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Perturbative coefficients for Wilson loops and the static-quark self-energy are extracted from Monte Carlo
simulations at weak coupling. The lattice volumes and couplings are chosen to ensure that the lattice momenta
are all perturbative. Twisted boundary conditions are used to eliminate the effects of lattice zero modes and to
suppress nonperturbative finite-volume effects dug(®) phases. Simulations of the Wilson gluon action are
done with both periodic and twisted boundary conditions, and over a wide range of lattice vdfuones*
to 16%) and couplinggfrom 8~9 to 8~60). A high precision comparison is made between the simulation data
and results from finite-volume lattice perturbation theory. The Monte Carlo results are shown to be in excellent
agreement with perturbation theory through second order. New results for third-order coefficients for a number
of Wilson loops and the static-quark self-energy are reported.
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I. INTRODUCTION through the perturbative expansion of the static-quark poten-
tial [7,8]. The renormalized couplingp in this scheme can
Simulations using highly improved lattice actions havebe extracted from measured values of the average plaquette,
become commonplace in recent years. Effective use of theggiven its perturbative expansion.
requires perturbative matching calculations for masses, cou- The method proceeds as follows. Simulations are done at
pling constants and currents, among other quantities. Highepeveral different values g8 [3=2N/g* for SU(N) gauge
order perturbative calculations for these actions are laboriou'eoryl. At each g we use the measured value of the
but they are essential in order to obtain precision results foPlaquette to solve for the value of the renormalized coupling
most observables. ap(q7 ), at the scale] ; that is optimal for the plaquet{&].
An alternative to doing calculations in analytical pertur- e then run the couplings at eaghto the scaleq”™ appro-
bation theory is to directly measure short-distance quantitieB"ate to the quantity of interest, whose expectation values

in Monte Carlo simulations at weak coupling, as proposed i€ then fit to a truncated series arp(q*). The fit yields
Refs.[1,2]. One exploits the fact that the lattice theory on gnumerical values for the perturbative coefficients. To assess

finite volume enters a perturbative phase at weak couplingt.he effects of the t_runcation of t_he per_turbation sgries at finite
the fits are done including many higher-order

In effect the couplings and volumes in the simulations are’Tder inae,

chosen to ensure that the lattice momenta are all perturbatiJ€'M$, beyond the order of interest, but where the fits incor-
(up to possible zero modesn this way one can in principle porate constraints on the coefficief®, which are required

extract perturbative expansions for many quantities, by fit!© lie in a range of values that is consistent with a well-
ting Monte Carlo data for appropriate correlation functionsP€h@ved perturbative expansion. One can also improve the
to a power series in the coupling. quality of the results by using lower-order coefficients from

This approach has been shown to reproduce anaMiCé]onventional perturbation theory, if available, in order to fur-
results for the first-order mass renormalization for WilsontN€r constrain the fits to the Monte Carlo data, thereby ob-

fermions, and the first-order additive self-energy for nonrel-{2iNing more accurate values for previously unknown higher-
ativistic QCD(NRQCD) fermions[1,2]. In addition, prelimi- ~ ©rder terms. _ _
nary estimates of some third-order Wilson loop coefficients . " order to ensure that the lattice momenta are all suffi-
were made in Ref[3]. An extension of this technique to C|e!1tly perturbative, simulations are done on lattices for
background field calculations was considered in Rdi. which
Preliminary work on perturbative simulations of quark ac-
tions has also been dofg,6]. 20

The Monte Carlo method as implemented here requires as L_a>AQCD1 1)
input from conventional lattice perturbation theory only the
expansion of the average plaquette, and of the static potential
(or some other quantity that defines a physical coupling conwhere Aqcp is the QCD scale parametes, is the lattice
stanj, to the desired order, along with an estimate of thespacing, and.a is the physical length of the lattice. In order
scale relevant to the quantity of interest. These inputs areo minimize perturbative finite-volume errors we must also
necessary because we use a renormalization scheme defirmtsure that the spacing between lattice momenta is small
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compared to the characteristic momentum scgleassoci- bation theory. The Monte Carlo results are shown to be in

ated with the quantity of interest excellent agreement with perturbative calculations through
second order, which are available for these observables for
2—7T<q* @ both periodic[14,15 and twisted 16] boundary conditions.

New results for third-order coefficients for fourteen different
Wilson loops and the static-quark self-energy are also re-

In practical simulations the lattices are such that@gis  ported.
extremely well satisfiedaA ocp ranges from 10% to 10 %° Wilson loops provide a good quantity for a first test of the
in the analyses in this paper. Moreover the quantities studielonte Carlo method, since small loops are relatively insen-
here all have characteristic scales near the ultraviolet cutofitive to nonperturbative phases, and have small finite-
henceaq® is independent ofy, and Eq.(2) can be easily volume errors. The perturbative expansion of small Wilson
satisfied. In theories with additional scales, such as quarloops is also relevant to determinations of the strong cou-
massesm, the characteristic scalg* is proportional to pling from lattice simulationg8]. The calculation of the
f(ma)/a, wheref is some dimensionless function, hence static-quark self-energy is considerably more involved, as it
ag* is independent o provided thatm is adjusted to keep is very sensitive to nonperturbative phases and has large per-
ma fixed. Perturbative finite-volume effects can also be anaturbative finite-volume corrections. The static-quark self-
lyzed in detail by running simulations at several differentenergy thus represents a good prototype for more realistic
volumes. calculations of other perturbative quantities, such as quark

In simulations with periodic boundary conditiotBBC) masses. The self-energy is also useful for determinations of
however there are lattice zero modes which will violate Eq.the b-quark mass from lattice simulatioh7].
(1). One must also ensure that nonperturbative finite-volume The rest of this paper is organized as follows. In Sec. Il
effects arising fronZ(N) phases are sufficiently suppressed.we use PBC to study Wilson loops at large Simulations
One way to achieve this, using a local updating algorithm, isare done on 1®lattices at nine couplings. We evaluate Wil-
to work on lattices with sufficiently large volumes, where theson loops of sizeRX T with R,T<5. The results are fit to a
simulation is started with perturbative initial values for the truncated perturbation series, using the renormalized cou-
links (e.g., by setting all links to the identityA more pow-  pling ap evaluated at a scafg; ; that is appropriate to each
erful approach, analyzed in detail here, is to adopt boundarVilson loop[7]. We explicitly subtract the leading effects of
conditions that eliminate zero modes and suppress transitiortattice zero modes from the Monte Carlo data using an ex-
between different phases. isting analytical calculatiorf18]. A detailed comparison is

It is also desirable to have a more general means for deatnade with perturbation theory through second order, and es-
ing with potential infrared problems. The effects of lattice timates are made of the third-order coefficients.
zero modes on most observables is not known and, while In Sec. lll we review how simulations are done using
these could in some cases be accounted for by a numerical fitvisted boundary conditions, and their use in analytical per-
to the data, it is preferable to eliminate these states from theurbation theory. We demonstrate that these boundary condi-
outset. More generally zero modes can significantly alter théions can be used to virtually eliminate nonperturbative ef-
expected perturbative form of correlation functions. For exSfects due toZ(3) phases even on lattices with very small
ample, the presence of zero modes would pose a significanblumes.
problem for extracting quark masses, as one could not as- The static-quark self-energy is analyzed in Sec. IV. We
sume the existence of an isolated pole in the perturbativextract the self-energy from the gauge-invariant Polyakov
quark propagator. Twisted boundary conditigh®C) [10— line, which describes the propagation of a static quark across
12] can be used to eliminate zero modes, and are easily irthe entire time-extent of the lattice. Other extractions of the
corporated into simulations using existing code for a givenself-energy have relied upon large Wilson lo¢p5,19], and
action. the gauge-fixed quark propagatf| (the latter methods

In this work we present a comprehensive study of thiscould prove more efficient in Monte Carlo simulations, as
Monte Carlo method for extracting perturbative quantitiesone can limit the propagation time on a lattice of a given
[13]. We do simulations of S(3) gauge theory using the size. We make a perturbative analysis of the self-energy on
Wilson gluon action. The evolution of thep coupling is finite lattices, and show that one can sum leading logarithms
known for this theory through three-loop order which, inin the finite-volume correction. We present results of simu-
principle, allows one to use the method to determine perturkations of the self-energy, with runs at nine volumes at each
bative expansions through fourth order. Simulations are donef nine couplings. We compare the simulation results with
for both PBC and TBC. We show that using TBC is an ef-perturbation theory through second order, over the whole
fective means of suppressing nonperturbative finite-volumeange of lattice sizes studied here, and make an estimate of
effects due t&(3) phases, as well as eliminating the effectsthe third-order self-energy, including an extrapolation to the
of lattice zero modes. We also make an extensive analysis daffinite-volume limit.
perturbative finite-volume effects for TBC. We analyze simu- During the course of the calculations described in this
lation results for a large set of Wilson loops and the staticjpaper, we also investigated the question of how to design the
quark self-energy, over a wide range of couplings and latticenost efficient calculations through intelligent parameter
volumes. A high-precision comparison is made between thehoices, by using the techniques of constrained curve fitting
simulation data and results from finite-volume lattice pertur{9]. In calculations like those in this paper, for example, one

La
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TABLE I. Simulation parameters for Wilson loop measurements. These simulations were all dorfe on 16
lattices with periodic boundary conditions. The lattice couplthépr each simulation was determined from
the bare coupling,; by B=6/(4may,). The measured values of the average plaquette are shown, along with
the renormalized couplingsp(3.40&8) and scale massesp extracted from Eqs(5) and (7). Ten configu-
rations were skipped between measurements in all cases, and the observables were computed by binning the
measurements in bin sizes of 50, which resulted in negligible autocorrelations at all couplings.

Qat B Measurements (%Re Trup) ap(3.40R) aAp

0.010 47.746 2320 0.957542 0.01049 5.4%10° %
0.015 31.831 2459 0.9358&% 0.01614 8.6%10 1°
0.020 23.873 2112 0.9138&3 0.02209 1.0%10 10
0.025 19.099 1558 0.8914@®) 0.02839 2.9410°8
0.030 15.915 860 0.8685® 0.03510 1.2%10°6
0.035 13.642 746 0.8453(® 0.04225 1.8k10°°
0.040 11.937 748 0.8214® 0.04992 1.3%10°4
0.045 10.610 500 0.7970@8) 0.05819 6.4610°4
0.050 9.459 500 0.7718711) 0.06719 2.2%1073

can choose the couplings in order to minimize the simu- higher-order terms when expressed as a seriaegpin One
lation cost required to achieve a given precision in the perean expressyp(3.40A) as a series in the bare lattice cou-
turbative coefficients. Although the Monte Carlo calculationspling «4;, using the third-order expansion of the plaquette
described in this paper were designed before these optimizgiven in Ref.[20]
tion techniques were worked out, we include a description of
them here, in an Appendix, for use in future calculations. _ 2 3 4

Some conclusions and prospects for future work are p(3.408) = ajrt 4.564jy, + 28.566y + Ol ). (6)

briefly discussed in Sec. V.
The large coefficients in this expansion are an artifact of

1. WILSON LOOPS ajyt; Using ap eliminates large renormalizations of the bare

coupling. We also note that the logarithm of the Wilson loop

In this section we analyze simulations of Wilson loops atis better behaved perturbatively than the Wilson loop itself,

large 8. The Wilson gauge-field actiofi; for SU(3) color  due to the exponentiation of the perturbative perimeter law;

is used, where this is also why we have divided by the perimeter in defining
the perturbative coefficients in E¢).

3) The perturbation series for each Wilson loop is evaluated
using the renormalized coupling at a scafe; determined
according to the procedure of R§T]; the scale corresponds

andU ,, is the plaquette. Simulations were done off 8- tg the typical momentum carried by a gluon in the leading-

tices at nine COUpIingS. Details of the simulation parameter%ifder diagram for a given quantity_ The scales are given in
are given in Table I. Periodic boundary conditions were usedraple II. The couplings at these scales are evaluated by first
here, in order to make a direct Comparison with the first- anqneasuring the average piaquette in the simulation, and solv-
second-order perturbative coefficients calculated on finitqhg Eq. (5) for ap(3.40R). We then evolve to the scale ap-

lattices by Heller and Karscil4]. We will also verify that  propriate to the quantity under consideration using the uni-
the simulations reproduce the effects of lattice zero modes tQersal second-order beta function, plus the third-order term

leading order. _ _ for ap, with [21]
We analyze the logarithm of the Wilson loop

1
1- §ReTrUM(x)

SV\m[U]:,BX%V

TABLE Il. Scale parameters for the couplings for various Wil-

1
S = neg* son loops.
2(R+ T) InWR,T ; CnaP(qR,T)r (4)

. : : : . Loop agg T Loop agg T

using a renormalized couplingp that is determined from
measured values of the plaquette, accordinfj7i8] 1x2 3.07 2}5 2.46
1%x3 3.01 3X3 2.45
47 1X4 2.96 x4 2.38
2X2 2.65 14X 4 2.30
The couplingap is definedsuch that the logarithm of the 2%x3 2.56 4x5 2.27
plaquette has no third- or higher-order terms in its perturba- 2x4 2.49 5% 5 2.23

tive expansion[8]. Other quantities, of course, do have
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A B In[ln(q2/Al2:)] 1.77 8 T T T
ap(d)= Boln(qZA2) |~ B2 In(q¥A2) 176 | -
L J
B% : 1] 2 1.75 "
+ 5| {IN[In(q?/A3)]— > n
ﬁéIHZ(qZIA'%) [ (q P)] 2 . 174 L \\E |
E ~ \\
BapBo 5 © 178 o i
+t == (7) b,
B 4 172 b “a .
R
For our quenched simulation8,=11, 8;=102, andB,p 171 ¢ ]
= Boms+Bp, Where B,ys=2857/2 is the third beta func- 170 . . L
tion coefficient in the modified minimal subtractioMg) .00 .02 .04 .06 .08
scheme, and wherg,= —147.57 can be obtained from ex- ap(q )
isting three-loop calculationg20,22], as described in Ref. e _
[8]. The values ofrp(3.40AR) andA p for our simulations are FIG. 1. Monte Carlo results fok;™ for the 5X5 Wilson loop,
given in Table I. after the effects of zero modes are removed at leading order from

the simulation data using E). The statistical errors are smaller
than the plotting symbols. The filled square shawdrom pertur-
bation theory. The dashed line shows the results of a fit to(&q.

One can convert a perturbative expansiomjg to one in
ap(q), at the scale appropriate to a particular quantity,
through third order, using

Bo w2 traction, unless explicitly noted otherwise; hereafter we will
= ap(q) — a3(q) —In(— +4.70% +ad(q) usec, to denote thefinite-volume coefficients without zero
47 \ag mode contributions.
HBO 7\2 2 We present Monte Carlo results for thex5 Wilson loop
X —In(— +4.70% in Fig. 1, in terms of the quantity
47 \aq
B1 m\? 4 MC L ! Mc
(477)2In a 7.844 +O(ap). (8 Ky o= (G T3RET) INWg 7/, (10

This connection can be obtained from the third-order expan,
sion of the plaquette in the bare couplifp], which can be
used to solve for, in terms ofap(3.408), given its defi-

which should exhibit the limit;—c; asap— 0. We extract
estimates of the perturbative coefficientsfrom the Monte
. Carlo data by fitting the results to the series expansion Eq.
r't4) where, to begin with, we treat all coefficientg-; as

of the evolution equationf23] to eliminate a(3.408) in unknown. We will compare the fit values fof andc, with

favor of a(q). Equation(8) extends the second-order con- the results from analytical perturbation theory, which pro-

nection petweem,at andap(q) given in Ref.[?]. - vides a stringent test of the Monte Carlo method.
The first- and second-order perturbative coefficients for An important aspect of the fitting procedure is how to

the Wilson qup were computeq by Hellgr and KarsaH] _reliably account for the systematic error arising from the
foran expansion m_the_ bare*lattlce_couplmg. We convert thisyncation of the fit function at a finite order s . Includ-
expansion o a series ip(qr 1) USINg EQ.(8). These per- 154 few terms in the expansion iy results in a poor fit
turbative calculations were done on finite lattices with peri-;;~ e data, while including too many higher-order terms
odic boundary conditions, neglecting the contribution of lat-ygits in very poorly constrained values for the lowest-order
tice zero modes. Our simulations of the Wilson loops weresefficients which should, in fact, make the dominant contri-
also done with PBC but do contain the effects of zero modes,jions to the data. This situation can be remedied by incor-
In Sec. Il we will consider simulations using twisted bound- 4 41ing constraints on the coefficients, which are required to
ary conditions to eliminate these states. For Wilson 100Pgie iy 5 range of values that is consistent with our expectation
however we can ng:c)lke use of an analytical calculation of then,t the perturbative expansion is well behaved. We do this in
zero mode piecej " of the first-order coefficient in Eq4), practice by using conventional least-squares fitting routines,
due to Costeet al. [18] where they? is augmented according to

2
zero_ 4m(RT)

_ N2
‘U T9RETIV © XZ(cn)ngug(cn)zxz(an; @

Tn

. (1D

whereV is the lattice volume. We will use this expression to

explicitly subtract the leading-order effects of the zero modedvhich tends to constrain the fit values for thieto the inter-
from the Monte Carlo data. In the following we will show val ¢,*=o,,. This approach can be motivated by Bayesian
the Monte Carlo data after first making this zero mode substatistical analysi§9].
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TABLE Ill. Monte Carlo results for the first three perturbative TABLE IV. Monte Carlo results forcs, where the first- and
coefficients for selected Wilson Ioopsg’(‘jg. The results were ob- second-order coefficients are constrained to their values from per-
tained from a simultaneous fit to the coefficients, as discussed in thirbation theory.
text. The first- and second-order coefficients from perturbation

theory for the same size lattice are also showfi). The effects of Loop cy© Loop cy©
zero modes are not included in the perturbation theory values, and
were removed at leading order from the simulation data. Note that 1x2 0.439) 2X5 2.5217)
more accurate results fay© for the full set of Wilson loops are 1x3 0.6411) 3%3 2.5315)
given in Table IV, where the fits are done with andc, con- 1x4 0.8412) 3x4 2.9817)
strained to their perturbative values. 1X5 0.9414) 3x5 3.2619)
2X2 1.41(11) 4X4 3.4419)
Loop che T che chT cy© 2x3 1.9113) 4X5 3.7421)
2% 4 2.2§15) 5%5 3.9123)

1X2 1.20372) 1.2039 -—1.244(16) -—1.260 0.05)
1X3 1.25872) 1.2589 -—1.185(19) -—1.198 0.45)
2X2 1.43372) 14338 —1.312(19) —-1.323 1.15
3X3 1.60893) 1.6089 —1.218(24) —1.217 2.%6)
4X4 1.70674) 1.7067 —1.213(29) —1.210 3.46)
5X5 1.76936) 1.7690 —1.201(40) —1.177 4.37)

data. We see that the data reproduce the second-order coef-
ficient from perturbation theory, witk,—c, as ap—0. In

Fig. 3 we plotk, but where the leading-order zero mode is
not subtracted from the data. We see evidence of singular
behavior inx, at small coupling, indicating that the first-

If perturbation theory is reliable we expect the coefficientsOrder term is not completely removed fror_n the Monte Carlo
data when the zero mode component is not treated. The

C”_ tg b_e_ ofO(21). Wep_er_]‘ormedl_ea_s,t-squares T'ts t(_) Ed), dashed line in Fig. 3 shows the results of a fit to E4),
minimizing x5,y With ¢,=0 anda,=5 for the first five or-  taking account of the leading zero mode contribution, where
ders in the expansion. The dashed line in Fig. 1 shows thg,, termc?®%ap is included in the fit line. This shows ex-
results of the fit for the &5 W”S%n loop; note that the pjicitly that the Monte Carlo data are sufficiently accurate to
curvature in the Monte Carlo daid'® shows the sensitivity reveal the small contribution from the zero modes, at suffi-
of the simulations to the third-order term in the perturbativeciently small couplings.
series. The quality of the fits is very good, withvalues in We also present results for the residual
excess of 50%.

The measured values of andc, are in excellent agree-
ment with perturbation theory, as shown in Table IIl, with an e 1 _ 1
accuracy of a few parts in tdor the first-order coefficients 8 ag(q’,; o) 2(R+T)
and a few parts in T0for the second-order coefficients. The ' (13
third-order coefficient can also be resolved, here with almost

no input from analytical perturbation theory. The fit values¢, the 5x 5 10op in Fig. 4, which is convenient for visual-
are very stable to changes in the valuegpando, used in  zing the sensitivity of the Monte Carlo data to the third- and

INWRS—crap—coap

Eqg. (12). fourth-order terms. The statistical errors in the Monte Carlo

Note that if the Monte Carlo data are fit wiity con-
strained to its value from perturbation theory, then the errors —0.80 : :
onc, are reduced by a factor of about three, with fit values in
agreement with perturbation theory within the reduced er- —0.85 A
rors. Similarly, we obtain more accurate results &r by —0.90 + A
fitting the Monte Carlo data witlt; and c, constrained to g’
their perturbative values. We did fits to E@,) for the next —0.95 § 7
three orders in the perturbative expansion, minimizj(rﬁgg . -100 | -
usingc,=0 ando,=5 for n=3,4,5. The results foc; are < _105 L é/,%’lﬁ i
given in Table 1V, where the fit errors are seen to be about )
10%. ~1.10 | %& -

It is also interesting to verify that the simulations repro- _115 L |
duce the leading effects of the zero modes. A convenient way I
to visualize these effects is to plot the quantity -1.20 : ‘ :

.00 02 .04 .06 .08
MC_ 1 ! MC ()
K2 = In WR,T_Clap y (12)

FIG. 2. Monte Carlo results foky© for the 55 Wilson loop,
after the effects of zero modes are removed at leading order from
where the first-order coefficient is set to its perturbativethe simulation data. The filled square shosysfrom perturbation
value. We plotk, for the 5X5 loop in Fig. 2, after subtract- theory. The dashed line shows the results of a fit to (Bj.where
ing the leading-order zero mode term from the Monte Carlce, is constrained to its perturbative value.

aIZD(q’F;,T) C2(R+T)
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-0.80 - T A determination of higher order terms in the expansion of
—0.85 R A the 1X1 and 2<2 Wilson loops has also been made in Ref.
! N4 [24], using numerical simulations of the Langevin equations,
—0.90 -\ . where a perturbative expansion in the bare lattice coupling is
—0.95 L} § | applied to the evolution equations themselves. The results
o ) are presented in Ref24] as an expansion of the Wilson
iw -1.00 - ¥ /@é’ 2 - loops in powers of the bare lattice coupliniyg =1
—1.05 L %% 4 —3.Chaly,. We can convert our third-order result for the
0 expansion of IN(z1) in ap(q’,;T), to an expansion oW 1
i in @, by using the inverse of Eq8). We find c3=0.3
—1.15 7 +0.9 for the 22 Wilson loop, in agreement with the result
—1.20 \ \ . €3=0.0+0.9 reported in Ref[24].
00 .02 .04 .06 .08 We note parenthetically that the expansion of the Wilson
a,(q’) loop itself is very poorly convergent, and that the vanishingly

FIG. 3. Monte Carlo results fok, for the 5X5 Wilson loop small value OfNC?’ for_ the 2x 2. I_oop is accidental. _One finds
when the effects of the first-order zero mode termraveremoved /<" large expansion coefficients for_ other W"SOT‘ loops.
from the simulation data. The dashed line shows the results of a ﬂ'{hese expansions are tam(id by taking the logarithm, and
to the data, described in the text. expressing the series iap(q*). For example, our results

give c3/c,=76.1+0.1 for the 5<5 loop, with this large
data are too large to resoleg, although the best fits suggest value ari;ing almost entirely from the exponer)tiat_ion of the
thatc, is of the same order as; for all the Wilson loops perturbative perimeter law, and the renormalization of the
analyzed here. bare coupling(compare withcs/c;=2.2+0.1 for the loga-

A potential complication in our analysis @f, is that we  fithm of the 5<5 loop). In Sec. IV we show that the third-
have only corrected the Wilson loop data for the effects oford€r expansion of the static-quark self-energy is also very

. " ;

zero modes to first order. However we expect that the leadinffasonable when expressed in termsyg(q™), but is very
contribution from zero modes that remains is of POOrly convergent when expressed in termsvgf.
O[a,%(RT)ZIV] which, given the lattice volume and the
range of couplings analyzed here, should only be comparable IIl. TWISTED BOUNDARY CONDITIONS
to terms ofO(a‘F‘,). In fact there is no visible effect of zero
modes beyond first order, within statistical errors; this would ) _ ) )
show up as singular behavior ia; at small ap (compare The analysis of the preceding section shows that simula-
Fig. 4 for x5 with the two plots of«, in Figs. 2 and B We tions at largeB can be used to make accurate determinations
also note t%at while we have extrzacted values dgron a of perturbative quantities at higher orders than have been
finite lattice, the volume is large enough that the resuIts."’mh"?v(:"d using conventlo.nal pe.rturba'qon thgory. However,
should give a good approximation to the coefficients on arS discussed in Sec. |, simulations with periodic boundary
infinite lattice [with the corrections expected to be of conditions(PBC) are subject to the effects of lattice zero
O(1N)] modes, and a more convenient method for dealing with po-

' tential infrared problems in more general situations is re-
quired. Fortunately lattice zero modes can be completely
eliminated by using twisted boundary conditigii8C). We
& also find that TBC significantly reduce nonperturbative
finite-volume effects due t@(N) phases.

Twisted boundary conditiongl0—-17 for the link fields

resemble a gauge transformation on fields which cross
© % through selected lattice boundaries
o L LT ,% _______ I3

A. Formalism

4 5 U (x+L2)=Q,U,(x)Q!, (14)

3L | where we take the twist matricé, to be constant. A twist
must be applied to at least two boundariesand v, as the

1 transformation matrixX), for a single boundary can be com-
2 | | | pletely eliminated by a field redefinition. The requirement

00 02 .04 .06 .08 thatU ,(x+Lx+L ), which can be connected td,(x) by
a,(q’) crossing the two lattice boundaries in different orders, be

single-valued implies that the twist matrices must satisfy the
FIG. 4. Results fok; for the 5X 5 Wilson loop. The dashed line algebra

shows the results of a fit to E(), wherec, andc, are constrained
to their perturbative values. Q,Q0,=70,Q,, neZ(N), (15)
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where we consider the general 3U(gauge theory in most 0 0 e 2mil3
of this section. A pair of twist matrices generates a multipli-

cation table that forms a discrete subgroup of B)(In 0,=0,0;=| 1 O_ o (23
particular[11] 0 e’m3 0
QN=(—)N1, (16) The boundary conditions Eq14) lead to an unusual
quantization of the lattice momentum modes, as well as re-
wherel is the unit matrix. moving the zero modes. Making the usual substitution
The Wilson gluon action for TBC is written in terms of ,
link variables in the usual way, E43). The matricesA (x) U,.(x)=e'9%Au0) (24)

that generate gauge transformations N .
the boundary conditions take the fornA,(x+Lv)

U, () =AU ,(0)AT(x+ ) 17 :'QVAM(X)QI- A.twisted plane wave basis is used to Fou-
rier analyze the fields
are subject to the same TBC as the lirfl&g. (14)]. One
consequence of this is that the Polyakov Igin a twisted
directionu must have an additional factor of the correspond-
ing twist matrix, if it is to be gauge-invariant:

1 . -
A0 =G 2 Xl DR (), (29)

~ R where, in order to obey the boundary conditions, the matrices
P,=(U,()U,(X+u) .. .U, (x+Lu)xXQ,). (18 T, must satisfy the algebra

The only zero-action fields are pure-gauge configurations QyFkﬂlze‘kvLFk, (26)

UM(X)=A(X)AT(X+,&) [11], including possible Z(N) .

phases. The action also possesses a discrete symmetry and wherey, enforces a constraint on the mode sum, to be
developed belovsee Eqs(30) and(31)].

Ua(X)*QanQiT (19 The quantization conditions follow by iterating E§6) N
times and using Eq16). One finds that momenta in twisted
whereQ;=0Q,,0,,Q,0,, etc. Note that Eq(19) is not a  directions are quantized as if the U fields live on a
gauge transformation, becaudg¢x) = does does not sat- lattice of lengthL XN, rather than the actual length (al-
isfy TBC [11]. This symmetry implies that the Polyakov though some modes are exclugted
lines in the twisted directions have zero expectation value,

even in the perturbative _phase_ of the_ theory. Z—Wn »=twisted direction,
We have done S(3) simulations with twisted boundary LN "’
conditions across two “spatial” boundariesandy k,= o (27)
—n,, v=periodicdirection.
Q,Qy= QY Q4 (TXy), (20 L
where »=e2""3, and across all three spatial boundasieg ~ The extra momentum degrees-of-freedom come about be-
andz cause the color structure of each mode is unique, up to a
phase. Substitutinljk=Q§fo into Eq. (26) one finds, with
0,0,=70,Q0,, a convenient choice of phas#l],
0,0,=70,0,(Txy2). (21) =0, QPR a1, (28)

We refer to these two cases asyland Txyz boundary con- These matrices are orthonormal under the trace
ditions, respectively.

Explicit representations of the twist matric€s, are not 1_ . if ngy=nyymod(N),
needed since, as shown in Ref1], one can absorb them by ﬁTr(Fk/Fk)z 0 otherwise.
a field redefinition of the link variables, leaving only phase
factors and »* multiplying the plaquettes at the corners of Since the fieldsA, must be traceless one finds that a set of
the twisted planes. We have done simulations with this fieldnodes, including the zero modes, are excluded
redefinition, and also using an explicit representation of the

boundary conditions Eq14) using the matriceffor SU(3)]

(29

0 if n,=n,=0 (modN),

0 1 0 a2 0 X711 otherwise. (30
Q,=/0 0 1}, Q= 0 1 0 |, In the case of Xyzboundary conditions, a further constraint
1.0 0 0 0 e2if3 emerges from Eq(26)
(22) 1 if n,=2n,+ny(mod N), T a1
and X710 otherwise. (Txyg (3
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TROTTIER, SHAKESPEARE, LEPAGE, AND MACKENZIE PHYSICAL REVIEW [B5 094502

Hence there is a factor df?—1 more momentum modes (a) 0.8
with TBC, each of which has a single color degree-of- a 04
freedom, which is exactly the number of independent colors o 00
that one has for each momentum mode with PBC. R _0.4
At tree-level the twisted gluon propagator in momentum -0.8; : 5 5 y
space has the structuf#l] Sweeps (x10°)
(Ru(KA,(K))g=0=3VNxikn "€ 950D, (K), (b) 08
e 0.0 i !
where & —0.4
(k" K)=n.n,+n’n,+(ne+ny)(n'+n’) (33) %% 2 3 4 3
, x! Ty Hy T U Hy )AL Ty ) Sweeps (x10°)
For the Wilson action in Lorentz gauges one has (o) 0.8 ' ' '
C
1 k,k, 04 .
Dy,v(k)_R_z 5;,Lv_(l_a) Rz ’ (34) QN“
g 0.0 | .
with k,=2singk,) andk?==,k. ~ oal |
B. Suppression ofZ(N) phases 0.8 . . .
The Polyakov line along an untwisted direction is an or- -08 04 00 0.4 0.8
der parameter for th&(N) degenerate vacua of the lattice Re P,

theory, which correspond to the invariance of the Wilson

action under the transformation FIG. 5. Simulation results for the temporal Polyakov line on a

4% lattice at 3=9 with periodic boundary conditions. Run-time
histories are shown fofa) ReP; and (b) Im P;. A scatter plot of

Uu)=nU,(x), VxsX-u=const. (39 Im P, versus Ré; is shown in(c).

The Polyakov line is also sensitive to the formation of do-
mains between differert(N) phases. These nonperturbative
effects must be suppressed if one is to use Monte Carl
simulations at large8 to extract perturbative quantities. In
particular we will use simulation results for the Polyakov
line itself to obtain the perturbative self-energy of a static
quark.

In order to suppress nonperturbat®@N) phases we start

for a lattice of volume_*. Results for PBC are shown in Fig.
5, for Txy boundary conditions in Fig. 6, and forxyz
Boundary conditions in Fig. 7. We see that nonperturbative
Z(3) phases and domains render simulations with PBC use-
less for extracting perturbative quantities on small lattices.
We also see that twisted boundary conditions create a barrier
betweenZ(3) phases, and that transitions between these
the simulation with all links initialized to a “cold start,” phasg_s and_are essenthlly eliminated W'Dhyi. bou_n_dary
conditions(with no tunneling events observed in millions of

U ,=I. The probability of making a transition to a nontrivial . .
“
Z(N) phase in a local updating algorithm can then be re_updates in the range ¢ values considered herdn Sec. IV

. - . we show that the remaining finite-volume effects on lattices
duced by working at sufficiently large lattice volumes. In fathith Txvz boundary conditions are very well described b
our results for Wilson loops on #@attices with PBC, pre- y y y y

i =
sented in Sec. Il, are in excellent agreement with finite—pfrturb"’ltlon theory fog=9, even on volumes as small as

volume perturbation theory. However we find that nonpertur-

bativeZ(N) phases are generated frequently on small lattices

when PBC are used, and this occurs even at extremely large IV. STATIC-QUARK SELF-ENERGY

B. On the other hand, we find that using TBC leads to a

dramatic suppression of these effects compared to PBC, on ) ] ) ] )

lattices of the same size. In this section we consider the perturbative expansion of
We illustrate the effects oZ(3) phases with simulation the self-energyE, of a static quark. We extract the self-

results for 4 lattices at3=9. We show run time histories €nergy from the gauge-invariant Polyakov liRe along an

and scatter plots of the real and imaginary parts of the Polyadntwisted direction, which describes the propagation of a

kov line along an untwisted directiofhereafter taken to be static quark across the entire time-extent of the lattice. One
the “temporal” directiont), where could also obtain the self-energy from large Wilson loops

[15,19, or from the gauge-fixed static-quark propagdtsir
This study however represents a good prototype for calcula-

L
Py(L)= % 2 ReTr< H Ut(X)>, (36)  tions of other more realistic perturbative quantities, such as
3L % x=1 quark masses.

A. Perturbation theory
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(CL) 0.8 " " " " (CL) 0.8
Q.‘*‘ 0.4 1 qu 0.4+t 1
Q 0.0y l R TPPY NPT PPN - Q 0.0 ]
K —04 ; K -0.4
—085 T 2 3 4 5 —085 T 2 3 4
Sweeps (x10°) Sweeps (x10°)
(b) 0.8 ' ' (b) 0.8 . : : :
s 04 > 0.4
E 0.0 E 0.0
S —04 S —04
08— 2 5 4 & 08—z 5 4
Sweeps (x10°%) Sweeps (x10°%)
0‘8 T T T 0-8 T T T
(c) (c)
04t \,i : 0.4t :
Q.‘“ X % Q_‘“
S 0.0 - o iy S 0.0} - v—
~ o ~
-0.4 | " 1 -0.4 | 1
_08 1 1 | —0.8 | | 1
-0.8 -04 0.0 0.4 0.8 -0.8 -0.4 0.0 0.4 0.8
Re P Re P

t i

FIG. 6. Simulation results for the temporal Polyakov line on a  FIG. 7. Simulation results for the temporal Polyakov line on a
4% lattice at3=9 with twisted Xy boundary conditions. The pan- 4* lattice at 3=9 with twisted TXyz boundary conditions. The
els are the same as in Fig. 5. panels are the same as in Fig. 5.

We first define the self-energiio(L) on a finite lattice for the unimproved self-energy. Hereafter we consider only
according to the tadpole-improved self-energy, which we denoteHgy
We convert Eq.(40) to an expansion in the renormalized

1 . . : _
aEq(L)=— Eln(Pt(L)) (37) coupling at the appropriate scale using Eg):

, _ _ _ _ aEy=1.0701ap(qE ) +0.117a2+O(ad),
where, for comparison with our simulation results in the next 0
subsection, we consider lattices with equal lendthslong

all sides. One then obtains the infinite-volume self-en&gy q’E‘OZO.84b, (41
by taking the limit,

where Eq.(5), with couplings evolved tuq’go, provides the
tadpole subtraction.

We analyze the tadpole-improved self-energy. This is ob;c Inhthe nlfext subsec_tiﬁn we lwil:(compar?- l\_/lor?te Carlt()) d_ata
tained by dividing the links in the Polyakov line by a mean or the seli-energy with results from analytical perturbation

field U, U ,(x)—U ,(x)/uo. Hence the tadpole-improved theory on finite lattices. In order to extract the infinite-

self-energy is related to the unimproved self-energy by th/0lume self-energ¥, from the Monte Carlo simulations we
imatdnust also make an extrapolation of measurements,0it.)

done on finite volumes. We can gain some insight into the
nature of the perturbative finite-volume corrections from
some analytical considerations.

We define perturbative coefficientg(L) on a finite lat-

. tice according to
The expansion of the self-energy to second order was

computed in perturbation theory according to E@) and
(38) by Heller and Karsch, for an expansion in the bare cou- aEa(L)= c(L)a(a* 42
pling, with the resul{14,15 olL) ; (L) apld,)- 42

Eo=Eq(L—). (39)

the mean-field:

Up=(Up)" (39

aEg""™P=2.1173a15+ 11152075+ O( i) (40)  For TBC the first-order term is given by
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1.1 T T T T T T
%\:m«ﬂ*kk% i'xy
1.0 - TR~ xg
Mﬂa%\“\a\
B.

0.9 E\i \n\ -
081 % T
3 o) Txyz
o 0.7 A —

\
N
0.6 - A =
N

05 | N

PBC \\
0.4 | | | | | |

.00 .05 .10 .15 .20 .25 .30 .35

1/L

FIG. 8. First-order coefficient for the tadpole-improved self-
energy from perturbation theory, using different boundary condi
tions. The dashed lines show fits to E@5). The filled square
shows the infinite-volume value, =1.0701.

™ > o
&1(L)= g2 xPulky=0K)— 3 [TBC], (43

to be compared with a calculation for PBC, ignoring the

contribution from zero modes

m(N?—1)

c(L)= NL3

> D44(k4:O,IZ)—g [PBC].
k#0
(44)

The constants/3 that is subtracted from the momentum

sums in the above expressions is the value of the one-loo
tadpole-improvement counterterm, neglecting its very Wealf_
dependence on the lattice volume. We remind the reader th%}

the mode sums in Eq$43) and(44) are different, due to the

different quantization of the momentum components along
the twisted and periodic directions. The two sets of boundary

conditions yield identical results in the infinite-volume limit,
where the color factoN?—1 emerges in the case of TBC
becausey, averages tiN>— 1 over infinitesimal momentum
intervals.

Results forc,(L) for the three boundary conditions are

presented in Fig. 8, which shows that finite-volume effects

are reduced with TBC, as suggested by Exy). As is evi-
dent from the plots, finite-volume corrections are very well
parametrized by a simple linear form inL1/

1
F )

wherec;=c,(L=2). One can evaluaté; numerically from
Egs. (43) and (44) with the resultsX;~1.891(PBC), 0.254
(Txy), and 0.771 (Xy2).

We expect the finite-volume correction to run with a cou-
pling ap(q}), evaluated at an infrared scalg that is set by
the box size:

(45

1
Cl(L):Cl_X1E+O

PHYSICAL REVIEW [B5 094502

N T T
NN
-0.0 N\~ .
\\ N AN Txy
N
\\ N \
NN
3 -0.2 |- % w y
N E*sl AN \)\
UN [ E\EKEK \(\
R
-04 | N ]
v Tzyz
PBC -
\E\
-0.6 ' ' =
.00 .05 .10 15
1/L

FIG. 9. Second-order coefficient for the self-energy from pertur-
bation theory, using different boundary conditions. The dashed lines
show fits to Eq.(47). The filled square shows the infinite-volume
valuec,=0.117.

<o

2
dp dp

aP(Qf) ap _)
L L?)’

L

an(L):aEO_xl

L 1

A physical interpretation of this functional form fax (L) is

that the static quark experiences a perturbative Coulomb in-
teraction with its images in the walls of the lattice. The dif-
ferent values of the coefficierX; for different boundary
conditions also have a natural interpretation in this picture:
TBC reduce finite-volume effects by effectively putting the
image charges farther away from the source charge.

P Having established E@46), one can deduce logarithms in

in the self-energy at higher orders. For example, at second
der one has

In(L?)
L2

Cz(L):Cz_%[X2+Y2|H(L2)]+O ), (47

wherec,=c,(L=x), and

Bo

Y2=X1E. (48

This follows from an expansion of the running coupling in
Eq. (46), to second order in the coupling at a reference scale,
such aSap(qEO). One can explicitly isolate the logarithm in

the second order coefficient using existing perturbative cal-
culations, which were done long ago by Heller and Karsch in
the case of PB{14], and which have also recently been
done in Ref[16] for TBC. Results of the perturbative calcu-
lations for the three boundary conditions are plotted in Fig. 9
over a range of lattice sizes. The dashed lines in Fig. 9 show
fits to Eq.(47), wherec, is constrained to the correct value;
the fits are in excellent agreement with E48). Note that

the curvature in the results fap(L) reveals the presence of
the logarithm, particulary in the case of PBC andy®
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TABLE V. Simulation parameters for static self-energy mea- T ' ‘ '

surements with Xy ztwisted boundary conditions. At eagh simu- 1.00 ?giiij&‘g:é-_g’— ;“‘D‘“D‘-u--
lations were run on nine volumek=[3,11] inclusive. The mea- -:3:::‘tj&-;li:-g:m:;j::_:::::
sured average plaquette on the lattices With10 are given, along 0.95 :—:*"-«»»::6:::::-*“*-*_—
with the scale masa , computed from Eqs(5) and (7). The bare \"“*-n.‘*‘*:‘“”*‘e‘-
coupling is shown along the renormalized coupl'm,gq’éo) evalu- o 090 - *‘“*-{_*\k T
ated at the scale appropriate to the self-energy with tadpole renor- ¥ . P R
malization. 2 085 | ‘\‘*.\.‘1‘ :
I\‘-\‘\\
B (3Re TUL) alAp @iy ap(0.84R) 0.80 e L=3 -
60.0 0.96631(1) 2.57x10°%°  0.008 0.00843 0.75 *“‘\h s
23.8 0.91383®) 1.05x10°1°  0.020 0.02338 1 | Lt
19.0 0.891416) 2.95x10°8 0.025 0.03058 .00 .02 .04 .06 .08 .10
16.0 0.86933(®) 1.13x 1078 0.030 0.03824 ap(q *)
-5

Eg ggggj;g; 1251?( 18_4 8832 882;3; FIG. 10. Monte Carlo results for, for the self-energy, Eq49).
10.6 0 %9702&0) 6.41>< 10-4 0'045 0.06844 The results for each lattice sizeare plotted versus the renormal-

' : : : ' ized couplingap(q* =0.844). The lowest set of data points is for
9.5 0.771866L1) 2.24x10°° 0.050 0.08138 L=3, and the highest set is fir=11. The dashed lines show the
9.0 0.75614213) 4.29x10°3 0.053 0.09032 results of fits to Eq(42).

N ] __versusap(qgg ), for all values ofL. The dashed lines show
boundary conditions, where the logarithm makes a S|gn|f|-,[h it (f)l i- fits o) minimizi 2
cant contribution at the lattice sizes shown in Fig. 9. € results Cf east-squares fits to &4 ),.m|n|.m|zmg Xaug

In the next subsection we will use E@6) to deduce the [Ed. (11)] usingc,=0 ando,=5 for the first five orders in
form of the logarithms inL in the third order self-energy, the expansion. The quality of the fits is very good in most
which will help to constrain the infinite-volume extrapolation cases, withQ values typically in excess of about 20%, al-
of the Monte Carlo data. We note that one should similarlythough the lowes@ value in the fits is 3%.
be able to determine the leading logarithms in the finite- We show the Monte Carlo results for(L) in Fig. 11,
volume corrections to other quantities, which should like-where they are compared with finite-volume perturbation
wise prove useful in Monte Carlo determinations of theirtheory for Txyz boundary conditions, Eq43). The data
perturbative expansions. agree with perturbation theory within errors of only a few
parts in 1G.

Monte Carlo results foc,(L) are shown in Fig. 12. In
this case the fits to Eq42) were done withc,(L) con-

We measured the static-quark self-energy in simulations

B. Self-energy from Monte Carlo simulations

done with Txyz twisted boundary conditions at nine cou- 1.10 ' T
. . . . . [ ]
plings. The simulation parameters are given in Table V. 1.05 ¢ (x) MC
Simulations were run on nine volumé$, L=[3,11] inclu- 1.00 s (o) PT 1
sive, at each of the nine couplings, for a total of 81 lattices. 095 ¥ .
The number of measurements made on each volume, at all \o’»o.so - " .
. )

couplings exceptB=60, were as follows: 2000 measure- 0.85 | ]
ments for the lattices with =[ 3,6] inclusive, 1500 measure- 080 (a) &
ments forL=7, 1200 forL=8, 800 forL=9, 600 forL . ‘ L L

00 .05 .10 .15 20 25 .30 .35

=10, and 400 folL=11 (ten times as many measurements
were made on each volume @t 60). One hundred configu-
rations were skipped between measurements at all couplings, S
except atB= 60, where ten configurations were skipped be- :;\ 40
B
R,

1/ L

tween measurements. The observables were computed by

T I
_X__X_%__§____;E_______>f_
I

binning the measurements in bin sizes of 100, which resulted clf R I
in negligible autocorrelations at all couplings. The static en- o g4t x I
: : = 7w 1
ergy and its error were computed from the binned ensembles o S
using a standard jackknife analysis. ~"%0 05 10 15 20 25 30 35
To demonstrate the reliability of the Monte Carlo method, 1/ L

we first use the simulation results to estimate the first- and FIG. 11. First-order coefficient for the self-energy from Monte
second—order perturbative coefficients. In Fig. 10 we plot theCarlo simulations €/) and analytic perturbation theorg("). The
quantity filled square in(a) shows the perturbation theory valuea@fon an
MC/y \ _ -~ =MC * infinite lattice. The difference between the Monte Carlo results and
xy (L)=akp (L)/ap(qu) (49 the perturbation theory is shown {h).
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0.2 ;— ; . ; . 5.0
0.0 1 (x) MC ]
=0.2 - e (o) PT 7
=04t 2a . - 4.5
N—
=061 ® g
g -~
-0.8 d
10t (a) & | ; 4.0
™
—1.2 L I L L L L [&)
200 .05 .10 .15/.20 25 .30 .35 o
1 L
3.5
a8
2 | I
X 4 X x T_
Py
ol Hﬂlll _______ x| 3.0
® TXXT 1 1 J .00 .05 .10 .15/.20 25 .30 35
[&] —4 4 7 L
EON (b) H
~=8 0 05 10 15 20 25 30 85 EIG. 13. Simulation results for the t_hird—orde_r coefficient for the
1/ L static-quark self-energy, after subtracting logarithm®gt/L), ac-

cording to Eq.(50). The dashed line shows the result of a fit to Eq.
FIG. 12. Second-order coefficient for the self-energy from(51), with the shaded area corresponding to the 68% confidence
Monte Carlo simulations §'“) and analytic perturbation theory level region for the infinite-volume coefficient.
(CET). The filled square ifa) shows the perturbation theory value
of ¢, on an infinite lattice. The difference between the Monte Carlo The Monte Carlo data are consistent with the logarithms
results and the perturbation theory is showr(lin in Eq. (50), which are found to dominate the extrapolation to
the infinite-volume limit, even from these relatively small
strained to its perturbative value. We see that the Montdattices. To extract the infinite-volume coefficiecy we fit
Carlo simulations also reproduce the results of second ordéhe remaining finite-volume corrections to the form
Txyz perturbation theory16] over the full range of I?rt]tice . L 2 2
sizes, within errors that are as small as a few parts mat0
several volumes. P OC3(L)=CaProp T méz Lm ngo pmvnln”(L—S). (5D
The third-order term in the self-energy is not known from
conventional perturbation theory. We use our simulation refigure 13 shows the results of a fit to H§1) wherexiug is
sults to estimates(L), by redoing f|.ts to Eq(42)_ with both minimized usingaﬁam =0, and ;C —o. =4, form
c,(L) andc,(L) constrained to their perturbative values. In ’ 3 Pmn
order to determine the value a@f at infinite volume, we =2,3 andn=0,1,2 (and forp, ¢). The fit yields
must also account for the systematic error due to the extrapo-
lation from finite lattices. The leading finite-volume correc-
tions come from logarithms i, which can be determined
using renormalization-group argumeits$. Eqgs.(46)—(48)].
Making use of these constraints considerably improves th

c¥€=356+0.50 (infinite-volume limit.  (52)

Changing the order of the expansion inLlih Eq. (51)
makes litle change in the fit value fog. We conclude from

. o these results that renormalized perturbation theory for the
accuracy of the extrapolation to infinite volume. tadpole-improved self-energy is well behaved through third

, We show the_ Monte C_arlo ldat.a fo.r the third-order CoeTﬁ'order, with the data in Fig. 13 clearly demonstrating that
cient as a function of lattice size in Fig. 13, after subtractlngiS of O(1)

the logarithms aO(1/L); the data are presented in terms of An estimate of the third-order term in the expansion of the

the residual unimproved self-energy, in the bare lattice couplifig.
(40)], has recently been reported using numerical simulations
,3(2) 1 L2 of the Langevin equatiorfd9]. We can convert our result for
503(L)503(L)+X1W Elnz(L_S) c5 from an expansion imp(0.844) to one inay,;, using the

inverse of Eq(8). We findc} ;= 86.6= 0.5 (without tadpole

B 1 [L? improvemeny, in agreement with the valug; ;= 86.2+0.6
+X1W E'”(p)- (50 reported in Ref[19]. The bare coupling is clearly a very

0 poor expansion parameter, with 96%aafi,; being absorbed
by renormalization when a physical coupling is used.

The scale lengtlv in the leading logarithm is determined  We note that the simulations in RgfL9] were done on

from second-order perturbation theory where, according tenuch larger lattices than were used here. We were able to

Eq. (47), Lo=exp(—X,/2Y,). We evaluate the scale length extractc, from smaller lattices because the leading finite-

from a fit to the Xyz perturbation theory results illustrated volume corrections were identified using renormalization-

in Fig. 9, which givesLy~0.45 for the expansion in group methods. This determination of the third-order self-

ap(q’go). energy involved a modest computational effort. The entire
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set of simulations in the present analysis required only thalso thank Richard Woloshyn, Mark Alford, Ron Horgan,
equivalent of about 150 days of running on a single 1 GHzZMassimo DiPierro and Kent Hornbostel for helpful conver-
processor. sations. This work was supported in part by the National
Science Foundation, the U.S. Department of Energy, and by
the National Science and Engineering Research Council of
Canada. H.D.T. would also like to thank the United Kingdom
The results presented here demonstrate that higher-ordarticle Physics and Astronomy Research Council, and the
perturbative expansions are accessible in Monte Carlo simuphysics department of Cornell University, for support during
lations at large8. An extensive theoretical analysis was pre- part of this work.
sented together with the results of numerical simulations of a
Iarge set of Wilson |quS and the statig:-quark Self-energy. APPENDIX: DESIGNING OPTIMIZED MONTE CARLO
Twisted boundary conditions were investigated as a means of SIMULATIONS
eliminating zero modes and suppressing nonperturbative
finite-volume artifacts, and an extensive analysis of perturba- In this appendix we consider the question of how to de-
tive finite-volume corrections was made. Wilson loops pro-sign the most efficient calculations through intelligent pa-
vided a good quantity for a first test of the Monte Carlorameter choices, by using the techniques of constrained
method, since small loops are relatively insensitive to finite-curve fitting[9]. As discussed in the Introduction, one objec-
volume effects. The calculation of the static-quark self-tive of this analysis, in the context of short-distance Monte
energy was considerably more involved, as it is very sensiCarlo simulations like those in this paper, is to choose the
tive to nonperturbative phases and has large perturbativeouplingse for the simulations so as to minimize the cost
finite-volume corrections. The static-quark self-energy thugequired to achieve a given precision in the perturbative co-
represents a good prototype for calculations of other moreéfficients.
realistic perturbative quantities, such as quark masses. As described in Ref[9] and in Sec. II, the effects of
The simulation results were shown to reproduce perturbatruncation errors in fitting power series to Monte Carlo data
tion theory on finite lattices through second order to highmay by estimated by augmenting’ with a function that
precision, over a wide range of lattice sizes and couplingsconstrains parameters, which are poorly determined statisti-
Monte Carlo results for the 14 smallest Wilson loops werecally, to plausible values. Consider for example the logarithm
found to agree with perturbation theory within the errors,of a Wilson loop, denoted bW, which has the expansion
with an accuracy of a few parts in 4dor the first-order
coefficients, and a few parts in 4dor the second-order W(a)=cja+cra’+cza’+---. (A1)
terms. The Monte Carlo results for the static-quark self-
energy were found to agree with finite-volume perturbationwWe will use «; (i=1,2,...n,) to denote the set of cou-
theory over the full range of lattice sizes analyzed here, wittplings at which the simulations are done. We may define an
an accuracy of a few parts in 1@t first order, and a few augmentedy? as in Eq.(11),
parts in 18 at second order. This precision was achieved

V. SUMMARY AND OUTLOOK

with relatively little computational effort. New estimates of (Cn_a)z
third-order terms for the Wilson loops and the static-quark X2(cn)—>xgug(cn>zxz(cn)+2 — (A2)
self-energy were obtained to about 10% accuracy. n On

Renormalization-group arguments were used to improve the

quality of the extrapolation of the self-energy to infinite vol- where the second term on the right tends to constrain poorly
ume. The results demonstrate that renormalized perturbatiatetermined parameters to the range- o,,, based on our
theory for Wilson loops and the self-energy is well behavedprior experience with the power series. In the examples in

through third order. . . . this appendix, we will use,=0 ando,=1.

These methods can be directly applied to improved gluon - A well designed calculation should minimize the errors in
actions, and can be extended to quark actions. We have dogge final resuits, for a given amount of computer time. The
some work on largeg simulations for fermions in the non- yncertainties in the fit parameters are determined from the

relativistic formulation of QCD, extending the preliminary j,verse of the Hessian matrix, which we denote Hy,,
studies reported in Ref$1,2]. We find that simulations of \yhere

the additive energy and multiplicative mass renormalization

reproduce results of one-loop perturbation theory, and can 1 322
resolve the second-order terms in the expansion of these Hon== _ (A3)
quantities, over a wide range of bare quark ma§sgsFur- 2 dCpdty
ther work in this direction is in progress.
Then the uncertainty ig, is
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FIG. 14. Values of the couplings, (lower curve anda; (upper
curve) which minimize uncertainties in the fit parameteys c, and
c3, as functions of the CPU tim@n arbitrary unit3. The coupling
a4 is always about zero.
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whereoy(«) is the statistical error ifV(«). We note that a
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Long—distance error
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FIG. 15. Contribution of errors in the perturbative coefficients to
the final error in a long-distance simulation of a Wilson loop, as a
function of the short-distance simulation tinie arbitrary unitg
that determined the, . The contribution of a given coefficient, to
the final error iséc,a", where here we take=0.25. The errors
coming from the lowest-order coefficients are greatest for low sta-
tistics in the short-distance simulations, but decrease most rapidly
with CPU time.

range of about 0.15-0.30. To illustrate the effects of optimi-

useful approximation for the statistical error in the Wilson zation calculations on the final result of a nonperturbative

loop (or its logarithn) is
owl(a)~fa, (AB)

wherefoc1/{/CPU time and is independent af
The optimal selection of the values at which the simu-

lations are to be done may be determined by numericall

minimizing the §c,, with respect to thew;. The optimal

placement ofa’s for the first couple of parameters may be
guessed without doing much calculation. For example, since

relative statistical errors are independentofc, is obtained

most accurately by running at the smallest possible couplin
a4 (avoiding round-off errons thereby minimizing trunca-

tion errors from higher-order terms in the series expansio
The smallest total error in, is then obtained by choosing a
second couplingr, such that the statistical error in the slope

of W/a, which is ~fa,/a,=f, is equal to the truncation

error, which is given byrzad/ a,= o302, Explicit numerical

n

simulation, we consider the application of the perturbative
series Eq(Al) to a simulation witha=0.25. The results are
shown in Fig. 15. The errors coming from the lowest-order
coefficients are greatest when the short-distance simulations
are done with low statistics, but these errors decrease most
rapidly with CPU time; hence the order of the term that
>(/:ontributes the largest error to the nonperturbative quantity
rises as a function of the CPU time of the perturbative simu-
Jations.

Similar results, different in detail, are obtained for other
uantities. For example, for the third order coefficiegtfor

e 5X5 Wilson loop, shown in Fig. 4, the statistical errors
are f/? and the truncation error is.«. The minimization
formula gives the optimal placement for a single-point simu-

lation as
f 1/3
a= (—) , (A7)
Oc

minimization reproduces expectations for these simple cases,

but also produces optimized design parameters for arbitrargs expected.

numbers of points and allocations of CPU time among them. Constrained curve fitting formulas for parameter fitting
The results of a three-point optimization are illustrated inprovide a concrete way of translating estimates of truncation
Fig. 14. One sees that as the CPU time is increased, smallerrors into designs of efficient computations. For one or two
and smaller couplings are obtained from the minimizationparameters, they lead to exactly the same choices of param-

calculations, though the optimal’s do not fall quite as

eters that intuitive guesswork provides. However, they also

quickly as the fourth root of CPU tim@s would be expected provide clear optimizations in the much more common situ-

in a two-point fip.

ations in which we have too many parameters to guess about,

Perturbative series in lattice QCD are typically used inor in which we are trying to design new runs to improve the

nonperturbative Monte Carlo calculations witkis in the

results from imperfectly designed initial runs.
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