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Strong-weak CP hierarchy from nonrenormalization theorems
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We point out that the hierarchy between the measured values of the Cabibbo-Kobayashi-Maskawa~CKM!
phase and the strongCP phase has a natural origin in supersymmetry with spontaneousCP violation and
low-energy supersymmetry breaking. The underlying reason is simple and elegant: in supersymmetry the
strongCP phase is protected by an exact nonrenormalization theorem while the CKM phase is not. We present
explicit examples of models that exploit this fact and discuss corrections to the nonrenormalization theorem in
the presence of supersymmetry breaking. This framework for solving the strongCP problem has generic
predictions for the superpartner spectrum and forCP and flavor violation, and predicts a preferred range of
values for electric dipole moments.
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I. INTRODUCTION

Despite its impressive phenomenological success the s
dard model has serious shortcomings which should be un
stood as pointers toward physics beyond the standard mo
One such shortcoming is the puzzling hierarchy between
CP violating phase in the Cabibbo-Kobayashi-Maska
~CKM! matrix and the strongCP phaseū. This ‘‘strongCP
problem’’ @1# has recently become more severe as res
from the B factories now clearly favor a unitarity triangl
with three large angles@2,3#, implying that the complex
phase in the CKM matrix is of order 1. In contrast, the stro
CP phase, which is the only otherCP violating parameter in
the standard model, has been experimentally bounded t
tiny, ū<10210 from measurements of electric dipole m
ments of the neutron and199Hg @4–6#.

In the standard model this hierarchy between the twoCP
violating phases is puzzling because the phases have a
mon origin: the Yukawa couplings of the quarks. The CK
matrix is the unitary transformation matrix which takes o
from the basis with a diagonal up quark Yukawa matrixYu to
the basis with a diagonal down quark Yukawa matrixYd . An
irremovable large phase in the CKM matrix implies at le
one irremovable large phase in the Yukawa matrices. T
then requires a fine-tuning of the strongCP phase to one par
in 1010 becauseū depends on the phases in the Yukawa m
trices via

ū5u2arg detYu2arg detYd . ~1!

Here, we denote the physical~rephase invariant! theta angle
by ū to distinguish it from the basis dependent unphysi
‘‘bare’’ u.

*Email address: ghiller@slac.stanford.edu
†Email address: schmaltz@bu.edu
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Several resolutions of the puzzle have been proposed.
axion mechanism@7# promotesū to a field. QCD dynamics
gives this field a potential with a minimum at zero. Expe
mental searches for the axion have come up empty han
and—when combined with constraints from cosmology a
astrophysics—they have reduced the allowed param
space to a narrow window@2#. Another proposed solution,
vanishing up quark mass@8#, is on the verge of being ruled
out by using partially quenched chiral perturbation theory
compare lattice calculations to experiment@9#.

There are also proposals based on specific models w
we may classify as ‘‘high-scale solutions’’@10–14#, the most
famous of which is the Nelson-Barr mechanism@10#. These
models use a symmetry~parity or CP! to enforceū50 at
high scales. But in the standard model bothP and CP are
badly broken, and it becomes a challenging and cumbers
model building task to design realistic models that pred
ū,10210 also at low energies after including all renorma
ization effects. While some of the models in the literatu
work, they lack the appeal of the axion andmu50 solutions
which attempt to solve the strongCP problem with symme-
tries at low energies and are therefore relatively rob
against changes in the high-energy theory and renorma
tion.

Recently, we pointed out@15# that by combining sponta
neousCP violation with supersymmetry one can constru
viable high-scale solutions in whichū is automatically insen-
sitive to radiative corrections and new high-energy phys
Our proposal makes use of the fact that in supersymm
the strongCP phaseū is not renormalized because of a no
renormalization theorem@16#. This makes the task of build
ing a successful model much easier. One only needs to m
sure thatū is zero at the tree level. Loop corrections a
automatically absent if supersymmetry breaking occurs
energies much below the spontaneousCP violation.

In our previous publication@15# we briefly introduced our
framework and presented an example model. The basic
gredients of the framework are spontaneousCP violation,
©2002 The American Physical Society09-1
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GUDRUN HILLER AND MARTIN SCHMALTZ PHYSICAL REVIEW D 65 096009
supersymmetric~SUSY! nonrenormalization theorems, an
flavor andCP preserving SUSY breaking such as gauge m
diation.

In this paper we discuss our mechanism in more de
and provide a number of arguments and calculations to
roborate the claims made in@15#. In particular, in Sec. II we
review our general framework. In Sec. III we show that
sufficiently large CKM phase can be generated from wa
function renormalization. We also review the supersymm
ric nonrenormalization theorem forū. Section IV is devoted
to explicit models; we discuss a Nelson-Barr model in wh
the CKM phase is generated at the tree level. We furt
present a model in which the CKM phase vanishes at
level but is generated at the loop level from strongly coup
CP violating dynamics. In Sec. V we discuss the spectrum
supersymmetry breaking masses that is required for a
cessful implementation of our scheme. In Sec. VI we de
mine the expected size ofū from radiative corrections in the
standard model and from supersymmetry breaking. Sect
VII and VIII contain our predictions, summary, and concl
sions. In Appendixes A–D we define our notation, show t
a large CKM phase from wave function renormalization
quires strong coupling, and present calculational details
garding the renormalization and nonrenormalization ofū.

II. THE FRAMEWORK

In this section we summarize the basic ingredients of
framework. More details on each will be given in the follow
ing sections.

We requireCP and supersymmetry to be exact at hi
energies. At such energies our theory is therefore descr
by a supersymmetric Lagrangian with coupling consta
which can be chosen real. We will think of this Lagrangi
as an effective Lagrangian valid up to a cutoff scale wh
we call MPl for convenience. But this scale could be a
other high scale of new physics such as the grand uni
theory ~GUT! scale or the string scale. Our Lagrangian a
contains higher-dimensional operators suppressed by the
off. Such operators are also required to be supersymm
andCP preserving.

Since the standard model is neither SUSY norCP sym-
metric, both symmetries must be spontaneously broken.
denote the scales at which the symmetry breaking is m
ated to the minimal supersymmetric standard model~MSSM!
fields by MCP and MSUSY, respectively. Note that this is
somewhat unconventional definition forMSUSY. To be com-
pletely clear, in gauge mediation superpartner masses
proportional toF/MSUSY in our notation, and in minima
supergravity we would haveMSUSY5MPl .

In order for our mechanism to work we require th
MCP@MSUSY as shown in Fig. 1. Therefore the theory is s
supersymmetric atMCP and the well-known nonrenorma
ization theorems apply. In particular, the strongCP phaseū
is not renormalized. This makes building models of spon
neousCP violation that solve the strongCP problem rela-
tively easy. We only need to require vanishing ofū50 at the
tree level; the nonrenormalization theorem guarantees
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this remains true after quantum corrections. However,
CKM phase is renormalized so that a nonvanishingFCKM
can be obtained from quantum corrections as in our exam
model of Ref. @15# or already at the tree level as in th
models of Nelson and Barr.

At the much lower scaleMSUSY Kaehler potential cou-
plings of MSSM fields to the supersymmetry breaking sec
are generated. These couplings turn into soft supersymm
breaking masses once the SUSY breaking fields are repl
by their vacuum expectation values. It is important that th
couplings to the SUSY breaking sector do not yet exist at
scaleMCP . This is because they would be renormalized a
would pick up phases from theCP violating dynamics. We
discuss this issue in more detail in Sec. V.

At scales belowMSUSY the theory is simply the MSSM
with soft masses. Thus the low-energyCP violating param-
eters can be determined using the well-known renormal
tion group equations of the MSSM. This renormalizati
generates only negligibly small contributions toū if the soft
SUSY breaking parameters are real and flavor universal.
review the arguments that prove this in gauge mediated
persymmetry breaking in Sec. VI.

III. CKM PHASE FROM WAVE FUNCTIONS

In this section we show explicitly that wave functio
renormalization does not contribute toū. This is crucial to
our mechanism because wave function renormalization is
constrained byN51 supersymmetry. However, and this
important for our model ofCP violation from wave functions
in Sec. IV, wave function renormalization of the quarks co
tributes to the CKM phase. We show that a large CKM pha
can be generated entirely from renormalization of the qu
kinetic terms if theZ matrices appearing in the renormaliz
tion deviate from the unit matrix by order 1. Finally w
discuss the~non!renormalization ofū and FCKM in super-
symmetry.

To begin, consider the following Lagrangian containin
the kinetic terms of the standard model~SM! quarks and
their Yukawa couplings:

Lkinetic5Q̄iD” ZQQ1D̄iD” ZdD1ŪiD” ZuU, ~2!

2LYukawa5Q̄ŶuHuU1Q̄ŶdHdD. ~3!

We use two-component spinor notation;Q are the SU~2!-
doublet quarks,D andU are SU~2! singlets.Zi denote wave
function renormalization factors which in general are co
plex, Hermitian, and positive definite 333 matrices. Such

FIG. 1. SUSY andCP breaking scales in our framework. Figur
not to scale.
9-2
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STRONG-WEAKCP HIERARCHY FROM . . . PHYSICAL REVIEW D65 096009
matrices can always be written as the square of other pos
definite Hermitian matricesZi5(Ti)

22. Thus we can always
change from this most general basis to canonical fields b
Hermitian basis changeQ→TQQ, U→TuU, and D
→TdD, which leads to new Yukawa matrices

Yu5TQŶuTu , Yd5TQŶdTd . ~4!

It is important to note that this basis change does not shiu.
This is most easily seen by writingT5U†SU with unitaryU
and real diagonalS. Rescaling the quark fields by the re
matrix S does not changeu and potential contributions from
U andU† cancel.

It is now easy to see that the contribution toū from quark
masses@see Eq.~1!# vanishes if the only phases in the qua
sector are in theZi . This follows because

arg detYu/d5arg detTQ1arg detŶu/d1arg detTu/d50 ~5!

by Hermiticity of T and reality ofŶu/d .
Note that the phases contained in theZ factors are physi-

cal and lead to a nonvanishing CKM phase. In fact, arbitr
quark masses and CKM matrices can be obtained as ca
seen from the example Ŷu5Ŷd5TQ51, Tu

}diag(mu ,mc ,mt), andTd}VCKM diag(md ,ms,mb)VCKM
† .

We note one more result here which is important for
model in Sec. IV B. In order to generate an order 1 CK
phase from wave function factors theZ’s cannot be close to
the unit matrix. In other words, if—for example—nontrivia
dZ’s ~with Z511dZ! are generated dynamically from
loops, then this dynamics needs to be strongly coupled
that dZ;O(1). If the dZ’s are small, then a largeCP vio-
lating phase cannot be generated. While this is plausibl
turns out to be difficult to prove. A somewhat pedestri
derivation is given in Appendix B.

To summarize, what we have discussed above outlin
possible strategy for solving the strongCP problem: if one
can construct a model with vanishing bareu, real Yukawa
matrices, but complex Hermitian wave function factorsZi ,
then ū vanishes even for largeCP violation in the CKM
matrix.1

However, the above is not yet a solution to the strongCP
problem. In the presence ofCP violating dynamics reality of
the Yukawa matrices in Eq.~3! is not enforced by any sym
metries, and it is in general just as miraculous as a vanish
strongCP phaseū. But we will show in the following sec-
tion that supersymmetry and its nonrenormalization th
rems can naturally give complex phases in the kinetic te
and real Yukawa matrices.

A. Supersymmetry

As we will now explain, the situation improves drama
cally in the presence of supersymmetry. This is essenti

1We have not yet shown that this is stable under radiative cor
tions. We will deal with this in Sec. VI where we discuss renorm

ization of ū.
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because in supersymmetryū and the Yukawa matricesŶ are
holomorphic quantities which are protected by nonrenorm
ization theorems. However, the wave function factorsZi
stem from the Kaehler potential and are renormalized. Th
if it can be arranged in a model thatū remains zero at the
tree level, then the nonrenormalization theorem guaran
this also at the quantum level. The CKM phase is renorm
ized and can be generated either at the tree level or by lo

More explicitly, a supersymmetric Lagrangian can
written as

L5E d4u K1E d2u W1Wgauge, ~6!

whereK is the Kaehler potential,W the superpotential, and
Wgauge contains the gauge kinetic terms. Matter fermi
masses are given by second variations of the superpote
M̂ i j []2W/]f i]f j times wave function renormalization fac
tors from the Kaehler potential. The wave function renorm
ization is determined from the kinetic termsZi j

[]2K/]f i]f j* . SinceZi j is positive definite and Hermitian
it can be written as the square of a nonsingular Hermit
matrix Z5T22.

Chiral superfields in the original basis are related to fie
in the canonical basis byfk→Tkif i , and the general expres
sion for properly normalized fermion masses is

Mi j 52
1

2
TikM̂ klTjl . ~7!

It follows that the contribution toū from arg detM vanishes
if the couplings@and vacuum expectation values~VEVs!# in
W are real. This remains true for arbitrary complex Kaeh
potential couplings.

In the MSSM, we have

M̂u5Ŷuvu , M̂d5Ŷdvd , ~8!

where vu and vd are the VEVs of the up- and down-typ
MSSM Higgs fields, respectively. The quark mass matri
are defined in terms ofM̂u,d with products of wave function
factorsTQ,u,d as in the nonsupersymmetric case.

We are now ready to discuss the nonrenormalization
ū5u2arg detM. We showed above that arg detM is not
renormalized. To understand the renormalization ofu it is
convenient to define the superfield

t5
1

g2 1 i
u

8p2 ~9!

and work in a basis in which the gauge-kinetic term
*d2u1/4tWaWa, and where no wave function renormaliz
tion is performed. In this basist is renormalized at one loop
only @17,18#:

t~m!5t~m0!2
b0

8p2 log~m/m0!. ~10!

c-
-

9-3
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GUDRUN HILLER AND MARTIN SCHMALTZ PHYSICAL REVIEW D 65 096009
Herem andm0 are real renormalization scales andb0 is the
one-loopb function coefficient. Taking the imaginary part o
both sides shows thatu is also not renormalized.

So far, we have ignored mass thresholds. A superfi
with a massm betweenm andm0 should be integrated out a
the scalem. This gives a shiftdt52t2/8p2 log(m), and if m
is complex we haveu→u2t2 argm. Here t2 is the Dynkin
index in the color representation of the field which was in
grated out~t251 for a quark!. This is exactly what is neede
for ū to be invariant, because the massive field should no
included in the arg detM term in the definition ofū in the
low-energy theory.2 We discuss the nonperturbative genera
zation of this nonrenormalization theorem in Appendix C

To end this section, we wish to clarify a potential conf
sion stemming from the possibility of redefining the phase
the gluino field via an anomalousR symmetry transforma-
tion. In the absence of a gluino mass this appears to a
rotating away theu angle. However, in order for supersym
metry breaking to generate a gluino mass as required
phenomenology, theR symmetry has to be broken in th
theory. If this breaking is spontaneous then the theory ha
R axion, and we have rediscovered the axion solution to
strong CP problem ~with its associated phenomenologic
constraints!. If the breaking is explicitu cannot be rotated
away.

IV. THE CP VIOLATING SECTOR

In this section we discuss the requirements on the se
of the theory that is responsible for breakingCP. We also
give two examples and emphasize the trouble with mod
without SUSY.

The job of theCP violating sector is to produce a CKM
phase of order 1 while avoiding atree levelcontribution to
ū. Quantum corrections toū are automatically taken care o
by the nonrenormalization theorem and low-energy SU
breaking as discussed in Secs. III and V.

There are two possible strategies for generating the C
phase. The first was proposed long ago by Nelson and
Barr. In their scenario, the ordinary quarks mix with ultr
heavy vectorlike quarks via complex couplings. As we w
review in the next subsection this mixing generates a CK
phase at the tree level while a clever choice of Yukawa c
plings ~or equivalently of field content and global symm
tries! forbids the tree level contribution toū. The other pos-
sibility was proposed in our recent publication@15#. In our
scenario,CP violation couples to the MSSM only at the loo
level. This automatically guarantees a vanishingū, and the
CKM phase must be generated from loops that renorma
the quark wave functions. We review this scenario in
second subsection.

SpontaneousCP violation requires some fields to hav

2Note that we have been somewhat cavalier with the Dynkin

dices in the definition ofū. The correct definition contains a facto
of t2(Ri) for each of the different representationsRi of colored
fermions in the theory.
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potentials that are minimized at complex vacuum expecta
values. For simplicity we will omit the specific potential
They are not difficult to construct even though the Lagran
ian is real because of the underlyingCP invariance. A simple
example is given by the superpotential

W5J~S21E2! ~11!

with singlet chiral superfieldsJ andS, whose scalar poten
tial forces a complex VEV forS56 iE.

A. Nelson-Barr

In Nelson-Barr models@10# CP violation is communi-
cated to the quarks already at the tree level. The nontri
model building feat is to arrange the superpotential such
ū50 at the tree level. A relatively simple choice is to add
vectorlike fourth singlet down quark. The superfieldsD4

1D̄4 have „SU(3),SU(2)…U(1) quantum numbers (3,̄1)1/3
1(3,1)21/3 and couple in the superpotential to the MSS
fields and three complex VEVsS i as follows:

W5QiM̂ i j D j , i , j 51 – 4. ~12!

Abusing notation, we defineQ4[D̄4 , and the mass matrix
M̂ is

M̂5S ŶdHd 0

rS m
D . ~13!

Herem@Mweak contributes to the mass of the vectorlike fe
mions, and all couplings andm are real because of the un
derlying CP symmetry. This form of the Lagrangian can b
enforced by additional global symmetries. A similar mixin
could also be introduced in the up sector and everything
straightforwardly extended to a GUT.

One can easily verify that arg detM̂50, and thereforeū
50 at the tree level as desired. The CKM matrix is t
mismatch of the basis in which

YuYu
†5ŶuŶu

T

and

YdYd
†5ŶdS 12

aa†

uau21m2D Ŷd
T ~14!

are diagonal. Here we have defined the three-vectora†

5(r 1S1 ,r 2S2 ,r 3S3) and used the approximationŶdHd
!rS;m to compute the down quark Yukawa matrix. We s
that if the VEVsS i are complex andai*m, the down quark
matrix has large phases giving an unsuppressed CKM ph
as desired.

As discussed in previous sections, supersymmetry gua
tees thatū remains zero at the loop level as well. If we ha
considered this model without SUSY as originally propos

-

9-4
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STRONG-WEAKCP HIERARCHY FROM . . . PHYSICAL REVIEW D65 096009
by Nelson, then we would have to worry about loops invo
ing the heavy fermions andS fields which contribute toū. In
order to make the Nelson-Barr models safe without SU
one needs to take the couplingsr i very small
(;1023– 1024) while simultaneously tuningr iS i;m.

B. CKM phase from loops

In this section we review an example model which w
presented in our first paper@15#. In this model the CKM
phase stems from wave function renormalization factorsZi
of the quarks. TheZi factors arise from loops of heavy su
perfields with complex masses.

Here we will describe an SU~5! GUT version of the
model. In addition to the usual three generations of 5ī110i

matter fields we also require a vectorlike 54̄154 ~models
with one or several 10110 or both 5̄15 and 10110 are, of
course, also possible!. Furthermore, we have the usual Hig
fields Hu andHd and three generations of gauge singlet
perfields Fi1F̄ i . The superpotential contains the usu
MSSM couplings as well as

WCP5r i j 5̄iF j541sS i j Fi F̄ j1M545̄4 . ~15!

M, r, and s are real, the indicesi,j run over 1–3, and the
matrix S i j is assumed to have complex entries from spon
neousCP breaking.3

To determine the low-energyCP violation we integrate
out the massive fieldsF and 5415̄4 . The low-energy super
potential that derives from Eq.~15! vanishes when the equa
tions of motion for theF ’s and 54 are inserted, but the dia
gram of Fig. 2 generates a noncanonical complex kin
term for 5̄i . Note that forCP violation to be mediated to the
MSSM fields theCP breaking sector needs to violate flavo
otherwise the resulting kinetic term for 5ī would be diagonal

3A more minimalCP violating sector with only twoF’s and noF̄
would work as well. Note also that we have vanishing VEVs forF

and F̄, with a nonvanishing and complexr ^F̄&;M this model
would essentially be Nelsons@2#.

FIG. 2. Figure of wave function renormalization for the 5ī fol-
lowing from the superpotential in Eq.~15!.
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and real. ForS.M the Feynman diagram is easily eval
ated. ItsCP violating part involving the VEV ofS is finite
and can be expanded to give

dZ5̄;
1

16p2 r †
S†S

MCP
2 r ~16!

whereMCP is the scale at which spontaneousCP breaking is
mediated to the quarks,MCP

2 ;s2tr@S†S#.
As discussed in Sec. III, a sufficiently large phase in

CKM matrix can be generated only when wave functi
renormalization is large, which requiresr;4p. This implies
that the one-loop approximation is not reliable. Therefore
is most useful to parametrize the wave function coeffici
by an arbitrary Hermitian matrixZ5̄ .

As it stands, this model is incomplete because of the la
Yukawa couplingr. The problem is that if the scale ofCP
violation is below the Planck scale then the Yukawa coupl
runs to values of order 1 within onee-folding even if it is 4p
at the Planck scale. A large Yukawa coupling at the low
scaleMCP can be arranged by letting theFi ’s and 5̄4154
interact with a new strong gauge group. It is easy to mod
this model to include these interactions. We present suc
model in Appendix C, where we also show that the relev
nonperturbative effects inr and the new strong gauge cou
pling can be determined exactly and do not contribute toū.

C. Reproducing the quark masses and CKM matrix

We make some general remarks on models withCP vio-
lation from kinetic terms. Since wave function renormaliz
tion factors are required to be large~and not computable in
perturbation theory! and flavor violating, their effects on
quark masses and mixing angles are important. This sugg
two different basic scenarios~models which interpolate be
tween the two extreme cases are of course also possible!.

~A! The hierarchical structure of the Yukawa couplings
generated at a scale aboveMCP , and the wave function
renormalization is only responsible for generating the nec
sary phases. In the process, the strong dynamics neces
changes at least some of the mixing angles completely,
the quark mass hierarchy is essentially unchanged.

~B! Flavor andCP violation have a common origin. A
scales aboveMCP the Yukawa couplings are either univers
(Ŷj

i }d j
i ) because of non-Abelian flavor symmetries, or ha

‘‘random’’ O(1) entries~flavor anarchy!, and the entire fla-
vor structure including the hierarchy stems from the wa
function renormalization factorsT. Models in which flavor
originates from wave function renormalization have be
built by Nelson and Strassler@19#. Their models, when
adapted to incorporate our mechanism, generate flavor
solve the strongCP problem.

D. The trouble with models without SUSY

Note that the necessity of strong couplingr;4p under-
lines why supersymmetry is so important to our approa
Non-SUSY models ofCP violation induced by noncanonica
9-5
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GUDRUN HILLER AND MARTIN SCHMALTZ PHYSICAL REVIEW D 65 096009
kinetic terms have been discussed in the literature, with
new sector coupling only to the doublet quarks@12#, or to the
singlets@13#. Without SUSY no nonrenormalization theore
protects the colored fermion masses fromCP violating ver-
tex corrections, which occur at some—possibly high—lo
level. However, because of the required large coupling for,
arbitrarily high loop diagrams can still violate the bound
ū. Turning the argument around, electric dipole mome
~EDM! data put severe constraints on the model parame
in particular the couplingr. For example, because of a verte
correction at four loops the authors of Ref.@12# were forced
to taker ,1, and therefore their model cannot produce la
CKM CP violation. Like the one~s! in @13#, it is superweak
and therefore ruled out. In general, this is the fate of n
SUSY models withCP violation from kinetic terms; super
symmetry and its nonrenormalization theorems appear to
necessary ingredients for this mechanism to yield reali
models with a large CKM phase.

V. SUSY BREAKING

In this section we discuss the constraints on SUSY bre
ing and communication which follow from our solution t
the strongCP problem. The nonrenormalization theorem
guaranteeū50 with exact SUSY. However, after SUS
breakingū is renormalized, and we find that avoiding larg
contributions from loops including superpartners forces
SUSY breaking masses to be highly degenerate. Furt
more, flavor preserving SUSY parameters, such as
gaugino masses andBm, are required to be real to a hig
accuracy. We also argue that low-energy SUSY break
models such as gauge mediation are most compatible
our mechanism. This is because theCP violating dynamics
renormalizes the SUSY breaking masses and spoils the
essary degeneracies if soft masses are already present
high scaleMCP . We give a more detailed discussion of th
renormalization ofū in gauge mediation in Sec. VI and Ap
pendix D, where we also give more references.

To begin, note that in the MSSM Eq.~1! is generalized to

ū5u2arg detYu2arg detYd23 arg~vuvd!23 argmg̃ .
~17!

This immediately implies a strong constraint on SUS
breaking parameters as the gluino mass and the Higgs V
have to be real to one part in 1010. The reality of the Higgs
VEVs translates into constraints on parameters in the Hi
potential. In particular, a complexBm induces complex
VEVs already at the tree level. We discuss further constra
on the Higgs potential in Sec. VI B.

The phases of all other flavor-blind MSSM parameters
constrained because they feed into colored fermion ma
through radiative corrections from the diagrams of Fig. 3.
summarize these constraints as

argmg̃ ,argBm,10210, argA0 ,argm,1028,

argmg̃,Z̃,W̃,1027, ~18!
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whereA0 denotes the proportionality constant of theA terms
A5A0Y. We note that these constraints are much more st
gent than the bounds on soft phases from direct contribut
to EDMs which only require phases to be smaller than or
1022.

The diagrams in Fig. 3 also lead to strong constraints
both real and imaginary parts of flavor violating soft mass
The contributions toū are proportional to traces over flavo
violating quantities such as Im tr@Yx

†Ax#, Im tr@Yx
21Ax#, and

Im tr@Yx
21mq̃

2Axmx̃
2# where x5u,d ~see Appendix D!. The

most natural way to satisfy the bounds onū is to assume
proportionality and degeneracy

Au,d}Yu,d , m
q̃,ũ,d̃

2
}1. ~19!

Deviations from Eq.~19!, parametrized asdA anddm2, are
very constrained~see Appendix D!. For generic deviations
which are not ‘‘aligned’’ with the Yukawa matrices, the con
straints on some of the matrix elements are as strong as

dA

m0
,10213,

dm2

~m0!2,1026, ~20!

where m0 denotes the average superpartner mass sc
These bounds apply atm0 . They require a much higher de
gree of ‘‘flavor blindness’’ from the mechanism of supersym
metry breaking and mediation than flavor changing neu
current~FCNC! bounds.

Note also that the contributions toū from loops with fla-
vor violation in superpartner masses do not decouple in
limit of heavy superpartners. Thus the bounds~20! apply
equally for heavier superpartners. This is in contrast to
case of FCNCs.

A. Why do we needM CPÌM SUSY?

For example, minimal supergravity~MSUGRA! is not
compatible with our solution to the strongCP problem; this
can be seen as follows. The Kaehler potential relevant
squark masses in MSUGRA is

E d4u Zi j Qi
†Qj1

S†S

MPl
2 Xi j Qi

†Qj ~21!

for the quark SU~2! doublets, and similar terms for the sin
glets. If we assume a SUSY breaking expectation value
the F component of the superfieldS scalar masses result

FIG. 3. Lowest-order SUSY diagrams contributing toū. A cross
denotes a left-right mass insertion.
9-6
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~mq̃
2! i j 5~TXT! i j

F* F

MPl
2 , ~22!

whereZ5T22 as in Sec. III. Of course, we can always wo
in a basis whereT51 at MPl , but in generalX will not be
proportional to the unit matrix in this same basis. Par
alignmentX.Z can be achieved by imposing non-Abelia
flavor symmetries@20#, but residual nondegeneracies are e
pected to violate the bounds Eq.~20! by orders of magnitude
@21#. This is the usual flavor problem of MSUGRA.

In our scenario, the situation for a SUSY breaking mec
nism where superpartner masses are generated at s
aboveMCP is even worse. This is because the flavor andCP
violating ~CPX! dynamics atMCP renormalizesZ and X in
Eq. ~21! differently. So, even if we had somehow arrang
X5Z at MPl , this alignment would be spoiled at scales b
low MCP.4 To illustrate this point we give the one-loo
renormalization of the right-handed down squark masse
the second model of the previous section. Ignoring all c
pling constants exceptr i j , this is m2(m)/m2(MPl)
;(m/MPl)

r †r /16p2
, which is completely nonuniversal whe

r;4p.
We conclude that SUSY models with spontaneousCP

violation require a mechanism of SUSY breaking and med
tion in which the scalar masses are generated belowMCP .
We will therefore discuss gauge mediation as a compat
SUSY breaking mechanism in more detail in the next s
tion.

Of course, any other mechanism of SUSY breaking wh
generates universal scalar masses at low scales is comp
with our scheme. A preliminary look at gaugino mediati
@23# with the CPX dynamics atMPl on the visible sector
brane suggests that gaugino mediation is also compa
with the constraints Eq.~20!.

VI. RENORMALIZATION OF ū IN GAUGE MEDIATION

In this section we summarize results on the renormal
tion of ū in the MSSM with gauge mediated supersymme
breaking~GMSB!. That gauge mediation is compatible wi
solutions to the strongCP problem based on spontaneousCP
violation has been known for some time@24#. We quote here
only the most important results, with further details provid
in Appendix D.

In GMSB, the superpartner masses arise from loop d
grams involving the SM gauge interactions and messen
particles with SUSY violating masses. The dominant con
butions to the scalar masses from these diagrams have
momenta of order of the messenger mass; at higher ene
the scalar masses are power suppressed. Thus by sepa
the messenger scale~which we have been callingMSUSY!
andCPX scaleMCP.MSUSY, one can suppress the dange

4The only known exception to this is anomaly mediation@22#,
where the special form of supersymmetry breaking proportiona
the conformal anomaly enforcesX5Z at all scales. Therefore
anomaly mediation works very nicely with our scenario; we brie
discuss it in Sec. VI A.
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ous renormalization of the scalar masses from theCPX
sector.

The leading contributions toū in GMSB can be divided
into two classes which we discuss in turn: contributions t
arise in the effective theory belowMCP from renormalizable
interactions and are relatively model independent and con
butions from higher-dimensional operators suppressed by
scaleMCP which are model dependent but can always
made small by takingMCP@MSUSY.

At the renormalizable level the only flavor violating cou
plings in the effective theory belowMCP are the Yukawa
couplings. The gauge mediated soft SUSY violating mas
are approximately given byAx50 and mx̃

25(m0)2. Using
the flavor symmetries one can then show that the renorm
ization of ū from SUSY breaking can always be written
terms of the Hermitian matriceshx5YxYx

† in the combina-
tion det@hu ,hd#, the Jarlskog invariant~see Appendix A!. The
leading contribution isdū;10229 tan6 b, which is smaller
than the leading finite SM renormalizationdū;10219 ~see
Appendix D!.

The other class of contributions toū involves higher-
dimensional operators generated from integrating out
strongCPX dynamics atMCP . For example,

E d4u
D†DD†D

MCP
2 and S as

4p D 2 X†X

MCP
2 D†D. ~23!

Here D is the right-handed down quark superfield andX is
the superfield whoseF component is the source of supersym
metry breaking. The first of these operators is generated f
the CPX violating dynamics directly, whereas the seco
comes from computing the two-loop gauge mediation d
gram for scalar masses but restricting the loop moment
be above the scaleMCP . Because of the strongly couple
CPXdynamics atMCP the coefficients of these operators a
not calculable and are flavor off diagonal. Both operat
lead to contributions todm2 that are proportional to
(MSUSY/MCP)2. The bounds given in Eq.~20! then con-
strain

MSUSY

MCP
&1023. ~24!

Combining this with the fact that the gauge mediation sc
is bounded from below by roughly 104 GeV, we learn that
MCP*107 GeV, well out of reach of any current or planne
accelerator. Both scales are unknowna priori so that we
cannot predict the size ofū.

We discuss implications for superpartner masses and e
tric dipole moments in Sec. VII. For a brief compilation o
values ofū induced by renormalization, see Table I in Se
VIII.

A. Anomaly mediation

Even though SUSY breaking and mediation are at h
scales in anomaly mediation~AMSB! @22#, the superpartner
masses at the weak scale are determined by supersymm

o

9-7
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low-energy couplings. They are ultraviolet insensitive a
therefore independent of theCPX dynamics. The resulting
soft terms are approximately flavor universal, and contri
tions to ū are similar to the contributions from renormali
able couplings in gauge mediation, negligibly small. A co
plete model of course requires a solution to the problem
negative slepton masses. Any solution that retains the
insensitivity and flavor universality is compatible with o
framework. A nice example is given by@25#.

B. Contributions from higher-dimensional operators

In this section we discuss a number of different corr
tions to ū which are model dependent. They include high
dimensional operators in the superpotential, corrections
the gauge kinetic functions, Kaehler potential terms t
renormalize the superpotential after SUSY breaking, a
higher-derivative operators. All of these operators may a
from quantum gravity dynamics suppressed by the Pla
scale, but some may also arise fromCPX dynamics and are
therefore only suppressed byMCP .

~i! Higher-dimensional operators in the superpotenti.
We showed in Sec. III A that in the absence of SUSY bre
ing the only contributions toū can come from the superpo
tential. Therefore the most dangerous couplings are di
couplings ofCP violating VEVs to the MSSM or any col-
ored fields in the superpotential. In order for our mechan
to work we must assume that there are no such coupling
the renormalizable level. For example, we cannot have
couplingsSHuHd or STT̄. Both of these couplings can ea
ily be forbidden by a symmetry under whichS transforms
and the MSSM fields are neutral. At the nonrenormaliza
level we may have

E d2uS S

MPl
D k

WaWa1S S

MPl
D l

mHuHd

1S S

MPl
D m

QŶuUHu . ~25!

Each of these operators, if present, would give a con
bution toū which is proportional to powers ofMCP /MPl and
could be important ifMCP is large and the exponentsk, l, m
are small. Again, these superpotential operators are stro
constrained by symmetries and even in the absence of s
metries superpotentials need not be generic because o
nonrenormalization theorems. For example, in our mode
Sec. IV B, one can define a U~1! symmetry under which only
S and F̄ are charged and which forbids all these terms.

~ii ! Kaehler potential terms involving SUSY breakin.
Higher-dimensional operators in the Kaehler potential wh
couple the MSSM fields to fields with SUSY breaking VEV
can give rise to superpotential terms proportional to SU
breaking. For example, a Kaehler potential te
X†/MPl

2 QHdD with complex coefficient gives rise to a supe
potential Yukawa coupling with a coefficientF/MPl

2 . The
same operator withMPl replaced byMCP is suppressed by
powers of SM gauge couplings over 16p2 if SUSY breaking
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and CPX dynamics are not strongly coupled to each oth
None of these operators are dangerous if the SUSY brea
scale is sufficiently low.

~iii ! Higher derivative Kaehler terms. Kaehler potential
terms involving the covariant derivativeDa suppressed by
MPl or MCP generate effectived2u terms with ordinary de-
rivatives. For example,

E d4u
QHd~Da!2D

MCP
2 →E d2u QHd

!

MCP
2 D. ~26!

These operators can have different flavor structure from
Yukawa couplings and at one loop give a flavor nonuniver
renormalization of the soft SUSY breaking scalar masses
are suppressed by (MSUSY/MCP)2. We find the same bound
as from the higher-dimensional operators in Eq.~23!:
MSUSY/MCP&1023.

~iv! Phases in the SUSY breaking sector. If S couples
directly to the SUSY breaking sector, then one has to wo
about generating a complex SUSY breaking VEVF. A phase
in F contributes directly toū via the gluino mass. It is easy t
see that couplings ofS in the superpotential of the dynamica
SUSY breaking sector lead to complexF. We therefore need
to forbid such couplings; this can be arranged in the sa
way as superpotential couplings ofS to the MSSM fields can
be forbidden. Phases in the Kaehler potential are less dan
ous because of the Hermiticity of the Kaehler potential.
tree level and in looking at simple toy models we foundF
}detZSUSY, which is real. Here,ZSUSY is a wave function
renormalization factor in the Kaehler potential of the SUS
breaking sector.

A more general analysis of phases in SUSY breaking s
tors including loop corrections is desirable but beyond
scope of this paper. In any case, such phases can alway
avoided by separating the SUSY breaking andCPX sectors.
For example, if the SUSY breaking sector does not carry
global flavor symmetries ofS, then couplings ofS to the
SUSY breaking sector have to be of the form Tr(S†S) and
are therefore real.

~v! Phases in the MSSM Higgs sector. We already showed
that phases inm or Bm are strongly constrained.mHu

2 and

mHd

2 and the supersymmetric quartic couplings are autom

cally real, but one might worry about phases from high
dimensional operators in the Kaehler potential forHu and
Hd . For example,

E d4u
c

M2 Hu
2Hu

†Hd1H.c. , ~27!

with complexc andM5MPl or M5MCP leads to complex
phases in the Higgs VEVs which are suppressed
(Mweak/M )2. This is harmless even for the lowest possib
values ofMCP and unsuppressed coupling constantc.

VII. PREDICTIONS

Our framework requires tight constraints on the flav
~and CP! structure of the SUSY breaking soft terms whic
have various testable consequences. We predict@15# the fol-
lowing.
9-8
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~1! Supersymmetry.
~2! Minimal flavor violation; i.e., there are no significan

new sources of flavor violation beyond the Yukawa co
plings at energies near the weak scale. This has well-kn
implications forB physics@26,27#.

~3! No measurable newCP violation in the quark secto
beyond the SM, in particular no newCP violation in theB
system. For example, sin 2b is large as in the SM@26#. We
might expect the phases in the lepton mixing matrices to
large in analogy with the quarks.

~4! Almost degenerate first and second generation sca
of each gauge quantum number. Generic violations of qu
mass universality are very tightly constrained@see Eq.~20!#.
However, by aligning squark masses with quark masses

mq̃
25m0

2~11cuYuYu
†1cdYdYd

†!,

mx̃
25m0

2~11cxYx
†Yx!, ~28!

the renormalization ofū remains small (,10210) as can be
seen from Eqs.~D4!–~D7!, even though this ansatz allow
for more flavor violation than Eq.~19!. In this ansatz the
~real! coefficientscu,d are not expected to be arbitrarily larg
since at some point the contribution to third generation
perpartners becomes very large. Imposingci,1/Y3

2, where
Y3 denotes the Yukawa of the top, bottom, and tau, gi
Dm,1 GeV for the difference between the first and seco
generation scalars. This is a prediction which should
tested at a linear collider. We stress that this degene
holds independent of the SUSY breaking mechanism. It
lows only from demanding that the radiative corrections toū
not be too large~and a reasonable constraint on theci!. Note
that this also bypasses possible FCNC problems since
resulting off-diagonal squark masses obey

Dmq̃
2

m0
2

~12,13,23!<~VubVcb* ,VubVtb* ,VcbVtb* !

&~1025,1022,1021! ~29!

whereDmq̃
2( i j ) denotes the mixing between thei th and j th

generations. These values are within the experime
bounds@28#.

~5! At the renormalizable level, the radiatively induce
strongCP phase is of the orderū.10219. However, depend-
ing on the model dependent ratiosMSUSY/MCP and
MCP /MPl , the strong phaseū can be as large as 10210.
Thus, the corresponding hadron electric dipole moments
be close to the experimental bound and might be meas
soon@29#.

~6! A weak electric dipole momentdf is a contribution to
the five-dimensional operatordf( i /2) f̄ smng5f Fmn. The
EDMs for quarks and leptons arise from one-loop diagra
like Fig. 3 with an external photon attached wherever p
sible. In the general MSSM with arbitrary phases the exp
mental bound from the electron EDMde,1.8310227 e cm
@2#, and from the neutron EDMdn,6.3310226 e cm @2#
require the phases ofm, A terms, and gaugino masses to
less than 1022, e.g., @30#. Since the dipole moments ar
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linear in the soft SUSY phases we conclude that the pha
which are constrained by Eqs.~18! and~20! give weak quark
and lepton EDMs which are at least five orders of magnitu
below their experimental bounds. Note that improvements
the experimental EDM limits further strengthen the boun
Eq. ~18!; thus weak EDMs are always smaller than stro
EDMs in our framework.

~7! Large flavor preserving phases in the soft terms w
their associated ‘‘SUSYCP problem’’ have no place in our
framework; see the bounds in Eq.~18!. This simplifies in
particular the phenomenological analysis of the Higgs pot
tial.

VIII. SUMMARY AND CONCLUDING REMARKS

We presented a new theory ofCP symmetry with super-
symmetry and spontaneousCP violation. CP symmetry is
assumed to break spontaneously andCP violation is commu-
nicated to the MSSM fields at the scaleMCP . SUSY
breaking is communicated to the MSSM at the lower sc
MSUSY. With these ingredients, a natural solution to t
strongCP problem arises, because at the scale ofCP viola-
tion the strongCP phaseū is protected by a nonrenormaliza
tion theorem of the unbroken supersymmetry. At lower en
gies SUSY is broken and the nonrenormalization theor
does not apply, but we showed that the generatedū is much
smaller than the experimental bound if SUSY breaking
sufficiently flavor universal. Because of the nonrenormali
tion theorem at high scales a successful model for theCP

violating sector needs to ensureū50 only at the tree level,
which is easy to arrange. The CKM phase is generated ei
at the tree level as in Nelson-Barr models or else at the l
level from wave function renormalization as we proposed
@15#.

We have explicitly shown that low-scale gauge mediat
with MSUSY,MCP is compatible with our framework, bu
other mechanisms can also be implemented. A model in
pendent constraint is that SUSY breaking has to beCP con-
serving and either flavor universal or else flavor aligned a
Eq. ~28!. A summary of values ofū in some theories dis-
cussed in this paper is compiled in Table I.

From the low-energy point of view, our theory is th
MSSM with minuscule flavor violation and no significan
phases beyond those already present in the SM. The
possible deviation from this picture is that highe
dimensional operators may bring the nucleon EDMs into
perimental reach. Our proposal requires supersymmetry,
the strong constraints on the superpartner spectrum from
renormalization ofū automatically also nullify the SUSY
phases and FCNC problems. We have pointed out man
the testable signatures forB physics and collider and nucleo
EDM experiments. Note that our proposal does not requ
light superpartners; by low-scale SUSY breaking we me
that itsmediationto the MSSM occurs belowMCP .

In our paper we have given two explicit examples ofCP
violation, but we stress that our solution to the strongCP
problem can be incorporated in a much larger class of m
els because our main tool, the nonrenormalization ofū in
9-9
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GUDRUN HILLER AND MARTIN SCHMALTZ PHYSICAL REVIEW D 65 096009
SUSY, is general. It would be interesting to combine o
theory ofCP with a theory of flavor, e.g., with@19#. This is
because a necessary ingredient in ourCP violating sectors is
flavor violation. Thus there may be elegant models in wh
both goals are achieved at once. Such a model could
include grand unification.

Finally, we briefly comment on cosmological issues. T
spontaneous breaking ofCP symmetry leads to the formatio
of domain walls. Such domain walls are potentially proble
atic because they can overclose the universe. Howeve
our theory the scale ofCP breaking is sufficiently high tha
several possible mechanisms~including inflation! exist to
avoid this problem. Baryogenesis can occur in a numbe
different ways, such asCP asymmetrical decays of GUT
scale orMCP scale particles, the Affleck-Dine mechanism,
leptogenesis.
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APPENDIX A: NOTATION

We settle here our notation of quark masses and the C
mixing matrix VCKM :

Mu5diag~mu ,mc ,mt!,

Md5diag~md ,ms ,mb!, ~A1!

Mu5VuYuUu
†vu , Md5VdYdUd

†vd .
~A2!

TABLE I. Magnitude of ū from renormalization starting from

ū tree50 in some theories discussed in text. Here, SM denotes
standard model and MSSMgen a generic minimal supersymmetri
model. In the minimal supersymmetric model denoted
MSSMflav , flavor violation is minimal, i.e., not bigger than in th

SM. This suppresses large radiative corrections toū that are presen
in MSSMgen. Note that the MSSM with gauge mediated SUS
breaking~GMSB! belongs to the class MSSMflav . The last column
corresponds to contributions from higher-dimensional opera

~HDO! in GMSB. Now the size ofū depends on the hierarch
between the scale of SUSY breaking MSUSY and the scale of spon
taneousCP violation MCP . The last line shows the contributions t

ū from renormalization group equation~RGE! running in the SM
and MSSMflav .

SM MSSMgen MSSMflav HDOGMSB

ū ;2310219 as

4p
;2310219 S as

4pD2SMSUSY

MCP
D 2

dūRGE
10230 10229 tan(b)6
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We will also use the normalized mass matrices

M̂u5diagS mu

mt
,
mc

mt
,1D , M̂d5diagS md

mb
,
ms

mb
,1D . ~A3!

Here, the unitary matricesUu,d , Vu,d diagonalize the
Yukawa matricesYu,d , which are given in the basis with
canonical kinetic terms:

YuYu
†vu

25Vu
†Mu

2Vu , ~A4!

YdYd
†vd

25Vd
†Md

2Vd , ~A5!

VCKM5VuVd
† . ~A6!

The amount of weakCP violation in the SM is given by the
Jarlskog determinant

det@hu ,hd#SM52iJ~mt
22mc

2!~mt
22mu

2!~mc
22mu

2!

3~mb
22ms

2!~mb
22md

2!~ms
22md

2!/v12.

~A7!

Here, v5174 GeV, hu5YuYu
† , hd5YdYd

† , J
5s12s13s23c12c13

2 c23sinfCKM , andsi j 5sinfij , ci j 5cosfij ,
wheref i j and fCKM are the angles and phase of the CK
matrix in the Particle Data Group~PDG! parametrization.
Numerically,J'231025 @2#.

APPENDIX B: THE CKM PHASE

In this appendix, we show that the heavy sector has
couple strongly to the SM fermions to yield anO~1! CKM
phase fromCP violation in quark kinetic terms. In particular
the ansatzZ21/2511«H, where H is Hermitian and has
order 1 entries, leads to the observed pattern of qu
masses, mixing, andCP violation only if the parameter«
*1.

To begin, we note that if the initial Yukawa matrices d
not have the right~hierarchical! eigenvalues, then large re
scaling is required from the wave function renormalizatio
which implies«*1 ~we give a proof for this below!. Thus,
we only have to exclude the possibility that the Yukawa m
trices Ŷ already have approximately the correct eigenvalu
to correspond to the SM quark masses but that theCP phase
~and possibly also the mixing angles! are generated from
wave function renormalization with small«. Without loss of
generality, we work in a basis in whichŶu'Mu /vu is diag-
onal. It is furthermore general to chooseŶd'OMd /vd
whereO is a general orthogonal~real! matrix. Finally, since
we are concerned only with determining the CKM matr
we are free to rescaleŶu andŶd such that the largest eigen
value in each is approximately equal to 1.

The CKM matrix is then the unitary transformation b
tween the basis in which the following two matriceshu ,hd
are diagonal:

e

s

rs
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hu5
1

AZQ

M̂u

1

Zu
M̂u

1

AZQ

, hd5
1

AZQ

OM̂d

1

Zd
M̂dOT

1

AZQ

.

~B1!

Now we assume that« is small and show that one cann
generate a sufficient amount ofCP violation. First, note that
VCKM5O if all Zi51. Anticipating this to still be approxi-
mately true when theZi differ from 1 perturbatively, we
rotatehd by O so that its unperturbed component is alrea
diagonal. We now have

VCKM5VuO~Vd
O!† ~B2!

whereVu diagonalizeshu andVd
O diagonalizes

hd
O5S OT

1

AZQ

OD M̂d

1

Zd
M̂dS OT

1

AZQ

OD . ~B3!

In order to determine the eigenvalues and unitary matr
Vu and Vd

O , we use standard nondegenerate perturba
theory familiar from quantum mechanics~see, e.g.,@31#!.
First, we parametrize (ZQ)21/2511«H and Zu,d

2151
1«Ju,d . To linear order in« we have

hu5M̂u
21«Du , hd

O5M̂d
21«Dd

O , ~B4!

where

Du5$H,M̂u
2%1M̂uJuM̂u ,

Dd
O5$HO,M̂d

2%1M̂dJdM̂d , ~B5!

andHO5OTHO. Here, the unperturbed ‘‘Hamiltonians’’M̂u
2

and M̂d
2 are already diagonal. The perturbed eigenvalues

order« are then

~M̂u
2! i1«~Du! i i 5~M̂u

2! i@11«„2~Hu
O! i i 1~Ju! i i …#,

~B6!

and a similar expression for the down sector. Thus we
that the renormalizations of individual quark masses are m
tiplicative; this implies, e.g., that there are no corrections
mu proportional tomt . Here, we discovered this property
linear order in«; it is straightforward to extend this analys
to higher order. We have computed the corrections up
second order and also verified our results numerically w
out expanding in«. This verifies our claim that large correc
tions to masses can only come from nonperturbatively la
«.

The unitary matrices that diagonalizehu andhd
O are

~Vu! i j 5d i j 1«
~Du! i j

~M̂u
2! i2~M̂u

2! j
U

iÞ j

, ~B7!

~Vd
O! i j 5d i j 1«

~Dd
O! i j

~M̂d
2! i2~M̂d

2! j
U

iÞ j

. ~B8!
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Since contributions to the CKM angles from the differe
terms above are additive in perturbation theory@i.e., P i(1
1« i)511S i« i#, we discuss each of them in turn.

NonvanishingJd ~contributions fromJu are smaller! in
Eq. ~B8! lead to complex corrections to the CKM matr
elements of order

dVub;«
md

mb
, dVcb;«

ms

mb
, DVus;«

md

ms
. ~B9!

This is most significant for dVcb and gives fCKM
&«(ms /mb)/Vcb;«.

The case of nontrivialZQ ~i.e., nonvanishingH! is slightly
more complicated. Assuming that the matrixH has entries of
order 1, and choosing the angles inO similar to the experi-
mental values inVCKM , we find for the Jarlskog invarian
~see Appendix A!

J&2«~u12u232u13!u13u12, ~B10!

whereu ik are the angles ofO in the parametrization of the
PDG @2#. We extract sinfCKM by dividing by the angles.
This yields the bound

sinfCKM&2«uVubu/uVcbu ~B11!

which is too small since data imply sinfCKM;O(1).
A comment on the usefulness of our expansion in« is in

order. There are many small parameters in the problem w
the potential danger of factors such asmt /mu ruining the
expansion. We believe that such factors do not occur. Th
manifest to order« from our expressions above, and we ha
verified it explicitly to second order. Furthermore, extens
numerical study@32# has shown that our results are not a
fected by higher-order corrections in«: large departures from
canonical kinetic terms are required if we want to gener
sufficient CKM CP violation from wave function renormal
ization.

APPENDIX C: STRONG INTERACTIONS AT M CP

The model of Sec. IV B is incomplete because renorm
ization from the Planck scale toMCP drives the Yukawa
coupling r to values that are too small to give sufficientCP
violation in the quark kinetic terms. The model can be fix
by introducing a new gauge group SU(N) under which54
and F transform in the fundamental representation and4

andF̄ are antifundamentals. The superpotential~15! remains
invariant. The SU(N) theory has eight flavors~five from 54

154 and three fromF1F̄! and its gauge coupling become
strong in the ir forN>3. The strong gauge interactions the
also drive the Yukawa couplingr to large values as can b
seen from the sign of the beta function~schematically, ignor-
ing coefficients!

16p2
d

d~ logm!
r 5r ~r 22gN

2 ! ~C1!

wheregN is the coupling of the new strong SU(N).
9-11
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At the scaleMCP , theF’s and 54’s are massive. Integrat
ing them out leads to noncanonicalCP violating kinetic
terms for the right-handed down quarks~and lepton dou-
blets!, vanishingū, and no new superpotential couplings
all orders in perturbation theory as described in Sec. VI B

But what about nonperturbative effects that could ar
from the strong SU(N) dynamics? These effects can be d
duced from Seiberg’s solution of supersymmetric QC
@18,33#. Most important here are the matching relations
the strong interaction scale across mass thresholds. Afte
tegrating outF’s and 54’s the SU(N) gauge theory is flavor-
less and confined. Gaugino condensation generates a s
potentialW5L ir

35@Luv
3N28M5 det(S)#1/N whereM andS are

defined in Sec. IV B, andLuv/ir is the ‘‘QCD’’ scale of the
one-loop SU(N) beta function below/aboveMCP . This su-
perpotential is complex, but it does not couple to any MSS
fields and is therefore harmless. We should also worry ab
direct nonperturbative contributions tou of the GUT SU~5!
group. These can be determined from the SU~5! scale match-
ing. The phase of the scale of the SU~5! group at the high
scaleL5uv

82N vanishes because ofCP invariance. This is the
statement thatu50 at the Planck scale. At lower scales, af
integrating outF’s and 54’s, the phase is determined by sca
matching: L5ir

8 5L5uv
82NMN. This is also real. At even lowe

scales the dynamics of the SU(N) theory and the SU~5! are
completely decoupled so that no further scale matching
the SU~5! theory is required. This proves thatū50 in the
effective supersymmetric theory belowMCP even after in-
cluding nonperturbative dynamics in the strongly coup
SU(N) and the couplingr.

APPENDIX D: RADIATIVELY GENERATED STRONG CP
PHASE

We start with a discussion of contributions toū from the
renormalization of quark masses in the SM. Corrections
be written asm5m0(11x) and we will use arg det(11x)
5Im tr@x# for smallx. Using the flavor symmetries, it is eas
to show that corrections toū can always be written as th
imaginary part of traces over the Hermitian matriceshu

5YuYu
† and hd5YdYd

† ~here we work in the basis with ca
nonical kinetic terms!. The lowest-order nonvanishing con
tribution to ū arises at sixth order inhu,d . It is related to the
Jarlskog determinant~see Appendix A! by

2 Im tr@huhdhu
2hd

2#5det@hu ,hd#. ~D1!

Expressions involvingn powers ofh arise from diagrams
with at leastn loops. Alternatively, they arise in a stepwis
linear approximation to the RGEs with at leastn steps@30#.
This defines our power counting: one Higgs loop or o
RGE step each giveshu,d /(16p2). Higher orders inn are
suppressed and one can show that Eq.~D1! is indeed the
trace with the largest imaginary part. But at six loops a c
cellation occurs between diagrams where up and do
quarks are interchanged because Im tr@huhdhu

2hd
2#1(u↔d)

50. An extra loop with a photon splits the isospin symmet
Thus, the RGE induced correction toū in the SM is@34,30#
09600
e
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e
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n
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uSM
RGE'

a

4p S Dt

16p2D 6

det@hu ,hd#SM ~D2!

which is approximatelyuSM
RGE'10230 for Dt5 logMPl /MZ .

The largest contribution toū in the SM arises from the
finite and strongly GIM suppressed four-loop cheburash
diagram@35#

uSM
finite52

7

9

as

4p S aW

4p D 2 ms
2mc

2

mW
4 J ln

mt
2

mb
2 ln2

mb
2

mc
2

3S ln
mc

2

ms
2 1

2

3
ln

mb
2

mc
2D , ~D3!

which gives uSM
finite'2310219 using as50.2 and J52

31025, and is consistent with earlier estimates@34#.
In the MSSM, the leading divergent diagrams that ren

malize ū cancel because of the SUSY nonrenormalizat
theorem. However, there are new finite contributions fro
one-loop quark and gluino mass corrections which invo
supersymmetry breaking. The diagrams for gluino and qu
mass renormalization are proportional to softAx terms and
soft masses5 mx̃

2, mq̃
2 and yield (x5u,d)

u g̃
A'

as

4p

vx
2

m0
3 Im tr@YxAx

†#, ~D4!

u g̃
m'

as

4p

vx
3vy

m0
8 Im tr@hxYxmx̃

2Yx
†mq̃

2#, ~D5!

and similar expressions for the quark mass contributions

u q̃
A'

as

4p

1

m0
Im tr@Yx

21Ax#, ~D6!

u q̃
m'

as

4p

vy

m0
4vx

Im tr@Yx
21mq̃

2Yxmx̃
2#. ~D7!

Herem0 is an effective average soft mass,vx are the Higgs
VEVs, andyÞx. The size of the inducedū depends cru-
cially on the flavor structure of the soft breaking paramete
Arbitrary A terms and soft masses can violate the experim
tal bound onū by many orders of magnitude. On the oth
hand, for soft terms that satisfy exact proportionality a
degeneracy as in Eq.~19! these contributions toū vanish.
However, proportionality and degeneracy are not stable
der renormalization. The RGEs for the soft terms@36# in-
volve products ofhu andhd . Inserting the renormalized sof
masses into the one-loop diagrams Fig. 3, and using a
ments very similar to the SM discussion above, one fin
@30#

5We use the soft Lagrangian as2Lsoft.Q̃AuHuŨ1Q̃AdHdD̃

1(1/2)mg̃g̃g̃1BmHuHd1c.c.1Q̃† mq̃
2Q̃1Ũ†mũ

2Ũ1D̃†m
d̃

2
D̃; see,

e.g.,@36#.
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uSUSY
RGE '

as

4p S Dt

16p2D vu
2

m0
2 tan6 b det@hu ,hd#SM. ~D8!

This givesuSUSY
RGE '10229– 10219 for tanb ranging from 1 to

50.
Thus in the MSSM with strictly proportional and unive

sal soft terms at a high scale~e.g., MSUSY in GMSB! the
contributions from diagrams involving superpartners
smaller than the finite diagram in the SM. Diagrams that
similar to the leading SM contribution Eq.~D3! but involve
superpartners or charged Higgs bosons are suppressed b
heavier superpartner and Higgs boson masses and are t
fore smaller than Eq.~D3!.

Let us work out the constraints onA terms and soft
masses if we allow for additional flavor violating contrib
tions. We parametrize the departure from proportionality a
degeneracy asdA, dm2. From Eq.~D6! follows immediately
for the A terms
, i
-

en

v.

.

gy
l.

58
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Im trFY21
dA

m0
G<1028. ~D9!

We need nonuniversality for both soft masses in Eq.~D7! for

a nonzero contribution toū. For example, our power count
ing discussed previously givesmq̃

2.m0
2@11hx /(16p2)# and

thus

Im trFYy
21hxYy

dm2

m0
2 G<1026. ~D10!

These bounds are generally much more severe than
bounds from FCNCs~see, e.g.,@28#!. The constraints on the
smallest elements ofdA anddm2 are quoted in Eq.~20!.
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