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Setting the scale for the Lischer-Weisz action
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We study the quark-antiquark potential of quenched 3Uattice gauge theory with the “lseher-Weisz
action. After blocking the gauge fields with the recently proposed hypercubic transformation, we compute the
Sommer parameter, extract the lattice spaeingnd set the scale at six different values of the gauge coupling
in a range froma=0.084 fm to 0.136 fm.

DOI: 10.1103/PhysRevD.65.094503 PACS nuniderll.15.Ha

Recently, a noticeable revival of interest in improvedwhereg; is the principal parameter whilg, and 85 can be
gauge actions took place. It was observed that improvedomputed[7] from B; using one-loop perturbation theory
gauge actions make the numerical problems less severe whand tadpole improvemei8],
implementing chiral fermions. The underlying mechanism

for numerical improvement is a suppression of ultraviolet B B
fluctuations of the gauge field. An example is the use of the [,=— 5[1+0.4805¢], B3=——0.03325,
Iwasaki and other improved gauge actions for domain-wall Uo Uo

fermions[1]. Also, using the perfect gauge actif2] is an @)
integral part of constructing the fixed-point Dirac operator,, ih
[3]. Recently, a systematic expansion of a solution of the

Ginsparg-Wilson equationi4], the so-called chirally im- In({Re T{U )
proved fermion, was proposed and implemerjtgld Also, it uo=(iRe Tr(Up|))1’4, a=— 3—"'_ 3
was found there that using the improved gauge action is 3.068 39

numerically advantageous for the Dirac operator. In particus . . .
lar, the Lischer-Weisz actiof6] with coefficients from tad- The couplingsg, 35 are determined self-consistently from

pole improved perturbation theoi,8] was used. Subse- ug anda for a givengB,. In Table |, we list the values of the

quently, the instanton content of the QCD vacuum WasB‘ used for our ensembles and our results for the expectation
studied7for the ['scher-Weisz action if]. value of the plaquettaj=Re TKUp,)/3. The sample size at

In this article, we report on our results for the static po-€ach value of3, is 200 configurations on fdatices. The
tential and the lattice scale for the seher-Weisz action in UPdate was done with a combination of Metropolis and over-

order to make the use of this action easily accessible to thEfiaxation sweeps.

community. Furthermore, we test the recently propose% Be_fore measuringlthe potential, we applied thg hypercubic
method of hypercubic blocking10] which was found locking transformation proposed [ih0]. Hypercubic block-

[10,17 to improve the statistical accuracy in the determina—ing mixes (_)nly gauge links from Fhe hypercubes attached to
tion of the static potential by an order of magnitude. wethe target link and has less of an impact on the short-distance

analyze quenched ensembles at six different values of thefOPerties of the gauge fields than previously used smearing
gauge coupling and compute the Sommer paranjé i3 methods. The hypercubic blocking transformation proceeds

and the lattice spacing This results in a precise determina- I three step$10]:

tion of the lattice scale in a range betwesen 0.084 fm and o

a=0.136 fm and using a fit to our data even beyond this Vi v p="Psu(s)

interval. Together with our results for the secondary cou-

plings B, and B3, this article provides all the necessary in- s

gredients for using the lacher-Weisz action at typical lattice + > E Ui ,Uiss U
nFp,v,u

(1_a3)Ui,M

+

. . ) i+,

spacings of state of the art simulations.

In addition to the plaquette term of the Wilson gauge ac-
tion, the Lischer-Weisz action includes a sum over all V. =P (1—a,)U;
2x1 rectangles and a sum over all parallelograms, i.e., all hasir T PSUGR) 2
possible closed loops of length 6 along the edges of all
3-cubes. Explicitly, the action reads a2 Vi VI ot

P ¥ +Z E VivP:VﬂvVi*Pvﬂ«;P VVi+;1,p'Vp, !
*pFv,p "

S[UJ=/31§ iRe T[1-U,]
Vi,,u:,PSU(S)[(l_al)Ui,,u
+32; iRe T.[1—un]+,83% IRe T[1-U,,],

D
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TABLE I. Parameters for the lscher-Weisz action. We list the values of #Bieand the expectation value
of the plaquettaig=Re T(U ,)/3.

B1 8.00 8.10 8.20 8.30 8.45 8.60
ug 0.62107(3) 0.62894(3) 0.63599(3) 0.64252(3) 0.65176(3) 0.66018(3)
B> —0.54574 —0.54745 —0.54998 —0.55332 —0.55773 —0.56345
B3 —0.05252 —0.05120 —0.05020 —0.04953 —0.04829 —0.04755
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05 $,=8.60 aa E
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E A J . .
03k s 1 FIG. 1. The static potential for th@,=8.60 ensemble. The
oo ; e diamonds represent the raw data from the two-parameter fit on the
02 Q — Wilson loops and the bursts are the values corrected for the short-
o1 o raw = distance effect of the hypercubic blocking. The full curve is the
oo §_<> % corrected _g parametrizatior(5).
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TABLE II. Results for the Sommer parametey in lattice units and the corresponding values for the
lattice spacinga whenr is assumed as 0.5 fm.
B1 8.00 8.10 8.20 8.30 8.45 8.60
ro/a 3.688(37) 4.015(34) 4.362(41) 4.741(49) 5.289(66) 5.967(70)
a (fm) 0.1341) 0.1251) 0.1151) 0.1051) 0.0951) 0.0841)
FT T T A 018 preer e e
6.0 — -  oa1sf .
55 r 1 0.13 :— —:
L ] n : FIG. 2. Results for the Som-
. 503_ B R I mer parameter in lattice units
~ . go.n - E (left-hand sid¢ and the lattice
i ] £ 3 spacing in Fermi unitgright-hand
45 —] 0.10 3 side as a function of3;. The full
r . curves are the interpolations of the
4.0 — 0.09 [~ — data with the functior(6).
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L4 with constant<C, A, ando. The diamonds are the values for
12 B the potential obtained from the Wilson loops. The error bars
b ¥ are smaller than the symbols. For small distances, one finds a
10 ¥ noticeable deviation from the Coulomb behavioA/r. This
0.8 - # deviation is an effect of the hypercubic blocking. However,
06 .2 this effect can be computed perturbatively and the obtained
= - deviation from the Coulomb potential is used to introduce a
H 04 LT fourth fit parameter in the potential fit1]. Subtracting this
> 02 2 perturbative part gives the corrected data, which we repre-
0.0 =i sent by bursts. From the parametérand o, we computed
’ o the Sommer parameteg [13] in lattice unitsa, and assum-
0.2 X . ingro=0.5 fm we extracted the lattice spaciagThe result
04 o is very stable under variation of the fit range for the poten-
] tial. Even ther/a=1 measurement can be included. The fi-
0.6 nal result is the weighted average over all fit ranges
0.0 01 02 03 04 05 06 07 08 09 L0 11 12 [armin @Mmad With 1ine{l,2,3t andr,{7,8,9. We give
r [fm] the results for the lattice spacing and the Sommer parameter
in Table II.
_ FIG. 3. Superpos_ition of the po_tentials for all valuesAf The Without the improved fity, can still be determined using
irrelevant constan€ in formula (5) is set to zero. Eq. (5). In this case, the lower limit of the fit must be chosen

) ) ) o so that the region where the hypercubic smearing distorts the
In the first step, intermediate field ., , are created from potential is excluded, as can bee seen from Fig. 1,rig,,
the thin-link VarlableSJiYM (lndlceS| run over all sites of the 6{2,3} The results of an ana|ysis based on the three-
lattice, andu, v, p, and  over the four directions In the  parameter fit5) are in perfect agreement with those given in
second step, the intermediate fields,., , are blocked intoa Table Il [for, e.g., 3;=8.30 one obtaing ,=4.732(43).
second set of intermediate fie|&s’ ., which in the third Thus the only benefit from the improved fit is that no data
step are transformed into the final fields ,. The restric-  Points have to be excluded. This shows that the effect of the
tions on the indiceg:, », andp implemented in the sums in hypercubic smearing on the short-distance static quark po-
Eqs.(4) ensure tha¥/; , contains only contributions from the tential is under good perturbative control. _
hypercubes attached to the link &). By Psys), We denote In_order t_o make the Sommer parameter qnd the lattice
the projection of the sums back to elements of(®UThe  SPacing a_vallable also for other values,{ﬁf, we fit our data_l
parametersa;, a,, and a; determine the admixture of 0@ functl_onal form based on the function as proposed in
staples in each step of the blocking process. These pararht3l- We find
eters were optimizefLO] to minimize the fluctuations of the _ B
plaquette. Their values are given by=0.75, a,=0.6, and In(ro/a)=1.55354r 0.798 405, 8.9

a3=0.3. —0.095338,—8.3°. (6)
We measured the static potential on the smeared configu- . _
rations using planar Wilson loopa/(r,t) of sizer Xt with In Fig. 2, we compare our numerical data fgr/a anda

botht andr ranging from 1 to 10. We fitted the expectation (@gain assumingo=0.5 fm) to the curve6). It is obvious
values of the Wilson |oops to a sum of two exponentia|sthat the data are well described by our parametrization. Fur-
c, exp(—V(r)t)+c,exp(~E't) in a range oft=2,3, ... ,9. thermore, when extending the plot range to valuegpfs
The second exponential takes into account the contributiogmall asB;= 6.8, we find that our results are in good agree-
from excited state€’'>V(r), and from the first term we ment with the data computed for very coarse latticef7in
directly obtain the potentiaV/(r) for two static sources at I-€.,a=0.24 fm atp,=7.4,a=0.33 fm atB;=7.1, anda
distancer. As a cross check we also computed for some of=0.40 fm atg;=6.8.
the ensembles the potential for the raw, unblocked configu- Finally, in Fig. 3 we show a common plot of our results
rations. We find that the results are compatible within errorfor the static potential at all values g we analyzed. We set
bars but the statistical fluctuations, in particular at larger valthe irrelevant overall constar€ to zero for all 8;. It is
ues ofr andt, are much more severe for the raw configura-obvious that the data from different lattice spacings are in
tions. perfect agreement and the discretization errors are hardly no-
In Fig. 1, we show our results for the static potential for ticeable for the Lecher-Weisz action.
the 8,=8.60 ensemble. The smooth curve is the standard We would like to thank Meinulf Gokeler, Anna Hasen-

infrared parametrization for the continuum potential, fratz, Francesco Knechtli, Paul Rakow, and Andreas fécha
for interesting discussions. C. G. was supported by the Aus-
V(r)=C—Alr+or, (5)  trian Academy of Science@\PART 654.
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