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We study the performance of QCD simulations with dynamical Wilson fermions by combining the hybrid
Monte Carlo algorithm with parallel tempering on“1@nd 12 lattices. In order to compare tempered with
standard simulations, covariance matrices between subensembles have to be formulated and evaluated using
the general properties of autocorrelations of the parallel tempering algorithm. We find that rendering the
hopping parametex dynamical does not lead to an essential improvement. We point out possible reasons for
this observation and discuss more suitable ways of applying parallel tempering to QCD.
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I. INTRODUCTION unfortunate parameter value, a detour in parameter space is
now opened to be an easier route. This results in better de-
Improving hybrid Monte Carlo(HMC) simulations of  correlation.
QCD with dynamical fermions is a long standing problem. Considerable improvements have been obtained with dy-
While better decorrelation is, of course, highly desirable fornamical number of the degrees of freedom in the Potts model
all observables, it is of crucial importance for the ones which7], with dynamical inverse temperature for spin gl48$
are sensitive to topological sectors. In fact, it has been oband with dynamical monopole coupling il lattice theory
served that the;’ correlator is definitely dependent on the [9]. With dynamical mass of staggered fermions in full QCD
topological charge [1]. Thus it is quite important to look [10]it has been indicated that by tempering a better sampling
for simulation methods that produce realisfidistributions.  of the configuration spacéwith respect to topological
From this point of view the topological charge appears to bechargé can be achieved. However, simulated tempering re-
a good touchstone when looking for improvements by newquires the determination of a weight function in the general-
methods. ized action, and an efficient method of estimatind8t9]
For staggered fermions an insufficient tunneling rate ofturns out to be crucial for successfully accelerating the simu-
the topological charg® has been observéd,3]. For Wilson  lation.
fermions the tunneling rate has been claimed to be adequate Major progress was the proposal of gharallel tempering
in many casef4,5]. However, since the comparison is some-(PT) method[11,12], in which no weight function needs to
what subtle, the reason for this could also be that one is ndie determined. This method has allowed large improvements
as far in the critical region as with staggered fermions. Onen the case of spin glagd1]. In QCD improvements have
could fear that simulating closer to the chiral limit, insuffi- been reported with staggered fermidid$], applying PT to
cient tunneling could become for Wilson fermions as severesubensembles characterized by different values of the quark
as for staggered ones. Indeed, for Wilson fermions on largeass. This has led to the expectation that, analogously in the
lattices and for large values of near the chiral limit the case of Wilson fermions, introducing various values of the
distribution ofQ is not symmetric even after more than 3000 hopping parametex might be the right choice of parameter
trajectories(see e.g. Fig. 1 of Ref4]). for applying the idea of PT. In a first study of this problem,
In the method ofsimulatedtempering first proposed in simulations of QCD with O4)-improved Wilson fermions
Ref. [6] the inverse temperature is made a dynamical vari{14], no computational advantage has been found. Because
able in the simulations. More generally, any parameter in thenly two coupled subensembles, both at relatively small
action can be made dynamical. Let us suppose that, dependad been used, this could not be the final answer concerning
ing on this particular coupling parameter, the chosen algothe potential capabilities of the PT method. In a previous
rithm has a largely different tunneling rate between certairwork [15], with more ensembles ardtandarg Wilson fer-
metastable state§n configuration spade Augmenting the mions on an 8 lattice, we have observed a considerable
algorithm with the tempering method means that now thencrease of the transitions between topological sectors. We
system is updated in an enlarged configuration space includvave extended this study to larger lattices4(&@d 12) in
ing the coupling. Instead of overcoming a high barrier at arf{ 16].
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In the present paper, our task will be to compare standard vi(s) wals) ... wi(s) ... w(9)
HMC with HMC combined with PT in a more elaborate, B(s)= 1 > . K
guantitative manner. In order to really compare algorithms Y ] Y (1)

one has to relate the computational eff@mputer timgto

errors of final result$e.g. particle massgdn the case of PT  describes the assignment of the field configuratiépj@s)(s)

the calculation of errors becomes more complicated, becausg the parameter sets; . In short this approach is called PT

one has to take cross correlations between ensembles inj@th K ensembles.

account. Cross correlations lead to the technical problem of The update of th& , occurs by the usual HMC procedure

calculating full covariance matrices froauto) correlation  using the parameter sets as assigned at a given time. The
functions. In this paper, we carry out such an analysis for theypdate ofB is achieved by swapping pairs according to the

average plaquette and the topological charge. Metropolis acceptance condition with probability
At the time when we were doing our autocorrelation

analysis SESAM published autocorrelation results for all Powadi,j)=min(1e4"),

their runs[17]. Qualitatively the SESAM results are very

similar to ours, i.e. they also do not observe a clear increase AH=H(a,F,)+H(q ’ij)_ H(e 'ij)

of autocorrelation times with increasing (lower quark
mass in the interval[0.1560,0.157h One might have ex-
pected some mass dependence from the positive experienc I .
with tempering in the case of staggered fermions. In the ligh %ereH denotes the Ham|lton!an of th(’?‘ HM(.: dynamics for
of this fact, the final conclusion of our analysis, that the PT he parameter set; and the field configurations Vit The
method with respect to the hopping parameter does not led@tal update of the Monte Carlo algorithm, after which its
to an improved performance of the HMC algorithm, is nottime sincreases by one, then consists of the updates & All
really astonishing. Nevertheless, formulating the tools for théollowed by the full update oB which consists of a sequence
correlation analysis is a major part of this paper whichof attempts to swap pairs.

should prove useful for possible future applications of PT.  Detailed balance for the swapping follows from Eg).

The paper is organized as follows. In Sec. Il we describéErgodicity is obtained by updating &, and by swapping
the method of PT to be applied to the HMC algorithm. Ourpairs in such a way that all permutatiofi3 can be reached.
simulation results are discussed in Sec. IIl. In Sec. IV welhere remains still the freedom of choosing the succession of
give general properties of covariances and autocorrelatiori§i€ individual steps. All such choices lead to legitimate algo-
which—in view of the moderate statistics available—mustfithms, which might differ in efficiency.
be employed to fully exploit the autocorrelation data. In Sec. Our choice of steps is such that the updates oFaland
V we present and discuss our results on integrated autocothat of B alternate. Our criterion for choosing the succession
relation times. The respective results for off-diagonal ele-0f swapping pairs in the update 8fhas been to minimize
ments of the covariances are presented and discussed in SEte average time it takes for the association of a field con-
VI. In Sec. VIl we compare the efficiency of the two simu- figuration to the parameters to travel from the lowest to the
lation algorithms(HMC without and with P and study the largestx value. This has led us to swap pairs belonging to
effect of cross correlations. In Sec. VIII we comment onnheighboringx values and to proceed with this from smaller
swap acceptance rates and give a new formula for that rat@ larger« values.
extending the one used in R¢14]. We conclude in Sec. IX The observables of interest are associated to a specific
and point out potentially more promising applications of PTparameter set; . We denote them as

to QCD. )
Oj(S)EO(FVj(S)(S)), ]:1, C ,K. (3)

—H(ey F,) @

Il. PARALLEL TEMPERING Ill. SIMULATION RESULTS

In standard Monte Carlo simulations one deals with one We have simulated lattice QCD with standard Wilson fer-
parameter se and generates a sequence of field configuramions and one-plaquette action for the gauge fields. In the
tions F(s), wheres denotes the Monte Carlo time. In our HMC program the standard conjugate gradient inverter with
case the setr includes the physical parametefsx and  even-odd preconditioning was used. The trajectory length
algorithmic parameters like the leapfrog time step and thavas always 1. The time steps were adjusted to get acceptance
number of time steps per trajectory. One field configuratiorrates of about 70% in the HMC Metropolis step. In all cases
F(s) comprises the gauge field and the pseudofermion fieldistandard HMC, tempered runs for all lattice sizes and en-

In the parallel temperingPT) approach11,12 one up- semble sizes1000 trajectories were generated, with addi-

datesK field configurationd=, with v=1, ... K in the same tional 50—100 trajectories for thermalization.

run. The characteristic feature is that the assignment of the We have performed tempered runs using 6 and 7 en-
parameter setg; with j=1,... K to the field configura- sembles, all af3=5.6 on 1¢ and 12 lattices, as well as
tionsF, changes in the course of a tempered simulation. Thetandard HMC runs for comparison. Our simulations cover
total configuration at times thus consists oB(s),F(s), the Kk-range investigated by SESAM  «(
Fu(s), ... ,Fk(s) where the permutation =0.156,01565,0.157,0.157%%4]. In a large scale PT simu-
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TABLE I. Integrated autocorrelation times,, p for plaguette andr, o for topological charge from
individual fits (see Sec. Y. For comparison, results from collective fits are given in brackets. For each case
1000 trajectories were generated with trajectory length 1.

Standard HMC Tempered HMC
6 ensembles 7 ensembles
A k=0.0005 A x=0.00025

10* 12* 10* 12 10* 12
K 2T p
0.15500 14.0 16.7 5.8.7] 8.99.5]
0.15550 6.86.9] 10.78.6]
0.15600 10.4 13.3 3[4.0] 5.96.2] 4.74.6] 4.65.1]
0.15625 2.82.6] 2.93.4
0.15650 9.3 12.9 5[5.6] 6.16.9] 2.92.5] 3.43.4
0.15675 2.72.4] 4.593.7]
0.15700 8.6 14.2 5[8.6] 7.48.1] 2.92.4] 6.14.8]
0.15725 4.12.9] 5.74.9]
0.15750 9.0 8.1 8[8.5] 10.910.8] 3.43.9] 8.77.9]
K 2T
0.15500 42 22 18.7] 17 23]
0.15550 1B11] 11[12]
0.15600 37 74 7] 2019 16.416.5] 4.97.7]
0.15625 9.79.7] 5.76.3]
0.15650 41 48 B7] 1617] 5.76.1] 5.96.5]
0.15675 3.B3.1] 6.46.8]
0.15700 45 38 161.2] 8[10] 2.32.5] 6.96.5]
0.15725 5.p4.9] 5.35.5]
0.15750 46 14 B3] 3526] 6.97.6] 5.97.0]

lation analogous to that by SESAM one would be interestedhe computational gain obtainable with the tempering
in using all subensembldseparated i) anyway, such that method in comparison with standard HMC.
additional computational effort seems to be affordable. For In the present investigation, we therefore base the com-
instance, in the run with 6 ensembles we extendedxthe parison on the full account of the non-diagonal covariance
range by adding lower values @f while in the run with 7 matrix for different observables to be introduced in E5).
ensembles we have used a denser spacing oktialues. The covariance matrix will be calculated from general corre-
Our « values are listed in Table I. lation functions which, for an observabt@ and a numbeN

The observables determined were the average plag@etteof updates, are defined as
and the topological charg®. The topological charge was

measured using its naively discretized plaquette form after 1 N 1 N
doing 50 cooling steps of Cabibbo-Marinari type. This R-k(t)Z—Z O:(S)O(s+t)—| = z O.(s")
method gives multiples of a unit charge. The value of the ! N ! N2
unit charge is close to 1 and has to be determined from the N
measurements. 1 ,
Figure 1 shows a typical time series @ obtained for X(N Sgl O(s ))- (4)

standard HMC and for tempered HMC with 6 and 7 en-
sembles. One sees that tempering maReBuctuate much
stronger. Such behavior is indicative for the decreasing ofor j=k they are the usual autocorrelation functions, while
correlations between subsequent trajectories. The time seriésr j #k they describe cross correlations between different
on the 12 lattice exhibits a richer pattern of transitions as ensembles.

that on the 16 lattice, and the width of the topological- Typical examples of normalized autocorrelation functions
charge distribution increases. But the rate of fluctuations dep;(t) =R;;(t)/R;;(0) are presented in Fig. 2. It can be seen
creases with increasing. that for the tempered runs the decay is considerably faster

In our previous investigatior[45,16 we have considered than for the standard ones. Among the tempering runs it is
the mean absolute change @f (called mobility in[4]) to  fastest for the run with 7 ensembles. In the latter case the
account quantitatively for these rates of fluctuations. How+emarkable fast decay occurring in the intentat[0,1]
ever, this quantity does not provide a quantitative measure ashould be noticed.
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Standard HMC Tempered HMC Tempered HMC
6 ensembles 7 ensembles
Ax = 0.0005 Arx = 0.00025
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FIG. 1. Time series o for standard and tempered HMC on*lattice at@=5.6 (for part of x values only; see Table | for full list

With the statistics available, the correlation functions de-an order of magnitude. To reach a conclusion about the ex-
cay below the Monte Carlo noise for relatively smallAl- pected improvement we do not attempt such a precision mea-
though the much faster decay of the functions for temperingurement of the autocorrelation times. Moreover, we want to
is apparent, giving numbers for the autocorrelation times andpply somea priori knowledge on the spectral properties in
cross correlations is clearly a formidable task. In principle, inorder to exploit our simulation data in the most efficient way
order to estimate the autocorrelation times within 10% ongoossible. Therefore, in the following we first have to elabo-
would need trajectory numbers higher than ours by roughlyate on some theoretical issues concerning covariances.

pq>|.w..[11r‘]y.v,|'w..~ pq-..v., N LN Pe T
11 - 14 3 1 .
0.8 - - 0.8 - J 08 - 3
06 . 0.6-—§ 3 0.6 - ]
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FIG. 2. Normalized autocorrelation functions fQrfor standard HMQ(left) and tempering with 6 ensemblésentej and 7 ensembles
(right) on a 12 lattice for 3=5.6, k=0.1565. The errors indicated are the purely statistical ones. The lines represent fits to the subset of data
points with full symbols.
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IV. COVARIANCE MATRIX AND MARKOV SPECTRUM is the t-step transition matrix constructed from the one-step

We obtain the covariance matrix by using the general Cor:[ransmon matriXW(C;C'") of the Markov process considered.

relation function(4) and generalizing the derivation given in In the spectral representation
Ref.[18] for the casg =k

W=2> AP, (10
N—1 r=1
Con| R 0)+ >, 1- = (Ri()+Ri(1)]. (5)
k=1 | Rixl & N/ Ik () - with eigenvalues\, and projection operatorB,, one has

\,=1 for the equilibrium eigenvectqu(C) and|\,|<1 for

The diagonal elements of E@5) are the variances af), the other modes. Obviously only; contributes to the sta-

which are traditionally written in the form tionarity relation = ¢ u(C")W(C';C)= u(C), and P4(C",C)
= u(C) follows. With this notation one can rewrite

R (0
vart0))= S, ©) (0(0)=(0;,P1Oy). a1
Using Eqgs.(8), (10) and(11) we obtain for the general cor-
introducing the integrated autocorrelation times relation function
1S Ri(D)=(0(0) O4(1) ~ (OO =3, A0} ,P,Oy)
et A @ ROTGOOOOHOI= 2 MELPO0
B (12
wherep;(t) =Ry;(t)/R;;(0). where, due to the subtraction, the term with=1 cancels
When evaluating practical simulations the summation inout. We thus get the general representation
Eqg. (7) up toN—1 makes no sense singg(t) is buried in
the Monte Carlo noise already for relatively smallThere- _ E ¢ )
fore, it has been proposdd8,19 to sum up only to some Rik(t)_r>1 ey with |\ [<1 (13

smaller valueM of t. However, in practice that procedure is

not stable against the choice ldfand neglecting the restis a where only the coefficients;,, depend on the particular pair
bad approximation. The proposal to estimate the neglect byf observables while the eigenvalugs are universal and
an extrapolation based on theraluesM andM —1 [20] is  characterizing the chosen simulation algorithm. It is impor-
still inaccurate in general. A more satisfying procedure is tatant to realize that this also holds for the observables of form
describe the rest by a fit function based on theliable (3) used in PT.

terms of Eq.(5) for t<M and on the general knowledge

about the Markov spectrum: This procedure has led to per- V. AUTOCORRELATION RESULTS

fect results in other applicatiofg1].

In order to apply the latter strategy also for determining For the numerical evaluation of Eq5) we apply the
off-diagonal entries in Eq(5) we have to look at how spec- method explained in Sec. IV using the fact that after some
tral properties enter the parallel-tempering case. For suctime only the slowest mode in E¢L3) survives. Our method
considerations it is convenient to introduce a Hilbert spacés to sum up the simulation data only up to sotieefore the
[19,22 with an inner product ¢,x)=2=.u(C)¢*(C)x(C),  noisy region and determine the rest of the sum from a fit
whereu(C) is the equilibrium distribution of the system and assuming that the fit describes the slowest mode well.7For
C denotes the configuratios={B,F,,F,, ... Fg}. Using the rest typically amounts maximally to about 25%. The
this notation we can write the expectation valu@§j> proper choice of the fit intervals in(excluding the region of
=3,:u(C)0;(C)=(1,0;) and the two-time correlation func- fast contributions and the noisy regjowas controlled by
tions inspection of the graphs and watching the resultifgval-

ues. Examples of such fits are shown in Fig. 2.
In view of the moderate statistics available we addition-

(0;(0)0()y= X w(CcPHo;clHhwiclol ety ally have made use of the universality of the Markov spec-

clolcld trum implying that in Eq(13) for given algorithm and lattice
X O (Clt size only the coefficients;,, can vary with the observables.
We have verified that a collective fit for the whole diagonal
=(0;,W'Oy) (8 with a universal slowest mode gives results comparable to
individual fits (see Table ). That motivated us to perform
as inner products, where collective fits with one single mode to diagonal and non-
diagonal terms. In fact that method greatly helped to get
D 0. ~[1] stable fits which will be further discussed in Sec. VI.
W(CTCH) To obtain errors for the covariances one can generalize the
derivations given in Ref.18] for the diagonal case to calcu-
xwctthet) o owelt-Het)y (9)  late covariances of covariances from tRg(t) data only.

wi(clo; el =
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FIG. 3. Correlation functions fo® for tempering with 7 ensembles on a*liattice for 3=5.6. Shown are the autocorrelation function
at k=0.1565(left) and the cross-correlation functions fer0.1565,0.1567%centej and x=0.1565,0.157right). The errors indicated are
purely statistical ones. The lines represent one combined fit as explained in the text. Full data symbols indicate the fit interval.

However, such calculation is impractical with the statisticsdata in the sun{5) makes sense only outside the noisy re-
available. Therefore, we have to rely on the comparison ofjion. One finds that the off-diagonal elements of the general
measurements of covariances at different parameter valuesrrelation functions are decreasing with the distance from
and on consistency checks to get some idea about the size thfe diagonal. Therefore, the evaluation of the 9&@min the
the errors. off-diagonal case is more difficult because beyond some dis-
Comparing the results fdg;;(0) from the different simu- tance|j —k| the elements are completely indiscernible within
lation algorithms, which should give the same numbers, on¢he noise. See Fig. 3 for an illustration.
sees that this ingredient of a calculationgfhas errors of In tempering with 7 ensembles we generally find that
about 20%. The exponential autocorrelation timg,, three off-diagonals can be determined while for tempering
=—1/In\, where\ denotes the slowest mode, correspondsvith 6 ensembles only one off-diagonal can be determined.
within a good approximation to the integrated autocorrelafor the off-diagonal element;,(t) which clearly show a
tion time which one would get taking only the slowest modesignal above the noise we generally observe a maximum at
into account. The presence of faster modes then rengers t= |i —k| (see Fig. 3. We therefore look for a prediction of
smaller thanr,,,. We always find consistency with this re- their functional form. Rewriting Eq.(12) as Ry(t)
quirement. =(0j(s),(1- P,)W'O,(s)) their qualitative behavior can be
The integrated autocorrelation times obtained in this  discussed. Obviously at each time the observables of(B)pe
way are given in Table I. One can see that there is littledepend only on one field configuration. This formRyf(t)
difference between the results from individual and collectivesuggests that folj #k a sizable contribution only arises
fits. The fluctuations of values found for neighboringzal- ~ when, under the action of the transition matrix \B§O,(s),
ues indicate relatively large errors. Judging from the ob-a contribution also depending on the field configuration en-
served noise levels the errors are expected to be largest fegring O;(s) has been generated. For our type of swapping
the standard case and smallest for tempering with 7 erthis situation occurs fot=|j —k| so that
sembles. Despite these errors two unexpected features are

clearly visible: (i) there is no sizable increase i with « E Zol for |j—K|=<t
jkrhr =
1

and(ii) there is nevertheless gain in termsmfwhen using Ry(t)~{ =
tempering. ) _
The lack of a sizable increase i with «, which one 0 for  O<t<[j—Kk|
would have expected for the standard runs, first indicates that for j#k (14)

valuing time histories by eyéas of Q in Fig. 1) can be
misleading. It secondly shows the important fact that theshould be the approximate behavior. We indeed generally see
usual precondition of successful tempering, connecting rewis behavior within errors in our data.
gions with considerably different, is not satisfied here. For the numerical evaluation of E¢5) we again apply

In the light of this it comes with some surprise that nev-the method explained in Sec. IV restricted tat anterval
ertheless gain in terms of is observed. The reduction ef  where the respectivi(t) signal is sufficiently above the
for Q turns out to be larger than fd?. noise. To get stable off-diagonal results we use the method of
the collective fit, using the existence of a universal slowest
mode described in Sec. V. Table Il shows an example of a
numerical result foiC;, (remember thaCy, is symmetrig.

For the discussion of cross correlations in the followingGenerally the off-diagonal elements obtained, especially the
section we need the off-diagonal elements of the covariancemaller ones, are likely to be overestimated because of pos-
matrices. As in the diagonal case, the use of the simulatiosible contributions of the noise.

VI. OFF-DIAGONAL COVARIANCES
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TABLE Il. Covariance matrix ofQ for tempering with 7 en- It is known that{(Q)=0. Therefore our fit ansatz fdQ)
sembles on 12lattice. is a constant, i.e., the fit procedure is a weighted mean using
the full covariance matrix. For the plaquette we observed
j Kj 10°-R;; 10°Rjj.1 10-Rij42 10-Rijus  that our data are consistent with a linear dependence.on
1 015600 12.68 10.34 6.87 314 Therefore we h_ave used a linear f_it ansatzin
5 015625 9.89 8.28 577 204 In the following we outlmg the fit m_ethod for.the case of
3 015650 9.90 8.44 4.42 1.04 the plaquette. The linear fit ansatz just mentioned R _
4 015675 927 6.30 322 123 =X+ Xk, wherex; andx, are the fit parameters. In matrix
5 015700 702 446 239 notation we havey= — Ax with
6 0.15725 4.34 2.82 <P>1 1
7 0.15750 4.26 X1
n= H , A=—| i) X:(x)' (15
(P)x 1 kg ’

In the applications to be described in Sec. VII the full
covariance matriCj, is needed. This excludes, for this pur- We also introduce the vector of measured values
pose, the consideration of the PT results in our case of & (P, ... Px)" and call the corresponding covariance ma-
ensembles, because we were able to determine elements omfjk C,. The result of the fit is the minimum of 7
in the first subdiagonallj —k|=1. They have much larger —p)'C, X~ p) which lies a&:_(ATcglA)—lATcglp.

errors than in our PT StUd'efS with 7 ensembles. In th|§ CaS&he errors of the result are square roots of the diagonal en-
in contrast, we got 3 sub-diagonals. We find that setting th?ries ofCy=(ATC. *A) L. For fitting a constant to measured
X p .

remaining ones equal to zero or using various extrapolations ; e
in |j—k| for them makes only a little difference in the re- values of(Q) corresponding formulas apply wit,=0.

sults. This reflects the fact that, although the elements close Ac.tually we are interested |r.1 trle varlancgs of Fhe ft
to the diagonal are not small, there is nevertheless a fastéynction values. To get them we inserinto the fit function,

decrease farther away from the diagonal.

7=—AX, (16)
Vil. COMPARISON OF SIMULATION ALGORITHMS and using Eq(16) in the transformation law of covariances
At the end of Sec. V we have pointed out that there is ndVe oPtain
increase of autocorrelation times with Because of this ob-
C5;=AGA. (17)

servation the usual mechanism of tempering—which is to

provide an easier detour through parameter space for the supne diagonal elements of E€L7) are the variances of inter-
pressed transitions—is not available here. If this mechanisrgst and the square roots of them the improved errors.

is working, tempering with several parameter points can be For standard HMC, in these calculations we have used the
advantageous even if one is interested only in the result gheasurements for the 5 selectegtalues(see Table)l In the

one point. This holds, in particular, for systems where in thecase of tempering the number of measurements is equal to
region of interest otherwise almost no transition oc@rS].  the numbeK of ensembles.

Unfortunately our region is not of this type. Table Il gives data with the usual statistical errors and fit

_ As also observed in Sec. V there is nevertheless a reduggsyts(16) with improved errorg17). We denote the errors
tion of autocorrelation times. The effect of this is, however,,, e, for the usual statistical errofgn column 2, by e; for

not large enough generally to get gain if one is interested ifhe improved errors taking into account thél covariance
only one point. In fact, dividing the reduction factors of the mayix (column 3, and bye, for those obtained only with

7j in Table | by the number of ensembles it can be seen thahe diagonal elements of the covariance matfigolumn 4,

at best in the case @ some gain remains. respectively.

We now turn to the question of whether gain remains if  The factor g;/e4)? describes the influence of cross cor-
one is interested in the results at all parameter values. In thig|ations. We typically find values of about 2 to 3 for it. As
case it is necessary to account for cross correlations betwegmpared to the reduction factors apparent from Table | this
the ensembles. To be able to do this one has to rely on fits tgynears not large. However, one has to be aware that proper
the data. The respective fit method is well known from thecomparison here requires consideration of the improved er-
treatment of indirect measuremertsee e.g. Ref[23]). For  rors in the standardnd in the tempering case.
proper comparison this method, which leads to improved er-  The relevant computational gain factor for the comparison
rors, has to be applied to the tempering case as well as 10 th@angard vs tempering case is given by the improved errors

standard case. _ _ and the numbers of ensembles as
Final results then are obtained from fits to mean values
o g .
from individual ensembles. In the case of PT the full cova- (egta” ard/etfempef”‘%Z‘Nstamdard/|\1tempermg_ (18

riance matrix enters the fit. Although there are difficulties in

accounting for the full matrix numerically, we have tried to In the example in Table Il this factor appears close to one.
develop some feeling for its influence by making fits to theHowever, because of the inaccuracy of the standard data the
observables we have measured. respective fit results are not reliablgiving factors from
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TABLE Ill. Data and fit results foP from standard runs and from tempering with 7 ensembles on the 12

lattice.
K Data Fit with full Fit with diagonal
covariance matrix covariance matrix
Standard HMC
0.15500 0.431825(135) 0.432002(112)
0.15600 0.429872(136) 0.429968(66)
0.15650 0.429343(132) 0.428952(55)
0.15700 0.428309(138) 0.427935(59)
0.15750 0.426695(91) 0.426919(77)
Tempering(7 ensembles
0.15600 0.430024(79) 0.429973(69) 0.430064(50)
0.15625 0.429494(64) 0.429516(56) 0.429578(38)
0.15650 0.429138(63) 0.429060(48) 0.429093(30)
0.15675 0.428749(67) 0.428603(48) 0.428607(29)
0.15700 0.428166(81) 0.428146(56) 0.428121(35)
0.15725 0.427560(82) 0.427690(68) 0.427636(46)
0.15750 0.427034(102) 0.427233(84) 0.427150(60)

about 0.5 to 4 in other casesThus we are not able to give (1/\277¢)/*_dxmin(1,exd —X))exp(— (x—(AH))%252)
definite numerical results for E¢18).

A further quantity to be mentioned is the reduction factorthen gives
ey/es for the errors. This reduction in general is larger for
larger 5. Thus the comparison based on the fit procedure 1 1 S exp(— d) 1 6
favors the standard case, which reduces a possible gain. (Pswa,)S:Eerfc(E( u+ a) ) + Terfc(§< u- G))
Altogether it appears that even with more accurate data it
might be difficult to present evidence for computational gain (20)
in our case, where the autocorrelation times for standarwhereu:\/m_
HMC do not vary within thex range considered. Within errors our values of AH) turn out to scale with
the volumeL* (being roughly 1.4 and 2.8 for 6 ensembles
and 0.35 and 0.7 for 7 ensembles for* #hd 12, respec-
tively). While the values of exp(—AH)) for the 1¢ lattice
For the effect of enlarging the lattice size on the efficiencywithin errors conform with 1, on the $2attice they deviate
of the algorithm the change of the swap acceptance ratgypstantially from thigincreasing from 0.6 to 1)4
(Pswap resulting from Eq(2) appears to be relevant. In Ref.  our data agree with Eq20) using 5 as found from our
[14] agreement has been reported between the behavior oBimulations. In the cases where we find that0 is not true,
served in PT and the expression elf¢(AH)) derived in  despite this usingg=0 in the acceptance formulas within
Ref.[24]. The derivation given there, however, relies on theerrors gives still consistency. However, for larger lattices,
area-preserving property of the HMC algorithm, implying where further increase of the deviations(ekp(—AH)) from
(exp(=AH))=1, which does not hold in the case of swap- 1 is to be expected, this might be no longer so. The indicated
ping. deviations tend to improve the situation on larger lattices.
To get the relation appropriate for swapping, we againSince the behavior of is not known quantitatively, detailed
neglect higher cumulants in the cumulant expansiorpredictions onfAH) at present are not possible.
(exp(-AH)) = exp —(AH) + 3(AH — (AH)ATF-- ).
However, in contrast to Ref[24], we put (exp(—AH))
=exp(— ) with an unknownds. By convexity of the expo-
nential function one finds thgtAH)= 6 holds. The relation
between mean and width of the Gaussian used in [Ré4i.
then generalizes to

VIIl. SWAP ACCEPTANCE RATES

IX. CONCLUSIONS

In this paper we have compared PT with standard HMC
quantitatively on 1Hand 12 lattices. We have described the
steps of such an analysis and carried them out for the average
plaguette and the topological charge. In a quantitative analy-
sis one has to look at the size of errors and therefore in

(AH)= E02+ 5, o2=((AH—(AH))?). (19 principle also at errors of the errors. While the first is at the
2 limits of feasibility, the latter is definitely beyond our statis-
tics. For that purpose we have demonstrated how the cross-
The evaluation of the integral correlation functions between the subensembles have to be
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taken into account, using their general, algorithm indepenThis is the reason why we nevertheless believe that PT
dent properties. This has allowed us to make consistencghould become efficient if one is sufficiently close to the
checks, and we found consistent behavior of the results. Wehiral limit. An even more promising scenario might be the
believe that this part of our analysis is of general interest. application of the PT method towards the continuum limit, in
The choice of thex range in this paper was guided by particular along the lines of constant physics in e «
recent large-scale QCD simulations with dynamical Wilsonpjane. Already in pur&U(3)-Yang-Mills theory the tunnel-
fermions like SESAM[4] and triggered by the suppression jng rate between different topological sectors becomes
of tunneling rates for the topological charge observed at thgrongly suppressed with increasigg
largestx values available. However, this range might be still  The tools developed in the present paper will be very
too far from the chiral limit with the consequence of no ygseful for such future applications.
dramatic change of the autocorrelation times for the standard
hybrid Monte Carlo method. This would explain why PT in
our case, i.e., for thec range covered by the work of
SESAM, did not provide a considerable computational gain.
At stronger coupling we know that approaching the chiral The simulations were done on the CRAY T3E at Konrad-
limit we arrive at a second order transition into a phase withZuse-Zentrum fuInformationstechnik Berlin. E.-M.I. grate-
broken combined parity-flavor symmetrigo-called Aoki  fully appreciates the support by the Ministry of Education,
phase [25]. At this transition we expect a critical slowing Culture and Science of JapaiMonbu-Kagaku-shp and
down and therefore strongly increasing autocorrelationsthanks H. Toki for the hospitality at RCNP.
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