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Setting the scale for the Lüscher-Weisz action
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~Received 11 January 2002; published 15 April 2002!

We study the quark-antiquark potential of quenched SU~3! lattice gauge theory with the Lu¨scher-Weisz
action. After blocking the gauge fields with the recently proposed hypercubic transformation, we compute the
Sommer parameter, extract the lattice spacinga, and set the scale at six different values of the gauge coupling
in a range froma50.084 fm to 0.136 fm.
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Recently, a noticeable revival of interest in improv
gauge actions took place. It was observed that impro
gauge actions make the numerical problems less severe w
implementing chiral fermions. The underlying mechanis
for numerical improvement is a suppression of ultravio
fluctuations of the gauge field. An example is the use of
Iwasaki and other improved gauge actions for domain-w
fermions@1#. Also, using the perfect gauge action@2# is an
integral part of constructing the fixed-point Dirac opera
@3#. Recently, a systematic expansion of a solution of
Ginsparg-Wilson equation@4#, the so-called chirally im-
proved fermion, was proposed and implemented@5#. Also, it
was found there that using the improved gauge action
numerically advantageous for the Dirac operator. In parti
lar, the Lüscher-Weisz action@6# with coefficients from tad-
pole improved perturbation theory@7,8# was used. Subse
quently, the instanton content of the QCD vacuum w
studied for the Lu¨scher-Weisz action in@9#.

In this article, we report on our results for the static p
tential and the lattice scale for the Lu¨scher-Weisz action in
order to make the use of this action easily accessible to
community. Furthermore, we test the recently propo
method of hypercubic blocking@10# which was found
@10,11# to improve the statistical accuracy in the determin
tion of the static potential by an order of magnitude. W
analyze quenched ensembles at six different values of
gauge coupling and compute the Sommer parameter@12,13#
and the lattice spacinga. This results in a precise determin
tion of the lattice scale in a range betweena50.084 fm and
a50.136 fm and using a fit to our data even beyond t
interval. Together with our results for the secondary co
plings b2 and b3, this article provides all the necessary i
gredients for using the Lu¨scher-Weisz action at typical lattic
spacings of state of the art simulations.

In addition to the plaquette term of the Wilson gauge
tion, the Lüscher-Weisz action includes a sum over
231 rectangles and a sum over all parallelograms, i.e.,
possible closed loops of length 6 along the edges of
3-cubes. Explicitly, the action reads

S@U#5b1(
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whereb1 is the principal parameter whileb2 andb3 can be
computed@7# from b1 using one-loop perturbation theor
and tadpole improvement@8#,

b252
b1

20u0
2 @110.4805a#, b352

b1

u0
2
0.033 25a,

~2!

with

u05~ 1
3 Re Tr̂ Upl&!1/4, a52

ln~ 1
3 Re Tr̂ Upl&!

3.068 39
. ~3!

The couplingsb2 ,b3 are determined self-consistently from
u0 anda for a givenb1. In Table I, we list the values of the
b i used for our ensembles and our results for the expecta
value of the plaquetteu0

45Re Tr̂ Upl&/3. The sample size a
each value ofb1 is 200 configurations on 164 lattices. The
update was done with a combination of Metropolis and ov
relaxation sweeps.

Before measuring the potential, we applied the hypercu
blocking transformation proposed in@10#. Hypercubic block-
ing mixes only gauge links from the hypercubes attached
the target link and has less of an impact on the short-dista
properties of the gauge fields than previously used smea
methods. The hypercubic blocking transformation proce
in three steps@10#:

V̄i ,m;n r5PSU(3)F ~12a3!Ui ,m

1
a3

2 (
6hÞr,n,m

Ui ,hUi 1ĥ,mUi 1m̂,h
† G ,

Ṽi ,m;n5PSU(3)F ~12a2!Ui ,m

1
a2

4 (
6rÞn,m

V̄i ,r;n mV̄i 1 r̂,m;r nV̄i 1m̂,r;n m
† G ,

Vi ,m5PSU(3)F ~12a1!Ui ,m

1
a1

6 (
6nÞm

Ṽi ,n;mṼi 1 n̂,m;nṼi 1m̂,n;m
† G . ~4!
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TABLE I. Parameters for the Lu¨scher-Weisz action. We list the values of theb i and the expectation value
of the plaquetteu0

45Re Tr̂ Upl&/3.

b1 8.00 8.10 8.20 8.30 8.45 8.60

u0
4 0.62107(3) 0.62894(3) 0.63599(3) 0.64252(3) 0.65176(3) 0.66018(3)

b2 20.54574 20.54745 20.54998 20.55332 20.55773 20.56345
b3 20.05252 20.05120 20.05020 20.04953 20.04829 20.04755

TABLE II. Results for the Sommer parameterr 0 in lattice units and the corresponding values for the
lattice spacinga when r 0 is assumed as 0.5 fm.

b1 8.00 8.10 8.20 8.30 8.45 8.60

r 0 /a 3.688(37) 4.015(34) 4.362(41) 4.741(49) 5.289(66) 5.967(70)
a ~fm! 0.136~1! 0.125~1! 0.115~1! 0.105~1! 0.095~1! 0.084~1!

FIG. 2. Results for the Som-
mer parameter in lattice units
~left-hand side! and the lattice
spacing in Fermi units~right-hand
side! as a function ofb1. The full
curves are the interpolations of th
data with the function~6!.

FIG. 1. The static potential for theb158.60 ensemble. The
diamonds represent the raw data from the two-parameter fit on
Wilson loops and the bursts are the values corrected for the sh
distance effect of the hypercubic blocking. The full curve is t
parametrization~5!.
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In the first step, intermediate fieldsV̄i ,m;n r are created from
the thin-link variablesUi ,m ~indicesi run over all sites of the
lattice, andm, n, r, andh over the four directions!. In the
second step, the intermediate fieldsV̄i ,m;n r are blocked into a
second set of intermediate fieldsṼi ,m;n which in the third
step are transformed into the final fieldsVi ,m . The restric-
tions on the indicesm, n, andr implemented in the sums in
Eqs.~4! ensure thatVi ,m contains only contributions from th
hypercubes attached to the link (i ,m). By PSU(3) , we denote
the projection of the sums back to elements of SU~3!. The
parametersa1 , a2, and a3 determine the admixture o
staples in each step of the blocking process. These pa
eters were optimized@10# to minimize the fluctuations of the
plaquette. Their values are given bya150.75, a250.6, and
a350.3.

We measured the static potential on the smeared con
rations using planar Wilson loopsW(r ,t) of size r 3t with
both t and r ranging from 1 to 10. We fitted the expectatio
values of the Wilson loops to a sum of two exponenti
c1 exp„2V(r )t…1c2 exp(2E8t) in a range oft52,3, . . . ,9.
The second exponential takes into account the contribu
from excited statesE8.V(r ), and from the first term we
directly obtain the potentialV(r ) for two static sources a
distancer. As a cross check we also computed for some
the ensembles the potential for the raw, unblocked confi
rations. We find that the results are compatible within er
bars but the statistical fluctuations, in particular at larger v
ues ofr and t, are much more severe for the raw configu
tions.

In Fig. 1, we show our results for the static potential f
the b158.60 ensemble. The smooth curve is the stand
infrared parametrization for the continuum potential,

V~r !5C2A/r 1sr , ~5!

FIG. 3. Superposition of the potentials for all values ofb1. The
irrelevant constantC in formula ~5! is set to zero.
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with constantsC, A, ands. The diamonds are the values fo
the potential obtained from the Wilson loops. The error b
are smaller than the symbols. For small distances, one fin
noticeable deviation from the Coulomb behavior2A/r . This
deviation is an effect of the hypercubic blocking. Howev
this effect can be computed perturbatively and the obtai
deviation from the Coulomb potential is used to introduce
fourth fit parameter in the potential fit@11#. Subtracting this
perturbative part gives the corrected data, which we rep
sent by bursts. From the parametersA ands, we computed
the Sommer parameterr 0 @13# in lattice unitsa, and assum-
ing r 050.5 fm we extracted the lattice spacinga. The result
is very stable under variation of the fit range for the pote
tial. Even ther /a51 measurement can be included. The
nal result is the weighted average over all fit rang
@armin ,armax# with r minP$1,2,3% and r maxP$7,8,9%. We give
the results for the lattice spacing and the Sommer param
in Table II.

Without the improved fit,r 0 can still be determined using
Eq. ~5!. In this case, the lower limit of the fit must be chos
so that the region where the hypercubic smearing distorts
potential is excluded, as can bee seen from Fig. 1, i.e.,r min
P$2,3%. The results of an analysis based on the thr
parameter fit~5! are in perfect agreement with those given
Table II @for, e.g., b158.30 one obtainsr 054.732(43)#.
Thus the only benefit from the improved fit is that no da
points have to be excluded. This shows that the effect of
hypercubic smearing on the short-distance static quark
tential is under good perturbative control.

In order to make the Sommer parameter and the lat
spacing available also for other values ofb1, we fit our data
to a functional form based on theb function as proposed in
@13#. We find

ln~r 0 /a!51.553 5410.798 40~b128.3!

20.095 33~b128.3!2. ~6!

In Fig. 2, we compare our numerical data forr 0 /a anda
~again assumingr 050.5 fm) to the curve~6!. It is obvious
that the data are well described by our parametrization. F
thermore, when extending the plot range to values ofb1 as
small asb156.8, we find that our results are in good agre
ment with the data computed for very coarse lattices in@7#,
i.e., a50.24 fm atb157.4, a50.33 fm atb157.1, anda
50.40 fm atb156.8.

Finally, in Fig. 3 we show a common plot of our resul
for the static potential at all values ofb1 we analyzed. We se
the irrelevant overall constantC to zero for all b1. It is
obvious that the data from different lattice spacings are
perfect agreement and the discretization errors are hardly
ticeable for the Lu¨scher-Weisz action.
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