept for tanb530 andM25150 GeV.

We have also estimated the branching ratio BR(t→m
1g) for tanb530, which is much smaller than the expe
mental bound BR(t→m1g),1.131026. Thus, them→e
1g process provides a severe constraint compared wit
→m1g in the present experimental situation.

B. The Shafi-Tavartkiladze model—inverse-hierarchical type

The typical model of the inverse-hierarchical neutri
masses is the Zee model@33#, in which the right-handed

FIG. 8. Predicted branching ratio BR(t→m1g) versus BR(m
→e1g) for tanb53,10,30 in the case of inverse-hierarchical ne
trino masses. HereMR51014 GeV andUe350.2 are taken and the
left-handed selectron mass is taken the same as in Figs. 2–4.
09601
-

,

-

neutrinos do not exist. However, one can also conside
Yukawa texture which leads to inverse-hierarchical mas
through the seesaw mechanism, namely, the Sh
Tavartkiladze model@30#.

Shafi and Tavartkiladze utilize anomalous U~1! flavor
symmetry@34#. In this model, due to the Froggatt-Nielse
mechanism@35#, one of the Yukawa interaction terms in th
effective theory is given by

eRi
c L jHdS S

Mpl
D mi j

, ~4.4!

whereeRi
c andL j are the right-handed charged lepton and

left-handed lepton doublet, respectively,Hd is the Higgs
doublet, andS is a singlet field. The effective Yukawa cou
plings are given in terms of

l[
^S&
Mpl

.0.2. ~4.5!

The neutrino mass matrix is given in Appendix D. Fixing th
U~1! flavor chargesk, n, k8 ask50, n52, k852, which are
consistent with neutrino mass data, the Yukawa coupling
given by

Yn5S l4 l2 l2

1 0 0 D , ~4.6!

and the right-handed neutrino Majorana mass matrix is gi
by

-
FIG. 9. Predicted branching ratio BR(m→e1g) versus the left-

handed selectron mass for tanb53,10,30 in the case of theS3L

3S3R flavor symmetry model. HereMR51014 GeV is taken. The
solid curves correspond toM25150 GeV and the dashed ones
M25300 GeV.
0-9
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MR5MRS l4 1

1 0D . ~4.7!

It is remarked that right-handed neutrinos contain only t
generations in this model. In Eq.~4.6!, components 2-2 and
2-3 must be zero for the sake of holomorphy of the super
tential; it is called the SUSY zero. The neutrino mass ma
is given by the seesaw mechanism as

mn5Yn
TMR

21Ynvu
25

l2vu
2

MR
S l2 1 1

1 0 0

1 0 0
D , ~4.8!

where the order 1 coefficient in front of each entry is n
glected. This mass matrix gives the inverse-hierarchical n
trino masses.Yn

†Yn is given as

Yn
†Yn5S 11l8 l6 l6

l6 l4 l4

l6 l4 l4D . ~4.9!

It is noticed that the component (Yn
†Yn)21 is suppressed as

~Yn
†Yn!21;l6;O~1025!. ~4.10!

Thus we expect that the branching ratio ofm→e1g in this
model is much smaller than the one in the case
(MR)3335MR(1)333 in Sec. III.

In Fig. 10, the branching ratio is shown forM2
5150,300 GeV. The predictions are given by takingl
50.2 and all the order 1 coefficients in the Yukawa co
plings are fixed to be 1. The predicted value is much sma
than the one in the inverse-hierarchical case discussed in
Sec. III. Because (Yn

†Yn)21 is proportional tol6, the small-
ness of the branching ratio is understandable.

V. SUMMARY AND DISCUSSION

We have investigated the lepton flavor violating proces
m→e1g and t→m1g, in the framework of the MSSM
with right-handed neutrinos. Even if we impose the univ
sality condition for the soft scalar masses andA terms at the
GUT scale, off-diagonal elements of the left-handed slep
mass matrix are generated through the RGE’s running eff
from the GUT scale to the right-handed neutrino mass s
MR . We have taken the LMA MSW solution for the neutrin
masses and mixings.

The branching ratios ofm→e1g and t→m1g pro-
cesses are proportional tou(Yn

†Yn) i j u2. Since (Yn
†Yn) i j de-

pends on the mass spectrum of the neutrinos, we can c
pare the branching ratios of three cases of neutrino m
spectra: the degenerate, the inverse-hierarchical, and th
erarchical case.

First, we have studied the three types in the case om
→e1g, in which we takeMR5MR1. For the case of degen
erate neutrino masses, the branching ratio depends on
unknown neutrino massmn . We have takenmn50.3 eV,
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which gives us the largest branching ratio. It is emphasi
that the magnitude ofUe3 is one of the important ingredient
in predicting BR(m→e1g). The branching ratio of the
inverse-hierarchical case almost exceeds the experime
upper bound and is much larger than the degenerate cas
M25150 GeV andM25300 GeV. In general, we expec
the relation BR(degenerate)!BR(inverse-hierarchical)
,BR(hierarchical). The effect of the deviation fromMR
5MR1 has been estimated. The enhancement of the bra
ing ratios are at most a factor of five in the case of t
quasidegenerate neutrino mass spectrum.

Second, we have studied the three cases int→m1g. It is
noticed that the branching ratio is independent ofUe3 in
contrast to the case ofm→e1g. For degenerate neutrin
masses, the branching ratio is always smaller than the exp
mental upper bound. For inverse-hierarchical neutr
masses, the branching ratio is smaller than the experime
bound. The constraint of BR(m→e1g) is always severer
than the one in the case of BR(t→m1g).

Finally, we have investigated the branching ratio ofm
→e1g in the typical models of the degenerate and inver
hierarchical cases. Since theS3L3S3R model, which is a
typical one in the degenerate case, predictsUe3.0.05, the
branching ratio is much smaller than in the case ofUe3
.0.2. The Shafi-Tavartkiladze model, which is a typical o
of the inverse-hierarchical case, predicts a very small bran
ing ratio. Thus, the models can be tested by them→e1g
process.

The branching ratio ofm→e1g and t→m1g will be
improved to the level 10214 in the PSI and 1027 to 1028 in
the B factories at KEK and SLAC, respectively. Therefor

FIG. 10. Predicted branching ratio BR(m→e1g) versus the
left-handed selectron mass for tanb53,10,30 in the case of the
Shafi-Tavartkiladze model@30#. The solid curves correspond t
M25150 GeV and the dashed ones toM25300 GeV.
0-10
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future experiments can probe the framework for the neutr
masses.
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APPENDIX A: YUKAWA MATRIX

The Yukawa matrix is determined in general as follo
@10#. The left-handed neutrino mass matrix is given as

mn5~Ynvu!TMR
21~Ynvu!, ~A1!

via the seesaw mechanism, wherevu is the vacuum expecta
tion value of the Higgs bosonHu . One can always take th
diagonal form of the right-handed Majorana neutrino m
matrix MR5MR

diag. The neutrino mass matrixmn is diago-
nalized by a single unitary matrix

mn
diag[UMNS

T mnUMNS, ~A2!

whereUMNS is the MNS matrix. In Eqs.~A1! and~A2!, one
can divideMR

diag into square roots:

mn
diag5UMNS

T Yn
T~MR

diag!21YnUMNSvu
2

5UMNS
T Yn

TA~MR
diag!21A~MR

diag!21

3YnUMNSvu
2 . ~A3!
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Multiplying the inverse square root of the matrixmn
diag from

both right- and left-hand sides of Eq.~A3!, one gets the
following form:

15A~mn
diag!21UMNS

T Yn
TA~MR

diag!21

3vu
2A~MR

diag!21YnUMNSA~mn
diag!21

[RTR, ~A4!

where one has defined the complex orthogonal 333 matrix

R[vuA~MR
diag!21YnUMNSA~mn

diag!21, ~A5!

and R depends on the model. Therefore, one can write
neutrino Yukawa coupling as

Yn5
1

vu
AMR

diagRAmn
diagUMNS

T , ~A6!

or explicitly

Yn5
1

vu
S AMR1 0 0

0 AMR2 0

0 0 AMR3

D
3RS Amn1 0 0

0 Amn2 0

0 0 Amn3

D UMNS
T . ~A7!
APPENDIX B: RGE’S

1. From M X to M R

m
d

dm
gi

25
1

8p2
bigi

4 , ~b1 ,b2 ,b3!5S 33

5
,1,23D ,

m
d

dm
Mi5

bi

2p
a iM i , a i5

gi
2

4p
~ i 51,2,3!,

m
d

dm
Ye

i j 5
1

16p2 F H 2
9

5
g1

223g2
213 Tr~YdYd

†!1Tr~YeYe
†!J Ye

i j 13~YeYe
†Ye!

i j 1~YeYn
†Yn! i j G ,

m
d

dm
Yn

i j 5
1

16p2 F H 2
3

5
g1

223g2
213 Tr~YuYu

†!1Tr~YnYn
†!J Yn

i j 13~YnYn
†Yn! i j 1~YnYe

†Ye!
i j G ,

m
d

dm
Yu

i j 5
1

16p2 F H 2
13

15
g1

223g2
22

16

3
g3

213 Tr~YuYu
†!1Tr~YnYn

†!J Yu
i j 13~YuYu

†Yu! i j 1~YuYd
†Yd! i j G ,
0-11
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m
d

dm
Yd

i j 5
1

16p2 F H 2
7

15
g1

223g2
22

16

3
g3

213 Tr~YdYd
†!1Tr~YeYe

†!J Yd
i j 13~YdYd

†Yd! i j 1~YdYu
†Yu! i j G ,

m
d

dm
~mL̃

2
! i

j5
1

16p2 F ~mL̃
2Ye

†Ye1Ye
†YemL̃

2
! i

j1~mL̃
2Yn

†Yn1Yn
†YnmL̃

2
! i

j12~Ye
†mẽ

2Ye1mHd

2 Ye
†Ye1Ae

†Ae! i
j

12~Yn
†mñ

2Yn1mHu

2 Yn
†Yn1An

†An! i
j2(

6

5
g1

2uM1u216g2
2uM2u2)d i

j G ,
m

d

dm
~mẽ

2
! j

i 5
1

16p2 F2~mẽ
2YeYe

†1YeYe
†mẽ

2
! j

i 14~YemL̃
2Ye

†1mHd

2 YeYe
†1AeAe

†! j
i 2

24

5
g1

2uM1u2d j
i G ,

m
d

dm
~mñ

2
! j

i 5
1

16p2
@2~mñ

2YnYn
†1YnYn

†mñ
2
! j

i 14~YnmL̃
2Yn

†1mHu
2 YnYn

†1AnAn
†! j

i #,

m
d

dm
Ae

i j 5
1

16p2 F H 2
9

5
g1

223g2
213 Tr~Yd

†Yd!1Tr~Ye
†Ye!J Ae

i j 12H 2
9

5
g1

2M123g2
2M213 Tr~Yd

†Ad!

1Tr~Ye
†Ae!J Ye

i j 14~YeYe
†Ae!

i j 15~AeYe
†Ye!

i j 12~YeYn
†An! i j 1~AeYn

†Yn! i j G ,
m

d

dm
An

i j 5
1

16p2 F H 2
3

5
g1

223g2
213 Tr~Yu

†Yu!1Tr~Yn
†Yn!J An

i j 12H 2
3

5
g1

2M123g2
2M213 Tr~Yu

†Au!

1Tr~Yn
†An!J Yn

i j 14~YnYn
†An! i j 15~AnYn

†Yn! i j 12~YnYe
†Ae!

i j 1~AnYe
†Ye!

i j G ,
m

d

dm
Au

i j 5
1

16p2 F H 2
13

15
g1

223g2
22

16

3
g3

213 Tr~Yu
†Yu!1Tr~Yn

†Yn!J Au
i j 12H 2

13

15
g1

2M123g2
2M2

2
16

3
g3

2M313 Tr~Yu
†Au!1Tr~Yn

†An!J Yu
i j 14~YuYu

†Au! i j 15~AuYu
†Yu! i j 12~YuYd

†Ad! i j 1~AuYd
†Yd! i j G ,

m
d

dm
Ad

i j 5
1

16p2 F H 2
7

15
g1

223g2
22

16

3
g3

213 Tr~Yd
†Yd!1Tr~Ye

†Ye!J Ad
i j 12H 2

7

15
g1

2M123g2
2M22

16

3
g3

2M3

13 Tr~Yd
†Ad!1Tr~Ye

†Ae!J Yd
i j 14~YdYd

†Ad! i j 15~AdYd
†Yd! i j 12~YdYu

†Au! i j 1~AdYu
†Yu! i j G ,

m
d

dm
~mHu

2 !5
1

16p2 F6 Tr@mQ̃
2 Yu

†Yu1Yu
†~mũ1mHu

2 !Yu1Au
†Au#12 Tr@mL̃

2Yn
†Yn

1Yn
†~mñ

2
1mHu

2 !Yn1An
†An#2S 6

5
g1

2uM1u216g2
2uM2u2D G ,

m
d

dm
~mHd

2 !5
1

16p2 F6 Tr@mQ̃
2 Yd

†Yd1Yd
†~md̃1mHd

2 !Yd1Au
†Ad#

12 Tr@mL̃
2Ye

†Ye1Ye
†~mẽ

2
1mHd

2 !Ye1Ae
†Ae#2S 6

5
g1

2uM1u216g2
2uM2u2D G .
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APPENDIX C: NOTATIONS AND CONVENTIONS
IN THE MSSM

1. Mass matrix and mixings

In this appendix, we give our notation for SUSY partic
masses and mixings in our calculation.

The slepton massM̂2 term is

~ ẽL
† ,ẽR

† !S mL
2 mLR

2 T

mLR
2 mR

2 D S ẽL

ẽR
D , ~C1!

with

~mL
2! i j 5~mL̃

2
! i j 1mei

2 d i j

1mZ
2d i j cos 2bS 2

1

2
1sin2uWD , ~C2!

~mR
2 ! i j 5~mẽR

! i j 1mei

2 d i j 2mZ
2d i j cos 2b sin2uW ,

~C3!

~mLR
2 ! i j 5

A i j
e v cosb

A2
2mei

m tanb, ~C4!

where (mL
2) i j and (mR

2) i j are 333 matrices. The slepton
mass matrix can be diagonalized as

U fM̂2U f T5~diagonal!, ~C5!

whereU f is a real orthogonal 636 matrix.
The chargino mass term is

2L5~W̃R
2,H̃2R

2 !

3S M2 A2mWcosb

A2mWsinb m
D S W̃L

2

H̃1L
2 D

1H.c. ~C6!
n-

09601
The chargino mass matrix can be diagonalized as

ORMCOL
T5diag~M x̃

1
2,M x̃

2
2!, ~C7!

where OL and OR are real orthogonal 232 matrices. The
mass eigenstatesx̃AL and x̃AR (A51,2) are

S x̃1L
2

x̃2L
2 D 5OLS W̃L

2

H̃1L
2 D ,

S x̃1R
2

x̃2R
2 D 5ORS W̃R

2

H̃2R
2 D , ~C8!

and

x̃A
25x̃AL

2 1x̃AR
2 ~A51,2! ~C9!

forms the Dirac fermion with massM x̃
A
2.

The neutralino mass term is

2L5
1

2
~B̃L ,W̃L

0 ,H̃1L
0 ,H̃2L

0 !MNS B̃L

W̃L
0

H̃1L
0

H̃2L
0

D 1H.c.,

~C10!

where
MN5S M1 0 2mZsinuWcosb mZsinuWsinb

0 M2 mZcosuWcosb 2mZcosuWsinb

2mZsinuWcosb mZcosuWcosb 0 2m

mZsinuWsinb 2mZcosuWsinb 2m 0

D . ~C11!
The neutralino mass matrix can be diagonalized as

ONMNON
T5~diagonal!, ~C12!

whereON is a real 434 orthogonal matrix. The mass eige
state is

x̃AL
0 5~ON!ABx̃BL

0 ~A,B51, . . . ,4!,
x̃BL
0 5~B̃L ,W̃L

0 ,H̃1L
0 ,H̃2L

0 !, ~C13!

and

x̃A
05x̃AL

0 1x̃AR
0 ~A51, . . . ,4! ~C14!

forms a Majorana spinor with massM x̃
A
0.

The chargino vertex functions are
0-13
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CeAX
R( l )52g2~OR!A1UX,1

n , ~C15!

CeAX
L( l ) 5g2

me

A2mWcosb
~OL!A2UX,1

n ,

~C16!

and the neutralino vertex functions are

NeAX
R( l )52

g2

A2
H @2~ON!A22~ON!A1tanuW#UX,1

l

1
me

mWcosb
~ON!A3UX,4J , ~C17!

NeAX
L( l ) 52

g2

A2
H me

mWcosb
~ON!A3UX,1

22~ON!A1tanuWUX,4
l J . ~C18!

2. Decay amplitudesAL ,R

For the amplitudesAL,R, there are contributions of th
chargino loop and the neutralino loop:

AL,R5A(c)L,R1A(n)L,R. ~C19!

The contributions from the chargino loop are

A(c)L52
1

32p2

1

mñX

2 FCjAX
L( l )CiAX

L( l )*
1

6~12xAX!4

3~213xAX26xAX
2 1xAX

3 16xAXln xAX!

1CjAX
L( l )CiAX

R( l )*
M x̃

A
2

mj

1

~12xAX!3

3~2314xAX2xAX
2 22 lnxAX!G , ~C20!

A(c)R5A(c)LuL↔R , ~C21!

wherexAX is defined as

xAX5

M x̃
A
2

2

mñX

2 . ~C22!

Here mñX
is the sneutrino mass andM x̃

A
2 is the chargino

mass. The contributions from the neutralino loop are
09601
A(n)L5
1

32p2

1

ml̃ X

2 FNjAX
L( l )NiAX

L( l )*
1

6~12yAX!4

3~126yAX13yAX
2 12yAX

3 26yAX
2 ln yAX!

1NjAX
L( l )NiAX

R( l )*
M x̃

A
0

mi

1

~12yAX!3

3~11yAX
2 12yAXln yAX!G , ~C23!

A(n)R5A(n)LuL↔R , ~C24!

whereyAX is defined as

yAX5

M x̃
A
0

2

m,̃X

2 . ~C25!

Here ml̃ X
is the charged slepton mass andM x̃

A
0 is the neu-

tralino mass.

APPENDIX D: ANOMALOUS U „1… FLAVOR SYMMETRY

We review the anomalous U~1! flavor symmetry @34#
which is utilized in the Shafi-Tavartkiladze model@30# dis-
cussed in Sec. IV. The anomalous U~1! flavor symmetry can
arise from string theory. The cancellation of this anomaly
due to the Green-Schwarz mechanism@36#. The associated
Fayet-Iliopoulos term is given by@37#

jE d4uVA with j5
gA

2Mpl
2

192p2
Tr Q. ~D1!

The D term is given by

gA
2

8
DA

25
gA

2

8 S ( Qauwau21j D 2

, ~D2!

whereQa is the ‘‘anomalous’’ charge ofwa . For U~1! break-
ing, we introduce the singlet fieldS under the SM gauge
group with U~1! chargeQS . Assuming TrQ.0, we can en-
sure the cancellation ofDA in Eq. ~D2!. TakingQS521, we
can ensure the nonzero VEV ofS, ^S&, which is given as
^S&5Aj.

Due to the Froggatt-Nielsen mechanism, the Yukawa
teraction term in the effective theory is given by

eR j
c LiHdS S

Mpl
D mi j

, ~D3!

where eR j
c and Li are the right-handed charged lepton a

left-handed lepton doublet, respectively,Hd is the Higgs
doublet, andS is a singlet field. The effective Yukawa cou
plings are given in terms of
0-14
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l[
^S&
Mpl

. ~D4!

In order to make the interaction term Eq.~D3! neutral,
Shafi and Tavartkiladze assigned U~1! flavor charges as fol-
lows:

QL1
5k1n, QL2

5QL3
5k,

QN1
52QN2

5k1k8,

QHu
5QHd

50, QS521, ~D5!

wherek,n,k8.0,n>k8. Thus they obtained
v.
,

i

a

a-

o-

09601
Yn5S l2k1n1k8 l2k1k8 l2k1k8

ln2k 0 0
D , ~D6!

and

MR5MRS l2k12k8 1

1 0
D . ~D7!

In conclusion, the neutrino mass matrix is given by

mn5Yn
TMR

21Ynvu
25

l2k1nvu
2

MR
S ln 1 1

1 0 0

1 0 0
D . ~D8!
79,

-
on
O.
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to,
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a,
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