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Final state rescattering and color-suppressedB̄0\D „* …0h0 decays
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The color-suppressedB̄0→D (* )0p0, D (* )0h, D0v decay modes have just been observed for the first time.

The rates are all larger than expected, hinting at the presence of final state interactions. Considering theB̄0

→D (* )0p0 mode alone, an elasticD (* )p→D (* )p rescattering phase differenced[d1/22d3/2;30° would

suffice, but theB̄0→D (* )0h, D0v modes compel one to extend the elastic formalism to SU~3! symmetry. We
find that a universala2 /a150.25 and two strong phase differences 20°;u,d,d8;50° can describe both
DP andD* P modes rather well; the large phase of order 50° is needed to account for the strength of both the
D (* )0p0 andD (* )0h modes. ForDV modes, the nonet symmetry reduces the number of physical phases to just

one, giving better predictive power. Two solutions are found. We predict the rates of theB̄0→Ds
1K2, Ds*

1K2,

D0r0, Ds
1K* 2, andD0f modes, as well as theB̄0→D0K̄0, D* 0K̄0, D0K̄* 0 modes. The formalism may have

implications for the rates andCP asymmetries of charmless modes.

DOI: 10.1103/PhysRevD.65.096007 PACS number~s!: 11.30.Hv, 13.25.Hw, 14.40.Nd
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I. INTRODUCTION

The Belle Collaboration has recently observed@1# the
B̄0→D0p0, D* 0p0, D0h, andD0v decay modes, as well a
finding evidence forB̄0→D* 0h and D* 0v. The decay
branching ratios (B) are all at a few times the 1024 level:

B~B̄0→D0p0!5~3.160.460.5!31024,

B~B̄0→D* 0p0!5~2.720.7
10.8

20.6
10.5 !31024,

B~B̄0→D0h!5~1.420.4
10.560.3!31024,

B~B̄0→D0v!5~1.860.520.3
10.4!31024,

B~B̄ 0→D* 0h!5~2.020.8
10.960.4!31024,

B~B̄ 0→D* 0v!5~3.121.1
11.360.8!31024.

The CLEO Collaboration has also reported@2# the observa-
tion of B̄0→D0p0, D* 0p0 modes:

B~B̄ 0→D0p0!5~2.7420.32
10.3660.55!31024,

B~B̄ 0→D* 0p0!5~2.2020.52
10.5960.79!31024,

with rates in agreement with Belle. These modes are usu
called color-suppressedB decays. In contrast with the muc
faster ‘‘color-allowed’’B̄0→D1p2 (B.331023 @3#! decay
wherep2 is emitted by the charged current@Fig. 1~a!#, there

*Electronic address: ckchua@phys.ntu.edu.tw
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lly

is a color mismatch in forming theD0 meson fromc and ū

produced byb→cūd decay@Fig. 1~b!#. We have indicated in
Figs. 1~a! and 1~b! the effective Wilson coefficients,a1 and
a2 @4#, that are responsible for the decay. For the char
B2→D0p2 decay, botha1 anda2 type of diagrams contrib-
ute.

The factorization of theB̄0→D1p2 decay amplitude has
recently been demonstrated to follow from QCD in the hea
b quark limit @5,6#, anda1 as computed from QCD factor
ization is close toa1

(eff);1 to 1.1 from ‘‘generalized factor-
ization’’ @4#. On the other hand, it is known that the effectiv
coefficienta2

(eff) cannot be calculated in QCD factorizatio
@5#. It is remarkable that thea2

(eff) value as extracted from th

celebratedB̄→J/cK̄ (* ) modes agrees rather well with th
value extracted fromB2→D0p2, i.e., consistent witha2

(eff)

.0.2 to 0.3 and real. However, theD (* )0p0 rates as ob-

FIG. 1. Color~a! allowed and~b! suppressedB→Dp decays.
©2002 The American Physical Society07-1
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served by Belle and CLEO are considerably higher than
generalized factorization estimates@4# using thisa2

(eff) value,
suggesting that final state rescatterings~FSI! such as
D (* )1p2→D (* )0p0 could be active. Alternatively, it could
indicate nonuniversala2, that is, a2 for color-suppressed
modes are larger than@7# a2 for J/cK̄ (* ) modes, and are
furthermore complex to accommodateB2→D (* )0p2.
Whether in the form of FSI rescattering or a larger and co
plex a2, one in general acquires complexity of decay amp
tudes in the form ofCP conserving phases. This may ha
implications for directCP violation asymmetries, since sim
lar effects may be present in processes such as charmleB
→Kp modes.

The experimental data in fact compels one to broaden
horizon. The Belle results onB̄0→D0h and D0v are con-
siderably higher than generalized factorization estimates@4#
as well, suggesting that one needs to go beyondDp→Dp
considerations in the FSI framework. The alternative of h
ing process dependenta2’s @7,8# would imply loss of predic-
tive power. While it is clear thata2 in general will be process
dependent, we do abhor the loss of predictive power. In
paper we wish to explore how the situation could be re
edied.

Since the data is new and still rather incomplete, our
proach will be phenomenological, without aim for rigor
completeness. Let us start from the isospin decompositio
B̄→D0p2, D1p2, andD0p0 decay amplitudes that is lu
cidly outlined in Ref.@4#,

AD0p25A3A3/2,

AD1p25A2

3
A1/21A1

3
A3/2, ~1!

AD0p05A1

3
A1/22A2

3
A3/2,

where the final state is emphasized. In the absence of
the smallness of theD0p0 rate can be viewed as due
cancellation between theA1/2 andA3/2 amplitudes, which are
real under factorization. But these amplitudes in general
come complex under FSI andAD0p0 stands to gain strength
However, the isospin or triangular relationAD1p2

5A2AD0p01AD0p2 always holds. We note thatAD0p2 is
purely A3/2 and can only rescatter into itself. It is therefo
reasonable to maintaina2

(eff) as extracted traditionally, i.e.
the same as fromB→J/cK (* ), since it is too good to be jus
a coincidence.

The formalism of Eq.~1! can generateB̄0→D (* )0p0 by
elastic rescattering from the color-allowedB̄0→D (* )1p2

mode @4#. The problem is the strength of theB̄0→D (* )0h
andB̄0→D (* )0v modes observed by Belle. Theh andv are
isosinglets, and theh mass is quite different from pions
Thus to generateD (* )0h and D (* )0v final states from
D (* )1p2 andD (* )1r2, strictly speaking, involves inelasti
rescattering, although only in the isospin 1/2 channel. Ho
ever, it may be reasonable to extend from isospin~an excel-
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lent symmetry of the strong interaction! to SU~3!, expecting
that the latter becomes a good symmetry at themB rescatter-
ing scale.

Let us qualify the last statement further. SU~3! flavor
symmetry is a symmetry of the strong interaction as QCD
flavor blind, except that the flavor symmetry is broken
quark masses. Thus, in terms of SU~3! multiplets, masses
vary within the multiplet according to SU~3! breaking, and
meson production differs in strength as reflected in, for
ample, the decay constants and transition form factors.
if we enlarge the isospin doubletD (* )5(D (* )1, D (* )0)
and triplet p5(p1, p0, p2) to SU~3! triplet D (* )

5(D (* )1, D (* )0, Ds
(* )1) and the meson octetP ~likewise

from r to vectorV), we note that rescattering occurs at t
mB@mq scale, hence the DP→DP strong rescattering am
plitude should respect SU~3! symmetry to a good degree
SU~3! breaking effects are taken into account in the init
meson formations fromB meson weak decay, which is don
in the ~QCD! factorization framework witha1

(eff) anda2
(eff) as

effective short distance Wilson coefficients.
Thus our aim is to extend the usual elasticDp→Dp

rescattering to quasi-elastic DP→DP rescattering in the fi-
nal state, soD (* )0h andD (* )0v modes are naturally incor
porated. Our framework is rather close in spirit to the ori
nal isospin analysis ofB̄→Dp, and is as close to elastic a
one can get. The most general formalism involving inelas
rescatterings from all possible hadronic final states canno
tackled. In general it involves large cancellations and, sta
tically speaking, small phases@9#. Hopefully, and in a sense
true by duality, the inelastic effects are contained already
a1

(eff) anda2
(eff) .

In Sec. II we introduce the general framework of aT
matrix, discuss its link to the optical theorem, and also fix
phase convention. The formalism is applied to theB̄→Dp
modes in Sec. III. Three types of rescattering amplitudes
identified: a diagonal ‘‘Pomeron’’-like piece, and tw
‘‘Regge’’-like pieces denoted as ‘‘charge-exchange’’ a
‘‘annihilation.’’ We relate these to the usual isospin 1/2 a
3/2 rescattering phases, and show that onlyd[d1/22d3/2
matters, as expected.

In Sec. IV we extend from SU~2! to SU~3! multiplets in
the final state. ForDP andD* P modes, whereP stands for
the pseudoscalar octet, the extension is straightforward.
question of whether to include the flavor singleth1 in the
final state is bypassed by noting~a! the absence of data
which would remain the case for awhile unlessB̄0→D0h8

turns out to be much larger thanB̄0→D0h, ~b! UA(1)
anomaly that singles out theh1 field, and perhaps as a con
sequence,~c! relatively small singlet–octet orh2h8 mixing,
allowing us to identifyh8.h for convenience. We thus ig
nore h1 completely in this work. We find that the previou
picture of three types of rescattering parameters still ho
but one now has twod-like phase differences. The extensio
to DV final states is treated differently. By noting that th
vector mesons satisfy U~3! rather than SU~3! symmetry, we
use a nonetV field rather than an octet one. We refrain fro
discussingD* V modes since data is scarce, and since t
helicity ~or partial wave! amplitudes are involved.
7-2
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FINAL STATE RESCATTERING AND COLOR- . . . PHYSICAL REVIEW D 65 096007
We carry out a numerical study in Sec. V. For theDP
modes, we find two sets of solutions for the two FSI pha
differences, which are of order 20° and 50°. One solution
similar to theD* P case, and has a very tinyB̄0→Ds

1K2

decay due to the smallness of ‘‘annihilation’’ rescatterin
The other solution givesB(B̄0→Ds

1K2);531024, which
is ruled out by experiment. ForDV modes, we have two
solutions: one does not have annihilation contribution he
B(B̄0→D0r0);B(B̄0→D0v), while the other does no
have exchange contribution andB(B̄0→D0r0).B(B̄0

→D0v0).
In Sec. VI we compare our ‘‘a2

(eff) plus FSI rescattering’’
approach with the viewpoint of ‘‘process dependenta2,’’ and
discuss possible future applications. The conclusion is t
offered, followed by Appendixes that give the same resu
from a SU~3! decomposition approach and a geometric~tri-
angular! representation of our rescattering picture.

II. FINAL STATE RESCATTERING FRAMEWORK

Let HW denote the weak decay Hamiltonian. We assu
the absence of weak phases~or they are factored out!, hence,
from time reversal invariance ofHW(5UTHW* UT

†), one has,

^ i ;outuHWuB&* 5(
j

Sji* ^ j ;outuHWuB&, ~2!

whereSi j [^ i ;outu j ; in& is the strong interactionS-matrix el-
ement, and we have usedUTuout (in)&* 5u in (out)& which
also fixes the phase convention. Equation~2! can be solved
by ~see, for example,@9#!

^ i ;outuHWuB&5(
l

Sil
1/2Al

0 , ~3!

whereAl
0 is a real amplitude. To show that this is indeed

solution of Eq.~2!, one needs to useSi j 5Sji , which follows
from time reversal invariance of the strong interactions a
the phase convention we have adopted. The weak decay
plitude picks up strong scattering phases@10#. Also note that
sinceS1/2 is unitary, we must have

(
i

u^ i ;outuHWuB&u25(
l

uAl
0u2. ~4!

Equation ~2! implies an identity related to the optica
theorem. Noting thatS511 iT, we find

2 Im^ i ;outuHWuB&5(
j

Tji* ^ j ;outuHWuB&. ~5!

Thus forB decay to a two body final state with momentu
(p1 ,p2), one has the relation
09600
e
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e

n
s

e

d
m-

2 ImM ~pB→p1p2!5(
j

S )
k51

j E d3qk

~2p!32Ek
D ~2p!4d4

3S p11p22 (
k51

j

qkD M ~pB→$qk%!M*

3~p1p2→$qk%!, ~6!

which relates the imaginary part of the two body decay a
plitude to the sum over all possibleB decay final states$qk%,
followed by $qk%→p1p2 rescattering. This equation is con
sistent with the optical theorem to all orders of the stro
interactions but only to first order of the weak decay vert
as we illustrate in Fig. 2.

Before we turn toB→Dp decay applications, let us giv
the isospin structure of the related amplitudes. The resp
sible effective weak Hamiltonian is given by

HW5
GF

A2
VcbVud* @c1 d̄gm~12g5!u c̄gm~12g5!b

1c2 c̄gm~12g5!u d̄gm~12g5!b#, ~7!

whereVcbVud* can be treated as real for our purpose. It
clear thatHW transforms like aI 51,I z51 vector under isos-
pin @4#. It is useful to state explicitly the phase conventio
and the isospin structure of these mesons:

uB̄0&5ubd̄&;b̄du0&;U12 ,2
1

2L ,

uB2&5ubū&;b̄uu0&;U12 ,1
1

2L ,

uD1&5ucd̄&; c̄du0&;U12 ,2
1

2L ,

uD0&5ucū&; c̄uu0&;U12 ,1
1

2L ,

up2&5udū&;d̄uu0&;u1,11&,

up0&5Uuū2dd̄

A2
L ;

uū2dd̄

A2
u0&;2u1, 0&. ~8!

Note that the isospin structure is defined according to
fields that create the states, such that they conform with
definition of the isospin structure ofHW . One could alterna-
tively define isospin quantum numbers according to sta
and modify that ofHW accordingly.

By isospin decomposition we have@4# @cf. Eq. ~1!#

FIG. 2. Illustration of optical theorem, Eq.~6!.
7-3
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AD1p2[^D1p2;outuHWuB̄0&

5A2

3
A1/21A1

3
A3/2, ~9!

AD0p0[^D0p0;outuHWuB̄0&

5A1

3
A1/22A2

3
A3/2, ~10!

AD0p2[^D0p2;outuHWuB2&

5A3A3/2, ~11!

where

A1/25^~Dp!1/2;outuHWuB̄0&,

A3/25^~Dp!3/2;outuHWuB̄0&

5
1

A3
^~Dp!3/2;outuHWuB2&. ~12!

The last step follows from the Wigner-Eckart theorem. Eq
tions ~9!–~11! imply the triangular isospin relation

AD1p25A2AD0p01AD0p2. ~13!

We note that the sign ofAD0p0 in Eqs. ~10! and ~13! is
different from Ref.@4#, but is consistent with Ref.@8#. It is
easy to see from the above equations thatuA1/2u21uA3/2u2

5uAD1p2u21uAD0p0u2.
The isospin relations Eqs.~9!–~13! are valid whether one

has~in!elastic FSI or not. For example, assuming factori
tion hence ignoring FSI, one has

AD0p0→AD0p0
f

5
1

A2
~2C1E!,

AD0p2→AD0p2
f

5T1C,

AD1p2→AD1p2
f

5T1E, ~14!

whereT, C, and E are the color-allowed externalW emis-
sion, color-suppressed internalW emission, andW-exchange
amplitudes, which we shall discuss later. These amplitu
clearly satisfy Eq.~13!.

The general validity of Eqs.~9!–~13! in fact allows one to
extractA1/2 andA3/2 directly from the measuredD (* )p rates
without any further recourse to theory. Using the Belle a
CLEO average ofB(B̄0→D0p0)5(2.960.5)31024 and
B(B̄0→D* 0p0)5(2.560.7)31024 with other rates and
t(B1)/t(B0)51.07360.027 taken from PDG@3#, we find

uA1/2uexpt

A2uA3/2uexpt
50.7160.11~0.7560.08!,
09600
-
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uduexpt529°66° ~30°67°! ~15!

for D (* )p modes, whered[d1/22d3/2 is the phase differ-
ence betweenA1/2 andA3/2. This strongly suggests the pre
ence of FSI@7,8,11#.

As we turn on FSI, although the isospin relations s
hold, we would clearly lose control if the full structur
shown in Eq.~6! is employed. Even if all possibleB decay
rates can be measured, it would be impossible to know
phases of each amplitude. Furthermore, we know very li
about the strong rescattering amplitudes. However, the su
of two body final states that may be reached via elastic
catterings stand out compared to inelastic channels. It
been shown from duality arguments@12# as well as a statis-
tical approach@9# that inelastic FSI amplitudes tend to canc
each other and lead to small FSI phases. We shall there
separate$qk% into two body elastic channels plus the rest. W
first explore the familiar@4# B̄→D1p2, D0p2 and D0p0

case, then try to stretch the scope of elasticity.

III. ELASTIC FSI IN THE Dp SYSTEM

Let us consider elastic final state rescattering inB̄→Dp
modes. By using Eq.~3!, with Al

0 taken as the factorization
amplitudes of Eq.~14!, one has

S AD0p2

AD1p2

AD0p0

D 5S 1/2S AD0p2
f

AD1p2
f

AD0p0
f

D . ~16!

A major assumption is involved here: we assume that
can separate hard and soft effects. The factorization am
tudes sum over ‘‘hard’’ contributions, including attempts
incorporating the effects of the largely intractable full s
~generalized ton body! of inelastic amplitudes, illustrated fo
two body final state in Fig. 2. TheS 1/2 matrix describes the
nonperturbative FSI from the factorizedDp ‘‘source’’ am-
plitudes. We illustrate this in Fig. 3, where the ‘‘hard’’ part
shrunk to a point, and we focus on two body elastic FSI.

It is instructive to show howS 1/2 can be obtained. In the
usual approach, one notes that with only elasticDp→Dp
rescatterings, theS matrix is diagonal in the isospin bas
~isospin invariance!, that is

Sdiag5U S UT5diag~S3/2,3/2, S3/2,3/2, S1/2,1/2!, ~17!

U5S 1 0 0

0 A1

3
2A2

3

0 A2

3
A1

3

D . ~18!

FIG. 3. Illustration of Eq.~16!: two body rescattering.
7-4
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Unitarity then implies that the diagonal elements ofS can
only be pure phases, or

S1/2,1/25e2id1/2, S3/2,3/25e2id3/2. ~19!

S 1/2 is likewise diagonal, i.e., (S 1/2)1/2,1/25eid1/2 and
(S 1/2)3/2,3/25eid3/2. Elastic FSI is equivalent toAI5eid IuAI

f u
with uAI

f u taken from the factorization approach@4#. The isos-
pin relation of Eq.~13! is clearly satisfied.

For later use we expressS 1/2 in the basis of Eq.~16!,

S 1/25eid3/2S 1 0 0

0
1

3
~112eid! 2A2

3
~12eid!

0 2A2

3
~12eid!

1

3
~21eid!

D ,

~20!

with the overall phaseeid3/2 ~i.e., ofAD0p2) factored out, and
d is the phase difference between isospin 1/2 and 3/2 am
tudes, which is physical.

An alternative way to obtainS 1/2 is through the optical
theorem, i.e., Eqs.~5! and~6!. This approach is less familia
and more awkward than the previous one. However, it
the advantage of being readily generalizable to encomp
other modes such asB̄0→D0h,Ds

1K2, which are now of
interest and also provide physical interpretation. To use
optical theorem, we need to study the strongS matrix, or
equivalently theT matrix. TheT operator corresponding t
the matrix elementM (p1p2→q1q2) for Dp→Dp scattering
in Eqs.~5! and ~6! can be written as

T5 )
i , j 51,2

E d3pi

~2p!32Ei

d3qj

~2p!32Ej

3~2p!4d4~p11p22q12q2!D †MD 8, ~21!

where

D †5~aD0~p1! aD1~p1!!, D 8T5~aD0
†

~q1! aD1
†

~q1!!,

M5M0~q1q2 ;p1p2! Tr~P̄ P! 11Ma~q1q2 ;p1p2! P P̄

1Me~q1q2 ;p1p2! P̄ P,

P5S 1

A2
ap0~p2! ap1~p2!

ap2~p2! 2
1

A2
ap0~p2!

D ,

P̄5S 1

A2
ap0

†
~q2! ap2

†
~q2!

ap1
†

~q2! 2
1

A2
ap0

†
~q2!

D , ~22!
09600
li-

s
ss

e

and aM , aM
† are annihilation and creation operators for t

mesonM, respectively. Equation~21! is the most genera
isospin invariant operator forD(p1)p(p2)→D8(q1)p8(q2)
scattering. TheT operator is defined such that the famili
relation ofT matrix @used in Eq.~5!# and amplitudeM @used
in Eq. ~6!# can be reproduced:

^q1q2uTup1p2&5~2p!4d4~q11q22p12p2!

3M ~q1q2 ;p1p2!. ~23!

Equation~21! is unfamiliar as it is expressed directly i
creation and annihilation operators. It becomes more fam
when expressed in fields, where we separate out creation
annihilation parts. For example,P andP̄ correspond to the
annihilation and creation parts of

S 1

A2
p0 p1

p2
2

1

A2
p0D ,

respectively. The SU~2! transformations ofP andP̄ can be
recognized, since they do not mix creation and annihilat
parts. One can find examples of using creation and annih
tion operators on the studies ofpp, p-nucleon scattering in,
for example, Ref.@13#.

It is important to note that the D(p1)p(p2)
→D8(q1)p8(q2) scattering amplitudesM (Dp→D8p8) can
be decomposed into the independent amplitu
M0,a,e(q1q2 ;p1p2). For example, by using Eqs.~21! and
~22!, we have

M ~D0p2→D0p2!5M01Me ,

M ~D1p2→D1p2!5M01Ma ,

M ~D1p2→D0p0!5
1

A2
@Ma2Me#

5M ~D0p0→D1p2!,

M ~D0p0→D0p0!5M01
1

2
@Ma1Me#,

~24!

whereMi stand forMi(q1q2 ;p1p2). We can now make use
of Eq. ~6! to obtain ImM . For example,

2 ImAD0p252 ImM ~B2→D0p2!

5E d3q1

~2p!32E1

d3q2

~2p!32E2
~2p!4d4~p11p2

2q12q2!3M* ~D0p2→D0p2! AD0p2
7-5
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5E d3q1

~2p!32E1

d3q2

~2p!32E2
~2p!4d4~p11p2

2q12q2!3@M0* ~q1q2 ;p1p2!

1Me* ~q1q2 ;p1p2!# AD0p2

5~r 0* 1r e* ! AD0p2, ~25!

where

r i* [E d3q1

~2p!32E1

d3q2

~2p!32E2

3~2p!4d4~p11p22q12q2! Mi* ~q1q2 ;p1p2!,

~26!

for i 50,a,e andp11p25pB .
Since theDp system fromB decay isS wave, ADp is

independent of the final state momentum. It can hence
factored out from the integration. Thus Eq.~26! projects out
the S-wave Dp rescattering amplitude. Similar expressio
can be obtained for ImAD1p2,D0p0. By comparing with Eqs.
~5! and ~6!, we find

2S Im AD0p2

Im AD1p2

Im AD0p0

D 5T †S AD0p2

AD1p2

AD0p0

D , ~27!

T †5S r 0* 1r e* 0 0

0 r 0* 1r a*
1

A2
~r a* 2r e* !

0
1

A2
~r a* 2r e* ! r 0* 1

1

2
~r a* 1r e* !

D ,

~28!

with S511 iT. Equation ~27! is consistent with Eq.~16!
through the identity 2 ImS 1/25T †S 1/2 for symmetricS. We
also note thatT can be diagonalized by usingT5UTTdiagU,
whereU is given in Eq.~18!, giving

Tdiag5diag„r 01r e , r 01r e , r 01 1
2 ~3r a2r e!…. ~29!

The unitary scattering matrix S511 iT can be
solved by identifying the elements inTdiag with
2 sin(angle) exp(i angle)’s, where we note that
1 i 2 sin(angle)exp(i angle)5exp(i 2angle). One can now re
produce Eq.~20! by taking

r 01r e52 sind3/2eid3/2,

r 01 1
2 ~3r a2r e!52 sind1/2e

id1/2. ~30!

We give a pictorial representation ofr e , r a , andr 0 in Fig. 4;
they correspond to charge exchange, annihilation, and fla
singlet exchange rescatterings, respectively. Since the q
model is a representation of flavor SU~2! @SU~3!# group, it
should be able to reproduce the structure ofT, which follows
09600
e

or
rk

from symmetry argument. In particular the coefficients ofr i
in Eq. ~28! can be reproduced easily using this pictorial a
proach by matching the flavor wave function coefficien
For example, we have (r a2r e)/A2 for a D1p2 to D0p0

rescattering. We see from the first diagram of Fig. 4 that
exchange rescattering (r e) projects out thedd̄ component of
p0 in the right-hand side. From our convention in Eq.~8!,
this give a 21/A2 factor from the wave function ofp0.
Similarly the second diagram of Fig. 4 projects out theuū
component ofp0 and givesr a /A2 consequently. These dia
grams also provide further information. For example, in t
second diagram as we go beyond SU~2!, it is easy to see tha
the annihilation rescattering (r a) is responsible for the
D1p2→Ds

1K2 rescattering, since there is nos quark before
rescattering.

IV. EXTENSION FROM SU „2… TO SU„3…

A. DP modes

We now generalize theB→Dp case to SU~3! related
modes in the final state, such asB̄0→D0h or Ds

1K2. We
stress that we apply SU~3! symmetry only towards final stat
rescattering rather than to the whole decay process. It is
different from the usual application of SU~3! in B decays
@14#, where one decomposes theB meson weak decay am
plitudes, including the effective Hamiltonian itself, into di
ferent SU~3! pieces, and try to relate different modes~often-
times includingBs decay!. As argued earlier, SU~3! should
be a good symmetry for energetic FSI rescattering, which
the case of interest. As we will see this approach gives id
tical results with the SU~3! decomposition approach show
in Appendix A.

It is straightforward to follow the steps through Eq
~21!–~30!. Equation~21! remains unchanged, i.e.,

T5 )
i , j 51,2

E d3pi

~2p!32Ei

d3qj

~2p!32Ej
~2p!4d4

3~p11p22q12q2! D †MD 8, ~31!

FIG. 4. Pictorial representation of~a! r e ~charge exchange!, ~b!
r a ~annihilation!, and~c! r 0 ~singlet exchange!.
7-6
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but now the multiplets are extended

D †5~aD0~p1! aD1~p1! aD
s
1~p1!!,

D 8T5~aD0
†

~q1! aD1
†

~q1! aD
s
1

†
~q1!!,

M5M0~q1q2 ;p1p2!Tr~P̄ P! 1

1Ma~q1q2 ;p1p2! P P̄

1Me~q1q2 ;p1p2! P̄ P,

P~p2!5S ap0

A2
1

ah8

A6
ap1 aK1

ap2 2
ap0

A2
1

ah8

A6
aK0

aK2 aK̄0 2A2

3
ah8

D ~p2!,

P̄~q2!5S ap0
†

A2
1

ah8

†

A6
ap2

† aK2
†

ap1
†

2
ap0

†

A2
1

ah8

†

A6
aK̄0

†

aK1
† aK0

†
2A2

3
ah8

†

D ~q2!.

~32!

Note that this operator can rescatterD1p2, D0p0 into the
desired statesD0h8 , Ds

1K2.
The physicalh, h8 mesons are defined through

S h

h8
D 5S cosq 2sinq

sinq cosq
D S h8

h1
D , ~33!

where the mixing angleq5215.4° @15#. In principle, we
should also includeD0h1 in the rescattering process. Th
additional terms can be obtained by replacingP in Eq. ~32!

by P11ah1
(q2)/A3 ~and similarly forP̄), and labeling the

h1 related matrix elements byMi8(q1q2 ;p1p2). Knowing
that the UA(1) symmetry is broken by anomaly andh1 is not
a Goldstone boson,Mi8 are not identical toMi . The number
of parameters would therefore double, but experimental m
surements are still scarce. On the other hand, we note tha
mixing angleq is quite small, so we approximateh by h8.
Thus we concentrate on the rescattering process invol
octet pseudoscalar mesons only, as a step beyond the e
FSI discussed in the previous section. In this way, as alre
shown, one again has just three independent amplitudes

Besides Eq.~24! we now have
09600
a-
the

g
stic
dy

M ~D1p2→D0h8!5
1

A6
~Ma1Me!,

M ~D1p2→Ds
1K2!5Ma ,

M ~D0p0→D0h8!5
1

2A3
~Ma1Me!,

M ~D0p0→Ds
1K2!5

1

A2
Ma ,

M ~D0h8→D0h8!5M01
1

6
~Ma1Me!,

M ~D0h8→Ds
1K2!5

1

A6
~Ma22Me!,

M ~Ds
1K2→Ds

1K2!5M01Ma , ~34!

whereMi stands forMi(q1q2 ;p1p2). Amplitudes for other
related modes can be obtained by noting thatM (ab→cd)
5M (cd→ab) in our case.

With Eqs. ~24!, ~34!, and similar extensions of Eqs.~25!
and ~26!, we extend Eqs.~27! and ~28! to 2 ImA5T † A in
the D0p2, D1p2, D0p0, D0h8, andDs

1K2 basis with

T5r 0111
r e 0 0 0 0

0 r a
r a2r e

A2

r a1r e

A6
r a

0
r a2r e

A2

r a1r e

2

r a1r e

2A3

r a

A2

0
r a1r e

A6

r a1r e

2A3

r a1r e

6

r a22r e

A6

0 r a
r a

A2

r a22r e

A6
r a

2 ,

~35!

where T can also be easily obtained by the pictorial a
proach, as we explained in the end of the previous sect
Note thatT can be diagonalized as

Tdiag5r 0 11diagS r e , r e , r e , 2r e ,
1

3
~8r a2r e! D . ~36!

Following similar procedure in the previous section,S
511 iT is obtained by the~physical! substitution
7-7
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~11 ir 0!e22id3/25
1

2
~11e2id8!,

ir e e22id3/25
1

2
~12e2id8!,

ir a e22id3/25
1

8
~2122 e2id813 e2iu!, ~37!

where r 01r e52 sind3/2eid3/2 as in Eq. ~30!, but d5d1/2
2d3/2 is now extended to two physical phase differencesd8

and u. Note thatD, Ds and p, K, h transform as 3̄and 8
under SU~3!. As shown in Appendix A, we can identify th
above phases as

d3/25d15, d85d62d15, u5d 3̄2d15. ~38!
er
.

al
d

09600
By analogy to the previous section, the solution
2 ImA5T †A is

S AD0p2

AD1p2

AD0p0

AD0h8

AD
s
1K2

D 5S 1/2S AD0p2
f

AD1p2
f

AD0p0
f

AD0h8

f

AD
s
1K2

f

D , ~39!

whereAf ’s are factorization amplitudes. The matrixS1/2 can
be obtained by reducing phases inS by half. For a later
purpose we give the explicit expression ofS 1/2 ~or equiva-
lently S with trivial modification of phases!:
S 1/2e2 id3/2

51
1 0 0 0 0

0
1

8
~312eid813eiu!

1

8A2
~2512eid813eiu!

1

8
A3

2
~122eid81eiu! 2

1

8
~112eid823eiu!

0
1

8A2
~2512eid813eiu!

1

16
~1112eid813eiu! A 3

16
~122eid81eiu! 2

1

8A2
~112eid823eiu!

0
1

8
A3

2
~122eid81eiu! A 3

16
~122eid81eiu!

1

16
~916eid81eiu!

1

8
A3

2
~2312eid81eiu!

0 2
1

8
~112eid823eiu! 2

1

8A2
~112eid823eiu!

1

8
A3

2
~2312eid81eiu!

1

8
~312eid813eiu!

2 .

~40!
he
of

-
om-

pre-

d
ive
FSI
Just as in Eqs.~16! and~20!, S 1/2 of Eq. ~40! has an overall
phase. Only phase differences affect decay rates. An ov
sign change of the phases also leaves rates unchanged

Note that charge conservation and unitarity imply

uAD0p2u25uAD0p2
f u2,

uAD1p2u21uAD0p0u21uAD0hu21uAD
s
1K2u2

5uAD1p2
f u21uAD0p0

f u21uAD0h
f u21uAD

s
1K2

f u2. ~41!

Since the amplitudes for color suppressed modes are sm
the factorization level, they will be fed by the color allowe
all

l at

amplitudeAD1p2
f . As a consequence, theD1p2 rate will be

reduced from its factorization result. Compared with t
elastic case, we now have additional, but slight, leakage
D1p2 into the D0h and Ds

1K2 modes. Because the mea
sured rates of color suppressed modes are still small as c
pared to the color allowed modes, as far as theDp system is
concerned, the results do not deviate too much from the
vious section.

On the other hand, since the factorization amplitudesADp
f

satisfy the isospin triangular relation, Eq.~13!, one can show
that, with FSI and for any value ofAD0h8

f and AD
s
1K2

f
, the

rescatteredADp amplitudes also satisfy the relation. As note
earlier, the isospin relation should hold whether FSI is act
or not. To demonstrate this, it is instructive to express the
of Eq. ~40! in the isospin basis. In theD0p2, (Dp)3/2,
7-8
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(Dp)1/2, D0h8, and Ds
1K2 basis, theT matrix, and simi-

larly S (1/2), take a block diagonal form

Tblock5r 0111
r e 0 0 0 0

0 r e 0 0 0

0 0
3r a2r e

2

r a1r e

2
A3

2
r a

0 0
r a1r e

2

r a1r e

6

r a22r e

A6

0 0 A3

2
r a

r a22r e

A6
r a

2 ,

~42!

by Tblock5O T OT, where

O5S U 0 0

0 1 0

0 0 1
D , ~43!

andU is given in Eq.~18!. Truncating to the first 333 sub-
matrix, T is diagonal and one reproduces the SU~2! case of
Eq. ~29!.

In this basis, with block diagonalizedS block
1/2 5O S 1/2OT,

Eq. ~39! becomes

A5S block
1/2 Af , ~44!

where the first two diagonal elements ofS block
1/2 are justeid3/2,

while the remaining lower block governs the ‘‘inelastic’’ re
catterings

e2 id3/2~S block
1/2 !(Dp)1/2 ,(Dp)1/2

5
1

16
~116eid819eiu!,

e2 id3/2~S block
1/2 !(Dp)1/2 ,D0h8

5
3

16
~122eid81eiu!,

e2 id3/2~S block
1/2 !(Dp)1/2 ,D

s
1K252A 3

8A2
~112eid823eiu!,

e2 id3/2~S block
1/2 !D0h8 ,D0h8

5
1

16
~916eid81eiu!,

e2 id3/2~S block
1/2 !D0h8 ,D

s
1K25A 3

8A2
~2312eid81eiu!,

e2 id3/2~S block
1/2 !D

s
1K2,D

s
1K25

1

8
~312eid813eiu! ~45!

between theI 5I z51/2 decay final states (Dp)1/2, D0h8,
andDs

1K2, which is a reasonable extension beyond the e
tic rescattering discussed in the previous section. The ela
case corresponds toe2 id3/2(S block

1/2 )(Dp)1/2 ,(Dp)1/2
5eid and set-

ting the rest of Eq.~45! to zero. Since the factorization am
09600
s-
tic

plitudes forD0h andDs
1K2 are small, their FSI contribution

to theDp system will be suppressed. Therefore

UA1/2

A1/2
f U;U 1

16
~116eid819eiu!U,

d;arg~116eid819eiu! ~46!

are good estimates. The geometric meaning of Eq.~45! is
given in Appendix B.

B. D* P and DV modes

The formalism can be applied to final states involvi
pseudoscalar and vector mesons (PV), with only slight
modifications.

For D* (p1 ;l)P(p2)→D* (q1 ;l8)P8(q2) rescattering,
wherel (8) is the polarization index andP(8) denotes a pseu
doscalar meson, we replaceaD(p1) and Mi(q1q2 ;p1p2) by
aD* (p1 ,l) and Mi(q1q2 ,l8;p1p2 ,l) etc., respectively,
where

^q1q2 ,l8uTup1p2 ,l&5~2p!4d4~p11p22q12q2!

3M ~q1q2 ,l8;p1p2 ,l!. ~47!

The B→D* P amplitude is expressed as

M ~B→D* P!5«l* •pB AD* P , ~48!

where«l is the polarization vector andAD* P is a Lorentz
scalar that is independent of« and the angle between th
three-momenta ofD* andP.

TakeB2→D* 0p2 for example. Equation~25! becomes

2 Im@~«l* •pB!AD* 0p2#5(
l8

E d3q1

~2p!32E1

d3q2

~2p!32E2
~2p!4

3d4~p11p22q12q2!

3@M0* ~q1q2 ,l8;p1p2 ,l!

1Me* ~q1q2 ,l8;p1p2 ,l!#

3«l8
* •pB AD* 0p2. ~49!

By choosing a real basis for« and noting that(l(pB•«l)2

5pcm
2 mB

2/mD* 0
2 , wherepcm is the momentum ofD* 0 in the

center of mass frame, we obtain

2 ImAD* 0p25~r 0* 1r e* ! AD* 0p2, ~50!

with

r i* [(
ll8

E d3q1

~2p!32E1

d3q2

~2p!32E2
~2p!4

3d4~p11p22q12q2!

3
mD* 0

2

mB
2pcm

2
«l•pB Mi* ~q1q2l8;p1p2 ,l! «l8•pB , ~51!
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which projects out theP-wave D* P scattering amplitude
Equations after Eq.~32! from previous sections can be ca
ried over by replacingADP→AD* P .

The generalization toDV decay modes is again straigh
forward, except thatv1–v8 mixing cannot be neglected. Th
physical mesons should be

v5A2

3
v11A1

3
v8 ,

f5A1

3
v12A2

3
v8 . ~52!

Unlike the pseudoscalar case, where ignoringh1 couplings
th

s
a

d
an
ca
r,

09600
can be partially justified,v1 in principle should be on similar
footing asv8.

We replacep, K, andh8 in Eq. ~32! by r, K* , andv8.
By including v1 we will have two more terms inM of the

corresponding T matrix, namely, av1

† (q2)av1
(p2)@M̃0

1(M̃a1M̃e)/3# and @av1
(p2) P̄1P av1

† (q2)#(M̄a

1M̄e)/A3. These two terms correspond tov1 to v1 andv1

to octet rescattering.M̃ i , M̄ i will reduce toMi under nonet
symmetry.

The T matrix can be obtained as before. In isospin ba
with the D0r2, (Dr)3/2, (Dr)1/2, D0v8 , Ds

1K* 2, and
D0v1, we have
Tblock5diag~r 0 , r 0 , r 0 , r 0 , r 0 , r̃ 0!11
r e 0 0 0 0 0

0 r e 0 0 0 0

0 0
3r a2r e

2

r a1r e

2
A3

2
r a

r̄ a1 r̄ e

A2

0 0
r a1r e

2

r a1r e

6

r a22r e

A6

r̄ a1 r̄ e

3A2

0 0 A3

2
r a

r a22r e

A6
r a

r̄ a1 r̄ e

A3

0 0
r̄ a1 r̄ e

A2

r̄ a1 r̄ e

3A2

r̄ a1 r̄ e

A3

r̃ a1 r̃ e

3

2 . ~53!
. In

e
ct
It can also be easily obtained by the pictorial approach in
v1 , v8 basis.Tblock is identical to Eq.~42! except the addi-
tional sixth row and column. The solution isr 0,e as shown in
Eq. ~37! and

ir a e22id3/25
1

8
~3 U3̄3̄e22id3/222e2id821!,

i ~ r̄ a1 r̄ e!5
3

2A2
U 3̄3̄8 ,

i S r̃ 01
r̃ a1 r̃ e

3
D 5U 3̄83̄821, ~54!

whereU is a two by two symmetric unitary matrix that mixe
3̄ and 3̄8 by rescattering as shown in Appendix A. Note th
we need two phases and one mixing angle to specifyU,
resulting in four parameters~with an overall phase factore
out! to describe the rescattering matrix. There are too m
parameters and experiment measurements are still s
However, there is no UA(1) anomaly in the vector secto
and we expect U~3! rather than SU~3! symmetry. Therefore
e

t

y
re.

we consider rescattering amongD0,1,Ds
1 and the vector

nonet as a first step beyond the simple elastic FSI case
this case we identifyr̄ i and r̃ i as r i .

It turns out that U~3! symmetry allows only either charg
exchange or annihilation FSI, but not both. The two distin
solutions forr i andU are

Solution 1:

~11 ir 0!e22id3/25
1

2
~11e2id8!,

ir e e22id3/25
1

2
~12e2id8!,

ir a e22id3/250,

U 3̄3̄e22id3/25
1

3
~112e2id8!,

U 3̄3̄8e
22id3/25A2

3
~12e2id8!,

U 3̄83̄8e
22id3/25

1

3
~21e2id8!. ~55!
7-10
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Solution 2:

~11 ir 0
(8)!e2(2)id3/251,

ir e
(8) e2(2)id3/250,

ir a
(8) e2(2)id3/25

1

3
~211e(2)is!,

U 3̄3̄e22id3/25
1

9
~118e2is!,

U 3̄3̄8e
22id3/252A2

9
~211e2is!,

U 3̄83̄8e
22id3/25

1

9
~81e2is!,

~56!

where the former~latter! does not have an annihilation~ex-
change! contribution. Notice that whiled8[d62d15 is
analogous to theD (* )P counterpart,s is from U and is not
equivalent tou.

To understand whyr ar e50, we show theT matrix in the
D0r2, D1r2, D0r0, D0v, Ds

1K* 2, andD0f basis.

TV5r 0111
r e 0 0 0 0 0

0 r a
r a2r e

A2

r a1r e

A2
r a 0

0
r a2r e

A2

r a1r e

2

r a1r e

2

r a

A2
0

0
r a1r e

A2

r a1r e

2

r a1r e

2

r a

A2
0

0 r a
r a

A2

r a

A2
r a r e

0 0 0 0 r e 0

2 .

~57!

Note thatT V
6i50 for i 52,3,4, soD0f can only rescatter

with itself andDs
1K* 2. This can be easily checked by usin

the pictorial method as shown in Fig. 4.
We defineT V8 via S V

1/2511 iT V8 . It is easy to show tha
TV52T V81 iT V8

2 . S V
1/2 should also satisfy the U~3! symmetry

as well since it is generated by the same dynamics~or Hamil-
tonian! asSV . Since the construction ofTV is based on sym-
metry, we expectT V8 to have the same structure, or simp
with r 0,a,e replaced byr 0,a,e8 . It is then easy to show that

T V
6 j5 i ~T V8

2!6 j}r a8 r e8 , ~58!

for j 52,3,4. Since these elements ofTV are zero, we mus
haver a8 r e850 which impliesr a r e50.
09600
With theser i8 , which arer i in Eqs. ~55! and ~56! with
phases reduced by half, we obtain the decay amplitude
applyingA5S V

1/2Af .

V. NUMERICAL ANALYSIS

A. B̄\DP and D* P modes

For B̄→Dp modes, we start from Eq.~14!, where the
factorization amplitudes are decomposed into color-allow
external W-emission (T), color-suppressed interna
W-emission (C), andW-exchange amplitude (E). They are
given by @4,16#

T5
GF

A2
VcbVud* a1~mB

22mD
2 ! f pF0

BD~mp
2 !,

C5
GF

A2
VcbVud* a2~mB

22mp
2 ! f DF0

Bp~mD
2 !,

~59!

E5
GF

A2
VcbVud* a2~mD

2 2mp
2 ! f BF0

0→Dp~mB
2 !.

Since the annihilation form factorF0
0→Dp(mB

2) is expected to
be suppressed atq25mB

2 anda2 is small, the amplitudeE is

neglected. ForB̄0→D0h we have

AD0h
f

5
GF

A2
VcbVud* a2~mB

22mh
2 ! f DF0

Bh~mD
2 !, ~60!

where h1–h8 mixing effect is included viaF0
Bh(mD

2 )
5cosq F0

Bh82sinq F0
Bh1 . We use experimentally measure

masses inAD0p2
f , AD1p2

f , AD0p0
f , andAD0h

f . These ampli-
tudes are real in our phase convention.

For B̄→D* p, D* 0h, we have M (B̄→D* P)
5(«•pB)AD* P @Eq. ~48!#. Analogous to Eq.~14!, the factor-
ization amplitudesAD* p

f are decomposed into

TABLE I. Form factors in LF and NS form-factor models whe
Ai

Bv(q2)5Ai
Br(q2)/A2 andVBv(q2)5VBr(q2)/A2.

LF ~NS! LF ~NS!

F0
Bp(mD

2 ) 0.29 ~0.27! A0
BD* (mp

2 ) 0.73 ~0.64!

F1
Bp(mD*

2 ) 0.34 ~0.32! A0
Br(mD

2 ) 0.35 ~0.31!

F0
Bh(mD

2 ) 0.16 ~0.15! A1
Br(mD*

2 ) 0.23 ~0.28!

F1
Bh(mD*

2 ) 0.19 ~0.18! A2
Br(mD*

2 ) 0.22 ~0.31!

F0
BD(mp

2 ) 0.70 ~0.63! VBr(mD*
2 ) 0.30 ~0.32!

F0
BD(mK

2 ) 0.70 ~0.64! A0
BD* (mK

2 ) 0.74 ~0.65!

F0
BD(mK*

2 ) 0.71 ~0.65! A0
BK* (mD

2 ) 0.40 ~0.35!

F0
BK(mD

2 ) 0.42 ~0.31! F1
BK(mD*

2 ) 0.44 ~0.36!
7-11
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T5
GF

A2
VcbVud* a1 f p2mD* A0

BD~mp
2 !,

C5
GF

A2
VcbVud* a2 f D* 2mD* F1

Bp~mD
2 !,

~61!

whereE is again neglected. ForB̄0→D* 0h we have

AD* 0h
f

5
GF

A2
VcbVud* a2f D* 2mD* F1

Bh~mD
2 !. ~62!

Starting fromAD(* )P
f , FSI redistributes these sources in

the amplitudesAD(* )P , and we obtain the correspondin
rates by

G~B̄→PP!5uAPPu2pcm/~8pmB
2 !,

G~B̄→VP!5uAVPu2pcm
3 /~8pmV

2 !, ~63!

where

2 mB pcm5A@mB
22~m11m2!2#@mB

22~m12m2!2#.
~64!

Note that we factor out«•pB in the definition of the ampli-
tudeAVP , so our expression forG(B→VP) is slightly dif-
ferent from that in Ref.@16#.

In our numerical study, we fixVud50.9749, Vus
50.2225, Vcb50.04, and use the decay constan
f p5133 MeV, f K(* )5158 (214) MeV, f D(* )

5200 (230) MeV, andf r5210 MeV. Masses and lifetime
are taken from Particle Data Group~PDG! @3#. We consider
two form factor models: the relativistic light-front~LF!
quark model@17# and the Neubert-Stech~NS! model@4#. The
relevant values are listed in Table I. We use the color s
pressed branching ratios of Belle@1#, except forD (* )0p0

modes where we combine with the latest CLEO numbers@2#.
For other modes we use PDG values@3#. Since the charged
D (* )0p2 mode does not rescatter to other modes, we n

TABLE II. The best fits in the SU~3! FSI picture. The subscrip
indicatesDP or D* P modes. Form factor model dependence is le
than a couple of percent.

Fit1DP Fit2DP FitD* P

x2 0.20 0.27 0.21
d8 47.8° 17.1° 55.7°
u 24.8° 252.7° 18.2°

(11 ir 0)e22id3/2 0.4510.50i 0.9110.28i 0.3210.47i
ir ee

22id3/2 0.5520.50i 0.0920.28i 0.6820.47i
ir ae22id3/2 0.1410.04i 20.4320.50i 0.2720.01i

uA1/2/(A2A3/2)u 0.75 0.65 0.71
ud1/22d3/2u 30.2° 26.2° 28.3°
09600
-

r-

malize all modes toB(D (* )0p2)5@5.3 (4.6)60.5 (0.4)#
31023 @3#. We then perform ax2 fit to the ratios of
branching ratios B(D (* )1p2)/B(D (* )0p2),
B(D (* )0p0)/B(D (* )0p2), andB(D (* )0h)/B(D (* )0p2).

The use of ratios reduces model dependence on form
tors, and is sensitive only toa2 /a1. Our numerical results for
rescattering phases in LF and NS form factor models ne
differ by more than a few percent. Withua2u50.2660.02
from fit to B→J/cK data@16# and the range ofa1;1 to 1.1,
a2;0.2 to 0.3 from various modes@4#, we shall adopt
a2 /a150.25 in subsequent discussion. We find that a lar
a2 /a1 is preferred for theDP modes, but the converse is tru
for D* P modes. However, fora2 /a1'0.25, thex2’s of best
fits to DP andD* P modes are both quite small.

The best fits for FSI phase differencesd8 andu ~or alter-
natively the rescattering parametersr i) are given in Table II.
We do not list form factor model dependence since it sho
up often only at the third decimal place. We find two fits f
the DP case, but only one fit for theD* P modes. ForDP
modes, the set that we call ‘‘Fit1’’ is similar to theD* P
modes, i.e.,d8;650°, u;620°. We find that the quark
exchange strengthur eu is larger than the annihilation strengt
ur au in this case. As illustrated in Appendix B, the large pha
;50° arises because of sizable strength of bothD (* )0p0 and
D (* )0h. While d8 and u effects are of similar sign for the
former, for the latter they counteract, and a larged8 phase is
needed.

For ‘‘Fit2’’ of the DP case, we haved8;620°, u;
750°, implying thatur au.ur eu. As we will see later, this fit is
ruled out by theB̄0→Ds

1K2 bound. We mention a curiou
point about our ‘‘Pomeron’’ related effect, i.e.,u11 ir 0u
50.67, 0.95, and 0.57, respectively, for Fit1DP , Fit2DP , and
FitD* P . The first and the last are remarkably consistent w
the estimates ofSpp→pp;0.58 @18#, 0.68 and SDp→Dp

;0.76 @9# at As5mB . In contrast, Fit2DP , which is already
ruled out by data, is not quite consistent.

In Table II we showuA1/2/(A2A3/2)u and ud1/22d3/2u ob-
tained by using the fitted strong phases. The comparison
Eq. ~15! will be discussed in the next section.

We summarize the predicted rates of various modes
Table III. The branching ratios are obtained by multiplyin

s
TABLE III. The branching ratios of variousD (* )P modes in

1024 units. The second and third columns compare experiment w
the factorization model. The last two columns give the best fit
sults with FSI parameters of Table II.

Mode B (31024) facLF(NS) Fit1DP FitD* P

x2 0.20 0.21

D1p2 3064 35.7~35.5! 32.2
D0p0 2.960.5 0.57~0.58! 2.93
D0h 1.420.4

10.560.3 0.33 ~0.34! 1.43
Ds

1K2 ,2.4 (0.7) 0 0.03
D* 1p2 27.662.1 29.8~29.0! 26.3
D* 0p0 2.560.7 0.60~0.69! 2.44
D* 0h 2.020.8

10.960.4 0.34 ~0.39! 1.83
Ds*

1K2 ,1.7 0 0.16
7-12
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the fitted ratios of branching ratios by the measu
central value of B(D (* )0p2). The results for
D (* )1p2,D (* )0p0,D (* )0h fit the data well, as expecte
from the smallx2. It is worthy to note that rates given i
Table III satisfy the unitarity condition of Eq.~4!, i.e., the
sum of branching ratios before and after FSI is equal
shown in Eq.~41!, up to small phase space corrections. T
clearly shows that the color suppressed modes are fed
the D (* )1p2 mode.

At the amplitude level, one reads from Eq.~35! that
D (* )0p0, D (* )0h, and Ds

(* )1K2 receive the (r a2r e)/A2,
(r a1r e)/A6, and r a rescatterings, respectively, from
D (* )1p2. Indeed, by using phases shown in Table II in E
~40!, the FSI contribution can be estimated by usi
uAD(* )0p0 /AD(* )1p2u;uS D(* )1p2,D(* )0p0

1/2 u and similarly for
uAD(* )0hu and uAD

s
(* )1K2u. The FSI contribution from

D (* )1p2 alone provides 70%–80% of measuredD (* )0p0,
D (* )0h rates, with the remainder coming froma2 and inter-
ference terms. For theDs

(* )1K2 mode, the FSI contribution
from D (* )1p2 is small due to the smallness ofr a but it is
still three times larger than that shown in Table III. Becau
of this smallness, the FSI rescattering from the color s
pressed modes~due to the nonvanishinga2) throughr e can-
not be neglected, which reduces the rate to that shown in
Table.

We note that the factorizeda2 contribution to color sup-
pressed modes show some form factor model depende
especially forD* P modes, but such model dependence
fit results are rather slight. The reduced form factor dep
dence is quite consistent with FSI rescattering domina
over factorizeda2 amplitude, sinceD (* )1p2 is the common
source.

In ‘‘Fit2’’ we find B(Ds
1K2)54.6531024.B(D0p0),

B(D0h) due to ur au.ur eu. This value is above the PDG
bound ofB(Ds

1K2),2.431024, and way above the recen
Belle bound of 0.731024 @19#, hence is ruled out. The re
sults for Fit2 are therefore not shown in Table III. On t
other hand, sinceur au in the D* P case is not too small, the
result ofB(Ds*

1K2);1.631025 may still be of interest.

B. FSI in DV modes

For B̄→Dr, Dv, we haveM (B̄→DV)5«•pB ADV and
ADr

f can be decomposed into

TABLE IV. The best fit phase difference forDV modes.

Mode Solution 1 Solution 2

x2 1.20 0.64
d8 18.1°
s 34.8°

(11 ir 0)e22id3/2 0.9010.30i 1
ir ee

22id3/2 0.1020.30i 0
ir ae22id3/2 0 20.2210.31i
09600
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T5
GF

A2
VcbVud* a1f r2mrF0

BD~mr
2!,

C5
GF

A2
VcbVud* a2f D2mrA0

Br~mD
2 !, ~65!

while E is again negligible. ForB̄0→D0v one has

AD0v
f

5
GF

A2
VcbVud* a2f D2mvA0

Bv~mD
2 !. ~66!

We setAD
s
1K* 2

f
5AD0f

f
50 for the factorization amplitudes

of B̄0→Ds
1K* 2, D0f modes. We again normalize to th

D0r2 mode since its rate is unaffected by FSI. We take
D0v measurement from Ref.@1#, while the measurements o
D1r2, D0r2 modes and the upper limit ofB(D0r0) are
taken from the Particle Data Group~PDG! @3#.

Because of the reduction to one phase difference for b
solution 1 and solution 2 of Eqs.~55! and~56!, we are able to
fit with just D1r2 andD0v data. We findd8 (s) to be 18°
(35°) for solution 1~solution 2!, as given in Table IV. Since
the FSI contributions toD0r0 andD0v are mainly fed from
D1r2 andAD0r0

f '2AD0v
f , Eq. ~57! leads to

AD0r0(v)'
i ~r a87r e8!

A2
AD1r2

f
1~11 ir 08!AD0r0(v)

f

'
i ~r a87r e8!

A2
AD1r2

f
7~11 ir 08!AD0v

f , ~67!

wherer 08 , r a8 , andr e8 are defined in Sec. IV B. For solution
~solution 2! the dominant FSI contributions toD0r0 and
D0v are the same in magnitude but opposite~same! in sign

due tor e
(8) (r a

(8))Þ0. This implies different interference pa
terns. For solution 1, we haveB(D0r0);B(D0v). For solu-
tion 2, sinceAD1r2

f andAD0v
f are real and of the same sign

~11 ir 08!e2 id3/251,

Re~ ir a8e
2 id3/2!5 1

3 @coss21#<0, ~68!

TABLE V. The branching ratios of variousDV modes. The
second and third columns compare experiment with the factor
tion model. The last two columns give the best fit results with F
parameters of Table IV.

Mode B (31024) facLF(NS) Solution 1 Solution 2

D1r2 79618 100.7~101.2! 98.2 92.7
D0v 1.860.520.3

10.4 0.67 ~0.64! 1.86 1.92
D0r0 ,3.9 0.67~0.64! 1.90 3.37
Ds

1K* 2 ,9.9 0 0 2.73
D0f 0 0 0
7-13
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the FSI contribution always interferes destructively~contruc-
tively! with AD0v

f (AD0r0
f ). While B(D0r0) becomes larger

one would need large annihilation contribution to account
the observedD0v data, which in turn gives rise to
B(Ds

1K* 2) as large as 2.731024. These patterns can b
tested in the near future.

On the other hand,D0f only rescatters withDs
1K* 2, as

can be seen from Eq.~57!. It does not pick up any FS
contribution sinceAD

s
1K* 2

f
50, even ifAD

s
1K* 2 is nonvan-

ishing as in the solution 2 case. Observation of theD0f
mode would imply some mechanism at the ‘‘source’’ lev
Our fitted branching ratios and predictions for variousPV
modes are given in Table V.

We note thatuA1/2/(A2A3/2)u50.84, ud1/22d3/2u512.7°
from solution 1 and uA1/2/(A2A3/2)u50.81, ud1/22d3/2u
518.5° from Solution 2. The phase angles are somew
smaller than those forD (* )p modes.

C. Predictions for D „* …K̄ and DK̄* modes

Our FSI formulas can be applied readily to rescatter
between the Cabibbo suppressed modes,D (* )1K2 and
D (* )0K0, since they are contained in the formalism f
D (* )P. Following similar procedure as before, we have

2S Im AD(* )1K2

Im AD(* )0K̄0
D 5T †S AD(* )1K2

AD(* )0K̄0
D , ~69!

where

T5S r 0 r e

r e r 0
D , ~70!

and ‘‘annihilation’’ is clearly impossible as can be seen fro
the pictorial approach. By using Eq.~37!, we note thatS
511 iT is automatically unitary. Therefore we obtain

TABLE VI. The predicted branching ratios ofD (* )K̄ andDK̄*
modes in 1024 units. The second and third columns compare
periment with the factorization model. The last three columns g
the best fit results with FSI parameters of Tables II and IV.

Mode B (31024) facLF(NS) Fit1DP FitD* P Solution 1

D0K2 4.260.7 4.12
D1K2 2.060.6 2.61 2.20

D0K̄0 0.12 0.53

D* 0K2 3.661.0 3.40
D* 1K2 2.060.5 2.15 1.71

D* 0K̄0 0.10 0.55

D0K* 2 7.0
D1K* 2 5.11 4.99

D0K̄* 0 0.09 0.21
09600
r

.

at

g

S AD(* )1K2

AD(* )0K̄0
D 5S 1/2S AD(* )1K2

f

AD(* )0K̄0
f D , ~71!

where

S 1/25
eid3/2

2 S 11eid8 12eid8

12eid8 11eid8D , ~72!

which is consistent with those obtained in Appendix A, a
the factorization amplitudes are

AD1K2
f

5
GF

A2
VcbVus* a1~mB

22mD
2 ! f KF0

BD~mK
2 !,

AD0K̄0
f

5
GF

A2
VcbVus* a2~mB

22mK0
2

! f DF0
BK~mD0

2
!,

AD* 1K2
f

5
GF

A2
VcbVus* a1 2mD* f KA0

BD~mK
2 !,

AD* 0K̄0
f

5
GF

A2
VcbVus* a2 2mD* f D* F1

BK~mD* 0
2

!,

~73!

where form factors are found in Table I. One again ha
triangle relationAD(* )0K2

f
5AD(* )1K2

f
1AD(* )0K̄0

f .
The d8 phase has already been fitted, and the predic

branching ratios forDK̄ andD* K̄ modes are given in Table
VI. The second column is obtained by multiplying Bel
measurements ofB(D (* )1,0K2)/B(D (* )1,0p2) @20# by
PDG values ofB(D (* )1,0p2) @3#.

It is interesting to note thatD (* )K̄ modes do not receive
the annihilation type FSI,r a , and theK̄0 wave function does
not have the 1/A2 factor as compared top0. For ‘‘Fit1DP’’
and ‘‘FitD* P , ’’ r a is subdominant whileur eu is close to
each other, hence we find thatB(D0K̄0)/B(D1K2)
'2B(D0p0)/B(D1p2)'231/10 and B(D* 0K̄0)
'B(D0K0). As noted, ‘‘Fit2DP’’ is ruled out already by
Ds

1K2 bound.
In a very similar fashion, we predict the rescattering

D1K* 2 into theD0K̄* 0 final state, which is given again in
Table VI for solution 1 of theDV case, where one agai
has B(D0K̄* 0)/B(D1K* 2)'2B(D0r0)/B(D1r2)'2
31/50. For solution 2,r e50 and the result is the same as t
second column for factorization.

The DK̄* modes have yet to be observed. The factori
tion predictions forD0K* 2 andD1K* 2 are about twice as
large asD* 0K2 and D* 1K2, but the predicted branching
ratio for B̄→D0K̄* 0 is less than half ofB̄→D* 0K̄0 in solu-
tion 1. This is becauseur eu ~or the rescattering phased8) for
DV modes are much smaller than forD* P modes. We note

-
e
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that in solution 2 one would predictB̄→D0K̄* 0 to occur at
half the rate of the solution 1 case, i.e., just the factorizat
a2 prediction.

Our formalism therefore predicts a relatively sizab
B(D (* )0K̄0) at ;0.531024, and expectsB(D0K̄* 0);0.2
31024 (0.131024 if solution 2 is confirmed!. We encour-
age Belle and BaBar to search for these modes.

VI. DISCUSSION AND CONCLUSION

We have stressed that the isospin relation of Eq.~13!,
which follows from Eq.~1! @given more explicitly in Eqs.
~9!–~11!#, holds whether one has FSI or not. This was us
to extractA1/2/A3/2 directly fromD (* )p data, as given in Eq
~15!, which we reproduce here:

1

A2
UA1/2

A3/2
UD(* )p only

50.7160.11~0.7560.08!,

uduD
(* )p only529°66° ~30°67°!, ~74!

where it is made clear that they are extracted fromD (* )p
data alone. On the other hand, we have given in Table II
values for uA1/2/(A2A3/2)u and ud1/22d3/2u as obtained by
using the fitted strong phases that take into accountD0h (* )0

data, i.e., by using theAD(* )0p2, AD(* )1p2, and AD(* )0p0

amplitudes of Eq.~39!. They turn out to be not so differen
from Eq. ~74!. Let us understand why.

We note thatuA1/2/(A2A3/2)u511O(L/mQ)→1 in the
heavyb ~and c) quark limit @5,7#, althoughmc may not be
heavy enough. The strong phaseud1/22d3/2u→0 in the ab-
sence of short and long distance rescattering. It is intruc
to consider first the elasticD (* )p→D (* )p rescattering case
Noting that elastic rescattering does not changeuAI u from its
factorization value, forD (* )P modes we have, roughly
speaking,

uA1/2u

A2uA3/2u
5

uA1/2
f u

A2uA3/2
f u

5
u2T2Cu
2uT1Cu

;

U22
a2

a1
U

2U11
a2

a1
U , ~75!

which deviates from 1 due to a nonzeroa2, which is a non-
factorizable effect. It was a happy coincidence, before
measurement of color-suppressed modes, that takinga2 /a1
50.25 and real could account for@4# both B2→D0p2 and
B̄→J/cK̄ (* ) rates. It should be stressed that the siza
value ofua2 /a1u can be viewed as determined this way fro
data that givesuA1/2/(A2A3/2)u.0.7.

The impact of the new experimental measurement
D0p0 is that one is now able to determine the strong ph
difference,ud1/22d3/2u;30°, which is not quite small. With
this one has two ways to proceed.

As mentioned in the Introduction, Refs.@7,8# continue to
employ factorization formulas toD (* )0p0 and hence make
ua2u larger by roughly a factor of 2. To maintainD (* )0p2

and generated1/22d3/2, one capitalizes on Eq.~75! by drop-
09600
n

d

e

e

e

e

f
e

ping the absolute value condition. That is, one resorts t
complexa2 /a1 itself. In this way one findsua2u;0.4 to 0.5

and arga2;60° could account forB̄→Dp data, at the cost

that ua2u is twice as large as fromJ/cK̄ (* ) modes. Reference
@7# argues further that, while factorization no longer hold
the trend of larger and complexa2 is expected from QCD
factorization@5#.

Our critique is the following. First, this ‘‘a2’’ approach is
process dependent, and predictiveness is lost. Althoughua2u
;0.4 to 0.5 could account for the strength of observ
D (* )0h andD (* )0v modes, it seems coincidental, withua2u
varying by ;20% –30% among these andD (* )0p0 modes,

while we know thatua2u;0.2 to 0.3 forJ/cK̄ (* ) modes.
Second, it is the need to maintain theD (* )0p2 rate that a
sizable phase toa2 is invoked, although previously a smalle
and reala2 gave a pleasant, consistent picture. Howev
from Eq. ~75! we know that a2 reducesuA1/2/(A2A3/2)u
hence it represents inelastic effects@21#. This is the reason
why it is not quite calculable. In this sense, howev
arga2;60° is not reasonable since one expects strong c
cellations among numerous inelastic channels@9,12#. A sta-
tistical model suggests the typical phase to be;20° @9#.
Third, we stress that generating Eq.~74! by the phase and
strength ofa2 holds only when one drops the absolute val
requirement from Eq.~75!, i.e., ignoring elastic FSI, as is
common practice in QCD factorization@5#. Such FSI effects
are O@as(mb)# suppressed, or 1/mQ suppressed. For the
former, clearlyas(mb);0.2;10° in radians. For the latter
one has the real problem thatmc may not be heavy enough

The approach advocated in this paper is via quasi-ela
FSI rescattering. Let us make a point by point comparis
with the ‘‘process dependenta2’’ approach. First, process
independence is not so easily conceded. In particular,
maintain a2 /a1>0.25 and real. Thus the proximity of Eq
~75! with Eq. ~74! reflects a phenomenological tuning don
several years ago. The philosophy is that, while we agree
a2 should be process dependent and in principle complex
take the above ‘‘tuned’’ value as no mere accident. That
Nature could have revealed to us long ago thata2 is strongly
process dependent. Since keeping botha2 as the paramete
and allowing for FSI phases cannot lead one afar, we op
keepa2 /a1 fixed as done in@4#. The new experimental mea
surement ofD (* )0h and D (* )0v modes, rather than giving
‘‘process dependence’’ irritation, can be incorporated nic
by enlarging the scope of FSI from elastic SU~2! to quasi-
elastic SU~3! symmetry. This stretching of ‘‘elasticity,’’ to-
gether with maintaining process independence to a good
gree, makes our approach suitably predictive. Second,
leavinga2 /a1 as done before in@4#, one enjoys the succes
with D0p2/D1p2 andJ/cK̄. The strength ofa2 is smaller,
hence the acuteness of inelasticity is not as severe as
‘‘ a2’’ approach. A strong phase of order 50° does emer
but this is interpreted as due to havingD (* )0p0 andD (* )0h
both sizable~see Appendix B!, and has completely differen
origins from the need for arga2;60° in the large ‘‘a2’’ ap-
proach. Finally, in comparison with the strong assumption
removing the absolute value condition from Eq.~75!, we
7-15
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took advantage of the FSI approach to expand a previo
commonly known ‘‘folklore’’ on elastic FSI rescattering.

We can now comment on comparison of Eq.~74! with
values in Table II. With a2 /a150.25, we find
uA1/2/(A2A3/2)u5uA1/2

f /(A2A3/2
f )u50.77 (0.75) for LF and

0.77 ~0.73! for NS form factors. Assuming elastic rescatte
ing and using the formulas of Sec. III, the strength of amp
tudes cannot change, and we findud1/22d3/2u
530.6° (29.9°) for LF and 30.6°(29.2°) for NS form fac
tors. Note that the form factor dependence is very we
With rescattering among SU~3! multiplets,A1/2

f can now feed
other color suppressed modes via rescattering@Eq. ~45!#. The
D (* )0p2 mode still cannot rescatter to other modes,
uA3/2u5A3/2

f 5uAD0p2u/A3. Thus from unitarity we expec
uA1/2/A3/2u,uA1/2

f /A3/2
f u in the presence of quasi-elastic FS

We see from Table II thatuA1/2/A3/2u is reduced from the
factorization results by 3% and 16% respectively, for Fit1DP
and Fit2DP , and by 5% for FitD* P . Except the second cas
which is ruled out byB̄0→Ds

1K2 data, the deviation from
elastic FSI is mild. This reflects the fact that the colo
suppressedD (* )0h rate is still small compared toD (* )1p2.
The strong phasesud1/22d3/2u in Table II agree rather wel
with the directly extracted ones@Eq. ~74!# as well as the
elastic ones, and the validity of Eq.~46! as good estimates i
born out.

A principal motivation and interest in understandin
color-suppressedB̄→D (* )0h(* )0 modes is its possible impli
cation for B̄→K̄p and pp final states. These modes ha
been one of the focal points inB physics in recent year
because it provides rich probes ofCP violation @22# and
possibilities@23# for new physics. We note that the effect
a2 is rather subdued in these processes, but our pictur
rescattering may still be realized, hence these processes
vide more fertile testing ground for FSI. Effects of FSI re
cattering onKp, pp final states have been discussed in
literature@9,12,18,24#. In particular, it has been stressed@25#

that large rescattering phases inK̄p→K̄p and pp→pp
could have dramatic impact on such charmless final state
phases analogous tod8;50° can be realized, theK̄0p0 and
p0p0 modes could get enhanced while thep1p2 mode sup-
pressed. DirectCP rate asymmetries could soon be observ
in K̄p modes, in particular in the ‘‘pure penguin’’K̄0p2

mode, while forp0p0 and p1p2 modes they could even
reach 50%–60%. The formalism is a straightforward ext
sion from the one presented here. Rather than DP→DP
rescattering, one now needs to studyPP→PP rescattering.
It is interesting to note that the factorization ‘‘sources’’ for a
four K̄p modes are sizable, unlike our present case wh
the D1p2 mode is the singly large source. Thus the cro
feed between channels would be different. Furthermore,
CP violating rate asymmetries provide additional leverage
check for the presence of FSI phases. In this sense theKp,
pp (PP in broader sense! system is richer than our prese
D (* )P case. It is interesting that the physical picture ofr i is
still applicable with an additional annihilation rescatteri
term, due to possible final states consisting ofPP̄. Our study
is underway and will be reported elsewhere.
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Finally, we mention a curiosity. Fit2DP contains large

‘‘annihilation’’ rescattering, which runs againstB̄0→Ds
1K2

data and hence is ruled out. Fit1DP and FitD* P , as well as
solution 1 of theDV case, all had exchange rescattering
dominant over annihilation. Thus solution 2 of theDV case
is the only one where the latter is sizable and dominant
therefore has the distinct feature thatD0r0 is almost twice as
large asD0v, with Ds

1K2 not much smaller. However, i

this were realized, then one would expectB̄0→D0K̄* 0 to be

at the factorization rate and much weaker thanD0K̄0 and

D* 0K̄0, which would be rather peculiar. We would therefo
not be surprised if solution 2 gets ruled out soon, and o
might then conclude that rescattering is largely in terms
the classic ‘‘charge exchange’’ type. This may also expl

why KK̄ modes are so far unseen. In this vein we wish
remark also that we have not exhausted the predictivenes
our approach. For instance, one could generate ‘‘wro

charge’’ B̄→D̄0K̄ decays viaDs
2p0→D̄0K2 and Ds

2p1

→D̄0K̄0 rescattering from Vub suppressedB̄→Ds
2p0,

Ds
2p1 decays. The rescattering matrix can be adapted fr

results presented here, but the latter decays have yet t
observed.

In conclusion, we advocate in this work the possibili

that the recently observed host ofB̄→D0h0 modes may be
hinting at final state rescattering. In contrast to a sugges
of a larger and complexa2, we extend the elasticD (* )p
→D (* )p FSI picture to quasi-elasticD (* )P→D (* )P and
DV→DV rescattering, whereP is the pseudoscalar SU~3!
octet, andV is the vector U~3! nonet. In this way we are able
to accommodateD (* )0h, D0v modes in a unified setting
For D (* )P modes, we find that data give rise to two resc
tering phasesd8;50° and u;20°, where the need for a
large phase comes about because of the strength of bot
D (* )0p0 andD (* )0h modes. ForDV modes, nonet symme
try reduces the number of physical phases to one, of o
20°-30°. The emerging pattern is that of ‘‘charge exchang
rescattering, rather than ‘‘quark annihilation.’’ We predi

rather smallB̄0→Ds
(* )1K2, Ds

1K (* )2, andD0f rates, and
D0r0.D0v, although in one solution one could hav

D0r0.23D0v and B̄0→Ds
1K (* )2;331024, which can

be easily checked. We expectB̄0→D (* )0K̄0 and D0K̄* 0 to
be at 0.5531024 and 0.231024, respectively, which is siz-
able. While these predictions can be tested experiment
theKp, pp charmless final states are even more promisi
if FSI phases are as large as 50°, because one then ex
rather sizable directCP asymmetries with a distinct pattern
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APPENDIX A: SU„3… DECOMPOSITION
OF THE RESCATTERING MATRIX

It is well known thatD0,1, Ds
1 and p, K, h transform,

respectively, as3̄ and8 under SU~3!,

D̄~ 3̄!5~D0 D1 Ds
1! ,

P~8!5S p0

A2
1

h8

A6
p1 K1

p2
2

p0

A2
1

h8

A6
K0

K2 K̄0 2A2

3
h8

D .

~A1!

The D̄(3̄) ^ P(8) can be reduced into a3̄, a 6 and a15, i.e.
~see, for example,@13#!

T~ 3̄! j[D̄ lP j
l , T~6! l i [e lmnD̄mPn

i 1e imnD̄mPn
l ,

T~15! jk
i [D̄kP j

i 1D̄ jPk
i 2

1

4
dk

i D̄ lP j
l 2

1

4
d j

i D̄ lPk
l .

~A2!

The SU~3! symmetry of strong interaction enforces the 24
24 scattering matrix having the following form

S 1/25eid15(
a51

15

uT~15!;a&^T~15!;au

1eid6(
b51

6

uT~6!;b&^T~6!;bu

1eid 3̄(
c51

3

uT~ 3̄!;c&^T~ 3̄!;cu; ~A3!

where uT(15);a&, uT(6);b&, and uT(3̄);c& are orthonormal
SU~3! basis for the irreducible representations shown in
above equation.

Although the 24 by 24 rescattering matrix is diagonal
these basis, we may not need all of them in a realistic si
tion. For a final state with given strangness and isospin~or
electric charge! it can only rescatter to other final states ha
ing the same quantum numbers. For a later purpose, we
the explicit forms of these basis. By proper linear combin
states within the same multiple, as shown in Eq.~A2!,
uT(15);a& can be classified according to strangthness~S! and
isospin~I!

~S51, I 51!:
uD1K1&1uDs

1p1&

A2
,

09600
e

a-

-
ve
g

uD1K0&2uD0K1&2A2uDs
1p0&

2
,

uD0K0&1uDs
1p2&

A2
; ~A4!

~S51, I 5 1
2 !: uDs

1K1&, uDs
1K0&; ~A5!

~S51, I 50!:
uD1K0&1uD0K1&1A6uDs

1h8&

2A2
. ~A6!

~S50, I 5 3
2 !: uD1p1&,

1

3
uD0p1&1A2

3
uD1p0&,

1

A3
uD1p2&2A2

3
uD0p0&, uD0p2&; ~A7!

~S50, I 5 1
2 !:

2uD0p1&2A2uD1p0&13A6uD1h8&26uDs
1K̄0&

4A6
,

~A8!

2uD1p2&1A2uD0p0&13A6uD0h8&26uDs
1K2&

4A6
;

~A9!

~S521, I 51!: uD1K̄0&,
uD1K2&1uD0K̄0&

A2
, uD0K2&.

~A10!

Similarly uT(6),b& are

~S51, I 51!:
uD1K1&2uDs

1p1&

A2
,

uD1K0&2uD0K1&1A2uDs
1p0&

2
,

uD0K0&2uDs
1p2&

A2
, ~A11!

~S50, I 5 1
2 !:

2uD0p1&2A2uD1p0&2A6uD1h8&22uDs
1K̄0&

4
,

2uD1p2&1A2uD0p0&2A6uD0h8&22uDs
1K2&

4
,

~A12!
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~S521, I 50!:
uD1K2&2uD0K̄0&

A2
. ~A13!

The uT(3̄),c& are

~S50, I 51/2!:

6uD0p1&23A2uD1p0&1A6uD1h8&16uDs
1K̄0&

4A6
,

6uD1p2&13A2uD0p0&1A6uD0h8&16uDs
1K2&

4A6
,

~A14!

~S51, I 50!:
3uD1K0&13uD0K1&2A6uDs

1h8&

2A6
.

~A15!

With this basis, it is then straightfarward to obtainS 1/2 by
using Eq.~A3!. As noted before we only need final stat
with same quantum numbers for rescattering. For exam
I 53/2 states can only appear in15, hence we identifyd3/2 as
d15. For S521 andQ50, we only haveD0K̄0 andD1K2

for rescattering. By using two neutral andS521 states in
15 and 6, respectively, we immediately obtainS 1/2 in Eq.
~71!. Similarly, by usingS5Q50, I 53/2, 1/2 states in15,
and I 51/2 states in 6 and 3,̄ we obtainS 1/2 in Eq. ~40!
readily.

We now turn to theDV case. The SU~3! decomposition of
DV final states can be obtained by replacingp, K, andh8 in
theDP case byr, K* , andv8, respectively. However, ther
is another3̄ as uT(3̄8); i &5uD̄(3̄) iv1&. This 3̄8 can mix with
the previous3̄ with a two by two symmetric~due to time
reversal invarint! unitary matrixU 1/2. We have

S V
1/25eid15(

a51

15

uT~15!;a&^T~15!;au

1eid6(
b51

6

uT~6!;b&^T~6!;bu

1 (
m,n53̄,3̄8

(
c51

3

uT~m!;c&U mn
1/2^T~n!;cu, ~A16!

for theDV rescatering matrix. Note that the symmetric mi
ing matrix U 1/2 can be parametrized by two phases and o
mixing angle. We need four paramters, including three ph
differences and one mixing angle, to discribe theDV FSI
case. On the other hand by nonet symmetry we reduce t
to only one parameter~in addition to an overall phase! but
with two distinct solutions as discussed in Sec. IV.
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APPENDIX B: GEOMETRIC REPRESENTATION

We give the geometric~triangular! representation of our
results in this appendix. For simplicity of presentation, w
consider the leading FSI contribution and drop thea2 contri-
bution. The triangular relation for theDp system, Eqs.~9!
and ~10!, and the FSI formula forD0h, Ds

1K2, Eqs. ~44!
and ~45!, will then be reduced to

A3AD1p25A3/21A2A1/2,

A2A1/25
1

16
~116eid819eiu!~A2eid3/2A1/2

f !,

A6AD0p0522A3/21A2A1/2,

A2AD0h5
1

16
~326eid813eiu!~A2eid3/2A1/2

f !,

~B1!
A3AD0p253A3/2,

AD
s
1K2

A3
5

1

16
~2122eid813eiu!~A2eid3/2A1/2

f !,

A3/25eid3/2A3/2
f , A2A1/2

f 52A3/2
f ,

where the last equation follows fromA6AD0p0
f

522A3/2
f

1A2A1/2
f 50 when a250. Equation ~13! still holds, and

uA3/2u5uA3/2
f u, but we now haveuA1/2u<uA1/2

f u due to quasi-
elastic rescattering.

We illustrate the amplitudes of Fit1DP , i.e., d8547.8°
andu524.8°, in Fig. 5. TheD* P case is similar. We have
chosen thex axis to coincide withA3/2. Sinced8 andu are
of the same sign, when considering onlyD0p0, there is no
need for a large angle, andd8;u;d5d1/22d3/2;30°
would have been good enough. However, becauseu has the
same sign asd8, as we can see from Fig. 5, the third phas
contributing toAD0h , i.e., 3eiu/16(eid3/2A2A1/2

f ), turns back
and tends to reduceA2AD0h . We therefore need to start wit
a largerd8 to compensate. Thus the relatively large pha
d8;50° is driven by the strength of the measuredB(D0h)

FIG. 5. Geometric representation ofB̄→DP rescattering of Eq.
~B1!.
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and B(D0p0). Note that in this case thed8 and u phases
compensate strongly for each other andAD

s
1K2 is small com-

pared toAD0h andAD0p0.
For Fit2 of theDP case,d8(517.1°) andu(5252.7°)

are opposite in sign. This favors the generation ofD0h since
the effects ofd8 andu add to each other. However, we wou
need a largeu phase to overcome the effect ofd8 to generate
the D0p0 mode, i.e., to account forudu5ud1/22d3/2u;30°.
Otherwise, we will have too small aAD0p0 amplitude. Same
as the previous case, a large phase of order 50° is need
account for the strength of both theD0p0 andD0h modes.
,

da

09600
to

Inspecting the generation ofAD
s
1K2, however, we see tha

the effects ofd8 and u now add to each other, and woul
generate too large aB(Ds

1K2) that is already ruled out by
data, hence the case is not plotted.

We also refrain from plotting the case forDV modes for
the following reasons. First of all, because of relative
weaker rescattering, thea2 effect is more prominent than in
theD (* )P case. Second, some discussion is already give
Sec. IV B, where a comparison is made between FSI anda2
contributions. Decomposing intoA1/2 and A3/2 amplitudes
does not make the case clearer.
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