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We point out that the hierarchy between the measured values of the Cabibbo-Kobayashi-Maskddya
phase and the strongP phase has a natural origin in supersymmetry with spontan€gusiolation and
low-energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the
strongCP phase is protected by an exact nonrenormalization theorem while the CKM phase is not. We present
explicit examples of models that exploit this fact and discuss corrections to the nonrenormalization theorem in
the presence of supersymmetry breaking. This framework for solving the s@Bngroblem has generic
predictions for the superpartner spectrum andG& and flavor violation, and predicts a preferred range of
values for electric dipole moments.
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I. INTRODUCTION Several resolutions of the puzzle have been proposed. The

axion mechanismi7] promotesé to a field. QCD dynamics
Despite its impressive phenomenological success the stagives this field a potential with a minimum at zero. Experi-
dard model has serious shortcomings which should be undefental searches for the axion have come up empty handed,
stood as pointers toward physics beyond the standard modelnd—when combined with constraints from cosmology and
One such shortcoming is the puzzling hierarchy between thgstrophysics—they have reduced the allowed parameter
CP violating phase in the Cabibbo-Kobayashi-Maskawaspace to a narrow windoy2]. Another proposed solution, a
(CKM) matrix and the stron@P phasef. This “strongCP  vanishing up quark mag8], is on the verge of being ruled
problem” [1] has recently become more severe as resultsut by using partially quenched chiral perturbation theory to
from the B factories now clearly favor a unitarity triangle compare lattice calculations to experimé¢ét.
with three large angle$2,3], implying that the complex There are also proposals based on specific models which
phase in the CKM matrix is of order 1. In contrast, the strongwe may classify as “high-scale solutiong0—14], the most
CP phase, which is the only oth€P violating parameter in  famous of which is the Nelson-Barr mechanifh®]. These
the standard model, has been experimentally bounded to hfiodels use a symmetrparity or CP) to enforced=0 at
tiny, <10 % from measurements of electric dipole mo- high scales. But in the standard model b&tand CP are
ments of the neutron anti®Hg [4-6]. badly broken, and it becomes a challenging and cumbersome
In the standard model this hierarchy between the @ model building task to design realistic models that predict
violating phases is puzzling because the phases have a com< 101 also at low energies after including all renormal-
mon origin: the Yukawa couplings of the quarks. The CKM jzation effects. While some of the models in the literature
matrix is the unitary transformation matrix which takes onework, they lack the appeal of the axion angj=0 solutions
from the basis with a diagonal up quark Yukawa ma¥fjxto  which attempt to solve the stror@P problem with symme-
the basis with a diagonal down quark Yukawa ma¥fix An  tries at low energies and are therefore relatively robust
irremovable large phase in the CKM matrix implies at leastagainst changes in the high-energy theory and renormaliza-
one irremovable large phase in the Yukawa matrices. Thigon.
then requires a fine-tuning of the stro6 phase to one part  Recently, we pointed otl5] that by combining sponta-
in 10'° because depends on the phases in the Yukawa ma-neousCP violation with supersymmetry one can construct
trices via viable high-scale solutions in whidhis automatically insen-
sitive to radiative corrections and new high-energy physics.
Our proposal makes use of the fact that in supersymmetry

the strongCP phase# is not renormalized because of a non-
renormalization theorerfil6]. This makes the task of build-
Here, we denote the physicakphase invariahtheta angle ing a successful model much easier. One only needs to make

by 6 to distinguish it from the basis dependent unphysicalsure thaté is zero at the tree level. Loop corrections are
“bare” 6. automatically absent if supersymmetry breaking occurs at
energies much below the spontane@iviolation.
In our previous publicatiofl5] we briefly introduced our
*Email address: ghiller@slac.stanford.edu framework and presented an example model. The basic in-
"Email address: schmaltz@bu.edu gredients of the framework are spontanedR violation,

6=0— argdet,—arg det . (1)
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supersymmetric(SUSY) nonrenormali_zation theorems, and < broken SUSY- exact SUSY
flavor andCP preserving SUSY breaking such as gauge me- ! :
diation. broken CP ———«— exact CP -

In this paper we discuss our mechanism in more detalil } } } '
and provide a number of arguments and calculations to cor-
roborate the claims made jd5]. In particular, in Sec. Il we
review our general framework. In Sec. Ill we show that @ g 1. SUSY andCP breaking scales in our framework. Figure
sufficiently large CKM phase can be generated from wave,qs 1o scale.
function renormalization. We also review the supersymmet-

ric nonrenormalization theorem f@. Section IV is devoted this remains true after quantum corrections. However, the
to explicit models; we discuss a Nelson-Barr model in whichCKM phase is renormalized so that a nonvanishiigy,

the CKM phase is generated at the tree level. We furthecan be obtained from quantum corrections as in our example
present a model in which the CKM phase vanishes at treenodel of Ref.[15] or already at the tree level as in the
level but is generated at the loop level from strongly coupledmodels of Nelson and Barr.

CP violating dynamics. In Sec. V we discuss the spectrum of At the much lower scaléM g sy Kaehler potential cou-
supersymmetry breaking masses that is required for a su@lings of MSSM fields to the supersymmetry breaking sector
cessful implementation of our scheme. In Sec. VI we deterare generated. These couplings turn into soft supersymmetry
mine the expected size @ffrom radiative corrections in the breaking masses once the SUSY breaking fields are replaced
standard model and from supersymmetry breaking. Sectiory their vacuum expectation values. It is important that these
VIl and VIII contain our predictions, summary, and conclu- couplings to the SUSY breaking sector do not yet exist at the
sions. In Appendixes A—D we define our notation, show thascaleMcp. This is because they would be renormalized and
a large CKM phase from wave function renormalization re-would pick up phases from th€P violating dynamics. We
quires strong coupling, and present calculational details rediscuss this issue in more detail in Sec. V.

garding the renormalization and nonrenormalizatiorg of _At scales belowMgysy the theory is simply the MSSM
with soft masses. Thus the low-ener@y violating param-

eters can be determined using the well-known renormaliza-
Il. THE FRAMEWORK tion group equations of the MSSM. This renormalization

In this section we summarize the basic ingredients of oug€nerates only negligibly small contributionsddf the soft
framework. More details on each will be given in the follow- SUSY breaking parameters are real and flavor universal. We
ing sections. review the arguments t_hat prove this in gauge mediated su-

We requireCP and supersymmetry to be exact at high PErsymmetry breaking in Sec. VI.
energies. At such energies our theory is therefore described
by a supersymmetric Lagrangian with coupling constants Ill. CKM PHASE FROM WAVE FUNCTIONS
which can be chosen real. We will think of this Lagrangian

as an effective Lagrangian valid up to a cutoff scale which " this section we show explicitly that wave function
we call Mp, for convenience. But this scale could be anyrenormalization does not contribute & This is crucial to

other high scale of new physics such as the grand unifie@Ur mechanism because wave function renormalization is not

theory (GUT) scale or the string scale. Our Lagrangian alsotonstrained byN=1 supersymmetry. However, and this is
contains higher-dimensional operators suppressed by the cufbportant for our model o€P violation from wave functions
off. Such operators are also required to be supersymmetri@ Sec. IV, wave function renormalization of the quarks con-
and CP preserving. tributes to the CKM phase. We show that a large CKM phase
Since the standard model is neither SUSY @ sym-  €an be generated entirely from renormalization of the quark
metric, both symmetries must be spontaneously broken. Wkinetic terms if theZ matrices appearing in the renormaliza-
denote the scales at which the symmetry breaking is medfion deviate from the unit matrix by order 1. Finally we
ated to the minimal supersymmetric standard m@sSSM) discuss thegnonrenormalization of6 and @y in super-
fields by Mcp and M gysy, respectively. Note that this is a symmetry.
somewhat unconventional definition fitg,sy. To be com- To begin, consider the following Lagrangian containing
pletely clear, in gauge mediation superpartner masses atbe kinetic terms of the standard mod&M) quarks and
proportional toF/Mgysy in our notation, and in minimal their Yukawa couplings:
supergravity we would havklgygy=Mp,.

TeV Msusy Mcp  Mp

In order for our mechanism to work we require that Lkmeticz@DZQQJrEiDZdDJrUiDZUU, (2)
M cp>Mgysy as shown in Fig. 1. Therefore the theory is still
supersymmetric aM cp and the well-known nonrenormal- L= Q\?uHuU+Q\?deD. 3

ization theorems apply. In particular, the stro@g phased

is not renormalized. This makes bUIIdlng models of SpontaWe use two-component Spinor notati(ﬂ; are the S[(JZ)_
neousCP violation that solve the stron@P pro_blem rela-  doublet quarksD andU are SU2) singlets.Z; denote wave
tively easy. We only need to require vanishingef 0 at the  function renormalization factors which in general are com-
tree level; the nonrenormalization theorem guarantees thglex, Hermitian, and positive definiteX33 matrices. Such
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matrices can always be written as the square of other positivgecause in supersymmet?yand the Yukawa matrice¥ are
definite Hermitian matriceg; = (Ti)le- Thus we can always  holomorphic quantities which are protected by nonrenormal-
change from this most general basis to canonical fields by gation theorems. However, the wave function factdrs
Hermitian basis changeQ—ToQ, U—T,U, and D  stem from the Kaehler potential and are renormalized. Thus,

—TqD, which leads to new Yukawa matrices if it can be arranged in a model thatremains zero at the
tree level, then the nonrenormalization theorem guarantees
this also at the quantum level. The CKM phase is renormal-

It is important to note that this basis change does not ghift 12€d and can be generated either at the tree level or by loops.
This is most easily seen by writifg= UTSU with unitary U More explicitly, a supersymmetric Lagrangian can be
and real diagonab Rescaling the quark fields by the real Wrtten as
matrix S does not changé and potential contributions from
U andU" cancel. EZJ d40K+f d?0 W+ Wyayge (6)

It is now easy to see that the contributionétdrom quark
massegsee Eq(1)] vanishes if the only phases in the quark \yhereK is the Kaehler potentialV the superpotential, and
sector are in the; . This follows because Woauge CONtaINS the gauge kinetic terms. Matter fermion
masses are given by second variations of the superpotential

M i = aZW/a¢i&¢j times wave function renormalization fac-
tors from the Kaehler potential. The wave function renormal-

by Hermiticity of T and reality ofY 4. o . . o
. C . ization is determined from the kinetic term<;;
Note that the ph ntained in théactors are physi- . . ” o "
ote that the phases contained éactors are phys =02K/&¢iﬁ¢j* . SinceZ;; is positive definite and Hermitian

cal and lead to a nonvanishing CKM phase. In fact, arbitrary . . -
quark masses and CKM matrices can be obtained as can ffecan be written as the square of a nonsingular Hermitian

At ix7=T"2
seen from the example Y,=Y4=To=1, T, matrix Z=1"<,

e diagmy,me,m), and T Vegy diagimy,me,m)Vie, - Chiral superfields in the original basis are related to fields

We note one more result here which is important for the the canonical basis byy— Tyi¢i , and the general expres-

model in Sec. IV B. In order to generate an order 1 CKM sion for properly normalized fermion masses is
phase from wave function factors ti@&s cannot be close to 1
the unit matrix. In other words, if—for example_—nontrlwal Mjj=— ETikMkITjI ) 7)
8Z's (with Z=1+6Z) are generated dynamically from
loops, then this dynamics needs to be strongly coupled so _
that 6Z~0O(1). If the 6Z’'s are small, then a largEP vio- It follows that the contribution t@ from arg det vanishes
lating phase cannot be generated. While this is plausible, if the couplingsfand vacuum expectation valu@geVs)] in
turns out to be difficult to prove. A somewhat pedestrianW are real. This remains true for arbitrary complex Kaehler
derivation is given in Appendix B. potential couplings.
To summarize, what we have discussed above outlines a In the MSSM, we have
possible strategy for solving the stro@P problem: if one
can construct a model with vanishing bafereal Yukawa Muz?uvu, Mdz?dvd, (8)
matrices, but complex Hermitian wave function facta@s
then # vanishes even for larg€P violation in the CKM  wherev, andvy are the VEVs of the up- and down-type
matrix! MSSM Higgs fields, respectively. The quark mass matrices
However, the above is not yet a solution to the str@®)  are defined in terms dfl,, 4 with products of wave function
problem. In the presence @P violating dynamics reality of factorsTq 4 @s in the nonsupersymmetric case.
the Yukawa matrices in Eq3) is not enforced by any sym-  We are now ready to discuss the nonrenormalization of

metries, and it is in general just as miraculous as a vanishing_ 9—argdetM. We showed above that argdétis not
strongCP phased. But we will show in the following sec- renormalized. To understand the renormalizationddf is
tion that supersymmetry and its nonrenormalization theoconvenient to define the superfield

rems can naturally give complex phases in the kinetic terms

and real Yukawa matrices. 1 0

TZ?-FIW (9)

Yo=ToY Tu, Yo=ToYaTq. (4)

arg det,,y=arg deT 5+ arg det 4+ arg deT =0 (5)

A. Supersymmetry

As we will now explain, the situation improves dramati- ahd work in a basis in which the gauge-kinetic term is

cally in the presence of supersymmetry. This is essentiallyf d>61/47W,W*, and where no wave function renormaliza-
tion is performed. In this basisis renormalized at one loop

only [17,18:
We have not yet shown that this is stable under radiative correc-
tions. We will deal with this in Sec. VI where we discuss renormal- () =7 o) — bo log( 11/ 11,) (10)
ization of 6. K o)™ g2 109\ ko)
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Here u and uqg are real renormalization scales apglis the  potentials that are minimized at complex vacuum expectation

one-loopg function coefficient. Taking the imaginary part on values. For simplicity we will omit the specific potentials.

both sides shows thatis also not renormalized. They are not difficult to construct even though the Lagrang-
So far, we have ignored mass thresholds. A superfieldan is real because of the underlyi@¢ invariance. A simple

with a massm betweenu and i should be integrated out at example is given by the superpotential

the scalem. This gives a shifis7= —t,/872 log(m), and ifm

is complex we have#d— 0—t, argm. Heret, is the Dynkin W=E(32+£2) (12)

index in the color representation of the field which was inte-

grated outt,=1 for a quark. This is exactly what is needed with singlet chiral superfield€ and2, whose scalar poten-

for 6 to be invariant, because the massive field should not béial forces a complex VEV fok = £i&.

included in the argde¥l term in the definition ofg in the
low-energy theory.We discuss the nonperturbative generali- A. Nelson-Barr
zation of this nonrenormalization theorem in Appendix C. In Nelson-Barr modelg10] CP violation is communi-
To end this section, we wish to clarify a potential confu- cated to the quarks already at the tree level. The nontrivial

sion stemming from the possibility of redefining the phase ofiogel building feat is to arrange the superpotential such that

t_he gluino field via an anomgIOLB symmetry transforma- 9=0 at the tree level. A relatively simple choice is to add a
tion. In the absence of a gluino mass this appears to allow

. . vectorlike fourth singlet down quark. The superfielBs
rotating away thed angle. However, in order for supersym- =~ — —
metry breaking to generate a gluino mass as required for D4 have (SU(3),SU(2)y1) quantum numbers (3)y
phenomenology, th&® symmetry has to be broken in the +(3,1)-13 and couple in the superpotential to the MSSM
theory. If this breaking is spontaneous then the theory has diflds and three complex VEVE,; as follows:
R axion, and we have rediscovered the axion solution to the

strong C_:P problem (with_ its .associ.afced phenomenological W= QiMiij . i,j=1-4. (12
constraints If the breaking is explicitd cannot be rotated
away. Abusing notation, we defin®,=D,, and the mass matrix
M is
IV. THE CP VIOLATING SECTOR
In this section we discuss the requirements on the sector Nl = ( YqHg O (13
of the theory that is responsible for breaki@d. We also rs ou)

give two examples and emphasize the trouble with models

without SUSY. Here u>M 05 COntributes to the mass of the vectorlike fer-
The job of theCP violating sector is to produce a CKM mions, and all couplings and are real because of the un-

phase of order 1 while avoiding teee levelcontribution to  derlying CP symmetry. This form of the Lagrangian can be

6. Quantum corrections t6 are automatically taken care of enforced by additional global symmetries. A similar mixing
by the nonrenormalization theorem and low-energy SuSYcould also be introduced in the up sector and everything is
breaking as discussed in Secs. Ill and V. straightforwardly extended to a GUT. -
There are two possible strategies for generating the CKM One can easily verify that arg det=0, and therefore
phase. The first was proposed long ago by Nelson and by0 at the tree level as desired. The CKM matrix is the
Barr. In their scenario, the ordinary quarks mix with ultra- mismatch of the basis in which
heavy vectorlike quarks via complex couplings. As we will
review in the next subsection this mixing generates a CKM
phase at the tree level while a clever choice of Yukawa cou-
plings (or equivalently of field content and global symme- and

tries) forbids the tree level contribution t6. The other pos-
sibility was proposed in our recent publicatipb5]. In our
scenarioCP violation couples to the MSSM only at the loop YdY$=\7d( 1

level. This automatically guarantees a vanish?;gand the
CKM phase must be generated from loops that renormalize

the quark wave functions. We review this scenario in the?® diagonal. Here we have defined the three-veafor

second subsection. =(r131,1,5,,1383) and used the approximatiol4H
SpontaneousCP violation requires some fields to have <r2~u to compute the down quark Yukawa matrix. We see
that if the VEVsX,; are complex an@;= u, the down quark
matrix has large phases giving an unsuppressed CKM phase
2Note that we have been somewhat cavalier with the Dynkin in-2S desired. ' . '

dices in the definition of. The correct definition contains a factor AS d|S£usseq In previous sections, supersymmetry guaran-

of t,(R;) for each of the different representatioRs of colored  tees thaty remains zero at the loop level as well. If we had

fermions in the theory. considered this model without SUSY as originally proposed

YaYi=Y.Y]

aa'

R R
e Ve 1
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FIG. 2. Figure of wave function renormalization for tﬁpﬂil-
lowing from the superpotential in E415).

by Nelson, then we would have to worry about loops involv-
ing the heavy fermions and fields which contribute t@. In

PHYSICAL REVIEW D65 096009

and real. For>>M the Feynman diagram is easily evalu-
ated. ItsCP violating part involving the VEV of is finite
and can be expanded to give

DY

625~ ——5I"——r (16)
> 167 M2,

whereM¢p is the scale at which spontaned@B breaking is
mediated to the quark$f2p~s2tr3 13 ].

As discussed in Sec. lll, a sufficiently large phase in the
CKM matrix can be generated only when wave function
renormalization is large, which requires- 4. This implies
that the one-loop approximation is not reliable. Therefore, it
is most useful to parametrize the wave function coefficient
by an arbitrary Hermitian matriXs.

As it stands, this model is incomplete because of the large

order to make the Nelson-Barr models safe without SUSWukawa Coup”ngr. The prob'em is that if the scale &P

one needs to take the couplings; very small
(~10 3-10 % while simultaneously tuning;>;~ .

B. CKM phase from loops

violation is below the Planck scale then the Yukawa coupling
runs to values of order 1 within oresfolding even if it is 47
at the Planck scale. A large Yukawa coupling at the lower

scaleMcp can be arranged by letting the’s and_5‘+ 54
interact with a new strong gauge group. It is easy to modify

In this section we review an example model which wasthis model to include these interactions. We present such a

presented in our first papéd5]. In this model the CKM
phase stems from wave function renormalization faciyrs
of the quarks. The; factors arise from loops of heavy su-
perfields with complex masses.

Here we will describe an SB8) GUT version of the
model. In addition to the usual three generations of B0
matter fields we also require a vectorlikg 55, (models
with one or several 1810 or both 5+5 and 10+ 10 are, of
course, also possibleFurthermore, we have the usual Higgs
fieldsH, andH4 and three generations of gauge singlet su
perfields F;+F;. The superpotential contains the usual
MSSM couplings as well as

Wep=T5;F 54+ 3 ;FiF;+M5,5,. (15)

M, r, ands are real, the indicegj run over 1-3, and the

model in Appendix C, where we also show that the relevant
nonperturbative effects in and the new strong gauge cou-

pling can be determined exactly and do not contributé.to

C. Reproducing the quark masses and CKM matrix

We make some general remarks on models \@Ehvio-
lation from kinetic terms. Since wave function renormaliza-
tion factors are required to be largend not computable in

perturbation theory and flavor violating, their effects on

guark masses and mixing angles are important. This suggests
two different basic scenariognodels which interpolate be-
tween the two extreme cases are of course also possible
(A) The hierarchical structure of the Yukawa couplings is

generated at a scale abo.p, and the wave function
renormalization is only responsible for generating the neces-
sary phases. In the process, the strong dynamics necessarily
changes at least some of the mixing angles completely, but

matrix 2; is assumed to have complex entries from spontathe quark mass hierarchy is essentially unchanged.

neousCP breaking®
To determine the low-energg€P violation we integrate

out the massive fields and ’i+5. The low-energy super-
potential that derives from E@15) vanishes when the equa-
tions of motion for theF's and 5, are inserted, but the dia-

(B) Flavor andCP violation have a common origin. At
scales abov® -p the Yukawa couplings are either universal
(\?}oc 8;) because of non-Abelian flavor symmetries, or have
“random” O(1) entries(flavor anarchy, and the entire fla-
vor structure including the hierarchy stems from the wave

gram of Fig. 2 generates a noncanonical complex kinetidunction renormalization factor. Models in which flavor

term forE. Note that forCP violation to be mediated to the
MSSM fields theCP breaking sector needs to violate flavor,

otherwise the resulting kinetic term foy &ould be diagonal

3A more minimalCP violating sector with only twd='s and noF
would work as well. Note also that we have vanishing VEVsFor
and F, with a nonvanishing and complex F)~M this model
would essentially be Nelsong].

originates from wave function renormalization have been
built by Nelson and Strasslgrl9]. Their models, when
adapted to incorporate our mechanism, generate flavor and
solve the strond@P problem.

D. The trouble with models without SUSY

Note that the necessity of strong coupling 47 under-
lines why supersymmetry is so important to our approach:
Non-SUSY models o€P violation induced by noncanonical
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kinetic terms have been discussed in the literature, with the e ZWH v
new sector coupling only to the doublet quarkg], or to the q q

singlets[13]. Without SUSY no nonrenormalization theorem £ 1 £
protects the colored fermion masses fr@R violating ver-

tex corrections, which occur at some—possibly high—Iloop X X
level. However, because of the required large coupling for q q

arbitrarily high loop diagrams can still violate the bound on

6. Turning the argument around, electric dipole moments FIG. 3. Lowest-order SUSY diagrams contributingtoA cross
(EDM) data put severe constraints on the model parameterggnotes a left-right mass insertion.
in particular the coupling. For example, because of a vertex
correction at four loops the authors of REf2] were forced  whereA, denotes the proportionality constant of théerms
to taker <1, and therefore their model cannot produce largeA=A,Y. We note that these constraints are much more strin-
CKM CP violation. Like the onés) in [13], it is superweak gent than the bounds on soft phases from direct contributions
and therefore ruled out. In general, this is the fate of nonto EDMs which only require phases to be smaller than order
SUSY models withCP violation from kinetic terms; super- 10 2.
symmetry and its nonrenormalization theorems appear to be The diagrams in Fig. 3 also lead to strong constraints on
necessary ingredients for this mechanism to yield realistiboth real and imaginary parts of flavor violating soft masses.
models with a large CKM phase. The contributions ta? are proportional to traces over flavor
violating quantities such as In[hrIAX], Imtr[Yx‘lAX], and
ImulY, 'mZAmZ] wherex=u,d (see Appendix @ The

In this section we discuss the constraints on SUSY breakmost natural way to satisfy the bounds énis to assume
ing and communication which follow from our solution to proportionality and degeneracy
the strongCP problem. The nonrenormalization theorems
guaranteef=0 with exact SUSY. However, after SUSY Aua*Yyds mgaaocl. (19
breakingé is renormalized, and we find that avoiding large -
contributions from loops including superpartners forces thebeviations from Eq(19), parametrized asA and sm?, are
SUSY breaking masses to be highly degenerate. Furthegery constrainedsee Appendix I For generic deviations
more, flavor preserving SUSY parameters, such as th@hich are not “aligned” with the Yukawa matrices, the con-

gaugino masses arlu, are required to be real to a high straints on some of the matrix elements are as strong as
accuracy. We also argue that low-energy SUSY breaking

V. SUSY BREAKING

models such as gauge mediation are most compatible with SA Sm?
our mechanism. This is because &P violating dynamics —<10° 13 W< 1075, (20)
renormalizes the SUSY breaking masses and spoils the nec- 0 0

essary degeneracies if soft masses are already present at the
high scaleM cp. We give a more detailed discussion of the Where mo denotes the average superpartner mass scale.
renormalization o9 in gauge mediation in Sec. VI and Ap- These bounds apply ao. They require a much higher de-

. gaug ' P gree of “flavor blindness” from the mechanism of supersym-
pendix D, where we also give more references.

To begin, note that in the MSSM E{L) is generalized to ?uer:reyntb(::e(?h'g?b%r:::]dns]?d'atlon than flavor changing neutral

_ Note also that the contributions #from loops with fla-

0= 60—argdeY,—argde¥y—3 argv,vy) —3 argng. vor violation in superpartner masses do not decouple in the
a7 limit of heavy superpartners. Thus the boun@®) apply

equally for heavier superpartners. This is in contrast to the
This immediately implies a strong constraint on SUSYcase of FCNCs.

breaking parameters as the gluino mass and the Higgs VEV
have to be real to one part in 0 The reality of the Higgs

. . . . . > ?
VEVs translates into constraints on parameters in the Higgs A. Why do we needM cp>M sysy

potential. In particular, a compleBu induces complex For example, minimal supergravifMSUGRA) is not

VEVs already at the tree level. We discuss further constraintsompatible with our solution to the stror@€P problem; this

on the Higgs potential in Sec. VIB. can be seen as follows. The Kaehler potential relevant for

The phases of all other flavor-blind MSSM parameters argquark masses in MSUGRA is

constrained because they feed into colored fermion masses sts

through radiative corrections from the diagrams of Fig. 3. We f d*0z ofo.+ >>x.ofo. 21

summarize these constraints as QIR M3, QiR D

argmg,argBu<10"1%,  argA,,argu<10"%, for the quark S(R2) doublets, and similar terms for the sin-
glets. If we assume a SUSY breaking expectation value for

argm, 7 w< 107, (18) the F component of the superfielf scalar masses result
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) F*F ous renormalization of the scalar masses from @ieX
(rna)ij:(TXT)ijVZ_1 (220 sector.
Pl

The leading contributions t@ in GMSB can be divided
whereZ=T"? as in Sec. lll. Of course, we can always work into two classes which we discuss in turn: contributions that
in a basis wherd =1 atMp, but in generalX will not be  arise in the effective theory beloM -5 from renormalizable
proportional to the unit matrix in this same basis. Partialinteractions and are relatively model independent and contri-
alignmentX=Z can be achieved by imposing non-Abelian butions from higher-dimensional operators suppressed by the
flavor symmetrie$20], but residual nondegeneracies are ex-scaleMcp which are model dependent but can always be
pected to violate the bounds EQO) by orders of magnitude made small by takindVl cp>M gysy.

[21]. This is the usual flavor problem of MSUGRA. At the renormalizable level the only flavor violating cou-
In our scenario, the situation for a SUSY breaking mechaplings in the effective theory beloWmp are the Yukawa
nism where superpartner masses are generated at scatemiplings. The gauge mediated soft SUSY violating masses

aboveM¢p is even worse. This is because the flavor @Rl are approximately given byA,=0 and m;2<=(m0)2. Using
violating (CPX) dynamics atMcp renormalizesZ andX'in  the flavor symmetries one can then show that the renormal-
Eq. (21) differently. So, even if we had somehow arranged;aion of g from SUSY breaking can always be written in
X=2Z at M4P" th.'s ahgnmen't wou]d - quled at scales be-o g of the Hermitian matricels, = Y, Y} in the combina-
low Mce.” To |IIustratel this point we give the one-loop tion defh,,hy], the Jarlskog invariantsee Appendix A The
renormalization of the right-handed down squark masses IP _ G g L

eading contribution iss6~ 10" ?°tar? 8, which is smaller

the second model of the previous section. Ignoring all cou- -
pling constants exceptr;, this is m2(u)/m?(Mp)  than the leading finite SM renormalizatiofo~ 10 1° (see

~(,u/Mp|)rT”16”2, which is completely nonuniversal when Appendix D). _

r~41r. The other class of contributions t@ involves higher-
We conclude that SUSY models with spontane@R  dimensional operators generated from integrating out the

violation require a mechanism of SUSY breaking and mediastrongCPX dynamics atMcp. For example,

tion in which the sc;alar masses are g_er_lerated béiows . _ D'DD'D

We will therefore discuss gauge mediation as a compatible f d4e >

SUSY breaking mechanism in more detail in the next sec- Méep

tion. . . _ _
Of course, any other mechanism of SUSY breaking whicH1€re D is the right-handed down quark superfield axds

generates universal scalar masses at low scales is compatii¢ superfield whose component is the source of supersym-

with our scheme. A preliminary look at gaugino mediation Mmetry brea'kmg'. The first qf the;e operators is generated from

[23] with the CPX dynamics atMp on the visible sector the CPX violating dynamics directly, whereas the second

brane suggests that gaugino mediation is also compatibfedmes from computing the two-loop gauge mediation dia-

2xT

2
Mce

as

4

and

D'D. (23

with the constraints Ec(20). gram for scalar masses but restricting the loop momenta to
be above the scal®l-p. Because of the strongly coupled
V1. RENORMALIZATION OF @ IN GAUGE MEDIATION CPXdynamics aM ¢ the coefficients of these operators are

not calculable and are flavor off diagonal. Both operators
In this section we summarize results on the renormalizatead to contributions todm? that are proportional to
tion of @ in the MSSM with gauge mediated supersymmetry(M sysy/M cp)?. The bounds given in Eq20) then con-
breaking(GMSB). That gauge mediation is compatible with strain
solutions to the stron@P problem based on spontanedCiB

violation has been known for some tirfi24]. We quote here MSUSY<1073 (24)
only the most important results, with further details provided Mcp '
in Appendix D.

In GMSB, the superpartner masses arise from loop diaCombining this with the fact that the gauge mediation scale
grams involving the SM gauge interactions and messengdp bounded from below by roughly 1@eV, we learn that
particles with SUSY violating masses. The dominant contri-Mcp=10" GeV, well out of reach of any current or planned
butions to the scalar masses from these diagrams have lo@gcelerator. Both scales are unknoanpriori so that we
momenta of order of the messenger mass; at higher energieannot predict the size af.
the scalar masses are power suppressed. Thus by separating/Ve discuss implications for superpartner masses and elec-
the messenger scalevhich we have been callinylsysy)  tric dipole moments in Sec. VII. For a brief compilation of

andCPXscaleMcp>Msysy, one can suppress the danger-yajues of¢ induced by renormalization, see Table | in Sec.
VIIL.

“The only known exception to this is anomaly mediati@®],

. ) ; A. Anomaly mediation
where the special form of supersymmetry breaking proportional to

the conformal anomaly enforce$=Z at all scales. Therefore, Even though SUSY breaking and mediation are at high
anomaly mediation works very nicely with our scenario; we briefly scales in anomaly mediatichMSB) [22], the superpartner
discuss it in Sec. VIA. masses at the weak scale are determined by supersymmetric
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low-energy couplings. They are ultraviolet insensitive andand CPX dynamics are not strongly coupled to each other.
therefore independent of theéPX dynamics. The resulting None of these operators are dangerous if the SUSY breaking
soft terms are approximately flavor universal, and contribuscale is sufficiently low.
tions to @ are similar to the contributions from renormaliz- (i) Higher derivative Kaehler termsKaehler potential
able couplings in gauge mediation, negligibly small. A com-terms involving the covariant derivatiie, suppressed by
plete model of course requires a solution to the problem oMpi OF Mcp generate effectivel’d terms with ordinary de-
negative slepton masses. Any solution that retains the utivatives. For example,
insensitivity and flavor universality is compatible with our j d40QHd(Da)2D f 00H O b (26)

. oo _ D
framework. A nice example is given B25]. M2, dM(Z:P
B. Contributions from higher-dimensional operators These operators can have different flavor structure from the
“Yukawa couplings and at one loop give a flavor nonuniversal
. — . . . renormalization of the soft SUSY breaking scalar masses that
tlpns to.6 which are model dependent. They include h'|gher-are suppressed bMsysy/Mcp)2. We find the same bound
dimensional _ope_rators in the superpotentlal,_correctlons t%s from the higher-dimensional operators in E@3):
the gauge kinetic funct|ons,_ Kaehler potential terms tha‘i\/ISUSY/MCpSw’S.
rgnormahz.e t_he superpotential after SUSY breaking, apd (iv) Phases in the SUSY breaking secttirS couples
higher-derivative operators. All of these operators may aris irectly to the SUSY breaking sector, then one has to worry

from quantum gravity dy”a”.“cs suppressed .by the Planc bout generating a complex SUSY breaking VEMA phase
scale, but some may also arise fr&@®X dynamics and are . ) ) — ) )
in F contributes directly t@ via the gluino mass. It is easy to

therefore only suppressed bcp. ; ) : .
(i) Higher-dimensional opecr;tors in the superpotential see that couplings & in the superpotential of the dynamical

We showed in Sec. Il A that in the absence of SUSY break>USY breaking sector lead to complexWe therefore need

to forbid such couplings; this can be arranged in the same
c\évay as superpotential couplingsbfto the MSSM fields can

X L e forbidden. Phases in the Kaehler potential are less danger-
couph_ngs quP violating VEV.S to the MSSM or any COI'. ous because of the Hermiticity of the Kaehler potential. At
ored fields in the superpotential. In order for our mechanlsqree level and in looking at simple toy models we fourd

to work we must assume that there are no such couplings as‘ctdetzsusy, which is real. HereZg,sy is a wave function

the renormalizable level. For example, we cannot have the, iz ation factor in the Kaehler potential of the SUSY
couplings2H Hq or TT. Both of these couplings can eas- preaking sector.

In this section we discuss a number of different correc

ing the only contributions t@ can come from the superpo-
tential. Therefore the most dangerous couplings are dire

ily be forbidden by a symmetry under which transforms A more general analysis of phases in SUSY breaking sec-
and the MSSM fields are neutral. At the nonrenormalizablggg including loop corrections is desirable but beyond the
level we may have scope of this paper. In any case, such phases can always be
o 2K ; ! avoided by separating the SUSY breaking &@IX sectors.
j d<o M_PI W W+ M_p| mHuHg For example, if the SUSY breaking sector does not carry the

global flavor symmetries ok, then couplings off to the
DI SUSY breaking sector have to be of the formJtg) and
+(|\/|_P|) QY UH,. 29 are therefore real.
(v) Phases in the MSSM Higgs sectdfe already showed
that phases i or By are strongly constrained.mﬁu and
Each of these operators, if present, would give a contri-ma

bution to 8 which is proportional to powers &l cp/Mp, and
could be important iMp is large and the exponenksl|, m
are small. Again, these superpotential operators are strong
constrained by symmetries and even in the absence of sym- c
metries supe_rpqtentlals need not be generic because of _the f d40—2HﬁHEHd+H.c., (27)
nonrenormalization theorems. For example, in our model in M

Sec. IV B, one can define a(l) symmetry under which only

S andF are charged and which forbids all these terms.

and the supersymmetric quartic couplings are automati-

d
cally real, but one might worry about phases from higher-
imensional operators in the Kaehler potential Fy; and
4. For example,

with complexc andM =Mp; or M=Mp leads to complex
(i) Kaehler potential terms involving SUSY breaking phases in the Higgs VEVs which are suppressed by

2 . .
Higher-dimensional operators in the Kaehler potential Which\(/';/llgg?/g?,\)ﬂ ' Tgrl]sd|lsjnhsirmlfessssg(\j/ecr;l:or”rt]heclé)r\:\g;;tpossmle
couple the MSSM fields to fields with SUSY breaking VEVs cP PP piing
can give rise to superpotential terms proportional to SUSY
breaking. For example, a Kaehler potential term
X'IMEQH4D with complex coefficient gives rise to a super-  Our framework requires tight constraints on the flavor
potential Yukawa coupling with a coefficied®/M3. The  (and CP) structure of the SUSY breaking soft terms which
same operator wittM p, replaced byMcp is suppressed by have various testable consequences. We prétiigtthe fol-
powers of SM gauge couplings over®if SUSY breaking  lowing.

VIl. PREDICTIONS
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(1) Supersymmetry. linear in the soft SUSY phases we conclude that the phases

(2) Minimal flavor violation; i.e., there are no significant which are constrained by Eq4.8) and(20) give weak quark
new sources of flavor violation beyond the Yukawa cou-and lepton EDMs which are at least five orders of magnitude
plings at energies near the weak scale. This has well-knowhelow their experimental bounds. Note that improvements of
implications forB physics[26,27). the experimental EDM limits further strengthen the bounds

(3) No measurable newZP violation in the quark sector Eq. (18); thus weak EDMs are always smaller than strong
beyond the SM, in particular no ne@P violation in theB EDMs in our framework.

system. For example, sirB2s large as in the SM26]. We (7) Large flavor preserving phases in the soft terms with
might expect the phases in the lepton mixing matrices to béheir associated “SUSYCP problem” have no place in our
large in analogy with the quarks. framework; see the bounds in E€L8). This simplifies in

(4) Almost degenerate first and second generation scalaggarticular the phenomenological analysis of the Higgs poten-
of each gauge quantum number. Generic violations of quarkal.
mass universality are very tightly constraifege Eq(20)].

However, by aligning squark masses with quark masses VIIl. SUMMARY AND CONCLUDING REMARKS

2_ 2 T T
Mg=mo(1+CuYuYyTCa¥aYa), We presented a new theory 6P symmetry with super-

(29) symmetry and spontaneo@ violation. CP symmetry is
assumed to break spontaneously @Riviolation is commu-
nicated to the MSSM fields at the scaMcp. SUSY
breaking is communicated to the MSSM at the lower scale
for more flavor violation than Eq(19). In this ansatz the g/ltrSoUnSY'CILN Itrr;glgﬁear'iggrsedggzisz z;]tattr?;aéczcl)gg?vri]oltg- the
(rea) coefficientsc, 4 are not expected to be arbitrarily large " 9 P = ]
since at some point the contribution to third generation sution the strongCP phased is protected by a nonrenormaliza-
perpartners becomes very large. Imposig 1/Y§, where t|9n theorem. of the unbroken supersymmetry. At_ lower ener-
Y, denotes the Yukawa of the top, bottom, and tau givesg'es SUSY is broken and the nonrenormalization theorem
Am<1 GeV for the difference between the first and seconcfoes not apply, but we showed that the generatésimuch
generation scalars. This is a prediction which should bémaller than the experimental bound if SUSY breaking is
tested at a |inear Co||ider_ We stress that th|s degenera@.]ff|c|ently flavor universal. Because of the nonrenormaliza-
holds independent of the SUSY breaking mechanism. It folflon theorem at high scales a successful model forGRe
lows only from demanding that the radiative correctiongto Violating sector needs to ensue=0 only at the tree level,
not be too largéand a reasonable constraint on the Note ~ Which is easy to arrange. The CKM phase is generated either
that this also bypasses possible FCNC problems since ti the tree level as in Nelson-Barr models or else at the loop

me=m3(1+c,YLY,),

the renormalization of) remains small €10 19 as can be
seen from Eqs(D4)—(D7), even though this ansatz allows

resulting off-diagonal squark masses obey I[i\g]al from wave function renormalization as we proposed in
2 ’ .. .
q(12‘1323$(v VA VA VLV _We have epr|C|t_Iy shown 'ghat onv—scale gauge mediation
_mg ubVebr YubVibs VebVib with Mgysy<M¢p is compatible with our framework, but
other mechanisms can also be implemented. A model inde-
=(107°,10 2,10 1) (29 pendent constraint is that SUSY breaking has tcCBecon-

serving and either flavor universal or else flavor aligned as in

2, .. - . i
WhereA_%('J) denotes the mixing bgtV\_/een tha andj_th Eqg. (28). A summary of values of in some theories dis-
generations. These values are within the experimentgl;ssed in this paper is compiled in Table I.

bounds[28]. _ o _ From the low-energy point of view, our theory is the
(5) At the renormalizable level, the radiatively induced pyssm with minuscule flavor violation and no significant
strongCP phase is of the ordef=10"'°. However, depend- phases beyond those already present in the SM. The only
ing on the model dependent ratio®lsysy/Mcp and  possible deviation from this picture is that higher-
Mcp/Mp, the strong phasg can be as large as 1%. dimensional operators may bring the nucleon EDMs into ex-
Thus, the corresponding hadron electric dipole moments caperimental reach. Our proposal requires supersymmetry, and
be close to the experimental bound and might be measuréfe strong constraints on the superpartner spectrum from the
soon[29]. renormalization off automatically also nullify the SUSY
(6) A weak electric dipole momert; is a contribution to  phases and FCNC problems. We have pointed out many of
the five-dimensional operatodf(ilz)f_gﬂvysfFMV_ The the testable signatures fBrphysics and collider and nucleon
EDMs for quarks and leptons arise from one-loop diagram&DM experiments. Note that our proposal does not require
like Fig. 3 with an external photon attached wherever poslight superpartners; by low-scale SUSY breaking we mean
sible. In the general MSSM with arbitrary phases the experithat itsmediationto the MSSM occurs below cp.
mental bound from the electron EDML<1.8X 10" 2" ecm In our paper we have given two explicit examplesGR?
[2], and from the neutron EDMI,<6.3x10 ?®ecm [2]  Violation, but we stress that our solution to the strdbig
require the phases gf, A terms, and gaugino masses to beproblem can be incorporated in a much larger class of mod-
less than 102, e.g.,[30]. Since the dipole moments are els because our main tool, the nonrenormalizatiory f

096009-9



GUDRUN HILLER AND MARTIN SCHMALTZ PHYSICAL REVIEW D 65 096009

TABLE |. Magnitude of # from renormalization starting from We will also use the normalized mass matrices
Oyee—=0 in some theories discussed in text. Here, SM denotes the
standard model and MS§M, a generic minimal supersymmetric ~ o [my me N o [mg mg
model. In the minimal supersymmetric model denoted as M, =dia m’ F’l , Mg=dia m Hyl - (A3)
MSSMg,,, flavor violation is minimal, i.e., not bigger than in the ! ! b b

SM. This suppresses large radiative correctiong toat are present pore  the unitary matricedJ, 4, V,q4 diagonalize the
’ u,d» u,

in MSSMy,,. Note that the MSSM with gauge mediated SUSY Yi . . . . - .
: ukawa matricesY, 4, which are given in the basis with
breaking(GMSB) belongs to the class MSSly. The last column canonical kinetic terms:

corresponds to contributions from higher-dimensional operators
(HDO) in GMSB. Now the size of§ depends on the hierarchy

t.2_\/Tpp2
between the scale of SUSY breaking;)4y and the scale of spon- YuYou=ViMyVy, (A4)
taneou<CP violation Mp. The last line shows the contributions to ) )
6 from renormalization group equatiqiRGE) running in the SM YdY:rjvd:VZiM aVad, (A5)
and MSSM,, -
Vekm=VuVy. A6
SM MSSMye,  MSSMyay HDOgwss ckm TuTd (A8)
(as)z(MSUSY)z The amount of wealCP violation in the SM is given by the
T ~2x10°1° Zv_; —ox10-1 |27 |\ Mep Jarlskog determinant
SOpce 107 10" #tan(g)°® defhy,hq]SM= 2iJ(mZ—m2)(m?—mZ)(m2—m2)

X (m2—m2)(m2—m3)(m2—m3)/v'?
SUSY, is general. It would be interesting to combine our (A7)
theory of CP with a theory of flavor, e.g., withl9]. This is
because a necessary ingredient in G&violating sectors is _ _ + _ +
flavor violation. Thus there may be elegant models in which'jere’ v=174GeV, hy=YuYy, he=YaYq, J

2 ; =sind.: C.= .
both goals are achieved at once. Such a model could also S$15513523C1213C23SIN Pekm » ands;j=sin g, Cj; =Ccosg;,
include grand unification. where ¢;; and ¢cxy are the angles and phase of the CKM

Finally, we briefly comment on cosmological issues. Thematrix in the Particle Data GrouDG) parametrization.

i ~ -5
spontaneous breaking 6P symmetry leads to the formation Numerically, J~2x10"> [2].
of domain walls. Such domain walls are potentially problem-

atic because they can overclose the universe. However, in APPENDIX B: THE CKM PHASE
our theory the scale P breaking is sufficiently high that ) .
several possible mechanisniiscluding inflation exist to In this appendix, we show that the heavy sector has to

avoid this problem. Baryogenesis can occur in a number ofOUPIe strongly to the SM fermions to yield &(1) CKM

different ways, such a€P asymmetrical decays of GUT phase fronCPyloIatlon in quark kinetic terms. In particular,
4 —1/2__ . oy

scale oM cp scale particles, the Affleck-Dine mechanism, or the ansatzZ™“*=1+¢H, whereH is Hermitian and has

leptogenesis. order 1 entries, leads to the observed pattern of quark
masses, mixing, an@P violation only if the parameter
=1.
ACKNOWLEDGMENTS

To begin, we note that if the initial Yukawa matrices do
We thank Bill Bardeen, Wilfried Buchiiler, Koichi not have the righthierarchical eigenvalues, then large re-
Hamaguchi, David E. Kaplan, Ann Nelson, Michael Peskin,scaling is required from the wave function renormalization,

and Tsutomu Yanagida for stimulating questions and discus¥hich impliese=1 (we give a proof for this beloy Thus,
sions. This work was supported by the Department of EnWe only have to exclude the possibility that the Yukawa ma-
ergy, Contracts DE-AC03-76SF005(5.H.) and DE-AC02- tricesY already have approximately the correct eigenvalues

76CHO03000(M.S.). to correspond to the SM quark masses but thatGRehase
(and possibly also the mixing angjeare generated from
APPENDIX A: NOTATION wave function renormalization with small Without loss of

enerality, we work in a basis in whichﬁMu/vu is diag-

nal. It is furthermore general to choo$é,~OMgy/vgy
whereO is a general orthogondteal) matrix. Finally, since
we are concerned only with determining the CKM matrix,

we are free to rescal?éu and\?d such that the largest eigen-

We settle here our notation of quark masses and the CKV\Z
mixing matrix Vegwm :

M ,=diag m,,m.,m,),

My=diag my,mg,my), (A1) value in each is approximately equal to 1.
The CKM matrix is then the unitary transformation be-
M=V, Y Ulv,, Mg=VaYqUlvg. tween the basis in which the following two matriceg,hy

(A2) are diagonal:
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1 . 1. 1 1 1. 1 Since contributions to the CKM angles from the different
h,=—=—=M M, . hg= OMy=—M,O0"— terms above are additive in perturbation thefirg., I1;(1
VZg Zu Zg \/Z_Q Z4 \/Z_Q +g;)=1+23,¢;], we discuss each of them in turn.
(B1) NonvanishingJy (contributions fromJ, are smaller in

Eq. (B8) lead to complex corrections to the CKM matrix

Now we assume that is small and show that one cannot
elements of order

generate a sufficient amount 6P violation. First, note that
Vekm=0 if all Z;=1. Anticipating this to still be approxi- My m m
mately true when theZ; differ from 1 perturbatively, we Nyp~e—, ONVgp~e — AV ~¢€ —d (B9)
rotatehy by O so that its unperturbed component is already Mp My Ms

diagonal. We now have This is most significant for 6V., and gives ¢cxm

Vem=VuO(Ve)' B2)  =&(M/my)/Vep~s.
The case of nontrivial (i.e., nonvanishingd) is slightly
whereV,, diagonalizesh, andV§ diagonalizes more complicated. Assuming that the matrxhas entries of

order 1, and choosing the anglesGnsimilar to the experi-
mental values inVegy, we find for the Jarlskog invariant
(B3)  (see Appendix A

B R O AU |
OT——=0| Mg My O™—==0]|.
d

VZo VZo

In order to determine the eigenvalues and unitary matrices
O H . . .
Vy and Vg, we use standard nondegenerate perturbatiohere g, are the angles oD in the parametrization of the
theory familiar from quantum mechani¢see, e.g.[31]).  PDG [2]. We extract sirbeqy by dividing by the angles.
First, we parametrize Zy) Y?=1+eH and Z,5=1  This yields the bound
+&Jyq. To linear order ins we have

h9=

J=2g( 012023~ 013) 013612, (B10)

R R singckm=2&|Vup|/| Vel (B11)
hy=M2+sA,, h$=M3+eAT, (B4)
which is too small since data imply sifry~ O(1).
where A comment on the usefulness of our expansior iis in
R L order. There are many small parameters in the problem with
Ay={H,MZ+M I M,, the potential danger of factors such @s/m, ruining the
expansion. We believe that such factors do not occur. This is
AQ={HO M3} +M4IsMy, (B5)  manifest to ordee from our expressions above, and we have
verified it explicitly to second order. Furthermore, extensive
andH®=0OTHO. Here, the unperturbed “Hamiltonian{?lﬁ numerical study{32] has shown that our results are not af-
(f)ected by higher-order correctionsdnlarge departures from
canonical kinetic terms are required if we want to generate
sufficient CKM CP violation from wave function renormal-
ization.

and I\A/Ifj are already diagonal. The perturbed eigenvalues t
ordere are then

(M3)i+e(Ay)i=(MA[1+eH) i+ (3],

(B6)
APPENDIX C: STRONG INTERACTIONS AT Mc¢p

and a similar expression for the down sector. Thus we see Th del of Sec. VB is | lete b |
that the renormalizations of individual quark masses are mul- i € rfno etr? P(TC. K Isllnc&mp ede_ ec?#seYrinorma )
tiplicative; this implies, e.g., that there are no corrections tgZation from the Flanck scale tWicp drives the yukawa

m,, proportional tom,. Here, we discovered this property to c_()LljptI]ngr_ t(:hvalues lth?t atr_e :OO Sm?_':] to gl\:je lsufflcfhlt;_ d
linear order ing; it is straightforward to extend this analysis violation in the quark kinetic terms. 1he model can be Tixe

to higher order. We have computed the corrections up t&Y infroducing a new gauge group SU)( under whichS,
second order and also verified our results numerically with&nd F transform in the fundamental representation and 5

out expanding ire. This verifies our claim that large correc- andF are antifundamentals. The superpotentidl) remains
tions to masses can only come from nonperturbatively largenvariant. The SU) theory has eight flavordive from 5,

€. _ . . _ o +5, and three fronF+F) and its gauge coupling becomes
The unitary matrices that diagonalibg andhg are strong in the ir forN=3. The strong gauge interactions then
also drive the Yukawa coupling to large values as can be
(Ayij seen from the sign of the beta functiGgthematically, ignor-
(Vu)ij=dij+e— 5 - ’ (B7) ing coefficients
(Mu)i_(Mu)j i%]
d
16m2————r=r(r>—g3) (C1)
(A9);; d(lo N
(V)= 8y+e — (B8) (o9
(Mg)i = (Mg); i#] wheregy is the coupling of the new strong SNJ.
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At the scaleMp, theF's and 5’'s are massive. Integrat- RGE 6
ing them out leads to noncanonic@P violating kinetic Osm~ 71| 16,2 dethu.hqlSM (D2)
terms for the right-handed down quarkand lepton dou-

blets, vanishingé, and no new superpotential couplings to which is approximatelygRE~ 10~ for At=logMp//M.
all orders in perturbation theory as described in Sec. VIB. 110 largest contribution t@ in the SM arises from the

But what about nonperturbative effects that could arisginite and strongly GIM suppressed four-loop cheburashka
from the strong SU{) dynamics? These effects can be de'diagram[35]

duced from Seiberg’s solution of supersymmetric QCD

[18,33. Most important here are the matching relations for N 7 ae [ aW\2mZm? t2 %

the strong interaction scale across mass thresholds. After in- ginte— — — 4—5(4—) >—JIn—In>—
tegrating outF’s and 5;'s the SUN) gauge theory is flavor- 9dm\dm] My My Me

less and confined. Gaugino condensation generates a super- m2 2 mﬁ
potentialW=A3=[ A3 "8M°® det®)]*N whereM and. are X | In— + §|n—2), (D3)
defined in Sec. IVB, and\;, is the “QCD” scale of the Ms Me

one-loop SUN) beta function below/abov . This su- which gives #M~2% 1071 using a.=0.2 and J=2
perpotential is complex, but it does not couple to any MSSM>< 10°5 and is f:'\c/lmsistent with earlier esstirﬁaféﬂ]

fields and is therefore harmless. We should also worry abouit In th’e MSSM. the leading di Cdi .th ‘ )
direct nonperturbative contributions tbof the GUT SU5) = ’ g divergent diagrams tha .ren-or
group. These can be determined from thegB4$cale match- malize 6 cancel because of the SUsY nonrenormallzatlon
ing. The phase of the scale of the GWgroup at the high theorem. However, ther_e are new finite _contrlbqtlon_s from
scale A8, N vanishes because @P invariance. This is the one-loop quark and gluino mass corrections which involve
statement tha#=0 at the Planck scale. At lower scales, after SUPErSymmetry breaking. The diagrams for gluino and quark

integrating ouf’s and 5;’s, the phase is determined by scale M&SS ren(;:rsma;hzatzlon are proportional to saft terms and
matching: A%, =A8.NMN. This is also real. At even lower SOft massesmg, mz and yield &=u,d)

scales the dynamics of the SNJ theory and the S(5) are v2
H o
completely decou.pled sq that n(? further sce&e malltchlng for 9‘2“ 4_5 —X3Imtr[YXAI], (D4)
the SUJ5) theory is required. This proves that=0 in the ™ Mg
effective supersymmetric theory beloMp even after in- 5
cluding nonperturbative dynamics in the strongly coupled m_ s UxUy 2t 2
SU(N) and the coupling. 9 47 me ImtlhYmg Y, mgl, (DS)

APPENDIX D: RADIATIVELY GENERATED STRONG CP and similar expressions for the quark mass contributions,
PHASE

as 1
We start with a discussion of contributions @icfrom the 9‘2* ﬁ o ImtlY, AL, (D6)
renormalization of quark masses in the SM. Corrections can 0
be written asm=my(1+x) and we will use arg det(tx) @ v
=Imtr[x] for smallx. Using the flavor symmetries, it is easy o7~ P m4y Im Y, "maY,me]. (D7)
to show that corrections té can always be written as the oUx
imaginary part of traces over the Hermitian matrides

Herem, is an effective average soft masg, are the Higgs

— t _ T . o )
Y‘-‘Y” and h-d YqYq (here we work in the bas_ls \.Nlth ca VEVs, andy#Xx. The size of the induced depends cru-
nonical kinetic termps The lowest-order nonvanishing con- _. .
o — . i ) cially on the flavor structure of the soft breaking parameters.
tribution to 6 arises at sixth order ih, 4. Itis related to the  Arpjtrary A terms and soft masses can violate the experimen-

Jariskog determinarisee Appendix A by tal bound on# by many orders of magnitude. On the other

2 Imtr[huhdhﬁhﬁ]zde[hu,hd]. (D1) hand, for soft terms that satisfy exact propo@onality and
degeneracy as in Eq19) these contributions t@ vanish.

Expressions involvingh powers ofh arise from diagrams However, proportionality and degeneracy are not stable un-

with at leastn loops. Alternatively, they arise in a stepwise der renormalization. The RGEs for the soft terp38] in-

linear approximation to the RGEs with at leassteps[30].  volve products oh, andh. Inserting the renormalized soft

This defines our power counting: one Higgs loop or onemasses into the one-loop diagrams Fig. 3, and using argu-

RGE step each givelsu,d/(16772). Higher orders inn are ments very similar to the SM discussion above, one finds

suppressed and one can show that &2l) is indeed the [30]

trace with the largest imaginary part. But at six loops a can-

cellation occurs between diagrams where up and dowm

quarks are interchanged because _[thdhﬁhS]T(UHd) SWe use the soft Lagrangian as LeyD QA,H,U+ QA HD
=0. An extra qup with a photon_ spll_ts_ the |sosp|_n symmetry. 4 (1/2)mgGG + BuH Hg+c.c+0' nﬁb+0*nﬁ0+5*n§5; see,
Thus, the RGE induced correction toin the SM is[34,30] e.g.,[36].
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At | v3 oA
RGE _ Is u Im tr{v—l—} <1078, D9
QSUSY\” an (W)Hgtane B de[hu ,hd]SM (D8) mo ( )
This gives#SSE,~102°-10"1° for tang ranging from 1 to
50. We need nonuniversality for both soft masses in Exy) for

Thus in the MSSM with strictly proportional and univer- 5 nonzerg contribution t@. For example, our power count-

sal S.Oft terms at a h!gh sca[e_.g., Msusy In GMSB) the ing discussed previously give'egzmé[lJr h,/(167?)] and
contributions from diagrams involving superpartners arey s q
smaller than the finite diagram in the SM. Diagrams that are
similar to the leading SM contribution E¢D3) but involve
superpartners or charged Higgs bosons are suppressed by the S
heavier superpartner and Higgs boson masses and are there- Imtr[Y‘lh % _m:|$10_6_ (D10)
fore smaller than Eq(D3). Y XY mg
Let us work out the constraints oA terms and soft
masses if we allow for additional flavor violating contribu-
tions. We parametrize the departure from proportionality andrhese bounds are generally much more severe than the
degeneracy a8A, dm?. From Eq.(D6) follows immediately  bounds from FCNCssee, e.g.[28]). The constraints on the

for the A terms smallest elements afA and sm? are quoted in Eq(20).
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