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Polarized deep inelastic diffractiveep scattering: Operator approach
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Polarized inclusive deep-inelastic diffractive scattering is dealt with in a quantum field theoretic approach.
The process can be described in the general framework of nonforward scattering processes using the light-cone
expansion in the generalized Bjorken region applying the generalized optical theorem. The diffractive structure
functionsg?® andg2® are calculated in the twist-2 approximation and are expressed by diffractive parton
distributions, which are derived from pseudoscalar two-variable operator expectation values. In this approxi-
mation the structure functiog)® is obtained frong?® by a Wandzura-Wilczek relation similar as for deep
inelastic scattering. The evolution equations are given. We also comment on the higher twist contributions in

the light-cone expansion.
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[. INTRODUCTION tween the final state proton and the other diffractively pro-
duced hadrons, which is sufficiently large. The operator
Unpolarized deep inelastic diffractive lepton-nucleonformulation allows straightforwardly the description of also
scattering was observed at the DESY electron-proton collideliigher twist operators in the light cone expansion, which is
HERA some years agfl]. In the region of hard diffractive Potentially more involved in other scenarigs, to which we
scattering this process is described by structure functionggree on the level of twist-2.
which are represented by diffractive parton distributions. We first derive the Lorentz structure of the process for the
They depend on two scaling variablesndx, and are dif- general kinematics, before we specify to the case—af
ferent from the parton densities of deep inelastic scattering= — (P>~ P1)%M?<—q? which is often met in experiment.
New diffractive parton densities are expected to occur inThe diffractive parton densities are derived on the level of
polarized deep inelastic diffractive lepton nucleon scatteringthe twist-2 operators. In this approximation the scattering
They can be measured at potential future polarizpdacili- cross sections are described by two structure functions
ties capable of probing the kinematic range of smaltf.  97(x,Q%xp) and g5®(x,Q?x;) for pure electromag-
[2]. Dedicated future experimental studies of this process canetic scatterind.Also in the present case it turns out that the
reveal the helicity structure of the nonperturbative color-structure functions are related by the Wandzura-Wilczek re-
neutral exchange of diffractive scattering with respect to thdation [7]. Analogously to the unpolarized case, R&f, the
quark and gluon structure and how the nucleon spin istnomalous dimensions ruling the evolution of the polarized
viewed under a diffractive exchange. At short distances thdliffractive parton densities turn out to be those for deep-
problem can be clearly separated into a part, which can bwelastic forward scattering.
described within perturbative QCD, and another part which
is thoroughly.nonperturbe_ltive. In this paper we use the I_ight— Il LORENTZ STRUCTURE
cone expansion to describe the process of polarized diffrac-
tive deep-inelastic scattering similar to a recent study for the The process of deep-inelastic diffractive scattering is de-
unpolarized casg3]. While the scaling violations of the pro- scribed by the diagram in Fig. 1. The differential scattering
cess can be calculated within perturbative QCD, the polareross section for single-photon exchange is given by
ized diffractive two-variable parton densities are nonpertur-
bative and can be related to expectation valuegof)local 1 1 e
operators. Their Mellin moments with respect to the variable dPogr=—""5 -dPII D — L WE 1
B=x/xp may, in principle, be calculated on the lattice and 2(s—M?) 4 spins Q?
one may try to understand the ratios of these moments and
those for the related deep-inelastic process with respect tderes=(p,+1)? is the c.m.s. energy of the process squared
their scaling violations as being measurable in future experiand M denotes the nucleon mass. The phase spdg>
ments. depends on five variables since one final state mass varies.
In this paper we describe the process of polarized deepFhey can be chosen as Bjork&s Q?/(W?+Q2—M?), the
inelastic diffractive scattering, which is a nonforward process
in its hadronic variables, at large spacelike momentum trans=—————
fer g In this approach there is no need to refer to any The exchange of electro-weak gauge bosons requires at least five
specific mechanism of color-singlet exchange. It is com-tructure functiong5]. QED radiative corrections to the process
pletely sufficient to select the process by a rapidity gap bewere given in6].
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4 LPO=2is,,,,1"q" (6)
l Mx _ _ _ _
to the leptonic tensor. Since the electromagnetic current is
: conserved, the strong interactions conserve parity and are
even under time reversiknd the Hadronic tensor has to be
hermitic due to Eq(6), the following relations hold12]:
/ \\ Current conservation.g“ W,,,(d,p1,5:1,P2,S;)
B =W,.(9,P1,51,P2,S;) 9"=0, @)

FIG. 1. The virtual photon-hadron amplitude for diffractie@ P invariance: W#,,(aal,—gl,az,—gz)
scattering.

:WMV 1 lS 1 L L 8
photon virtuality Q?=—q?,t=(p,—p,)? a variable de- (0:P1:51.P2.52) ®
scribing the nonforwardness with respect to the incomingT_ i S —
proton direction, invariance: W,,(9,p1,S;,p2,S;)

27 QP+Mi—t =[W*(q,p1,S1,p2,S2) 1%, ©)
Xp=— = =X, 2
1=7 Q*+wW?-Mm? o
Hermiticity: W,,,(d,p1,S1.P2.S,)
demandingV %>t and where
= W L YS 1 1 *l 10
q- (p2 ) —x [ V,u,(q P1,91,P2 SZ)] ( )
n= T € —lo— | 3 - _ _
- (P2t Ps with a,=a*. Constructing the hadronic tensor we seek a

structure which is linear in the initial proton spin. Upon not-

X ;
and ® the angle between the lepton plapgX| and the ing that

hadron plang; X p,,
(pIXI)'(plpo) Sﬂvalg:_s,uvaﬁ (11)

[P X 1[p1Xpa| @ . _
the spin pseudovectds;, has to occur together with the

W2=(p,;+q)? and M =(p;+q—p,)? denote the hadronic Levi-Civita pseudotensor The most general asymmetric had-
mass squared and the square of the diffractive mass, respd@nic tensor, which obeys Eq&r)—(10), is’
tively. The process of hard diffractive scattering is character-
ized by a large rapidity gap of the ord&y~ In(1/xp) [8]. As A A .~
we will show below it isthis propertywhich is sufficient for ~ Wy =1[P1,P2,~ P1,P2,1€p, p,.a.5
our treatment below and no reference to a special kind of a
nonperturbative color-neutral exchange is needed.

Unpolarized deep inelastic diffractive scattering was con-
sidered in a previous pap€B8] in detail. Here we focus on
the polarized part only, which can be measured in terms of a
polarization asymmetry:

cosd =

W; .
W'H[pl,usVSplq

W,
pr ,uSplq] +|[p2,u, VSplq p2V ,uSplq]

A - W, .
+|[pl,u81/5p2q_prSMSFIZq]W+I[p2M8VS[)Zq

d%¢(S,)—d°a(—S,)
A(X,Q%xp,S,) = £ = 5
Q%X 9= (5, + oS, © - ]W i R
208 uSp,q plﬂ vpyP,ST plv ,u.plpZS]

S, is the spin vector of the incoming proton wig+S; and

S-p;=0. Since the cross sections are linear functions in the A A A Wy Wjs
initial-state state proton spin-vector, the denominator projects Ti[P2u€p,p,s~ p2V8;LplpZS]W +1i S“VQSW'
on the even part and the numerator on the odd pa8,in

We consider the case of single photon exchange, which is (12

projected by the polarized contribution

Here we disregard potential contributions due to str&xg)vio-
2Indeed, the literature offers a large host of different Pomeronation [10], because of the smallness of tdeparameter) 6| <3
models, cf[9], to describe these processes. The fact that many ok 10 ° [11].
the descriptions yield similar results at equally large rapidity gaps “A subset of this structure based png andSwas considered in
and the same kinematic variables supports our observation. Ref.[13].
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It is constructed out of the four-vectogsp,,p, andS=S;.

Terms with a genuine structureM?/q? are not considered.

Here we use the abbreviations

~ q-V
Vﬂzvﬂ—qﬂ—z, (13
- B Ay
S,uvlvzv3_suvlv203_8qvlvzv3¥! (14)
~ _ du a,
S,uvvlvz_s,u.vvlvz_sqvvlv2¥_S,uqvlvzg' (15)
The Schouten relatiofiLl4] in either of the forms
X,LLSVPUT:XV‘S/LPUT+ Xp8 1/,u.o'7'+ Xa'e Vp,u.7'+ X‘rsvp(r,u.
(16)

g}\p,s VplTT: g)\VS,up0'7'+ g}\ps V/.LO'T+ O\o€ Vp,LLT+ O\:€ vpou

7

is used to eliminate other possible structures. Particularly, the
spin vectorS, may always be contracted with the Levi-
Civita symbol, along with it it has to occur due to parity
conservation. Becaus8-p;=0 two other structures are

eliminated using

q- plgﬂVSplz P1-Pae VMqS_[ﬁl,u,S vp1qS™ blvsﬂpqu]
(18)

q- pl";/.wszz P1-P2e vuqS™ [61#8 vp,qS™ ﬁlvs,upzqs:l'
(19

The structure function®V; are real functions and are given

by
Wi:Wi(XiniX]P!t)- (20)

Let us consider the limit in which target masses can be
neglected and is very small. In this case the proton mo-

menta become proportiongd, =z p; with

1+7n
1-7

z=1—-Xp= (21

Correspondingly the hadronic tensor simplifies to

: Wg . ~ Wy
W,uvzls,uquW+|[p1;/,£v5plq_p1v8u$plq]w’ (22)

and contains only two structure functions, where

Wo=W,+ (1—Xp)[Wa+W, ]+ (1—Xxp)°W5. (23

One may wish to rewrite Eq22) further into the form which
is similar to that used in polarized deep-inelastic scattering:

PHYSICAL REVIEW D 65 096002

' q)\SU' )
W/.LV: I S,MV}\O'mgl(X’Q 1X]P)

o*(p1-qS"—S-qpy7)
(p1-Q)?

+i8,uv}\a' gZ(X!QZvX]P)-

(24)

This again is achieved by using the Schouten relation, Eq.
(16), noting that

(S-a)(9-p1)
2 € uvap,

q
h)2
+(q P1)

—2 Sﬂqu'

q

pl}Ls vSpiq prS/.LSplC]: -

(25

The relation between the structure functioh’s g andg, , is

q-pP1

9:= M2 Ws (26)
(9-pp)°

92= ng- (27)

Due to the dependence of the structure functionsoar
7, Eq. (2), the process isionforward with respect to the
protons, although the algebraic structure of the hadronic ten-
sor is the same as in the forward case. Finally the generalized
Bjorken limit is carried out:
2p1-q=2Mv—o>, p,-g—©, Q2_>oo

(28)

with x and xp=fixed,

which leads to Eq(24) using Egs.(26), (27). For the scat-
tering cross sections we consider the cases of longitudinal
and transverse target polarization for which the initial state
hadron spin vectors are given by

S=(0,0,0M) (29
S, =M(0,cosy,siny,0), (30

and y is the spin direction in the plane orthogonal to the

3-m0mentum§1. In the limit p,=zp, andM?,t=0 the ®
integral becomes trivial in the case of longitudinal nucleon
polarization, while it is kept as a differential variable for
transverse polarization:

d3a i (N, = 2
it ( SH): 1477_5}\“_
dxdQPdxp Q*
2
X|y|2-y~— )xgl(x,Qz.xp)

2

_4Xy?92(X1Q21X]P) (31)
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o
R

p1 P2 P2 ;1

d40-diﬁr()\lisj_) Mzaz ! 2
————————=F4s\\/——
dxdQ@Pdddxp s Q* % /
M2 = Disc
X \/ Xy cogy—P) / \ X
X[ngl(X,QZ,X]p)-F2X92(X,Q2,Xp)], D1 D2

(32 FIG. 2. Mueller’s optical theorem.

X
1-y-

S

wherey=q-p,/l-p; and\ denotes the degree of longitudi-

nal lepton polarizatiof. The polarized part of the Compton operaﬁﬁfv‘ is related to

the diffractive scattering cross section using Mueller's gen-
eralized optical theorerf20] (Fig. 2), which moves the final
state proton into an initial state antiproton.

We first consider the operator given by the renormalized The polarized part of the Compton amplitude is obtained
and time-ordered product of two electromagnetic currents as the expectation value

ol — _ T —
?W(X):m{%(;) JV(_gH o0 =(P1,S1,~P2. 52l T,lP1.S1.—P2.S2). (39)

which is forward with respect to the direction defined by the

Ill. THE COMPTON AMPLITUDE

% state(p,, — p,|. The twist-2 contributions to the expectation
R{J(E) YAy yY values of the operatd37) are obtained

;}\
2m(x°—i€)? -~ o~

~ ~ <p1,31,—p2,Sz|Oé’“(K+X,K,X)|p1,Sl,—pz,Sz)
_5) _;(_5) yﬂyw(i)
2 2 2

Here,x denotes a lightlike vector correspondingxo

:—ez

X i s (33

1
= [ onat(p1.81.~ P2, SA0ROK XAk )
0

X|p1,S1,— P2, So)lx=% (39
X=X+ é[‘/x. P—x2P—x- (], (34)  as partial derivative of the expectation values of
O8(Kk+X,K_X)=X*O8 (KX, k_X), (40)

and ¢ is a subsidiary vector. Following Ref§16,17] the

operatorT ,, can be expressed in terms of a vector and arf"€ corresponding pseudoscalar operator. The index
axial-vector operator decomposing =(,G labels the quark or gluon operators; €16]. From
now on we keep only the spin vector of the initial-state pro-

Y2\ Yv=L[9m00pT gvxgup—gngp]yp—igﬂw)ﬁyp_ ton and sum over that of the final-_state proton. The pseudo-
(35)  scalar twist-2 quark operator matrix element has the follow-
ing representatidhdue to the overall symmetry ix
We will consider only the contribution of the latter one, since
this yields the polarized part, (P1,S1, — P2l 0%k X,k _X)|P1,S1, —P2)

- X X
28,4,“/)\0'05 51_5 ’ (36)

40l ) — 2 x* =xSf Dz e " *Pfd(z, ,z.) (41
mr 272 (x%—ie€)
with S=S;, k_=1/2 and where all the trace terms were

with €, , the Levi-Civita symbol. The bilocal axial-vector gptracted, sef16,22. fg\(z+ ,z_) denotes the scalar two-

light-ray operator is variable distribution amplitudes and the measDzis

S RS CEET

Os| 5. = 5| =3RT ¥ 5| sy =5
X

+$(—§)75y“w

5In the case of longitudinal nucleon polarization polarized diffrac-
tive scattering was discussed neglecting the contribution due to the®For parametrizations of similar hadronic matrix elements see e.g.
structure functiorg, in [15]. [21].

Dz=dz,dz_6(1+z,+z_)0(1+z,—z_)

XO0(1l-z,+z )0(l—z,—z). (42

g) }S. (37  Here, we decomposed the vecpyas

P,;=p-z-+pizy=p-d+m_z,, (43

096002-4



POLARIZED DEEP INELASTIC DIFFRACTIVEep. .. PHYSICAL REVIEW D 65 096002

with z; , momentum fractions along,, and p.=p,*py, of the Wandzura-Wilczek integrgf]. It emerges seeking the
z.=(2,*2,)/2 and representation of vector-valued distributio@g) in terms of
scalar distributions; cf{16,17]. In most of the applications
these integrals remain. An exception is the Callan-Gross re-
lation, see Refd.17,3], where all these integrals cancel and
only scalar distribution functions remain. Here the distribu-

tion functionfs(z, ») is related tof5(z, ,z_) by

b +1 ! (449
=z +—z,, w =p,——p_,
7t P+ 77p

with g-7_=0. In the limit M?,t~0, in which we work
from now on, the vectotr_ even vanishes.

The Fourier transform of the Compton amplitude is given | n(1-2)
fozm= [ " " doo1- oo+ stz pl ).

(52

by [17]

n(1+2z)

Tzoul(plvpz S,q)
with p=z, /n.

=J d4xeinTM(x) The Compton amplitude takes the following form:

i i ~1y )\S(r
, Qs 1 ps Tp‘i'(pf,s,q)=4iswmj a9 ——
=dieyng | DZ| 55 —— a +1/y Ql+ie
Qi+ie Qs+ie
99 p? —sgn@®)/7d z.
e .
+ —=——p?Q}|Fg(z, ,2_), 45 24ig)2 z >
(Q§+i8)2szz 5(+ ) ( ) (QZ+|8) v
(53

with Q,=q—p,/2 and
The ¥ integral in Eqg.(53) can be simplified using the iden-

u(py) ¥s7u(p1) =25, . (46) tities

The functionFs(z, ,z_) is related to the polarized distribu- J*l/n 9K san@®)/nd z.
i i di}—f —fe(z,
tion functionfg(z, ,z_) by vy (9—2B+ig)2)e S Ts(z,7)
W\ (zy oz ~1n kok—1 son@)/7d z,
Fs(2+,z-)=f - 5(—,—) =f dd——"—— —ts5(z
0 \? AT +1/y (0—2B+ie) )y z 5(2,77)
XO(N—|z [) 0N —|z_]). (47

_ k—l'f
_ J Vg _Ts0m) (54)

We rewrite the denominators by sy (O—2B+ie)’

As we work in the approximation df12,t<|q?| the vector
(48)  p_ obeys the representation

1 B 1 1
Q2+ie  gp- (9—2B+ie)’

defining P—=7XpP1. (59
X % Using these variables the Compton amplitude reads
=—= . 49
B Xp 2Q9-p_ (49) | _ -y dd
Tﬂ"v(pl.S,Q)=—4lswng 9=2B11s
The conservation of the electromagnetic current is easily 1y
seen
" q)\80' N q- S q)\po_
qMT;Lv(plaleS!q):qVTp,V(pllpZ181Q) (50) g-p1 (qpl)z !
It follows because the contraction witlf* leads to Levi- —sgn(®)/ nd zs
Civita symbols being contract with the same 4-vector. By X J 7f5(2,77)

R _ o .S R

F(9,7m) fDZF(Zme)b“(l‘} z.=zlm) —(? )zqkp‘l’fs(ﬁ,n)]. (56)
_fsgn(ﬁ)/ndz? A
- ~f@n) 5D Here,

we change to the variablg, the main momentum fraction in
the subsequent representation. Equatit) is the preform

096002-5
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Taking the absorptive part one obtdins

1
WoS =5 Im T3(p1. P2, )

q)\SO' )
=i
8;1,1/)\0'q P1 l(ﬁ 7, Q

o(p1-qS’—S-qpy)

+ie
(p1-0)?

Gz(B,ﬂ,QZ), (58)

MVNO

where
N¢

Glm,n,Q"‘):q; eA[ATD(8,Q%xp)

+ATR(B,Q%%p)]
=g2®(x,Q2,xp), (59)
Gy(B,7,Q%)=—Gy1(B,7,Q%)

1dg8’
+ fﬁﬁ—ﬂ,el(/s',n,Q%

=953 (x,Q%,xp), (60)

with N; the number of flavors, choosing the factorization
scaleu?=Q?. As we were working in the twist-2 approxi-
relatiori60) describes

mation, the Wandzura-Wilczek
Gz(,8:77aQ2)-

To derive the representation for the diffractive parton den-
sitiesAfE’, Eq. (59), we consider the symmetry relation for

the polarized distribution functiors®(z,,z,), Ref.[17],
Fé(zl,zz):F?(_Zln_Zz)- (61

It translates into
FO(9, ) =F5(—9.7), (62)
and, cf. Eq.(5)),

A0, ) =TA(— 9,7). 63

The polarized diffractive quark and anti-quark densities are uwl—

given by
N¢ R
2, CATG(B.Q% ) =15(28,7.Q%)
N, ) (64)
2, SAT(B.Q%x) =T5(~26.7.Q7).

PHYSICAL REVIEW D 65 096002

We express the diffractive parton densities in terms of the
distribution functionfg(z, ,z_) directly

]_ = (XpF+2x)/(2—xp)
Ats(£28,7,Q)=
Xp —(Xpx2x)/(2—xp)

X f5(p, = 2B+ p(2—xXp)/Xp; Q7).
(65

The latter relations are needed to compare experimental
quantities with those which might be obtained measuring the
corresponding operators on the lattice.

Finally, we would like to make a remark on the evolution
of the diffractive parton densities being derived above. In a
previous papef3] the corresponding evolution equations for
unpolarized diffractive scattering have been derived in detail.
Also here one may start with the general formalism for non-
forward scattering, see e [d.6], and discuss the evolution of
the scalar operators. The evolution equations are independent
of the parametek , emerging in the anomalous dimensions
YeB(k. ,k_ k' k" ;u?) which therefore may be set to
zero. Moreover, the all-order rescaling relation

Yy ikl Kk p?)
=o%eA 8ok ok_ 0k ,0Kk"), (66)

holds, withdag=2+ds—dg, dq=1dg=2. A straightfor-
ward calculation leads to the evolution equation for the po-
larized (singled diffractive parton densitie$s (9, 7;x?) in

the momentum fractior

—sgn@®)/nd 9’ 0
fA 13 2 f PAB , 2
(O, )= Py, 5 9
X (0,75 12). (67)

The splitting functionsP2® are theforward splitting func-
tions [18],% which are independent ofy respectivelyx;.
Taking the absorptive part the usual evolution equations are
obtained, with the difference that the evolution takes place in
the variableB. The nonforwardnesg or x; behave as plain
parameters:

Al M

d
> (EX\PM)_f B A\ g

Xf3(B' Xp; ). (68)

We expressed the Compton amplitude with the help of the
light-cone expansion at short distances and applied this rep-
resentation to the process of deep-inelastic diffractive scat-
tering using Mueller’s generalized optical theorem. This rep-
resentation isiot limited to leading twist operators but can

B. o
du

Unlike in the deep-inelastic case, where the scallng variablee extended to all higher twist operators. The corresponding

xe[0,1], the support of the distribution4 f° q(B, Q?,xp) is
XG[O X];]

"The “imaginary part” concerns that of the Schwartz distribution,

Eq. (48). Because of the relations, Eg€9),(10), an overalli
emerges in the hadronic tensor.

evolution equations for the higher twist hadronic matrix ele-
ments depend on more than one momentum fractign
which have a less trivial connection to the outer kinematical
variables similar to the case of deep-inelastic scattd@3

8For the nonforward anomalous dimensions KES.
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The construction is similar to the above and applies as welp;,S;,—p,|. Nonforward techniques may be used to de-
for the generalized optical theorem. The evolution of thescribe this process. In this way the two-variable polarized
associated parton correlation functions is for the same reasamplitudes turn into the polarized diffractive parton densi-
as follows. ties, which depend on one momentum fraction and a param-
eter n», which describes the nonforwardness, and is directly

IV. CONCLUSIONS related to the variablg,. For the absorptive part the scaling

variable can be expressed by the varig®levhich also is the

The differential cross section of polarized deep-inelastiq grigple on which the evolution kernels act in the twist-2
ep-diffractive scattering for pure photon exchange is de-congriputions, whereas, remains as a simple parameter of

scribed by eight structure functions. They depend on the fouy,o process. In the limt, M2— 0 the twist-2 contributions to

- . . 2 . .
kinematic variablesx, Q%, xp andt. In the limit of small 4 w0 structure functionng](f)(x,Qz,xp) are related by a

values oft and neglecting target masses two structure funCWandzura—Wilczek relation in the variab=x/x, . The ap-
tions contribute. In the generalized Bjorken range and th%roach followed in the present paper for twist-2 operators

presence of a sufficiently large rapidity gap the scaling vio- | high e .
lations of hard diffractive scattering can be described Withirfr? e? k?r?ea/gt?g )ggr%l;?nyo?xtfg gi?] et(r)al :_% o(ralzet:lv |Iisrtnﬁperators n

perturbative QCD. In this range, processes which are domi-
nated by light-cone contributions are described. The scatter-
ing amplitude can be rewritten using Mueller’s generalized
optical theorem moving the outgoing diffractive proton into  For discussions we would like to thank J. Eilers, B. Geyer,
an incoming anti-proton. In this kinematical domain diffrac- and X. Ji. We thank J. Dainton, M. Erdmann, and D. Wege-
tive scattering is deep-inelastic scattering off a state ner for their interest in the present work.
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