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We study the performance of QCD simulations with dynamical Wilson fermions by combining the hybrid
Monte Carlo algorithm with parallel tempering on 104 and 124 lattices. In order to compare tempered with
standard simulations, covariance matrices between subensembles have to be formulated and evaluated using
the general properties of autocorrelations of the parallel tempering algorithm. We find that rendering the
hopping parameterk dynamical does not lead to an essential improvement. We point out possible reasons for
this observation and discuss more suitable ways of applying parallel tempering to QCD.
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I. INTRODUCTION

Improving hybrid Monte Carlo~HMC! simulations of
QCD with dynamical fermions is a long standing proble
While better decorrelation is, of course, highly desirable
all observables, it is of crucial importance for the ones wh
are sensitive to topological sectors. In fact, it has been
served that theh8 correlator is definitely dependent on th
topological chargeQ @1#. Thus it is quite important to look
for simulation methods that produce realisticQ distributions.
From this point of view the topological charge appears to
a good touchstone when looking for improvements by n
methods.

For staggered fermions an insufficient tunneling rate
the topological chargeQ has been observed@2,3#. For Wilson
fermions the tunneling rate has been claimed to be adeq
in many cases@4,5#. However, since the comparison is som
what subtle, the reason for this could also be that one is
as far in the critical region as with staggered fermions. O
could fear that simulating closer to the chiral limit, insuf
cient tunneling could become for Wilson fermions as sev
as for staggered ones. Indeed, for Wilson fermions on la
lattices and for large values ofk near the chiral limit the
distribution ofQ is not symmetric even after more than 30
trajectories~see e.g. Fig. 1 of Ref.@4#!.

In the method ofsimulatedtempering first proposed in
Ref. @6# the inverse temperature is made a dynamical v
able in the simulations. More generally, any parameter in
action can be made dynamical. Let us suppose that, dep
ing on this particular coupling parameter, the chosen al
rithm has a largely different tunneling rate between cert
metastable states~in configuration space!. Augmenting the
algorithm with the tempering method means that now
system is updated in an enlarged configuration space inc
ing the coupling. Instead of overcoming a high barrier at
0556-2821/2002/65~9!/094506~9!/$20.00 65 0945
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unfortunate parameter value, a detour in parameter spa
now opened to be an easier route. This results in better
correlation.

Considerable improvements have been obtained with
namical number of the degrees of freedom in the Potts mo
@7#, with dynamical inverse temperature for spin glass@8#
and with dynamical monopole coupling in U~1! lattice theory
@9#. With dynamical mass of staggered fermions in full QC
@10# it has been indicated that by tempering a better samp
of the configuration space~with respect to topologica
charge! can be achieved. However, simulated tempering
quires the determination of a weight function in the gener
ized action, and an efficient method of estimating it@8,9#
turns out to be crucial for successfully accelerating the sim
lation.

Major progress was the proposal of theparallel tempering
~PT! method@11,12#, in which no weight function needs to
be determined. This method has allowed large improveme
in the case of spin glass@11#. In QCD improvements have
been reported with staggered fermions@13#, applying PT to
subensembles characterized by different values of the q
mass. This has led to the expectation that, analogously in
case of Wilson fermions, introducing various values of t
hopping parameterk might be the right choice of paramete
for applying the idea of PT. In a first study of this problem
simulations of QCD with O(a)-improved Wilson fermions
@14#, no computational advantage has been found. Beca
only two coupled subensembles, both at relatively smallk,
had been used, this could not be the final answer concer
the potential capabilities of the PT method. In a previo
work @15#, with more ensembles and~standard! Wilson fer-
mions on an 84 lattice, we have observed a considerab
increase of the transitions between topological sectors.
have extended this study to larger lattices (104 and 124) in
@16#.
©2002 The American Physical Society06-1
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In the present paper, our task will be to compare stand
HMC with HMC combined with PT in a more elaborat
quantitative manner. In order to really compare algorith
one has to relate the computational effort~computer time! to
errors of final results~e.g. particle masses!. In the case of PT
the calculation of errors becomes more complicated, beca
one has to take cross correlations between ensembles
account. Cross correlations lead to the technical problem
calculating full covariance matrices from~auto-! correlation
functions. In this paper, we carry out such an analysis for
average plaquette and the topological charge.

At the time when we were doing our autocorrelati
analysis SESAM published autocorrelation results for
their runs @17#. Qualitatively the SESAM results are ver
similar to ours, i.e. they also do not observe a clear incre
of autocorrelation times with increasingk ~lower quark
mass! in the interval@0.1560,0.1575#. One might have ex-
pected some mass dependence from the positive exper
with tempering in the case of staggered fermions. In the li
of this fact, the final conclusion of our analysis, that the
method with respect to the hopping parameter does not
to an improved performance of the HMC algorithm, is n
really astonishing. Nevertheless, formulating the tools for
correlation analysis is a major part of this paper wh
should prove useful for possible future applications of PT

The paper is organized as follows. In Sec. II we descr
the method of PT to be applied to the HMC algorithm. O
simulation results are discussed in Sec. III. In Sec. IV
give general properties of covariances and autocorrelat
which—in view of the moderate statistics available—mu
be employed to fully exploit the autocorrelation data. In S
V we present and discuss our results on integrated auto
relation times. The respective results for off-diagonal e
ments of the covariances are presented and discussed in
VI. In Sec. VII we compare the efficiency of the two sim
lation algorithms~HMC without and with PT! and study the
effect of cross correlations. In Sec. VIII we comment
swap acceptance rates and give a new formula for that
extending the one used in Ref.@14#. We conclude in Sec. IX
and point out potentially more promising applications of P
to QCD.

II. PARALLEL TEMPERING

In standard Monte Carlo simulations one deals with o
parameter seta and generates a sequence of field configu
tions F(s), wheres denotes the Monte Carlo time. In ou
case the seta includes the physical parametersb,k and
algorithmic parameters like the leapfrog time step and
number of time steps per trajectory. One field configurat
F(s) comprises the gauge field and the pseudofermion fi

In the parallel tempering~PT! approach@11,12# one up-
datesK field configurationsFn with n51, . . . ,K in the same
run. The characteristic feature is that the assignment of
parameter setsa j with j 51, . . . ,K to the field configura-
tionsFn changes in the course of a tempered simulation. T
total configuration at times thus consists ofB(s),F1(s),
F2(s), . . . ,FK(s) where the permutation
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B~s!5S n1~s! n2~s! . . . n j~s! . . . nK~s!

1 2 . . . j . . . K D
~1!

describes the assignment of the field configurationsFn j (s)(s)

to the parameter setsa j . In short this approach is called P
with K ensembles.

The update of theFn occurs by the usual HMC procedur
using the parameter setsa j as assigned at a given time. Th
update ofB is achieved by swapping pairs according to t
Metropolis acceptance condition with probability

Pswap~ i , j !5min~1,e2DH!,

DH5H~a i ,Fn i
!1H~a j ,Fn j

!2H~a i ,Fn j
!

2H~a j ,Fn i
! ~2!

whereH denotes the Hamiltonian of the HMC dynamics f
the parameter seta j and the field configurationsFn j

. The
total update of the Monte Carlo algorithm, after which
time s increases by one, then consists of the updates of alFm
followed by the full update ofB which consists of a sequenc
of attempts to swap pairs.

Detailed balance for the swapping follows from Eq.~2!.
Ergodicity is obtained by updating allFn and by swapping
pairs in such a way that all permutations~1! can be reached
There remains still the freedom of choosing the successio
the individual steps. All such choices lead to legitimate alg
rithms, which might differ in efficiency.

Our choice of steps is such that the updates of allFn and
that ofB alternate. Our criterion for choosing the success
of swapping pairs in the update ofB has been to minimize
the average time it takes for the association of a field c
figuration to the parameters to travel from the lowest to
largestk value. This has led us to swap pairs belonging
neighboringk values and to proceed with this from small
to largerk values.

The observables of interest are associated to a spe
parameter seta j . We denote them as

Oj~s![O„Fn j (s)~s!…, j 51, . . . ,K. ~3!

III. SIMULATION RESULTS

We have simulated lattice QCD with standard Wilson fe
mions and one-plaquette action for the gauge fields. In
HMC program the standard conjugate gradient inverter w
even-odd preconditioning was used. The trajectory len
was always 1. The time steps were adjusted to get accept
rates of about 70% in the HMC Metropolis step. In all cas
~standard HMC, tempered runs for all lattice sizes and
semble sizes! 1000 trajectories were generated, with ad
tional 50–100 trajectories for thermalization.

We have performed tempered runs using 6 and 7
sembles, all atb55.6 on 104 and 124 lattices, as well as
standard HMC runs for comparison. Our simulations co
the k-range investigated by SESAM (k
50.156,01565,0.157,0.1575)@4#. In a large scale PT simu
6-2
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TABLE I. Integrated autocorrelation timest int,P for plaquette andt int,Q for topological charge from
individual fits ~see Sec. V!. For comparison, results from collective fits are given in brackets. For each
1000 trajectories were generated with trajectory length 1.

Standard HMC Tempered HMC
6 ensembles 7 ensembles
Dk50.0005 Dk50.00025

104 124 104 124 104 124

k 2t int,P

0.15500 14.0 16.7 5.9@6.7# 8.8@9.5#

0.15550 6.3@6.9# 10.2@8.6#

0.15600 10.4 13.3 3.7@4.0# 5.5@6.2# 4.2@4.6# 4.6@5.1#

0.15625 2.8@2.6# 2.8@3.4#

0.15650 9.3 12.9 5.2@5.6# 6.1@6.9# 2.9@2.5# 3.4@3.4#

0.15675 2.7@2.4# 4.5@3.7#

0.15700 8.6 14.2 5.8@5.6# 7.8@8.1# 2.9@2.4# 6.1@4.8#

0.15725 4.1@2.9# 5.2@4.9#

0.15750 9.0 8.1 8.4@8.5# 10.9@10.8# 3.4@3.9# 8.2@7.9#

k 2t int,Q

0.15500 42 22 15@17# 17@23#

0.15550 13@11# 11@12#

0.15600 37 74 7@7# 20@19# 16.6@16.5# 4.8@7.7#

0.15625 9.7@9.7# 5.2@6.3#

0.15650 41 48 8@7# 16@17# 5.7@6.1# 5.8@6.5#

0.15675 3.3@3.1# 6.4@6.8#

0.15700 45 38 16@12# 8@10# 2.3@2.5# 6.3@6.5#

0.15725 5.3@4.9# 5.3@5.5#

0.15750 46 14 6@8# 35@26# 6.8@7.6# 5.5@7.0#
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lation analogous to that by SESAM one would be interes
in using all subensembles~separated ink) anyway, such that
additional computational effort seems to be affordable.
instance, in the run with 6 ensembles we extended thk
range by adding lower values ofk, while in the run with 7
ensembles we have used a denser spacing of thek values.
Our k values are listed in Table I.

The observables determined were the average plaqueP
and the topological chargeQ. The topological charge wa
measured using its naively discretized plaquette form a
doing 50 cooling steps of Cabibbo-Marinari type. Th
method gives multiples of a unit charge. The value of
unit charge is close to 1 and has to be determined from
measurements.

Figure 1 shows a typical time series ofQ obtained for
standard HMC and for tempered HMC with 6 and 7 e
sembles. One sees that tempering makesQ fluctuate much
stronger. Such behavior is indicative for the decreasing
correlations between subsequent trajectories. The time s
on the 124 lattice exhibits a richer pattern of transitions
that on the 104 lattice, and the width of the topologica
charge distribution increases. But the rate of fluctuations
creases with increasingk.

In our previous investigations@15,16# we have considered
the mean absolute change ofQ ~called mobility in @4#! to
account quantitatively for these rates of fluctuations. Ho
ever, this quantity does not provide a quantitative measur
09450
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the computational gain obtainable with the temperi
method in comparison with standard HMC.

In the present investigation, we therefore base the co
parison on the full account of the non-diagonal covarian
matrix for different observables to be introduced in Eq.~5!.
The covariance matrix will be calculated from general cor
lation functions which, for an observableO and a numberN
of updates, are defined as

Rjk~ t !5
1

N (
s51

N

Oj~s!Ok~s1t !2S 1

N (
s851

N

Oj~s8!D
3S 1

N (
s951

N

Ok~s9!D . ~4!

For j 5k they are the usual autocorrelation functions, wh
for j Þk they describe cross correlations between differ
ensembles.

Typical examples of normalized autocorrelation functio
r j (t)5Rj j (t)/Rj j (0) are presented in Fig. 2. It can be se
that for the tempered runs the decay is considerably fa
than for the standard ones. Among the tempering runs
fastest for the run with 7 ensembles. In the latter case
remarkable fast decay occurring in the intervaltP@0,1#
should be noticed.
6-3
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FIG. 1. Time series ofQ for standard and tempered HMC on 124 lattice atb55.6 ~for part ofk values only; see Table I for full list!.
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With the statistics available, the correlation functions d
cay below the Monte Carlo noise for relatively smallt. Al-
though the much faster decay of the functions for temper
is apparent, giving numbers for the autocorrelation times
cross correlations is clearly a formidable task. In principle
order to estimate the autocorrelation times within 10% o
would need trajectory numbers higher than ours by roug
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an order of magnitude. To reach a conclusion about the
pected improvement we do not attempt such a precision m
surement of the autocorrelation times. Moreover, we wan
apply somea priori knowledge on the spectral properties
order to exploit our simulation data in the most efficient w
possible. Therefore, in the following we first have to elab
rate on some theoretical issues concerning covariances.
t of data

FIG. 2. Normalized autocorrelation functions forQ for standard HMC~left! and tempering with 6 ensembles~center! and 7 ensembles

~right! on a 124 lattice forb55.6, k50.1565. The errors indicated are the purely statistical ones. The lines represent fits to the subse
points with full symbols.
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IV. COVARIANCE MATRIX AND MARKOV SPECTRUM

We obtain the covariance matrix by using the general c
relation function~4! and generalizing the derivation given
Ref. @18# for the casej 5k

Cjk5
1

N S Rjk~0!1 (
t51

N21 S 12
t

ND „Rjk~ t !1Rk j~ t !…D . ~5!

The diagonal elements of Eq.~5! are the variances ofOj
which are traditionally written in the form

var~Oj !5
Rj j ~0!

N
2t j , ~6!

introducing the integrated autocorrelation times

t j5
1

2
1 (

t51

N21

r j~ t !, ~7!

wherer j (t)5Rj j (t)/Rj j (0).
When evaluating practical simulations the summation

Eq. ~7! up to N21 makes no sense sincer j (t) is buried in
the Monte Carlo noise already for relatively smallt. There-
fore, it has been proposed@18,19# to sum up only to some
smaller valueM of t. However, in practice that procedure
not stable against the choice ofM and neglecting the rest is
bad approximation. The proposal to estimate the neglec
an extrapolation based on thet valuesM and M21 @20# is
still inaccurate in general. A more satisfying procedure is
describe the rest by a fit function based on the~reliable!
terms of Eq.~5! for t<M and on the general knowledg
about the Markov spectrum. This procedure has led to
fect results in other applications@21#.

In order to apply the latter strategy also for determini
off-diagonal entries in Eq.~5! we have to look at how spec
tral properties enter the parallel-tempering case. For s
considerations it is convenient to introduce a Hilbert sp
@19,22# with an inner product (f,x)5(Cm(C)f* (C)x(C),
wherem(C) is the equilibrium distribution of the system an
C denotes the configurationsC5$B,F1 ,F2 , . . . ,FK%. Using
this notation we can write the expectation values^Oj&
5(Cm(C)Oj (C)5(1,Oj ) and the two-time correlation func
tions

^Oj~0!Ok~ t !&5 (
C [0] ,C [ t]

m~C [0] !Oj~C [0] !Wt~C [0] ;C [ t] !

3Ok~C [ t] !

5~Oj ,WtOk! ~8!

as inner products, where

Wt~C [0] ;C [ t] !5 (
C [1] , . . . ,C [ t21]

W~C [0] ;C [1] !

3W~C [1] ;C [2] ! . . . W~C [ t21];C [ t] ! ~9!
09450
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is the t-step transition matrix constructed from the one-s
transition matrixW(C;C8) of the Markov process considered
In the spectral representation

W5(
r>1

l r Pr ~10!

with eigenvaluesl r and projection operatorsPr , one has
l151 for the equilibrium eigenvectorm(C) and ul r u,1 for
the other modes. Obviously onlyP1 contributes to the sta
tionarity relation (C8m(C8)W(C8;C)5m(C), and P1(C8,C)
5m(C) follows. With this notation one can rewrite

^Oj&^Ok&5~Oj ,P1Ok!. ~11!

Using Eqs.~8!, ~10! and ~11! we obtain for the general cor
relation function

Rjk~ t !5^Oj~0!Ok~ t !&2^Oj&^Ok&5(
r .1

l r
t ~Oj ,PrOk!,

~12!

where, due to the subtraction, the term withl151 cancels
out. We thus get the general representation

Rjk~ t !5(
r .1

ajkrl r
t with ul r u,1 ~13!

where only the coefficientsajkr depend on the particular pa
of observables while the eigenvaluesl r are universal and
characterizing the chosen simulation algorithm. It is imp
tant to realize that this also holds for the observables of fo
~3! used in PT.

V. AUTOCORRELATION RESULTS

For the numerical evaluation of Eq.~5! we apply the
method explained in Sec. IV using the fact that after so
time only the slowest mode in Eq.~13! survives. Our method
is to sum up the simulation data only up to somet before the
noisy region and determine the rest of the sum from a
assuming that the fit describes the slowest mode well. Fot j
the rest typically amounts maximally to about 25%. T
proper choice of the fit intervals int ~excluding the region of
fast contributions and the noisy region! was controlled by
inspection of the graphs and watching the resultingx2 val-
ues. Examples of such fits are shown in Fig. 2.

In view of the moderate statistics available we additio
ally have made use of the universality of the Markov sp
trum implying that in Eq.~13! for given algorithm and lattice
size only the coefficientsajkr can vary with the observables
We have verified that a collective fit for the whole diagon
with a universal slowest mode gives results comparable
individual fits ~see Table I!. That motivated us to perform
collective fits with one single mode to diagonal and no
diagonal terms. In fact that method greatly helped to
stable fits which will be further discussed in Sec. VI.

To obtain errors for the covariances one can generalize
derivations given in Ref.@18# for the diagonal case to calcu
late covariances of covariances from theRjk(t) data only.
6-5
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FIG. 3. Correlation functions forQ for tempering with 7 ensembles on a 124 lattice for b55.6. Shown are the autocorrelation functio
at k50.1565~left! and the cross-correlation functions fork50.1565,0.15675~center! andk50.1565,0.157~right!. The errors indicated are
purely statistical ones. The lines represent one combined fit as explained in the text. Full data symbols indicate the fit interval.
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However, such calculation is impractical with the statist
available. Therefore, we have to rely on the comparison
measurements of covariances at different parameter va
and on consistency checks to get some idea about the si
the errors.

Comparing the results forRj j (0) from the different simu-
lation algorithms, which should give the same numbers,
sees that this ingredient of a calculation oft j has errors of
about 20%. The exponential autocorrelation timetexp
521/lnl, wherel denotes the slowest mode, correspon
within a good approximation to the integrated autocorre
tion time which one would get taking only the slowest mo
into account. The presence of faster modes then rendet j
smaller thantexp. We always find consistency with this re
quirement.

The integrated autocorrelation timest j obtained in this
way are given in Table I. One can see that there is li
difference between the results from individual and collect
fits. The fluctuations of values found for neighboringk val-
ues indicate relatively large errors. Judging from the o
served noise levels the errors are expected to be larges
the standard case and smallest for tempering with 7
sembles. Despite these errors two unexpected features
clearly visible: ~i! there is no sizable increase int j with k
and ~ii ! there is nevertheless gain in terms oft j when using
tempering.

The lack of a sizable increase int j with k, which one
would have expected for the standard runs, first indicates
valuing time histories by eye~as of Q in Fig. 1! can be
misleading. It secondly shows the important fact that
usual precondition of successful tempering, connecting
gions with considerably differentt, is not satisfied here.

In the light of this it comes with some surprise that ne
ertheless gain in terms oft j is observed. The reduction oft j
for Q turns out to be larger than forP.

VI. OFF-DIAGONAL COVARIANCES

For the discussion of cross correlations in the followi
section we need the off-diagonal elements of the covaria
matrices. As in the diagonal case, the use of the simula
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data in the sum~5! makes sense only outside the noisy r
gion. One finds that the off-diagonal elements of the gene
correlation functions are decreasing with the distance fr
the diagonal. Therefore, the evaluation of the sum~5! in the
off-diagonal case is more difficult because beyond some
tanceu j 2ku the elements are completely indiscernible with
the noise. See Fig. 3 for an illustration.

In tempering with 7 ensembles we generally find th
three off-diagonals can be determined while for temper
with 6 ensembles only one off-diagonal can be determin
For the off-diagonal elementsRjk(t) which clearly show a
signal above the noise we generally observe a maximum
t5u j 2ku ~see Fig. 3!. We therefore look for a prediction o
their functional form. Rewriting Eq. ~12! as Rjk(t)
5„Oj (s),(12P1)WtOk(s)… their qualitative behavior can b
discussed. Obviously at each time the observables of type~3!
depend only on one field configuration. This form ofRjk(t)
suggests that forj Þk a sizable contribution only arise
when, under the action of the transition matrix byWtOk(s),
a contribution also depending on the field configuration
tering Oj (s) has been generated. For our type of swapp
this situation occurs fort>u j 2ku so that

Rjk~ t !'H (
r .1

ã jkrl r
t for u j 2ku<t

0 for 0<t,u j 2ku
J

for j Þk ~14!

should be the approximate behavior. We indeed generally
this behavior within errors in our data.

For the numerical evaluation of Eq.~5! we again apply
the method explained in Sec. IV restricted to at interval
where the respectiveRjk(t) signal is sufficiently above the
noise. To get stable off-diagonal results we use the metho
the collective fit, using the existence of a universal slow
mode described in Sec. V. Table II shows an example o
numerical result forCjk ~remember thatCjk is symmetric!.
Generally the off-diagonal elements obtained, especially
smaller ones, are likely to be overestimated because of
sible contributions of the noise.
6-6
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PARALLEL TEMPERING IN FULL QCD WITH WILSON . . . PHYSICAL REVIEW D65 094506
In the applications to be described in Sec. VII the f
covariance matrixCjk is needed. This excludes, for this pu
pose, the consideration of the PT results in our case o
ensembles, because we were able to determine elements
in the first subdiagonalu j 2ku51. They have much large
errors than in our PT studies with 7 ensembles. In this c
in contrast, we got 3 sub-diagonals. We find that setting
remaining ones equal to zero or using various extrapolat
in u j 2ku for them makes only a little difference in the re
sults. This reflects the fact that, although the elements c
to the diagonal are not small, there is nevertheless a fa
decrease farther away from the diagonal.

VII. COMPARISON OF SIMULATION ALGORITHMS

At the end of Sec. V we have pointed out that there is
increase of autocorrelation times withk. Because of this ob-
servation the usual mechanism of tempering—which is
provide an easier detour through parameter space for the
pressed transitions—is not available here. If this mechan
is working, tempering with several parameter points can
advantageous even if one is interested only in the resu
one point. This holds, in particular, for systems where in
region of interest otherwise almost no transition occurs@7,9#.
Unfortunately our region is not of this type.

As also observed in Sec. V there is nevertheless a re
tion of autocorrelation times. The effect of this is, howev
not large enough generally to get gain if one is interested
only one point. In fact, dividing the reduction factors of th
t j in Table I by the number of ensembles it can be seen
at best in the case ofQ some gain remains.

We now turn to the question of whether gain remains
one is interested in the results at all parameter values. In
case it is necessary to account for cross correlations betw
the ensembles. To be able to do this one has to rely on fi
the data. The respective fit method is well known from t
treatment of indirect measurements~see e.g. Ref.@23#!. For
proper comparison this method, which leads to improved
rors, has to be applied to the tempering case as well as to
standard case.

Final results then are obtained from fits to mean val
from individual ensembles. In the case of PT the full cov
riance matrix enters the fit. Although there are difficulties
accounting for the full matrix numerically, we have tried
develop some feeling for its influence by making fits to t
observables we have measured.

TABLE II. Covariance matrix ofQ for tempering with 7 en-
sembles on 124 lattice.

j k j 103
•Rj , j 103

•Rj , j 11 103
•Rj , j 12 103

•Rj , j 13

1 0.15600 12.68 10.34 6.87 3.14
2 0.15625 9.89 8.28 5.77 2.04
3 0.15650 9.90 8.44 4.42 1.04
4 0.15675 9.27 6.30 3.22 1.23
5 0.15700 7.02 4.46 2.39
6 0.15725 4.34 2.82
7 0.15750 4.26
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It is known that^Q&50. Therefore our fit ansatz for^Q&
is a constant, i.e., the fit procedure is a weighted mean u
the full covariance matrix. For the plaquette we observ
that our data are consistent with a linear dependence ok.
Therefore we have used a linear fit ansatz ink.

In the following we outline the fit method for the case
the plaquette. The linear fit ansatz just mentioned is^P&
5x11x2k, wherex1 andx2 are the fit parameters. In matri
notation we haveh52Ax with

h5S ^P&1

A

^P&K

D , A52S 1 k1

A A

1 kK

D , x5S x1

x2
D . ~15!

We also introduce the vector of measured valuesp

5( P̄1 , . . . ,P̄K)T and call the corresponding covariance m
trix Cp . The result of the fit is the minimum of (h
2p)TCp

21(h2p) which lies atx̃52(ATCp
21A)21ATCp

21p.
The errors of the result are square roots of the diagonal
tries ofCx̃5(ATCp

21A)21. For fitting a constant to measure
values of^Q& corresponding formulas apply withx2[0.

Actually we are interested in the variances of the
function values. To get them we insertx̃ into the fit function,

h̃52Ax̃, ~16!

and using Eq.~16! in the transformation law of covariance
we obtain

Ch̃5ACx̃A
T. ~17!

The diagonal elements of Eq.~17! are the variances of inter
est and the square roots of them the improved errors.

For standard HMC, in these calculations we have used
measurements for the 5 selectedk values~see Table I!. In the
case of tempering the number of measurements is equ
the numberK of ensembles.

Table III gives data with the usual statistical errors and
results~16! with improved errors~17!. We denote the errors
by e0 for the usual statistical errors~in column 2!, by ef for
the improved errors taking into account thefull covariance
matrix ~column 3!, and byed for those obtained only with
the diagonalelements of the covariance matrix~column 4!,
respectively.

The factor (ef /ed)2 describes the influence of cross co
relations. We typically find values of about 2 to 3 for it. A
compared to the reduction factors apparent from Table I
appears not large. However, one has to be aware that pr
comparison here requires consideration of the improved
rors in the standardand in the tempering case.

The relevant computational gain factor for the comparis
standard vs tempering case is given by the improved er
and the numbers of ensembles as

~ed
standard/ef

tempering!2Nstandard/Ntempering. ~18!

In the example in Table III this factor appears close to o
However, because of the inaccuracy of the standard data
respective fit results are not reliable~giving factors from
6-7
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TABLE III. Data and fit results forP from standard runs and from tempering with 7 ensembles on the4

lattice.

k Data Fit with full Fit with diagonal
covariance matrix covariance matrix

Standard HMC

0.15500 0.431825(135) 0.432002(112)
0.15600 0.429872(136) 0.429968(66)
0.15650 0.429343(132) 0.428952(55)
0.15700 0.428309(138) 0.427935(59)
0.15750 0.426695(91) 0.426919(77)

Tempering~7 ensembles!

0.15600 0.430024(79) 0.429973(69) 0.430064(50)
0.15625 0.429494(64) 0.429516(56) 0.429578(38)
0.15650 0.429138(63) 0.429060(48) 0.429093(30)
0.15675 0.428749(67) 0.428603(48) 0.428607(29)
0.15700 0.428166(81) 0.428146(56) 0.428121(35)
0.15725 0.427560(82) 0.427690(68) 0.427636(46)
0.15750 0.427034(102) 0.427233(84) 0.427150(60)
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about 0.5 to 4 in other cases!. Thus we are not able to giv
definite numerical results for Eq.~18!.

A further quantity to be mentioned is the reduction fac
e0 /ef for the errors. This reduction in general is larger f
larger e0. Thus the comparison based on the fit proced
favors the standard case, which reduces a possible gain

Altogether it appears that even with more accurate da
might be difficult to present evidence for computational g
in our case, where the autocorrelation times for stand
HMC do not vary within thek range considered.

VIII. SWAP ACCEPTANCE RATES

For the effect of enlarging the lattice size on the efficien
of the algorithm the change of the swap acceptance
^Pswap& resulting from Eq.~2! appears to be relevant. In Re
@14# agreement has been reported between the behavio

served in PT and the expression erfc(1
2 A^DH&) derived in

Ref. @24#. The derivation given there, however, relies on t
area-preserving property of the HMC algorithm, implyin
^exp(2DH)&51, which does not hold in the case of swa
ping.

To get the relation appropriate for swapping, we ag
neglect higher cumulants in the cumulant expans

^exp(2DH)& 5 exp„ 2^DH& 1 1
2 Š(DH 2 ^DH&)2

‹7•••….
However, in contrast to Ref.@24#, we put ^exp(2DH)&
5exp(2d) with an unknownd. By convexity of the expo-
nential function one finds that^DH&>d holds. The relation
between mean and width of the Gaussian used in Ref.@24#
then generalizes to

^DH&5
1

2
s21d, s25Š~DH2^DH&!2

‹. ~19!

The evaluation of the integral
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~1/A2ps!*2`
` dx min„1,exp~2x!…exp„2~x2^DH&!2/2s2

…

then gives

^Pswap&5
1

2
erfcS 1

2 S u1
d

uD D1
exp~2d!

2
erfcS 1

2 S u2
d

uD D
~20!

whereu5A^DH&2d.
Within errors our values of̂DH& turn out to scale with

the volumeL4 ~being roughly 1.4 and 2.8 for 6 ensembl
and 0.35 and 0.7 for 7 ensembles for 104 and 124, respec-
tively!. While the values of̂ exp(2DH)& for the 104 lattice
within errors conform with 1, on the 124 lattice they deviate
substantially from this~increasing from 0.6 to 1.4!.

Our data agree with Eq.~20! using d as found from our
simulations. In the cases where we find thatd50 is not true,
despite this usingd50 in the acceptance formulas withi
errors gives still consistency. However, for larger lattice
where further increase of the deviations of^exp(2DH)& from
1 is to be expected, this might be no longer so. The indica
deviations tend to improve the situation on larger lattic
Since the behavior ofd is not known quantitatively, detailed
predictions on̂ DH& at present are not possible.

IX. CONCLUSIONS

In this paper we have compared PT with standard HM
quantitatively on 104 and 124 lattices. We have described th
steps of such an analysis and carried them out for the ave
plaquette and the topological charge. In a quantitative an
sis one has to look at the size of errors and therefore
principle also at errors of the errors. While the first is at t
limits of feasibility, the latter is definitely beyond our stati
tics. For that purpose we have demonstrated how the cr
correlation functions between the subensembles have t
6-8
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taken into account, using their general, algorithm indep
dent properties. This has allowed us to make consiste
checks, and we found consistent behavior of the results.
believe that this part of our analysis is of general interes

The choice of thek range in this paper was guided b
recent large-scale QCD simulations with dynamical Wils
fermions like SESAM@4# and triggered by the suppressio
of tunneling rates for the topological charge observed at
largestk values available. However, this range might be s
too far from the chiral limit with the consequence of n
dramatic change of the autocorrelation times for the stand
hybrid Monte Carlo method. This would explain why PT
our case, i.e., for thek range covered by the work o
SESAM, did not provide a considerable computational ga

At stronger coupling we know that approaching the chi
limit we arrive at a second order transition into a phase w
broken combined parity-flavor symmetry~so-called Aoki
phase! @25#. At this transition we expect a critical slowin
down and therefore strongly increasing autocorrelatio
S.
f,

as

,

.

.
Y.
, A
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This is the reason why we nevertheless believe that
should become efficient if one is sufficiently close to t
chiral limit. An even more promising scenario might be t
application of the PT method towards the continuum limit,
particular along the lines of constant physics in theb2k
plane. Already in pureSU(3)-Yang-Mills theory the tunnel-
ing rate between different topological sectors becom
strongly suppressed with increasingb.

The tools developed in the present paper will be ve
useful for such future applications.
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