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Polarized deep inelastic diffractiveep scattering: Operator approach
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Polarized inclusive deep-inelastic diffractive scattering is dealt with in a quantum field theoretic approach.
The process can be described in the general framework of nonforward scattering processes using the light-cone
expansion in the generalized Bjorken region applying the generalized optical theorem. The diffractive structure
functionsg1

D(3) andg2
D(3) are calculated in the twist-2 approximation and are expressed by diffractive parton

distributions, which are derived from pseudoscalar two-variable operator expectation values. In this approxi-
mation the structure functiong2

D(3) is obtained fromg1
D(3) by a Wandzura-Wilczek relation similar as for deep

inelastic scattering. The evolution equations are given. We also comment on the higher twist contributions in
the light-cone expansion.
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I. INTRODUCTION

Unpolarized deep inelastic diffractive lepton-nucle
scattering was observed at the DESY electron-proton coll
HERA some years ago@1#. In the region of hard diffractive
scattering this process is described by structure funct
which are represented by diffractive parton distributio
They depend on two scaling variablesx andxP and are dif-
ferent from the parton densities of deep inelastic scatter
New diffractive parton densities are expected to occur
polarized deep inelastic diffractive lepton nucleon scatteri
They can be measured at potential future polarizedep facili-
ties capable of probing the kinematic range of smallx, cf.
@2#. Dedicated future experimental studies of this process
reveal the helicity structure of the nonperturbative col
neutral exchange of diffractive scattering with respect to
quark and gluon structure and how the nucleon spin
viewed under a diffractive exchange. At short distances
problem can be clearly separated into a part, which can
described within perturbative QCD, and another part wh
is thoroughly nonperturbative. In this paper we use the lig
cone expansion to describe the process of polarized diff
tive deep-inelastic scattering similar to a recent study for
unpolarized case@3#. While the scaling violations of the pro
cess can be calculated within perturbative QCD, the po
ized diffractive two-variable parton densities are nonpert
bative and can be related to expectation values of~non!local
operators. Their Mellin moments with respect to the varia
b5x/xP may, in principle, be calculated on the lattice a
one may try to understand the ratios of these moments
those for the related deep-inelastic process with respec
their scaling violations as being measurable in future exp
ments.

In this paper we describe the process of polarized de
inelastic diffractive scattering, which is a nonforward proce
in its hadronic variables, at large spacelike momentum tra
fer q2. In this approach there is no need to refer to a
specific mechanism of color-singlet exchange. It is co
pletely sufficient to select the process by a rapidity gap
0556-2821/2002/65~9!/096002~7!/$20.00 65 0960
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tween the final state proton and the other diffractively p
duced hadrons, which is sufficiently large. The opera
formulation allows straightforwardly the description of als
higher twist operators in the light cone expansion, which
potentially more involved in other scenarios@4#, to which we
agree on the level of twist-2.

We first derive the Lorentz structure of the process for
general kinematics, before we specify to the case of2t
52(p22p1)2,M2!2q2 which is often met in experiment
The diffractive parton densities are derived on the level
the twist-2 operators. In this approximation the scatter
cross sections are described by two structure functi
g1

D(3)(x,Q2,xP) and g2
D(3)(x,Q2,xP) for pure electromag-

netic scattering.1 Also in the present case it turns out that t
structure functions are related by the Wandzura-Wilczek
lation @7#. Analogously to the unpolarized case, Ref.@3#, the
anomalous dimensions ruling the evolution of the polariz
diffractive parton densities turn out to be those for dee
inelastic forward scattering.

II. LORENTZ STRUCTURE

The process of deep-inelastic diffractive scattering is
scribed by the diagram in Fig. 1. The differential scatteri
cross section for single-photon exchange is given by

d5sdiffr5
1

2~s2M2!

1

4
dPS(3)(

spins

e4

Q2
LmnWmn. ~1!

Heres5(p11 l )2 is the c.m.s. energy of the process squa
and M denotes the nucleon mass. The phase spacedPS(3)

depends on five variables since one final state mass va
They can be chosen as Bjorkenx5Q2/(W21Q22M2), the

1The exchange of electro-weak gauge bosons requires at leas
structure functions@5#. QED radiative corrections to the proces
were given in@6#.
©2002 The American Physical Society02-1
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photon virtuality Q252q2,t5(p12p2)2, a variable de-
scribing the nonforwardness with respect to the incom
proton direction,

xP52
2h

12h
5

Q21MX
22t

Q21W22M2
>x, ~2!

demandingMX
2.t and where

h5
q•~p22p1!

q•~p21p1!
e F21,

2x

22xG , ~3!

and F the angle between the lepton planep13 l and the
hadron planep13p2,

cosF5
~p13 l!•~p13p2!

up13 luup13p2u
. ~4!

W25(p11q)2 and MX
25(p11q2p2)2 denote the hadronic

mass squared and the square of the diffractive mass, res
tively. The process of hard diffractive scattering is charac
ized by a large rapidity gap of the orderDy; ln(1/xP) @8#. As
we will show below it isthis propertywhich is sufficient for
our treatment below and no reference to a special kind
nonperturbative color-neutral exchange is needed.2

Unpolarized deep inelastic diffractive scattering was c
sidered in a previous paper@3# in detail. Here we focus on
the polarized part only, which can be measured in terms
polarization asymmetry:

A~x,Q2,xP ,Sm!5
d5s~Sm!2d5s~2Sm!

d5s~Sm!1d5s~2Sm!
. ~5!

Sm is the spin vector of the incoming proton withS5S1 and
S•p150. Since the cross sections are linear functions in
initial-state state proton spin-vector, the denominator proje
on the even part and the numerator on the odd part inSm .

We consider the case of single photon exchange, whic
projected by the polarized contribution

2Indeed, the literature offers a large host of different Pome
models, cf.@9#, to describe these processes. The fact that man
the descriptions yield similar results at equally large rapidity g
and the same kinematic variables supports our observation.

FIG. 1. The virtual photon-hadron amplitude for diffractiveep
scattering.
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Lmn
pol52i«mnrsl rqs ~6!

to the leptonic tensor. Since the electromagnetic curren
conserved, the strong interactions conserve parity and
even under time reversal,3 and the Hadronic tensor has to b
hermitic due to Eq.~6!, the following relations hold@12#:

Current conservation:qm Wmn~q,p1 ,S1 ,p2 ,S2!

5Wmn~q,p1 ,S1 ,p2 ,S2! qn50, ~7!

P invariance: Wmn~ q̄,p̄1 ,2S̄1 ,p̄2 ,2S̄2!

5Wmn~q,p1 ,S1 ,p2 ,S2!, ~8!

T invariance: Wmn~ q̄,p̄1 ,S̄1 ,p̄2 ,S̄2!

5@Wmn~q,p1 ,S1 ,p2 ,S2!#* , ~9!

Hermiticity: Wmn~q,p1 ,S1 ,p2 ,S2!

5@Wnm~q,p1 ,S1 ,p2 ,S2!#* , ~10!

with ām5am. Constructing the hadronic tensor we seek
structure which is linear in the initial proton spin. Upon no
ing that

«mnab52«mnab ~11!

the spin pseudovectorS1m has to occur together with th
Levi-Civita pseudotensor. The most general asymmetric h
ronic tensor, which obeys Eqs.~7!–~10!, is4

Wmn5 i @ p̂1mp̂2n2 p̂1np̂2m#«p1 ,p2 ,q,S

W1

M6
1 i @ p̂1m«nSp1q

2 p̂1n«mSp1q#
W2

M4
1 i @ p̂2m«nSp1q2 p̂2n«mSp1q#

W3

M4

1 i @ p̂1m«nSp2q2 p̂1n«mSp2q#
W4

M4
1 i @ p̂2m«nSp2q

2 p̂2n«mSp2q#
W5

M4
1 i @ p̂1m«̂np1p2S2 p̂1n«̂mp1p2S#

W6

M4

1 i @ p̂2m«̂np1p2S2 p̂2n«̂mp1p2S#
W7

M4
1 i«mnqS

W8

M2
.

~12!

n
of
s

3Here we disregard potential contributions due to strongCP vio-
lation @10#, because of the smallness of theu parameter,uuu,3
31029 @11#.

4A subset of this structure based onp, q andS was considered in
Ref. @13#.
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POLARIZED DEEP INELASTIC DIFFRACTIVEep . . . PHYSICAL REVIEW D 65 096002
It is constructed out of the four-vectorsq,p1 ,p2 andS5S1.
Terms with a genuine structure}M2/q2 are not considered
Here we use the abbreviations

V̂m5Vm2qm

q•V

q2
, ~13!

«̂mv1v2v3
5«mv1v2v3

2«qv1v2v3

qm

q2
, ~14!

«̃mnv1v2
5«mnv1v2

2«qnv1v2

qm

q2
2«mqv1v2

qn

q2
. ~15!

The Schouten relation@14# in either of the forms

Xm«nrst5Xn«mrst1Xr«nmst1Xs«nrmt1Xt«nrsm

~16!

glm«nrst5gln«mrst1glr«nmst1gls«nrmt1glt«nrsm

~17!

is used to eliminate other possible structures. Particularly,
spin vectorSm may always be contracted with the Lev
Civita symbol, along with it it has to occur due to pari
conservation. BecauseS•p150 two other structures ar
eliminated using

q•p1«̃mnSp1
5p1•p1«nmqS2@ p̂1m«np1qS2 p̂1n«mp1qS#

~18!

q•p1«̃mnSp2
5p1•p2«nmqS2@ p̂1m«np2qS2 p̂1n«mp2qS#.

~19!

The structure functionsWi are real functions and are give
by

Wi5Wi~x,Q2,xP ,t !. ~20!

Let us consider the limit in which target masses can
neglected andt is very small. In this case the proton mo
menta become proportional:p25zp1 with

z512xP5
11h

12h
. ~21!

Correspondingly the hadronic tensor simplifies to

Wmn5 i«mnqS

W8

M2
1 i @ p̂1m«nSp1q2 p̂1n«mSp1q#

W9

M4
, ~22!

and contains only two structure functions, where

W95W21~12xP!@W31W4#1~12xP!2W5 . ~23!

One may wish to rewrite Eq.~22! further into the form which
is similar to that used in polarized deep-inelastic scatteri
09600
e
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Wmn5 i«mnls

qlSs

p1•q
g1~x,Q2,xP!

1 i«mnls

ql~p1•qSs2S•qp1
s!

~p1•q!2
g2~x,Q2,xP!.

~24!

This again is achieved by using the Schouten relation,
~16!, noting that

p̂1m«nSp1q2 p̂1n«mSp1q52
~S•q!~q•p1!

q2
«mnqp1

1
~q•p1!2

q2
«mnqS. ~25!

The relation between the structure functionsW8,9 andg1,2 is

g15
q•p1

M2
W8 ~26!

g25
~q•p1!3

q2M4
W9 . ~27!

Due to the dependence of the structure functions onxP or
h, Eq. ~2!, the process isnonforward with respect to the
protons, although the algebraic structure of the hadronic
sor is the same as in the forward case. Finally the general
Bjorken limit is carried out:

2p1•q52Mn→`, p2•q→`, Q2→`

~28!
with x and xP5fixed,

which leads to Eq.~24! using Eqs.~26!, ~27!. For the scat-
tering cross sections we consider the cases of longitud
and transverse target polarization for which the initial st
hadron spin vectors are given by

Si5~0,0,0,M ! ~29!

S'5M ~0,cosg,sing,0!, ~30!

and g is the spin direction in the plane orthogonal to t
3-momentumpW 1. In the limit p25zp1 and M2,t50 the F
integral becomes trivial in the case of longitudinal nucle
polarization, while it is kept as a differential variable fo
transverse polarization:

d3sdiffr~l,6Si!

dxdQ2dxP

574psl
a2

Q4

3FyS 22y2
2xyM2

s D xg1~x,Q2,xP!

24xy
M2

s
g2~x,Q2,xP!G ~31!
2-3
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d4sdiffr~l,6S'!

dxdQ2dFdxP

574slAM2

s

a2

Q4

3AxyF12y2
xyM2

s Gcos~g2F!

3@yxg1~x,Q2,xP!12xg2~x,Q2,xP!#,

~32!

wherey5q•p1 / l •p1 andl denotes the degree of longitud
nal lepton polarization.5

III. THE COMPTON AMPLITUDE

We first consider the operator given by the renormaliz
and time-ordered product of two electromagnetic current

T̂mn~x!5RTFJmS x

2D JnS 2
x

2DSG
52e2

x̃l

2p2~x22 i e!2
RTF c̄S x̃

2
D gmglgn

3cS 2
x̃

2
D 2c̄S 2

x̃

2
D gmglgncS x̃

2
D GS. ~33!

Here, x̃ denotes a lightlike vector corresponding tox,

x̃5x1
z

z2
@Ax•z22x2z22x•z#, ~34!

and z is a subsidiary vector. Following Refs.@16,17# the
operatorT̂mn can be expressed in terms of a vector and
axial-vector operator decomposing

gmglgn5@gmlgnr1gnlgmr2gmnglr#gr2 i«mnlrg5gr.
~35!

We will consider only the contribution of the latter one, sin
this yields the polarized part,

T̂mn
pol~x!5 ie2

x̃l

2p2~x22 i e!2
«mnlsO5

sS x̃

2
,2

x̃

2
D , ~36!

with «mnls the Levi-Civita symbol. The bilocal axial-vecto
light-ray operator is

O5
aS x̃

2
,2

x̃

2
D 5

i

2
RTF c̄S x̃

2
D g5gacS 2

x̃

2
D

1c̄S 2
x̃

2
D g5gacS x̃

2
D GS. ~37!

5In the case of longitudinal nucleon polarization polarized diffra
tive scattering was discussed neglecting the contribution due to
structure functiong2 in @15#.
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The polarized part of the Compton operatorT̂mn
pol is related to

the diffractive scattering cross section using Mueller’s ge
eralized optical theorem@20# ~Fig. 2!, which moves the final
state proton into an initial state antiproton.

The polarized part of the Compton amplitude is obtain
as the expectation value

Tmn
pol~x!5^p1 ,S1 ,2p2 ,S2uT̂mnup1 ,S1 ,2p2 ,S2&, ~38!

which is forward with respect to the direction defined by t
state^p1 ,2p2u. The twist-2 contributions to the expectatio
values of the operator~37! are obtained

^p1 ,S1 ,2p2 ,S2uO5
A,m~k1x̃,k2x̃!up1 ,S1 ,2p2 ,S2&

5E
0

1

dl]x
m^p1 ,S1 ,2p2 ,S2uO5

A~lk1x,lk2x!

3up1 ,S1 ,2p2 ,S2&ux5 x̃ ~39!

as partial derivative of the expectation values of

O5
A~k1x,k2x!5xaO5,a

A ~k1x,k2x!, ~40!

the corresponding pseudoscalar operator. The indexA
5q,G labels the quark or gluon operators; cf.@16#. From
now on we keep only the spin vector of the initial-state p
ton and sum over that of the final-state proton. The pseu
scalar twist-2 quark operator matrix element has the follo
ing representation6 due to the overall symmetry inx:

^p1 ,S1 ,2p2uOq~k1x,k2x!up1 ,S1 ,2p2&

5xSE Dz e2 ik2xpzf 5
q~z1 ,z2! ~41!

with S[S1 , k251/2 and where all the trace terms we
subtracted, see@16,22#. f 5

A(z1 ,z2) denotes the scalar two
variable distribution amplitudes and the measureDz is

Dz5dz1dz2u~11z11z2!u~11z12z2!

3u~12z11z2!u~12z12z2!. ~42!

Here, we decomposed the vectorpz as

pz5p2z21p1z15p2q1p2z1 , ~43!

-
he6For parametrizations of similar hadronic matrix elements see
@21#.

FIG. 2. Mueller’s optical theorem.
2-4
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with z1,2 momentum fractions alongp1,2 and p65p26p1 ,
z65(z26z1)/2 and

q5z21
1

h
z1 , p25p12

1

h
p2 , ~44!

with q•p2[0. In the limit M2,t;0, in which we work
from now on, the vectorp2 even vanishes.

The Fourier transform of the Compton amplitude is giv
by @17#

Tmn
pol~p1 ,p2 ,S,q!

5E d4xeiqxTmn~x!

54i«mnlsE DzF Qz
lSs

Qz
21 i«

2
1

2

pz
sSl

Qz
21 i«

1
Qz•S

~Qz
21 i«!2

pz
sQz

lGF5~z1 ,z2!, ~45!

with Qz5q2pz/2 and

ū~p1!g5glu~p1!52Sl . ~46!

The functionF5(z1 ,z2) is related to the polarized distribu
tion function f 5(z1 ,z2) by

F5~z1 ,z2!5E
0

1dl

l2
f 5S z1

l
,
z2

l D
3u~l2uz1u!u~l2uz2u!. ~47!

We rewrite the denominators by

1

Qz
21 i«

52
1

qp2

1

~q22b1 i«!
, ~48!

defining

b5
x

xP
5

q2

2q•p2
. ~49!

The conservation of the electromagnetic current is ea
seen

qmTmn~p1 ,p2 ,S,q!5qnTmn~p1 ,p2 ,S,q!. ~50!

It follows because the contraction withqa leads to Levi-
Civita symbols being contract with the same 4-vector. By

F̂~q,h!5E DzF~z1 ,z2!d~q2z22z1 /h!

5E
q

2sgn(q)/hdz

z
f̂ ~z,h! ~51!

we change to the variableq, the main momentum fraction in
the subsequent representation. Equation~51! is the preform
09600
ly

of the Wandzura-Wilczek integral@7#. It emerges seeking the
representation of vector-valued distributions~47! in terms of
scalar distributions; cf.@16,17#. In most of the applications
these integrals remain. An exception is the Callan-Gross
lation, see Refs.@17,3#, where all these integrals cancel an
only scalar distribution functions remain. Here the distrib
tion function f̂ 5(z,h) is related tof 5(z1 ,z2) by

f̂ 5~z,h!5E
h(11z)

h(12z)

dru~12r!u~r11! f 5~r,z2r/h!,

~52!

with r5z1 /h.
The Compton amplitude takes the following form:

Tmn
pol~p2 ,S,q!54i«mnlsE

11/h

21/h
dqH qlSs

Qz
21 i«

2q•S
qqlp2

s

~Qz
21 i«!2J Eq

2sgn(q)/hdz

z
f̂ 5~z,h!.

~53!

The q integral in Eq.~53! can be simplified using the iden
tities

E
11/h

21/h
dq

qk

~q22b1 i«!2Eq

sgn(q)/hdz

z
f̂ 5~z,h!

5E
11/h

21/h
dq

kqk21

~q22b1 i«!
E

q

sgn(q)/hdz

z
f̂ 5~z,h!

2E
11/h

21/h
dq

qk21 f̂ 5~q,h!

~q22b1 i«!
. ~54!

As we work in the approximation ofM2,t!uq2u the vector
p2 obeys the representation

p252xPp1 . ~55!

Using these variables the Compton amplitude reads

Tmn
pol~p1 ,S,q!524i«mnlsE

11/h

21/h dq

q22b1 i«

3H FqlSs

q•p1
1

q•S

~q•p1!2
qlp1

sG
3E

q

2sgn(q)/hdz

z
f̂̂ 5~z,h!

2
q•S

~q•p1!2
qlp1

s f̂̂ 5~q,h!J . ~56!

Here,

f̂̂ 5~z,h!5
1

xP
f̂ 5~z,h!. ~57!
2-5
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Taking the absorptive part one obtains7

Wmn
pol5

1

2p
Im Tmn

pol~p1 ,p2 ,q!

5 i«mnls

qlS1
s

q•p1
G1~b,h,Q2!

1 i«mnls

ql~p1•qSs2S•qp1
s!

~p1•q!2
G2~b,h,Q2!, ~58!

where

G1~b,h,Q2!5 (
q51

Nf

eq
2@D f q

D~b,Q2,xP!

1D f̄ q
D~b,Q2,xP!#

[g1
D(3)~x,Q2,xP!, ~59!

G2~b,h,Q2!52G1~b,h,Q2!

1E
b

1db8

b8
G1~b8,h,Q2!

[g2
D(3)~x,Q2,xP!, ~60!

with Nf the number of flavors, choosing the factorizati
scalem25Q2. As we were working in the twist-2 approxi
mation, the Wandzura-Wilczek relation~60! describes
G2(b,h,Q2).

To derive the representation for the diffractive parton d
sitiesD f q

D , Eq. ~59!, we consider the symmetry relation fo
the polarized distribution functionsFA(z1 ,z2), Ref. @17#,

F5
A~z1 ,z2!5F5

A~2z1 ,2z2!. ~61!

It translates into

F̂5
A~q,h!5F̂5

A~2q,h!, ~62!

and, cf. Eq.~51!,

f̂̂ 5
A~q,h!5 f̂̂ 5

A~2q,h!. ~63!

The polarized diffractive quark and anti-quark densities
given by

(
q51

Nf

eq
2D f q

D~b,Q2,xP!5 f̂̂ 5~2b,h,Q2!

~64!

(
q51

Nf

eq
2D f̄ q

D~b,Q2,xP!5 f̂̂ 5~22b,h,Q2!.

Unlike in the deep-inelastic case, where the scaling varia
xe@0,1#, the support of the distributionsD f q

D(b,Q2,xP) is
xe@0,xP#.

7The ‘‘imaginary part’’ concerns that of the Schwartz distributio
Eq. ~48!. Because of the relations, Eqs.~9!,~10!, an overall i
emerges in the hadronic tensor.
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We express the diffractive parton densities in terms of
distribution functionf 5(z1 ,z2) directly

D f̂̂ 5~62b,h,Q2!5
1

xP
E

2(xP62x)/(22xP)

2(xP72x)/(22xP)

dr

3 f 5„r,62b1r~22xP!/xP ;Q2
….

~65!

The latter relations are needed to compare experime
quantities with those which might be obtained measuring
corresponding operators on the lattice.

Finally, we would like to make a remark on the evolutio
of the diffractive parton densities being derived above. In
previous paper@3# the corresponding evolution equations f
unpolarized diffractive scattering have been derived in det
Also here one may start with the general formalism for no
forward scattering, see e.g.@16#, and discuss the evolution o
the scalar operators. The evolution equations are indepen
of the parameterk1 emerging in the anomalous dimensio
g5

AB(k1 ,k2 ,k18 ,k28 ;m2) which therefore may be set t
zero. Moreover, the all-order rescaling relation

gAB~k1 ,k2 ,k18 ,k28 ;m2!

5sdABgAB~sk1 ,sk2 ,sk18 ,sk28 !, ~66!

holds, with dAB521dA2dB , dq51,dG52. A straightfor-
ward calculation leads to the evolution equation for the p
larized ~singlet! diffractive parton densitiesf 5

A(q,h;m2) in
the momentum fractionq

m2
d

dm2
f A~q,h;m2!5E

q

2sgn(q)/hdq8

q8
P5

ABS q

q8
,m2D

3 f B~q8,h;m2!. ~67!

The splitting functionsP5
AB are theforward splitting func-

tions @18#,8 which are independent ofh respectivelyxP .
Taking the absorptive part the usual evolution equations
obtained, with the difference that the evolution takes place
the variableb. The nonforwardnessh or xP behave as plain
parameters:

m2
d

dm2
f A

D~b,xP ;m2!5E
b

1db8

b8
P5,A

B S b

b8
;m2D

3 f B
D~b8,xP ;m2!. ~68!

We expressed the Compton amplitude with the help of
light-cone expansion at short distances and applied this
resentation to the process of deep-inelastic diffractive s
tering using Mueller’s generalized optical theorem. This re
resentation isnot limited to leading twist operators but ca
be extended to all higher twist operators. The correspond
evolution equations for the higher twist hadronic matrix e
ments depend on more than one momentum fractionq i ,
which have a less trivial connection to the outer kinemati
variables similar to the case of deep-inelastic scattering@23#.

8For the nonforward anomalous dimensions see@19#.
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The construction is similar to the above and applies as w
for the generalized optical theorem. The evolution of t
associated parton correlation functions is for the same rea
as follows.

IV. CONCLUSIONS

The differential cross section of polarized deep-inelas
ep-diffractive scattering for pure photon exchange is d
scribed by eight structure functions. They depend on the f
kinematic variables,x, Q2, xP and t. In the limit of small
values oft and neglecting target masses two structure fu
tions contribute. In the generalized Bjorken range and
presence of a sufficiently large rapidity gap the scaling v
lations of hard diffractive scattering can be described wit
perturbative QCD. In this range, processes which are do
nated by light-cone contributions are described. The sca
ing amplitude can be rewritten using Mueller’s generaliz
optical theorem moving the outgoing diffractive proton in
an incoming anti-proton. In this kinematical domain diffra
tive scattering is deep-inelastic scattering off a sta
l-
hy

ts

ys

,

R

.

ur

09600
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e
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c
-
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e
-
n
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d

^p1 ,S1 ,2p2u. Nonforward techniques may be used to d
scribe this process. In this way the two-variable polariz
amplitudes turn into the polarized diffractive parton den
ties, which depend on one momentum fraction and a par
eter h, which describes the nonforwardness, and is direc
related to the variablexP . For the absorptive part the scalin
variable can be expressed by the variableb, which also is the
variable on which the evolution kernels act in the twist
contributions, whereasxP remains as a simple parameter
the process. In the limitt,M2→0 the twist-2 contributions to
the two structure functionsg1,2

D(3)(x,Q2,xP) are related by a
Wandzura-Wilczek relation in the variableb5x/xP . The ap-
proach followed in the present paper for twist-2 operat
can be synonymously extended to higher twist-operator
the kinematic domain of the general Bjorken limit.
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