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Perturbative expansions from Monte Carlo simulations at weak coupling:
Wilson loops and the static-quark self-energy
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Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo
simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta
are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to
suppress nonperturbative finite-volume effects due toZ(3) phases. Simulations of the Wilson gluon action are
done with both periodic and twisted boundary conditions, and over a wide range of lattice volumes~from 34

to 164) and couplings~from b'9 tob'60). A high precision comparison is made between the simulation data
and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent
agreement with perturbation theory through second order. New results for third-order coefficients for a number
of Wilson loops and the static-quark self-energy are reported.
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I. INTRODUCTION

Simulations using highly improved lattice actions ha
become commonplace in recent years. Effective use of th
requires perturbative matching calculations for masses, c
pling constants and currents, among other quantities. Hig
order perturbative calculations for these actions are labor
but they are essential in order to obtain precision results
most observables.

An alternative to doing calculations in analytical pertu
bation theory is to directly measure short-distance quant
in Monte Carlo simulations at weak coupling, as proposed
Refs.@1,2#. One exploits the fact that the lattice theory on
finite volume enters a perturbative phase at weak coupl
In effect the couplings and volumes in the simulations
chosen to ensure that the lattice momenta are all perturba
~up to possible zero modes!. In this way one can in principle
extract perturbative expansions for many quantities, by
ting Monte Carlo data for appropriate correlation functio
to a power series in the coupling.

This approach has been shown to reproduce analy
results for the first-order mass renormalization for Wils
fermions, and the first-order additive self-energy for nonr
ativistic QCD~NRQCD! fermions@1,2#. In addition, prelimi-
nary estimates of some third-order Wilson loop coefficie
were made in Ref.@3#. An extension of this technique t
background field calculations was considered in Ref.@4#.
Preliminary work on perturbative simulations of quark a
tions has also been done@5,6#.

The Monte Carlo method as implemented here require
input from conventional lattice perturbation theory only t
expansion of the average plaquette, and of the static pote
~or some other quantity that defines a physical coupling c
stant!, to the desired order, along with an estimate of
scale relevant to the quantity of interest. These inputs
necessary because we use a renormalization scheme de
0556-2821/2002/65~9!/094502~15!/$20.00 65 0945
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through the perturbative expansion of the static-quark po
tial @7,8#. The renormalized couplingaP in this scheme can
be extracted from measured values of the average plaqu
given its perturbative expansion.

The method proceeds as follows. Simulations are don
several different values ofb @b52N/g2 for SU(N) gauge
theory#. At each b we use the measured value of th
plaquette to solve for the value of the renormalized coupl
aP(q1,1* ), at the scaleq1,1* that is optimal for the plaquette@7#.
We then run the couplings at eachb to the scaleq* appro-
priate to the quantity of interest, whose expectation val
are then fit to a truncated series inaP(q* ). The fit yields
numerical values for the perturbative coefficients. To ass
the effects of the truncation of the perturbation series at fin
order in aP , the fits are done including many higher-ord
terms, beyond the order of interest, but where the fits inc
porate constraints on the coefficients@9#, which are required
to lie in a range of values that is consistent with a we
behaved perturbative expansion. One can also improve
quality of the results by using lower-order coefficients fro
conventional perturbation theory, if available, in order to fu
ther constrain the fits to the Monte Carlo data, thereby
taining more accurate values for previously unknown high
order terms.

In order to ensure that the lattice momenta are all su
ciently perturbative, simulations are done on lattices
which

2p

La
@LQCD, ~1!

where LQCD is the QCD scale parameter,a is the lattice
spacing, andLa is the physical length of the lattice. In orde
to minimize perturbative finite-volume errors we must al
ensure that the spacing between lattice momenta is s
©2002 The American Physical Society02-1
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compared to the characteristic momentum scaleq* associ-
ated with the quantity of interest

2p

La
!q* . ~2!

In practical simulations the lattices are such that Eq.~1! is
extremely well satisfied:aLQCD ranges from 1023 to 10229

in the analyses in this paper. Moreover the quantities stud
here all have characteristic scales near the ultraviolet cu
henceaq* is independent ofa, and Eq.~2! can be easily
satisfied. In theories with additional scales, such as qu
massesm, the characteristic scaleq* is proportional to
f (ma)/a, where f is some dimensionless function, hen
aq* is independent ofa provided thatm is adjusted to keep
ma fixed. Perturbative finite-volume effects can also be a
lyzed in detail by running simulations at several differe
volumes.

In simulations with periodic boundary conditions~PBC!
however there are lattice zero modes which will violate E
~1!. One must also ensure that nonperturbative finite-volu
effects arising fromZ(N) phases are sufficiently suppresse
One way to achieve this, using a local updating algorithm
to work on lattices with sufficiently large volumes, where t
simulation is started with perturbative initial values for t
links ~e.g., by setting all links to the identity!. A more pow-
erful approach, analyzed in detail here, is to adopt bound
conditions that eliminate zero modes and suppress transi
between different phases.

It is also desirable to have a more general means for d
ing with potential infrared problems. The effects of latti
zero modes on most observables is not known and, w
these could in some cases be accounted for by a numeric
to the data, it is preferable to eliminate these states from
outset. More generally zero modes can significantly alter
expected perturbative form of correlation functions. For e
ample, the presence of zero modes would pose a signifi
problem for extracting quark masses, as one could not
sume the existence of an isolated pole in the perturba
quark propagator. Twisted boundary conditions~TBC! @10–
12# can be used to eliminate zero modes, and are easily
corporated into simulations using existing code for a giv
action.

In this work we present a comprehensive study of t
Monte Carlo method for extracting perturbative quantit
@13#. We do simulations of SU~3! gauge theory using the
Wilson gluon action. The evolution of theaP coupling is
known for this theory through three-loop order which,
principle, allows one to use the method to determine per
bative expansions through fourth order. Simulations are d
for both PBC and TBC. We show that using TBC is an
fective means of suppressing nonperturbative finite-volu
effects due toZ(3) phases, as well as eliminating the effec
of lattice zero modes. We also make an extensive analys
perturbative finite-volume effects for TBC. We analyze sim
lation results for a large set of Wilson loops and the sta
quark self-energy, over a wide range of couplings and lat
volumes. A high-precision comparison is made between
simulation data and results from finite-volume lattice pert
09450
d
ff,

rk

-
t

.
e
.
s

ry
ns

l-

le
l fit
e
e
-
nt
s-
e

n-
n

s
s

r-
e

-
e

of
-
-
e
e
-

bation theory. The Monte Carlo results are shown to be
excellent agreement with perturbative calculations throu
second order, which are available for these observables
both periodic@14,15# and twisted@16# boundary conditions.
New results for third-order coefficients for fourteen differe
Wilson loops and the static-quark self-energy are also
ported.

Wilson loops provide a good quantity for a first test of t
Monte Carlo method, since small loops are relatively ins
sitive to nonperturbative phases, and have small fin
volume errors. The perturbative expansion of small Wils
loops is also relevant to determinations of the strong c
pling from lattice simulations@8#. The calculation of the
static-quark self-energy is considerably more involved, a
is very sensitive to nonperturbative phases and has large
turbative finite-volume corrections. The static-quark se
energy thus represents a good prototype for more real
calculations of other perturbative quantities, such as qu
masses. The self-energy is also useful for determination
the b-quark mass from lattice simulations@17#.

The rest of this paper is organized as follows. In Sec
we use PBC to study Wilson loops at largeb. Simulations
are done on 164 lattices at nine couplings. We evaluate W
son loops of sizesR3T with R,T<5. The results are fit to a
truncated perturbation series, using the renormalized c
pling aP evaluated at a scaleqR,T* that is appropriate to eac
Wilson loop@7#. We explicitly subtract the leading effects o
lattice zero modes from the Monte Carlo data using an
isting analytical calculation@18#. A detailed comparison is
made with perturbation theory through second order, and
timates are made of the third-order coefficients.

In Sec. III we review how simulations are done usin
twisted boundary conditions, and their use in analytical p
turbation theory. We demonstrate that these boundary co
tions can be used to virtually eliminate nonperturbative
fects due toZ(3) phases even on lattices with very sm
volumes.

The static-quark self-energy is analyzed in Sec. IV. W
extract the self-energy from the gauge-invariant Polyak
line, which describes the propagation of a static quark acr
the entire time-extent of the lattice. Other extractions of
self-energy have relied upon large Wilson loops@15,19#, and
the gauge-fixed quark propagator@5# ~the latter methods
could prove more efficient in Monte Carlo simulations,
one can limit the propagation time on a lattice of a giv
size!. We make a perturbative analysis of the self-energy
finite lattices, and show that one can sum leading logarith
in the finite-volume correction. We present results of sim
lations of the self-energy, with runs at nine volumes at ea
of nine couplings. We compare the simulation results w
perturbation theory through second order, over the wh
range of lattice sizes studied here, and make an estima
the third-order self-energy, including an extrapolation to t
infinite-volume limit.

During the course of the calculations described in t
paper, we also investigated the question of how to design
most efficient calculations through intelligent parame
choices, by using the techniques of constrained curve fit
@9#. In calculations like those in this paper, for example, o
2-2
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TABLE I. Simulation parameters for Wilson loop measurements. These simulations were all done4

lattices with periodic boundary conditions. The lattice couplingb for each simulation was determined from
the bare couplinga lat by b56/(4pa lat). The measured values of the average plaquette are shown, along
the renormalized couplingsaP(3.40/a) and scale massesLP extracted from Eqs.~5! and ~7!. Ten configu-
rations were skipped between measurements in all cases, and the observables were computed by bi
measurements in bin sizes of 50, which resulted in negligible autocorrelations at all couplings.

a lat b Measurements ^ 1
3 Re TrUh& aP(3.40/a) aLP

0.010 47.746 2320 0.957542~1! 0.01049 5.47310223

0.015 31.831 2459 0.935857~2! 0.01614 8.63310215

0.020 23.873 2112 0.913829~3! 0.02209 1.05310210

0.025 19.099 1558 0.891441~3! 0.02839 2.9431028

0.030 15.915 860 0.868599~9! 0.03510 1.2531026

0.035 13.642 746 0.845305~8! 0.04225 1.8131025

0.040 11.937 748 0.821472~9! 0.04992 1.3431024

0.045 10.610 500 0.797038~11! 0.05819 6.4031024

0.050 9.459 500 0.771872~11! 0.06719 2.2431023
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il-
can choose the couplingsb in order to minimize the simu-
lation cost required to achieve a given precision in the p
turbative coefficients. Although the Monte Carlo calculatio
described in this paper were designed before these optim
tion techniques were worked out, we include a description
them here, in an Appendix, for use in future calculations

Some conclusions and prospects for future work
briefly discussed in Sec. V.

II. WILSON LOOPS

In this section we analyze simulations of Wilson loops
largeb. The Wilson gauge-field actionSWil for SU~3! color
is used, where

SWil@U#5b (
x,m,n

F12
1

3
ReTrUmn~x!G , ~3!

andUmn is the plaquette. Simulations were done on 164 lat-
tices at nine couplings. Details of the simulation parame
are given in Table I. Periodic boundary conditions were u
here, in order to make a direct comparison with the first- a
second-order perturbative coefficients calculated on fi
lattices by Heller and Karsch@14#. We will also verify that
the simulations reproduce the effects of lattice zero mode
leading order.

We analyze the logarithm of the Wilson loop

2
1

2~R1T!
ln WR,T5(

n
cnaP

n ~qR,T* !, ~4!

using a renormalized couplingaP that is determined from
measured values of the plaquette, according to@7,8#

2 ln W1,1[
4p

3
aP~3.40/a!@121.1909aP#. ~5!

The couplingaP is definedsuch that the logarithm of the
plaquette has no third- or higher-order terms in its pertur
tive expansion@8#. Other quantities, of course, do hav
09450
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higher-order terms when expressed as a series inaP . One
can expressaP(3.40/a) as a series in the bare lattice co
pling a lat , using the third-order expansion of the plaque
given in Ref.@20#

aP~3.40/a!5a lat14.564a lat
2 128.566a lat

3 1O~a lat
4 !. ~6!

The large coefficients in this expansion are an artifact
a lat ; usingaP eliminates large renormalizations of the ba
coupling. We also note that the logarithm of the Wilson lo
is better behaved perturbatively than the Wilson loop its
due to the exponentiation of the perturbative perimeter la
this is also why we have divided by the perimeter in defini
the perturbative coefficients in Eq.~4!.

The perturbation series for each Wilson loop is evalua
using the renormalized coupling at a scaleqR,T* determined
according to the procedure of Ref.@7#; the scale correspond
to the typical momentum carried by a gluon in the leadin
order diagram for a given quantity. The scales are given
Table II. The couplings at these scales are evaluated by
measuring the average plaquette in the simulation, and s
ing Eq. ~5! for aP(3.40/a). We then evolve to the scale ap
propriate to the quantity under consideration using the u
versal second-order beta function, plus the third-order te
for aP , with @21#

TABLE II. Scale parameters for the couplings for various W
son loops.

Loop aqR,T* Loop aqR,T*

132 3.07 235 2.46
133 3.01 333 2.45
134 2.96 334 2.38
135 2.95 335 2.35
232 2.65 434 2.30
233 2.56 435 2.27
234 2.49 535 2.23
2-3
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aP~q!5
4p

b0ln~q2/LP
2 ! F12

b1

b0
2

ln@ ln~q2/LP
2 !#

ln~q2/LP
2 !

1
b1

2

b0
4ln2~q2/LP

2 ! S H ln@ ln~q2/LP
2 !#2

1

2J 2

1
b2,Pb0

b1
2

2
5

4D G . ~7!

For our quenched simulationsb0511, b15102, andb2,P
5b2,MS1BP , whereb2,MS52857/2 is the third beta func
tion coefficient in the modified minimal subtraction (MS)
scheme, and whereBP52147.57 can be obtained from ex
isting three-loop calculations@20,22#, as described in Ref
@8#. The values ofaP(3.40/a) andLP for our simulations are
given in Table I.

One can convert a perturbative expansion ina lat to one in
aP(q), at the scale appropriate to a particular quant
through third order, using

a lat5aP~q!2aP
2 ~q!F b0

4p
lnS p

aqD 2

14.702G1aP
3 ~q!

3H F b0

4p
lnS p

aqD 2

14.702G2

2
b1

~4p!2 lnS p

aqD 2

27.841J 1O~aP
4 !. ~8!

This connection can be obtained from the third-order exp
sion of the plaquette in the bare coupling@20#, which can be
used to solve fora lat in terms ofaP(3.40/a), given its defi-
nition in Eq. ~5!; one can then use a perturbative expans
of the evolution equations@23# to eliminateaP(3.40/a) in
favor of aP(q). Equation~8! extends the second-order co
nection betweena lat andaP(q) given in Ref.@7#.

The first- and second-order perturbative coefficients
the Wilson loop were computed by Heller and Karsch@14#
for an expansion in the bare lattice coupling. We convert t
expansion to a series inaP(qR,T* ) using Eq.~8!. These per-
turbative calculations were done on finite lattices with pe
odic boundary conditions, neglecting the contribution of l
tice zero modes. Our simulations of the Wilson loops w
also done with PBC but do contain the effects of zero mod
In Sec. III we will consider simulations using twisted boun
ary conditions to eliminate these states. For Wilson loo
however we can make use of an analytical calculation of
zero mode piecec1

zero of the first-order coefficient in Eq.~4!,
due to Costeet al. @18#

c1
zero5

4p~RT!2

9~R1T!V
, ~9!

whereV is the lattice volume. We will use this expression
explicitly subtract the leading-order effects of the zero mo
from the Monte Carlo data. In the following we will show
the Monte Carlo data after first making this zero mode s
09450
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traction, unless explicitly noted otherwise; hereafter we w
usecn to denote the~finite-volume! coefficients without zero
mode contributions.

We present Monte Carlo results for the 535 Wilson loop
in Fig. 1, in terms of the quantity

k1
MC[

1

aP~qR,T* !
F2

1

2~R1T!
ln WR,T

MCG , ~10!

which should exhibit the limitk1→c1 asaP→0. We extract
estimates of the perturbative coefficientscn from the Monte
Carlo data by fitting the results to the series expansion
~4! where, to begin with, we treat all coefficientscn>1 as
unknown. We will compare the fit values forc1 andc2 with
the results from analytical perturbation theory, which pr
vides a stringent test of the Monte Carlo method.

An important aspect of the fitting procedure is how
reliably account for the systematic error arising from t
truncation of the fit function at a finite order inaP . Includ-
ing too few terms in the expansion inaP results in a poor fit
to the data, while including too many higher-order term
results in very poorly constrained values for the lowest-or
coefficients which should, in fact, make the dominant con
butions to the data. This situation can be remedied by inc
porating constraints on the coefficients, which are require
lie in a range of values that is consistent with our expectat
that the perturbative expansion is well behaved. We do thi
practice by using conventional least-squares fitting routin
where thex2 is augmented according to

x2~cn!→xaug
2 ~cn![x2~cn!1(

n

~cn2 c̄n!2

s̄n
2

, ~11!

which tends to constrain the fit values for thecn to the inter-
val c̄n6s̄n . This approach can be motivated by Bayesi
statistical analysis@9#.

FIG. 1. Monte Carlo results fork1
MC for the 535 Wilson loop,

after the effects of zero modes are removed at leading order f
the simulation data using Eq.~9!. The statistical errors are smalle
than the plotting symbols. The filled square showsc1 from pertur-
bation theory. The dashed line shows the results of a fit to Eq.~4!.
2-4
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If perturbation theory is reliable we expect the coefficie
cn to be ofO(1). Weperformed least-squares fits to Eq.~4!,
minimizing xaug

2 with c̄n50 ands̄n55 for the first five or-
ders in the expansion. The dashed line in Fig. 1 shows
results of the fit for the 535 Wilson loop; note that the
curvature in the Monte Carlo datak1

MC shows the sensitivity
of the simulations to the third-order term in the perturbat
series. The quality of the fits is very good, withQ values in
excess of 50%.

The measured values ofc1 andc2 are in excellent agree
ment with perturbation theory, as shown in Table III, with
accuracy of a few parts in 104 for the first-order coefficients
and a few parts in 102 for the second-order coefficients. Th
third-order coefficient can also be resolved, here with alm
no input from analytical perturbation theory. The fit valu
are very stable to changes in the values ofc̄n ands̄n used in
Eq. ~11!.

Note that if the Monte Carlo data are fit withc1 con-
strained to its value from perturbation theory, then the err
onc2 are reduced by a factor of about three, with fit values
agreement with perturbation theory within the reduced
rors. Similarly, we obtain more accurate results forc3 by
fitting the Monte Carlo data withc1 and c2 constrained to
their perturbative values. We did fits to Eq.~4! for the next
three orders in the perturbative expansion, minimizingxaug

2

using c̄n50 ands̄n55 for n53,4,5. The results forc3 are
given in Table IV, where the fit errors are seen to be ab
10%.

It is also interesting to verify that the simulations repr
duce the leading effects of the zero modes. A convenient
to visualize these effects is to plot the quantity

k2
MC[

1

aP
2 ~qR,T* !

F2
1

2~R1T!
ln WR,T

MC2c1aPG , ~12!

where the first-order coefficient is set to its perturbat
value. We plotk2 for the 535 loop in Fig. 2, after subtract
ing the leading-order zero mode term from the Monte Ca

TABLE III. Monte Carlo results for the first three perturbativ
coefficients for selected Wilson loops (c1,2,3

MC ). The results were ob-
tained from a simultaneous fit to the coefficients, as discussed in
text. The first- and second-order coefficients from perturbat
theory for the same size lattice are also shown (c1,2

PT). The effects of
zero modes are not included in the perturbation theory values,
were removed at leading order from the simulation data. Note
more accurate results forc3

MC for the full set of Wilson loops are
given in Table IV, where the fits are done withc1 and c2 con-
strained to their perturbative values.

Loop c1
MC c1

PT c2
MC c2

PT c3
MC

132 1.2037~2! 1.2039 21.244(16) 21.260 0.0~5!

133 1.2587~2! 1.2589 21.185(19) 21.198 0.4~5!

232 1.4337~2! 1.4338 21.312(19) 21.323 1.1~5!

333 1.6089~3! 1.6089 21.218(24) 21.217 2.5~6!

434 1.7067~4! 1.7067 21.213(29) 21.210 3.4~6!

535 1.7693~6! 1.7690 21.201(40) 21.177 4.3~7!
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data. We see that the data reproduce the second-order
ficient from perturbation theory, withk2→c2 as aP→0. In
Fig. 3 we plotk2 but where the leading-order zero mode
not subtracted from the data. We see evidence of sing
behavior ink2 at small coupling, indicating that the first
order term is not completely removed from the Monte Ca
data when the zero mode component is not treated.
dashed line in Fig. 3 shows the results of a fit to Eq.~4!,
taking account of the leading zero mode contribution, wh
the termc1

zero/aP is included in the fit line. This shows ex
plicitly that the Monte Carlo data are sufficiently accurate
reveal the small contribution from the zero modes, at su
ciently small couplings.

We also present results for the residual

k3
MC[

1

aP
3 ~qR,T* !

F2
1

2~R1T!
ln WR,T

MC2c1aP2c2aP
2 G

~13!

for the 535 loop in Fig. 4, which is convenient for visua
izing the sensitivity of the Monte Carlo data to the third- a
fourth-order terms. The statistical errors in the Monte Ca

he
n

nd
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TABLE IV. Monte Carlo results forc3, where the first- and
second-order coefficients are constrained to their values from
turbation theory.

Loop c3
MC Loop c3

MC

132 0.43~9! 235 2.52~17!

133 0.66~11! 333 2.53~15!

134 0.84~12! 334 2.98~17!

135 0.94~14! 335 3.26~19!

232 1.41~11! 434 3.40~19!

233 1.91~13! 435 3.71~21!

234 2.28~15! 535 3.91~23!

FIG. 2. Monte Carlo results fork2
MC for the 535 Wilson loop,

after the effects of zero modes are removed at leading order f
the simulation data. The filled square showsc2 from perturbation
theory. The dashed line shows the results of a fit to Eq.~4!, where
c1 is constrained to its perturbative value.
2-5
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TROTTIER, SHAKESPEARE, LEPAGE, AND MACKENZIE PHYSICAL REVIEW D65 094502
data are too large to resolvec4, although the best fits sugge
that c4 is of the same order asc3 for all the Wilson loops
analyzed here.

A potential complication in our analysis ofc3 is that we
have only corrected the Wilson loop data for the effects
zero modes to first order. However we expect that the lead
contribution from zero modes that remains is
O@aP

2 (RT)2/V# which, given the lattice volume and th
range of couplings analyzed here, should only be compar
to terms ofO(aP

4 ). In fact there is no visible effect of zer
modes beyond first order, within statistical errors; this wo
show up as singular behavior ink3 at small aP ~compare
Fig. 4 for k3 with the two plots ofk2 in Figs. 2 and 3!. We
also note that while we have extracted values forc3 on a
finite lattice, the volume is large enough that the resu
should give a good approximation to the coefficients on
infinite lattice @with the corrections expected to be
O(1/V)#.

FIG. 3. Monte Carlo results fork2 for the 535 Wilson loop,
when the effects of the first-order zero mode term arenot removed
from the simulation data. The dashed line shows the results of
to the data, described in the text.

FIG. 4. Results fork3 for the 535 Wilson loop. The dashed line
shows the results of a fit to Eq.~4!, wherec1 andc2 are constrained
to their perturbative values.
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A determination of higher order terms in the expansion
the 131 and 232 Wilson loops has also been made in R
@24#, using numerical simulations of the Langevin equatio
where a perturbative expansion in the bare lattice couplin
applied to the evolution equations themselves. The res
are presented in Ref.@24# as an expansion of the Wilso
loops in powers of the bare lattice coupling,WR,T51
2(nc̃na lat

n . We can convert our third-order result for th
expansion of ln(WR,T) in aP(qR,T* ), to an expansion ofWR,T

in a lat , by using the inverse of Eq.~8!. We find c̃350.3
60.9 for the 232 Wilson loop, in agreement with the resu
c̃350.060.9 reported in Ref.@24#.

We note parenthetically that the expansion of the Wils
loop itself is very poorly convergent, and that the vanishing
small value ofc̃3 for the 232 loop is accidental. One find
very large expansion coefficients for other Wilson loop
These expansions are tamed by taking the logarithm,
expressing the series inaP(q* ). For example, our results
give c̃3 / c̃1576.160.1 for the 535 loop, with this large
value arising almost entirely from the exponentiation of t
perturbative perimeter law, and the renormalization of
bare coupling~compare withc3 /c152.260.1 for the loga-
rithm of the 535 loop!. In Sec. IV we show that the third
order expansion of the static-quark self-energy is also v
reasonable when expressed in terms ofaP(q* ), but is very
poorly convergent when expressed in terms ofa lat .

III. TWISTED BOUNDARY CONDITIONS

A. Formalism

The analysis of the preceding section shows that sim
tions at largeb can be used to make accurate determinati
of perturbative quantities at higher orders than have b
achieved using conventional perturbation theory. Howev
as discussed in Sec. I, simulations with periodic bound
conditions ~PBC! are subject to the effects of lattice ze
modes, and a more convenient method for dealing with
tential infrared problems in more general situations is
quired. Fortunately lattice zero modes can be comple
eliminated by using twisted boundary conditions~TBC!. We
also find that TBC significantly reduce nonperturbati
finite-volume effects due toZ(N) phases.

Twisted boundary conditions@10–12# for the link fields
resemble a gauge transformation on fields which cr
through selected lattice boundaries

Ua~x1L n̂ !5VnUa~x!Vn
† , ~14!

where we take the twist matricesVn to be constant. A twist
must be applied to at least two boundariesm and n, as the
transformation matrixVn for a single boundary can be com
pletely eliminated by a field redefinition. The requireme
that Ua(x1Lm̂1L n̂), which can be connected toUa(x) by
crossing the two lattice boundaries in different orders,
single-valued implies that the twist matrices must satisfy
algebra

VmVn5hVnVm , hPZ~N!, ~15!

fit
2-6
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PERTURBATIVE EXPANSIONS FROM MONTE CARLO . . . PHYSICAL REVIEW D65 094502
where we consider the general SU(N) gauge theory in mos
of this section. A pair of twist matrices generates a multip
cation table that forms a discrete subgroup of SU(N). In
particular@11#

Vn
N5~21!N21I , ~16!

whereI is the unit matrix.
The Wilson gluon action for TBC is written in terms o

link variables in the usual way, Eq.~3!. The matricesL(x)
that generate gauge transformations

Um~x!→L~x!Um~x!L†~x1m̂ ! ~17!

are subject to the same TBC as the links@Eq. ~14!#. One
consequence of this is that the Polyakov linePm in a twisted
directionm must have an additional factor of the correspon
ing twist matrix, if it is to be gauge-invariant:

Pm[^Um~x!Um~x1m̂ ! . . . Um~x1Lm̂ !3Vm&. ~18!

The only zero-action fields are pure-gauge configurati
Um(x)5L(x)L†(x1m̂) @11#, including possible Z(N)
phases. The action also possesses a discrete symmetry

Ua~x!→V iUaV i
† ~19!

whereV i5Vm ,Vn ,VmVn , etc. Note that Eq.~19! is not a
gauge transformation, becauseL(x)5V does does not sat
isfy TBC @11#. This symmetry implies that the Polyako
lines in the twisted directions have zero expectation va
even in the perturbative phase of the theory.

We have done SU~3! simulations with twisted boundar
conditions across two ‘‘spatial’’ boundariesx andy

VxVy5hVyVx~Txy!, ~20!

whereh5e2p i /3, and across all three spatial boundariesx, y
andz

VxVy5hVyVx ,

VxVz5hVzVx~Txyz!. ~21!

We refer to these two cases as Txy and Txyz boundary con-
ditions, respectively.

Explicit representations of the twist matricesVn are not
needed since, as shown in Ref.@11#, one can absorb them b
a field redefinition of the link variables, leaving only pha
factorsh andh* multiplying the plaquettes at the corners
the twisted planes. We have done simulations with this fi
redefinition, and also using an explicit representation of
boundary conditions Eq.~14! using the matrices@for SU~3!#

Vx5F 0 1 0

0 0 1

1 0 0
G , Vy5F e22p i /3 0 0

0 1 0

0 0 e2p i /3
G ,

~22!

and
09450
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Vz5VyVx
25F 0 0 e22p i /3

1 0 0

0 e2p i /3 0
G . ~23!

The boundary conditions Eq.~14! lead to an unusua
quantization of the lattice momentum modes, as well as
moving the zero modes. Making the usual substitution

Um~x!5eigaAm(x) ~24!

the boundary conditions take the formAm(x1L n̂)
5VnAm(x)Vn

† . A twisted plane wave basis is used to Fo
rier analyze the fields

Am~x!5
1

VN (
k

xkGke
ik•[x1(1/2)m̂]Ãm~k!, ~25!

where, in order to obey the boundary conditions, the matri
Gk must satisfy the algebra

VnGkVn
†5eiknLGk , ~26!

and wherexk enforces a constraint on the mode sum, to
developed below@see Eqs.~30! and ~31!#.

The quantization conditions follow by iterating Eq.~26! N
times and using Eq.~16!. One finds that momenta in twiste
directions are quantized as if the SU(N) fields live on a
lattice of lengthL3N, rather than the actual lengthL ~al-
though some modes are excluded!:

kn5H 2p

LN
nn , n5twisted direction,

2p

L
nn , n5periodic direction.

~27!

The extra momentum degrees-of-freedom come about
cause the color structure of each mode is unique, up t
phase. SubstitutingGk5Vx

aVy
b into Eq. ~26! one finds, with

a convenient choice of phase@11#,

Gk5Vx
2nyVy

nxh (1/2)(nx1ny)(nx1ny21). ~28!

These matrices are orthonormal under the trace

1

N
Tr~Gk8

† Gk!5H 1 if nx,y8 5nx,y mod~N!,

0 otherwise.
~29!

Since the fieldsAm must be traceless one finds that a set
modes, including the zero modes, are excluded

xk5H 0 if nx5ny50 ~modN!,

1 otherwise.
~30!

In the case of Txyzboundary conditions, a further constrai
emerges from Eq.~26!

xk5H 1 if nz52nx1ny~mod N!,

0 otherwise.
~Txyz! ~31!
2-7
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TROTTIER, SHAKESPEARE, LEPAGE, AND MACKENZIE PHYSICAL REVIEW D65 094502
Hence there is a factor ofN221 more momentum mode
with TBC, each of which has a single color degree-
freedom, which is exactly the number of independent col
that one has for each momentum mode with PBC.

At tree-level the twisted gluon propagator in momentu
space has the structure@11#

^Ãm~k!Ãn~k8!&g505 1
2 VNxkh

21/2(k8,k)dk,k8Dmn~k!,
~32!

where

~k8,k![nx8nx1ny8ny1~nx1ny!~nx81ny8!. ~33!

For the Wilson action in Lorentz gauges one has

Dmn~k!5
1

k̂2 Fdmn2~12a!
k̂mk̂n

k̂2 G , ~34!

with k̂m52sin(12km) and k̂25(lk̂l
2 .

B. Suppression ofZ„N… phases

The Polyakov line along an untwisted direction is an
der parameter for theZ(N) degenerate vacua of the lattic
theory, which correspond to the invariance of the Wils
action under the transformation

Um~x!→hUm~x!, ;x{x•m̂5const. ~35!

The Polyakov line is also sensitive to the formation of d
mains between differentZ(N) phases. These nonperturbati
effects must be suppressed if one is to use Monte C
simulations at largeb to extract perturbative quantities. I
particular we will use simulation results for the Polyak
line itself to obtain the perturbative self-energy of a sta
quark.

In order to suppress nonperturbativeZ(N) phases we star
the simulation with all links initialized to a ‘‘cold start,’
Um5I . The probability of making a transition to a nontrivia
Z(N) phase in a local updating algorithm can then be
duced by working at sufficiently large lattice volumes. In fa
our results for Wilson loops on 164 lattices with PBC, pre-
sented in Sec. II, are in excellent agreement with fin
volume perturbation theory. However we find that nonpert
bativeZ(N) phases are generated frequently on small latti
when PBC are used, and this occurs even at extremely l
b. On the other hand, we find that using TBC leads to
dramatic suppression of these effects compared to PBC
lattices of the same size.

We illustrate the effects ofZ(3) phases with simulation
results for 44 lattices atb59. We show run time histories
and scatter plots of the real and imaginary parts of the Po
kov line along an untwisted direction~hereafter taken to be
the ‘‘temporal’’ directiont), where

Pt~L ![
1

3L3 (
xW

ReTrK )
xt51

L

Ut~x!L , ~36!
09450
-
s

-

-

lo

-
t

-
-
s
ge
a
on

a-

for a lattice of volumeL4. Results for PBC are shown in Fig
5, for Txy boundary conditions in Fig. 6, and for Txyz
boundary conditions in Fig. 7. We see that nonperturba
Z(3) phases and domains render simulations with PBC u
less for extracting perturbative quantities on small lattic
We also see that twisted boundary conditions create a ba
betweenZ(3) phases, and that transitions between th
phases and are essentially eliminated with Txyz boundary
conditions~with no tunneling events observed in millions o
updates in the range ofb values considered here!. In Sec. IV
we show that the remaining finite-volume effects on lattic
with Txyz boundary conditions are very well described
perturbation theory forb*9, even on volumes as small a
34.

IV. STATIC-QUARK SELF-ENERGY

A. Perturbation theory

In this section we consider the perturbative expansion
the self-energyE0 of a static quark. We extract the sel
energy from the gauge-invariant Polyakov linePt along an
untwisted direction, which describes the propagation o
static quark across the entire time-extent of the lattice. O
could also obtain the self-energy from large Wilson loo
@15,19#, or from the gauge-fixed static-quark propagator@5#.
This study however represents a good prototype for calc
tions of other more realistic perturbative quantities, such
quark masses.

FIG. 5. Simulation results for the temporal Polyakov line on
44 lattice at b59 with periodic boundary conditions. Run-tim
histories are shown for~a! RePt and ~b! Im Pt . A scatter plot of
Im Pt versus RePt is shown in~c!.
2-8
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PERTURBATIVE EXPANSIONS FROM MONTE CARLO . . . PHYSICAL REVIEW D65 094502
We first define the self-energyE0(L) on a finite lattice
according to

aE0~L ![2
1

L
ln„Pt~L !… ~37!

where, for comparison with our simulation results in the n
subsection, we consider lattices with equal lengthsL along
all sides. One then obtains the infinite-volume self-energyE0
by taking the limit,

E05E0~L→`!. ~38!

We analyze the tadpole-improved self-energy. This is
tained by dividing the links in the Polyakov line by a me
field u0 , Um(x)→Um(x)/u0. Hence the tadpole-improve
self-energy is related to the unimproved self-energy by
addition of ln(u0). We use the average plaquette to estim
the mean-field:

u05^Uh&1/4. ~39!

The expansion of the self-energy to second order w
computed in perturbation theory according to Eqs.~37! and
~38! by Heller and Karsch, for an expansion in the bare c
pling, with the result@14,15#

aE0
unimp52.1173a lat111.152a lat

2 1O~a lat
3 ! ~40!

FIG. 6. Simulation results for the temporal Polyakov line on
44 lattice atb59 with twisted Txy boundary conditions. The pan
els are the same as in Fig. 5.
09450
t

-

e
e

s

-

for the unimproved self-energy. Hereafter we consider o
the tadpole-improved self-energy, which we denote byE0.
We convert Eq.~40! to an expansion in the renormalize
coupling at the appropriate scale using Eq.~8!:

aE051.0701aP~qE0
* !10.117aP

2 1O~aP
3 !,

qE0
* 50.84/a, ~41!

where Eq.~5!, with couplings evolved toqE0
* , provides the

tadpole subtraction.
In the next subsection we will compare Monte Carlo da

for the self-energy with results from analytical perturbati
theory on finite lattices. In order to extract the infinit
volume self-energyE0 from the Monte Carlo simulations we
must also make an extrapolation of measurements ofE0(L)
done on finite volumes. We can gain some insight into
nature of the perturbative finite-volume corrections fro
some analytical considerations.

We define perturbative coefficientscn(L) on a finite lat-
tice according to

aE0~L !5(
n

cn~L !aP
n ~qE0

* !. ~42!

For TBC the first-order term is given by

FIG. 7. Simulation results for the temporal Polyakov line on
44 lattice at b59 with twisted Txyz boundary conditions. The
panels are the same as in Fig. 5.
2-9
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c1~L !5
p

NL3(
kW

xkD44~k450,kW !2
p

3
@TBC#, ~43!

to be compared with a calculation for PBC, ignoring t
contribution from zero modes

c1~L !5
p~N221!

NL3 (
kWÞ0

D44~k450,kW !2
p

3
@PBC#.

~44!

The constantp/3 that is subtracted from the momentu
sums in the above expressions is the value of the one-
tadpole-improvement counterterm, neglecting its very we
dependence on the lattice volume. We remind the reader
the mode sums in Eqs.~43! and~44! are different, due to the
different quantization of the momentum components alo
the twisted and periodic directions. The two sets of bound
conditions yield identical results in the infinite-volume lim
where the color factorN221 emerges in the case of TB
becausexk averages toN221 over infinitesimal momentum
intervals.

Results forc1(L) for the three boundary conditions a
presented in Fig. 8, which shows that finite-volume effe
are reduced with TBC, as suggested by Eq.~27!. As is evi-
dent from the plots, finite-volume corrections are very w
parametrized by a simple linear form in 1/L,

c1~L !5c12X1

1

L
1OS 1

L2D , ~45!

wherec1[c1(L5`). One can evaluateX1 numerically from
Eqs.~43! and ~44! with the resultsX1'1.891~PBC!, 0.254
(Txy), and 0.771 (Txyz).

We expect the finite-volume correction to run with a co
pling aP(qL* ), evaluated at an infrared scaleqL* that is set by
the box size:

FIG. 8. First-order coefficient for the tadpole-improved se
energy from perturbation theory, using different boundary con
tions. The dashed lines show fits to Eq.~45!. The filled square
shows the infinite-volume valuec151.0701.
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aE0~L !5aE02X1

aP~qL* !

L
1OS aP

2

L
,
aP

L2 D ,

qL* }
1

L
. ~46!

A physical interpretation of this functional form forc1(L) is
that the static quark experiences a perturbative Coulomb
teraction with its images in the walls of the lattice. The d
ferent values of the coefficientX1 for different boundary
conditions also have a natural interpretation in this pictu
TBC reduce finite-volume effects by effectively putting th
image charges farther away from the source charge.

Having established Eq.~46!, one can deduce logarithms i
L in the self-energy at higher orders. For example, at sec
order one has

c2~L !5c22
1

L
@X21Y2ln~L2!#1OS ln~L2!

L2 D , ~47!

wherec2[c2(L5`), and

Y25X1

b0

4p
. ~48!

This follows from an expansion of the running coupling
Eq. ~46!, to second order in the coupling at a reference sc
such asaP(qE0

* ). One can explicitly isolate the logarithm i

the second order coefficient using existing perturbative c
culations, which were done long ago by Heller and Karsch
the case of PBC@14#, and which have also recently bee
done in Ref.@16# for TBC. Results of the perturbative calcu
lations for the three boundary conditions are plotted in Fig
over a range of lattice sizes. The dashed lines in Fig. 9 sh
fits to Eq.~47!, wherec2 is constrained to the correct value
the fits are in excellent agreement with Eq.~48!. Note that
the curvature in the results forc2(L) reveals the presence o
the logarithm, particulary in the case of PBC and Txyz

i-

FIG. 9. Second-order coefficient for the self-energy from pert
bation theory, using different boundary conditions. The dashed l
show fits to Eq.~47!. The filled square shows the infinite-volum
valuec250.117.
2-10
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PERTURBATIVE EXPANSIONS FROM MONTE CARLO . . . PHYSICAL REVIEW D65 094502
boundary conditions, where the logarithm makes a sign
cant contribution at the lattice sizes shown in Fig. 9.

In the next subsection we will use Eq.~46! to deduce the
form of the logarithms inL in the third order self-energy
which will help to constrain the infinite-volume extrapolatio
of the Monte Carlo data. We note that one should simila
be able to determine the leading logarithms in the fin
volume corrections to other quantities, which should lik
wise prove useful in Monte Carlo determinations of th
perturbative expansions.

B. Self-energy from Monte Carlo simulations

We measured the static-quark self-energy in simulati
done with Txyz twisted boundary conditions at nine co
plings. The simulation parameters are given in Table
Simulations were run on nine volumesL4, L5@3,11# inclu-
sive, at each of the nine couplings, for a total of 81 lattic
The number of measurements made on each volume, a
couplings exceptb560, were as follows: 2000 measur
ments for the lattices withL5@3,6# inclusive, 1500 measure
ments forL57, 1200 forL58, 800 for L59, 600 for L
510, and 400 forL511 ~ten times as many measuremen
were made on each volume atb560). One hundred configu
rations were skipped between measurements at all coupl
except atb560, where ten configurations were skipped b
tween measurements. The observables were compute
binning the measurements in bin sizes of 100, which resu
in negligible autocorrelations at all couplings. The static e
ergy and its error were computed from the binned ensem
using a standard jackknife analysis.

To demonstrate the reliability of the Monte Carlo metho
we first use the simulation results to estimate the first-
second-order perturbative coefficients. In Fig. 10 we plot
quantity

k1
MC~L !5aE0

MC~L !/aP~qE0
* ! ~49!

TABLE V. Simulation parameters for static self-energy me
surements with Txyz twisted boundary conditions. At eachb, simu-
lations were run on nine volumes,L5@3,11# inclusive. The mea-
sured average plaquette on the lattices withL510 are given, along
with the scale massLP computed from Eqs.~5! and ~7!. The bare
coupling is shown along the renormalized couplingaP(qE0

* ) evalu-
ated at the scale appropriate to the self-energy with tadpole re
malization.

b ^ 1
3 Re TrUh& aLP a lat aP(0.84/a)

60.0 0.966311~1! 2.57310229 0.008 0.00843
23.8 0.913831~4! 1.05310210 0.020 0.02338
19.0 0.891415~5! 2.9531028 0.025 0.03058
16.0 0.869332~6! 1.1331026 0.030 0.03824
13.6 0.845310~7! 1.8131025 0.035 0.04731
12.0 0.822493~8! 1.2531024 0.040 0.05676
10.6 0.797025~10! 6.4131024 0.045 0.06844
9.5 0.771866~11! 2.2431023 0.050 0.08138
9.0 0.756142~13! 4.2931023 0.053 0.09032
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* ), for all values ofL. The dashed lines show

the results of least-squares fits to Eq.~42!, minimizing xaug
2

@Eq. ~11!# using c̄n50 ands̄n55 for the first five orders in
the expansion. The quality of the fits is very good in mo
cases, withQ values typically in excess of about 20%, a
though the lowestQ value in the fits is 3%.

We show the Monte Carlo results forc1(L) in Fig. 11,
where they are compared with finite-volume perturbat
theory for Txyz boundary conditions, Eq.~43!. The data
agree with perturbation theory within errors of only a fe
parts in 103.

Monte Carlo results forc2(L) are shown in Fig. 12. In
this case the fits to Eq.~42! were done withc1(L) con-

-

r-

FIG. 10. Monte Carlo results fork1 for the self-energy, Eq.~49!.
The results for each lattice sizeL are plotted versus the renorma
ized couplingaP(q* 50.84/a). The lowest set of data points is fo
L53, and the highest set is forL511. The dashed lines show th
results of fits to Eq.~42!.

FIG. 11. First-order coefficient for the self-energy from Mon
Carlo simulations (c1

MC) and analytic perturbation theory (c1
PT). The

filled square in~a! shows the perturbation theory value ofc1 on an
infinite lattice. The difference between the Monte Carlo results a
the perturbation theory is shown in~b!.
2-11
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TROTTIER, SHAKESPEARE, LEPAGE, AND MACKENZIE PHYSICAL REVIEW D65 094502
strained to its perturbative value. We see that the Mo
Carlo simulations also reproduce the results of second o
Txyz perturbation theory@16# over the full range of lattice
sizes, within errors that are as small as a few parts in 102 at
several volumes.

The third-order term in the self-energy is not known fro
conventional perturbation theory. We use our simulation
sults to estimatec3(L), by redoing fits to Eq.~42! with both
c1(L) andc2(L) constrained to their perturbative values.
order to determine the value ofc3 at infinite volume, we
must also account for the systematic error due to the extra
lation from finite lattices. The leading finite-volume corre
tions come from logarithms inL, which can be determined
using renormalization-group arguments@cf. Eqs.~46!–~48!#.
Making use of these constraints considerably improves
accuracy of the extrapolation to infinite volume.

We show the Monte Carlo data for the third-order coe
cient as a function of lattice size in Fig. 13, after subtract
the logarithms atO(1/L); the data are presented in terms
the residual

dc3~L ![c3~L !1X1

b0
2

~4p!2

1

L
ln2S L2

L0
2D

1X1

b1

~4p!2

1

L
lnS L2

L0
2D . ~50!

The scale lengthL0 in the leading logarithm is determine
from second-order perturbation theory where, according
Eq. ~47!, L05exp(2X2/2Y2). We evaluate the scale lengt
from a fit to the Txyz perturbation theory results illustrate
in Fig. 9, which gives L0'0.45 for the expansion in
aP(qE0

* ).

FIG. 12. Second-order coefficient for the self-energy fro
Monte Carlo simulations (c2

MC) and analytic perturbation theor
(c2

PT). The filled square in~a! shows the perturbation theory valu
of c2 on an infinite lattice. The difference between the Monte Ca
results and the perturbation theory is shown in~b!.
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The Monte Carlo data are consistent with the logarith
in Eq. ~50!, which are found to dominate the extrapolation
the infinite-volume limit, even from these relatively sma
lattices. To extract the infinite-volume coefficientc3 we fit
the remaining finite-volume corrections to the form

dc3~L !5c31p1,0

1

L
1 (

m>2

1

Lm (
n50

2

pm,nlnnS L2

L0
2D . ~51!

Figure 13 shows the results of a fit to Eq.~51! wherexaug
2 is

minimized using c̄35 p̄m,n50, and s̄c3
5s̄pm,n

54, for m

52,3 andn50,1,2 ~and forp1,0). The fit yields

c3
MC53.5660.50 ~infinite-volume limit!. ~52!

Changing the order of the expansion in 1/L in Eq. ~51!
makes litle change in the fit value forc3. We conclude from
these results that renormalized perturbation theory for
tadpole-improved self-energy is well behaved through th
order, with the data in Fig. 13 clearly demonstrating thatc3
is of O(1).

An estimate of the third-order term in the expansion of t
unimproved self-energy, in the bare lattice coupling@Eq.
~40!#, has recently been reported using numerical simulati
of the Langevin equations@19#. We can convert our result fo
c3 from an expansion inaP(0.84/a) to one ina lat , using the
inverse of Eq.~8!. We findc3,lat

MC 586.660.5 ~without tadpole
improvement!, in agreement with the valuec3,lat586.260.6
reported in Ref.@19#. The bare coupling is clearly a ver
poor expansion parameter, with 96% ofc3,lat being absorbed
by renormalization when a physical coupling is used.

We note that the simulations in Ref.@19# were done on
much larger lattices than were used here. We were abl
extract c3 from smaller lattices because the leading fini
volume corrections were identified using renormalizatio
group methods. This determination of the third-order se
energy involved a modest computational effort. The en

FIG. 13. Simulation results for the third-order coefficient for t
static-quark self-energy, after subtracting logarithms atO(1/L), ac-
cording to Eq.~50!. The dashed line shows the result of a fit to E
~51!, with the shaded area corresponding to the 68% confide
level region for the infinite-volume coefficient.
2-12
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set of simulations in the present analysis required only
equivalent of about 150 days of running on a single 1 G
processor.

V. SUMMARY AND OUTLOOK

The results presented here demonstrate that higher-o
perturbative expansions are accessible in Monte Carlo si
lations at largeb. An extensive theoretical analysis was pr
sented together with the results of numerical simulations
large set of Wilson loops and the static-quark self-ene
Twisted boundary conditions were investigated as a mean
eliminating zero modes and suppressing nonperturba
finite-volume artifacts, and an extensive analysis of pertur
tive finite-volume corrections was made. Wilson loops p
vided a good quantity for a first test of the Monte Ca
method, since small loops are relatively insensitive to fin
volume effects. The calculation of the static-quark se
energy was considerably more involved, as it is very se
tive to nonperturbative phases and has large perturba
finite-volume corrections. The static-quark self-energy th
represents a good prototype for calculations of other m
realistic perturbative quantities, such as quark masses.

The simulation results were shown to reproduce pertur
tion theory on finite lattices through second order to h
precision, over a wide range of lattice sizes and couplin
Monte Carlo results for the 14 smallest Wilson loops we
found to agree with perturbation theory within the erro
with an accuracy of a few parts in 104 for the first-order
coefficients, and a few parts in 102 for the second-orde
terms. The Monte Carlo results for the static-quark se
energy were found to agree with finite-volume perturbat
theory over the full range of lattice sizes analyzed here, w
an accuracy of a few parts in 103 at first order, and a few
parts in 102 at second order. This precision was achiev
with relatively little computational effort. New estimates
third-order terms for the Wilson loops and the static-qu
self-energy were obtained to about 10% accura
Renormalization-group arguments were used to improve
quality of the extrapolation of the self-energy to infinite vo
ume. The results demonstrate that renormalized perturba
theory for Wilson loops and the self-energy is well behav
through third order.

These methods can be directly applied to improved glu
actions, and can be extended to quark actions. We have
some work on largeb simulations for fermions in the non
relativistic formulation of QCD, extending the preliminar
studies reported in Refs.@1,2#. We find that simulations of
the additive energy and multiplicative mass renormalizat
reproduce results of one-loop perturbation theory, and
resolve the second-order terms in the expansion of th
quantities, over a wide range of bare quark masses@5#. Fur-
ther work in this direction is in progress.
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APPENDIX: DESIGNING OPTIMIZED MONTE CARLO
SIMULATIONS

In this appendix we consider the question of how to d
sign the most efficient calculations through intelligent p
rameter choices, by using the techniques of constrai
curve fitting@9#. As discussed in the Introduction, one obje
tive of this analysis, in the context of short-distance Mon
Carlo simulations like those in this paper, is to choose
couplingsa for the simulations so as to minimize the co
required to achieve a given precision in the perturbative
efficients.

As described in Ref.@9# and in Sec. II, the effects o
truncation errors in fitting power series to Monte Carlo da
may by estimated by augmentingx2 with a function that
constrains parameters, which are poorly determined stat
cally, to plausible values. Consider for example the logarit
of a Wilson loop, denoted byW, which has the expansion

W~a!5c1a1c2a21c3a31•••. ~A1!

We will use a i ( i 51,2, . . . ,na) to denote the set of cou
plings at which the simulations are done. We may define
augmentedx2 as in Eq.~11!,

x2~cn!→xaug
2 ~cn![x2~cn!1(

n

~cn2 c̄n!2

s̄n
2

, ~A2!

where the second term on the right tends to constrain po
determined parameters to the rangec̄n6s̄n , based on our
prior experience with the power series. In the examples
this appendix, we will usec̄n50 ands̄n51.

A well designed calculation should minimize the errors
the final results, for a given amount of computer time. T
uncertainties in the fit parameterscn are determined from the
inverse of the Hessian matrix, which we denote byHmn ,
where

Hmn[
1

2

]2x2

]cm]cn
. ~A3!

Then the uncertainty incn is

dcn5Hnn
21 . ~A4!

In the case of Eq.~A1!, an explicit expression for the
Hessian matrix can be obtained
2-13
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Hmn5(
i 51

na a i
m1n

sW
2 ~a i !

1
dmn

s̄n
2

, ~A5!

wheresW(a) is the statistical error inW(a). We note that a
useful approximation for the statistical error in the Wils
loop ~or its logarithm! is

sW~a!' f a, ~A6!

where f }1/ACPU time and is independent ofa.
The optimal selection of the valuesa i at which the simu-

lations are to be done may be determined by numeric
minimizing the dcn with respect to thea i . The optimal
placement ofa ’s for the first couple of parameters may b
guessed without doing much calculation. For example, si
relative statistical errors are independent ofa, c1 is obtained
most accurately by running at the smallest possible coup
a1 ~avoiding round-off errors!, thereby minimizing trunca-
tion errors from higher-order terms in the series expans
The smallest total error inc2 is then obtained by choosing
second couplinga2 such that the statistical error in the slop
of W̃/a, which is ; f a2 /a25 f , is equal to the truncation
error, which is given bys̄3a2

3/a25s̄3a2
2. Explicit numerical

minimization reproduces expectations for these simple ca
but also produces optimized design parameters for arbit
numbers of points and allocations of CPU time among the
The results of a three-point optimization are illustrated
Fig. 14. One sees that as the CPU time is increased, sm
and smaller couplings are obtained from the minimizat
calculations, though the optimala ’s do not fall quite as
quickly as the fourth root of CPU time~as would be expected
in a two-point fit!.

Perturbative series in lattice QCD are typically used
nonperturbative Monte Carlo calculations witha ’s in the

FIG. 14. Values of the couplingsa2 ~lower curve! anda3 ~upper
curve! which minimize uncertainties in the fit parametersc1 , c2 and
c3, as functions of the CPU time~in arbitrary units!. The coupling
a1 is always about zero.
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range of about 0.15–0.30. To illustrate the effects of optim
zation calculations on the final result of a nonperturbat
simulation, we consider the application of the perturbat
series Eq.~A1! to a simulation witha50.25. The results are
shown in Fig. 15. The errors coming from the lowest-ord
coefficients are greatest when the short-distance simulat
are done with low statistics, but these errors decrease m
rapidly with CPU time; hence the order of the term th
contributes the largest error to the nonperturbative quan
rises as a function of the CPU time of the perturbative sim
lations.

Similar results, different in detail, are obtained for oth
quantities. For example, for the third order coefficientk3 for
the 535 Wilson loop, shown in Fig. 4, the statistical erro
are f /a2 and the truncation error issca. The minimization
formula gives the optimal placement for a single-point sim
lation as

a5S f

sc
D 1/3

, ~A7!

as expected.
Constrained curve fitting formulas for parameter fittin

provide a concrete way of translating estimates of trunca
errors into designs of efficient computations. For one or t
parameters, they lead to exactly the same choices of pa
eters that intuitive guesswork provides. However, they a
provide clear optimizations in the much more common si
ations in which we have too many parameters to guess ab
or in which we are trying to design new runs to improve t
results from imperfectly designed initial runs.

FIG. 15. Contribution of errors in the perturbative coefficients
the final error in a long-distance simulation of a Wilson loop, a
function of the short-distance simulation time~in arbitrary units!
that determined thecn . The contribution of a given coefficientcn to
the final error isdcnan, where here we takea50.25. The errors
coming from the lowest-order coefficients are greatest for low s
tistics in the short-distance simulations, but decrease most rap
with CPU time.
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