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Exact lattice supersymmetry: The two-dimensionalNÄ2 Wess-Zumino model
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We study the two-dimensional Wess-Zumino model with extendedN52 supersymmetry on the lattice. The
lattice prescription we choose has the merit of preservingexactlya single supersymmetric invariance at finite
lattice spacinga. Furthermore, we construct three other transformations of the lattice fields under which the
variation of the lattice action vanishes toO(ga2) where g is a typical interaction coupling. These four
transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice
Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simu-
lations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward
identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the
lattice action and find good agreement with theory. At strong coupling we provide evidence that problems
associated with a lack of reflection positivity are evaded for small enough lattice spacing.
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I. INTRODUCTION

Supersymmetry~SUSY! is thought to be an important in
gredient of many theories which attempt to unify the sepa
interactions contained in the standard model of particle ph
ics. Since low energy physics is manifestly not supersy
metric it is necessary that this symmetry be broken at so
energy scale. A set of nonrenormalization theorems ens
that if SUSY is not broken at the tree level then it cannot
broken in any finite order of perturbation theory see e.g.@1#.
Thus we are led to investigate nonperturbative mechani
for SUSY breaking. The lattice furnishes the only tool for
systematic investigation of nonperturbative effects in fi
theories and so significant effort has gone into formulat
SUSY theories on the lattice@2#.

Unfortunately, there are several barriers to such lat
formulations. First, supersymmetry is a spacetime symm
which is generically broken by the discretization procedu
In this it resembles Poincare´ invariance which is also no
preserved in a lattice theory. However, unlike Poincare´ in-
variance there is usually no SUSY analogue of the disc
translation and cubic rotation groups which are left unbrok
on the lattice. In the latter case the existence of these rem
ing discrete symmetries is sufficient to prohibit the appe
ance of relevant operators in the long wavelength lattice
fective action which violate thefull symmetry group. This
ensures that Poincare´ invariance is achieved automatical
without fine-tuningin the continuum limit. Since generic lat
ticizations of supersymmetric theories do not have this pr
erty their effective actions typically contain relevant sup
symmetry breaking interactions. To achieve
supersymmetric continuum limit then requires fine-tuni
the bare lattice couplings of all these SUSY violati
terms—typically a very difficult proposition.

Secondly, supersymmetric theories necessarily invo
fermionic fields which suffer from so-called doubling pro
lems when we attempt to define them on the lattice. T
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presence of extra fermionic modes furnishes yet ano
source of supersymmetry breaking since typically they
not paired with corresponding bosonic states. Furtherm
most methods of eliminating the extra fermionic modes se
to break supersymmetry also.

In this paper we employ a lattice formulation of the tw
dimensional Wess-Zumino model which was first writt
down in @3,4#. In these earlier works the lattice formulatio
is found by discretizing the Nicolai map for the model@5#. In
our case we rederive the formulation in a slightly differe
way—we start from a simple discrete model which exhibit
one parameter local, supersymmetric invariance and s
how this model may be generalized to a two dimensio
Euclidean lattice field theory provided certain integrabil
conditions are satisfied. TheN52 Wess-Zumino model is
then found as the essentially unique solution to these co
tions. Since the continuum model contains two Majorana
percharges we would expect the lattice model to poss
three further transformations which are invariances of
action in the naive continuum limit. We construct these tra
formations explicitly and from them derive a set of exact a
broken lattice Ward identities.

To check these ideas explicitly we have simulated
simplest realization of the model for a range of masses
couplings, computing both boson and fermion mass gaps
the correlation functions needed for checking the supers
metric Ward identities. To perform the simulations we ha
replaced the fermionic fields by commuting pseudofermio
fields in the usual manner.

The outline of the paper is as follows: first we introduce
simple discrete model with an exact SUSY-like symmet
showing how it can be used to describe a lattice version
supersymmetric quantum mechanics and then discussin
extension to two-dimensional field theory. The Ward iden
ties are then introduced and we show how the expecta
value of the total action~including the contribution of
pseudofermion fields! can be used as an order parameter
SUSY breaking. Following from this theoretical introductio
we present our numerical results both for weak and str
coupling. The final section contains our conclusions.
©2002 The American Physical Society01-1
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II. SIMPLE SUSY LATTICE MODEL

Consider a set ofP real commuting variablesxi and two
sets of P real Grassmann variablesc i and c̄ i with i

51 . . .P governed by an actionS(x,c,c̄) of the form

S5
1

2
Ni~x!Ni~x!1c̄ i

]Ni

]xj
c j ~1!

with the fieldNi(x) an arbitrary function ofxi . It is easy to
see that this action is invariant under the following SUS
transformation:

d1xi5c ij

d1c̄ i5Nij

d1c i50

dS5Ni

]Ni

]xj
dxj1dc̄ i

]Ni

]xj
c j

5Ni

]Ni

]xj
$c j ,j%1

which vanishes on account of the Grassmann nature of
infinitesimal parameterj. Notice that the variation of the
matrix ]Ni /]xj ,

d
]Ni

]xj
c j5

1

2

]2Ni

]xjxk
$ck ,c j%1j,

also vanishes for similar reasons.
Let us now choose the fieldsx,c,c̄ to lie on a spatial

lattice equipped with periodic boundary conditions and ta
the fermion matrixMi j 5]Ni /]xj to be of the form

Mi j 5Di j
S1Pi j9 ~x!.

The symmetric difference operatorDi j
S replaces the con

tinuum derivative and can be written in terms of the us
forward and backward difference operators:

Di j
S5

1

2
~Di j

11Di j
2!

and Pi j9 (x) is some~local! interaction matrix polynomial in
the scalar fieldsx. The resulting model is easily recognize
as supersymmetric quantum mechanics regularized as
11)-dimensional Euclidean lattice theory@6#. Furthermore it
is trivial to find a fieldNi(x) which yields this fermion ma-
trix under differentiation

Ni5Di j
Sxj1Pi8~x!.

Notice, however, that the resulting bosonic action1
2 Ni

2 is not
a simple discretization of its continuum counterpart

Scont
E 5E dt

1

2
„~]tx!21@P8~x!#2

…
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as it contains a new cross termC5Pi8(x)Di j
Sxj which would

be a total derivative~and hence zero! in the continuum but is
nonvanishing on the lattice and required to ensure the tra
formation Eq.~2! is an exact symmetry of the theory. Notic
that this extra term also vanishes on the lattice for afree
theory whereP8(x)5mx because of the antisymmetry of th
matrix Di j

S .
Notice that if I imagine changing variables in the partitio

function Z5*Dxe2S(x,c̄,c) from x to N the Jacobian result
ing from this transformation cancels the fermion determin
yielding a trivial Gaussian theory in the fieldN. This is an
example of a Nicolai map and the existence of such a tra
formation of the bosonic degrees of freedom can be show
imply an exact supersymmetry@5#. While most supersym-
metric theories admit such a map, in the generic case
nonlocal—that is the mapped Nicolai fieldN will be a func-
tion of arbitrarily high derivatives of the original boson fie
x. In the case of SUSY quantum mechanics~and as we will
see later theN52 Wess-Zumino model! the expression is
local. It can then serve as a basis for constructing a lat
theory with an exact supersymmetry as was pointed ou
@3,4# and @8#.

So far we have neglected the fact that the form of
fermion action appears to admit doubles—the symmetric
ference operatorDi j

S behaves like sinka in lattice momentum
space yielding zeros at bothka50 and the Brillouin zone
boundaryka5p. Indeed, both the fermionicand bosonic
actions now contain spurious modes which are not part of
continuum theory. The extra bosonic modes arise from us
DSDS as the kinetic operator rather than the usual sca
lattice Laplacianh5D1D2 . However, we can use our free
dom in choosing the interaction matrixPi j9 (x) to add a Wil-
son term to the fermion action:

Pi j9 ~x!52Di j
A1 local interaction terms

where the matrixDi j
A5 1

2 (Di j
12Di j

2)5h i j . By construction
this eliminates the doubles from the free fermion action co
pletely; what is, perhaps, more surprising is that it also r
ders the boson spectrum double free too. This can be see
be a consequence of the lattice supersymmetry.

One further observation is in order. Consider a seco
supersymmetry transformation

d2xi5c̄ ij

d2c i5N̄ij

d2c̄ i50

where

]N̄i

]xj
52Mi j

T 5Di j
S2Pi j9 ~x!.

The action in Eq.~1! is no longer invariant under this trans
formation
1-2
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EXACT LATTICE SUPERSYMMETRY: THE TWO- . . . PHYSICAL REVIEW D 65 094501
d2S5
1

2
d2~Ni

22N̄i
2!

52d2C ~2!

but transforms into the supersymmetry variation of~twice!
the cross termC. As we have argued, for a free lattice theo
or in the naive continuum limit this term will vanish and th
model will be invariant under this second supersymme
For the lattice theory in the presence of interactions@P8(x)
;gxn,n.1#, this second symmetry will be broken by term
O(ga2) where the suppression by two powers of the latt
spacing reflects the fact thatDS5]cont1O(a2). Thus the
second supersymmetry is broken only byirrelevant opera-
tors. Since quantum mechanics is a finite theory we t
expect that the continuum theory will have the two inva
ances that we expect of supersymmetric quantum mecha
@7#. We have verified this explicitly in@6# in which a com-
putation of both the mass spectrum and the supersymm
Ward identities revealed the existence ofN52 supersymme-
try in the continuum limit.

III. THE LATTICE WESS-ZUMINO MODEL

The action Eq.~1! and supersymmetry transformation
Eq. ~2! do not depend strongly on the existence of a ba
ground lattice of given dimensionality—indeed this physic
interpretation only arises when we choose the form of
fermion operator. This allows us to use it as a basis for c
structing candidate lattice field theories in higher dimensi
which admit supersymmetry.

In two dimensions the fermions will be represented
two independent two-component spinors whose compon
we will assume to be real~this restriction will turn out to be
valid for N52 theories in Euclidean space!. Thus we will
imagine that the indicesi , j can be promoted to compoun
indices i→ i ,a, j→ j ,b labeling spacetime and spinor com
ponents respectively. We immediately realize that there
be two scalar fields now in the theoryxi→xi

a and the fer-
mion matrix will take the formDi j →Di j

ab ~from now on we
will use D in place of DS). To maintain contact with the
simple, discrete model we will require a Euclidean fermi
operator which is also entirely real. Then the most gene
fermion matrix respecting this condition takes the form

Mi j
ab5gab

m Di j
m1Ai j dab1Bi j igab

3

where A(x) and B(x) are real matrix fields and we hav
chosen a Majorana basis for the Dirac matrices so thatg1, g2

and ig3 are also real:

g15S 1 0

0 21D , g25S 0 21

21 0 D , ig35S 0 21

1 0 D .

To remove the doubles we again add a Wilson term to
interaction matrixAi j 52Di j

A1 interactions where

Di j
A5

1

2 (
m51

2

~Di j
m12Di j

m2!.
09450
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The resultant fermion matrix is easily recognized as
discrete version of the continuum Wess-Zumino model an
the same fermion operator appearing in@3,4#. Having chosen
this fermion matrix we can attempt to find a vectorNi

a whose
derivative yieldsMi j

ab . ClearlyNi
a must have the form

Ni
a5gab

m Di j
mxj

b1 f i
a

where f i
a which represent mass and interaction terms m

still be determined. Ignoring for a moment the spaceti
indices it is clear that strong restrictions are placed on
vector f a. We must have

A5
] f 1

]x1
5

] f 2

]x2
, B5

] f 2

]x1
52

] f 1

]x2
.

Of course these are just Cauchy-Riemann conditions.
other words the integrability condition thatM be a derivative
of some vectorN imposes a complex structure on the sca
fields in the theory. Indeed, the bosonic part of the action
now be rewritten in terms of a complex vectorh (1)(f)
whose real and imaginary parts are just the two compon
N1 andN2 respectively~we have again suppressed spaceti
indices for clarity!, SB5 1

2 h̄ (1)h (1) where Ref5x1 and
Im f5x2 and

h (1)5Dzf̄1W8~f!

where we have introduced complex coordinatesz5(x
1 iy)/2, z̄5(x2 iy)/2 so that

Dz5D12 iD 2

with D1 , D2 derivative operators in the two dimension
lattice. The significance of the superscript onh (1) will be
become apparent later.W8(f) is an arbitrary analytic func-
tion of the complex fieldf with f̄ its complex conjugate.
Furthermore, in this language the fieldsA andB are nothing
but the real and imaginary parts ofW9(f). Expanding the
bosonic action yields

SB5
1

2 (
z,z̄

Dz̄fDzf̄1W8~f!W8~f̄ !1Dzf̄W8~f̄ !

1Dz̄fW8~f!.

The first two terms go over asa→0 to the bosonic part of
the continuum action for theN52 Wess-Zumino mode
while the last two terms are clearly total derivatives whi
will vanish both in the continuum and for a free lattic
theory. For an interacting theory they are necessary to
serve the lattice supersymmetry transformation. Howe
they spoil the reflection positivity of the lattice action,
point we shall return to when we present our numerical
sults.

So far we have shown that the lattice action

S5
1

2
Ni

aNi
a1c̄ i

aMi j
abc j

b

1-3
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SIMON CATTERALL AND SERGEY KARAMOV PHYSICAL REVIEW D 65 094501
admits the following invariance

d1xi
a5c i

aj

d1c i
a50

d1c̄ i
a5Ni

aj ~3!

determined by a single Grassmann parameterj correspond-
ing to a single supercharge. We know that the continuumN
52 Wess-Zumino model possesses four such supercha
corresponding to two independent two component Major
charges. Thus we might expect that the lattice model w
admit three further transformations which become inva
ances asa→0. The complex form of the bosonic action im
mediately suggests three further bosonic actions which
differ from each other by terms which become total deriv
tives in the continuum limit. These are

h (2)5Dzf̄2W8~f!

h (3)5Dzf2W8~f̄ !

h (4)5Dzf1W8~f̄ !. ~4!

Let N̄i
a be the~real! two component vector corresponding

the complex fieldh (2). Under differentiation it generates
new fermion matrix

~M (2)! i j
ab5

]N̄i
a

]xj
b

.

Using the arguments of the previous section we can n
write down a new lattice actionS(2),

S(2)5
1

2
h (2)h̄ (2)1xM (2)v,

where x and v are new anticommuting spinor fields.S(2)

will, of course, possess a new supersymmetry invariance
volving now not the vectorN but N̄. Furthermore it is easy to
see thatM (2)5 ig3Mig3. Hence these two lattice theorie
generate~up to total derivative-like terms! the samecon-
tinuum action. Indeed, if we make the identifications

c5 ig3v

c̄5 ig3x ~5!

we can see that the original lattice action has a second
proximate supersymmetry given by

d2xi
a5 ig3

abc i
bj

d2c i
a50

d2c̄ i
a5 ig3

abN̄i
bj. ~6!
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The variation of the action under this second supersymm
involves the supersymmetry variation of terms which van
as total derivatives in the continuum limit. On the lattic
these terms will be of orderga2 with g a typical interaction
coupling. Hence, at least in perturbation theory such a te
would constitute an irrelevant operator and the continu
limit should exhibit this second supersymmetry. One mig
worry that the presence of such a SUSY-violating term in
bare lattice action might lead to relevant breaking terms
the long distance effective action. However, it is not possi
to write down any such counterterms which simultaneou
preserve the one exact SUSY. Thus, the existence of a su
of the full SUSY in the lattice model is indeed sufficient
protect the broken supersymmetries so that no fine-tunin
required to achieve the full symmetry in the continuum lim

Turning to h (3) we can see that it generates yet anoth
fermion matrix of the form

~M (3)! i j
ab5

]Qi
a

]xj
b

where the vectorQa again carries the real and imagina
parts ofh (3). Again, M (3) may be expressed in terms of th
original M

M (3)52MTg1

which proves that an action based aroundh (3) will once
again constitute a lattice theory of the continuum We
Zumino model with yet another supersymmetry. In terms
the original fermion fields this third transformation will yiel
another approximate invariance of the original action

d3xi
a5g1

abc̄ i
bj

d3c̄ i
a50

d3c i
a5Qi

aj. ~7!

The final approximate invariance can be derived simila
from h (4) ~or its real vector formQ̄i

a) and yields the trans-
formations

d4xi
a5g2

abc̄ i
bj

d4c̄ i
a50

d4c i
a5 ig3

abQ̄i
bj. ~8!

Thus far we have again assumed that the variation of
fermion matrix under these supersymmetry transformati
is zero. However, the simple proof we gave in the previo
section for the absence of such a term indS does not hold
when the variation of the fieldx involves nontrivial gamma
matrices acting onc or c̄. If we examine the general struc
ture of such a variation we find that it has the form~we
suppress spacetime indices which play no essential role!
1-4
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EXACT LATTICE SUPERSYMMETRY: THE TWO- . . . PHYSICAL REVIEW D 65 094501
ūdMc5 ūa
]2f a

]xb]xg
Ggdudub

whereu, ū represent eitherc or c̄. This can be seen to b
the trace of a product of a symmetric matrix~the term in-
volving derivatives off ) with the gamma matrixG and the
antisymmetric matrix formed by the product of theu terms.
Thus, forG5g1 or G5g2 this is the trace of an antisymme
ric matrix and is hence zero. ForG5 ig3 the resultant matrix
is now symmetric but the trace can be shown to still van
as a consequence of the Cauchy-Riemann conditions ap
ing to the derivatives off.

IV. WARD IDENTITIES

A. Quantum mechanics

The invariance of the quantum mechanical lattice act
under the discrete supersymmetry transformation Eq.~2!
leads to a set of Ward identities connecting bosonic and
mionic correlation functions. We can derive these followi
the usual procedure by adding a set of source terms to
action and carrying out an~infinitesimal! supersymmetry
variation of the fields. Since the partition function, meas
and action are all invariant under this change of variables
immediately derive the result

dZ505E Dc̄DcDxe2S1J•x1u•c̄~J•d1x1u•d1c̄ !.

Indeed any derivative of this expression with respect to
source terms~which are set to zero at the end! is also van-
ishing. Thus we are led immediately to the first nontriv
supersymmetric Ward identity

^c̄ ic j&1^Nixj&50

relating the fermion correlation function to one depend
only on bosonic fields. Notice also that in the continuu
limit there will be a second set of Ward identities followin
from the second invariance given by the variationd2:

^c i c̄ j&1^N̄ixj&50.

To perform a simulation of this model we will replace th
integral over anticommuting fieldsc̄, c by one over a~real!
pseudofermion fieldx whose actionSPF5xT(MTM )21x
yields the same fermion determinant det„M (x)…. Consider
now the generalized partition functionZ(a) where

Z~a!5E DxDxe2aS(x,x). ~9!

This allows us to write down a simple expression for t
mean action including the pseudofermions

^S&52
] ln Z~a!

]a
.
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We will from now on restrict ourselves to lattice action
which derive from a fieldNi of the form

Ni5Di j xj1Mi j xj1gxi
Q .

In this case a simple scaling argument allows us to rew
Eq. ~9! as

Z~a,g!5a2N/2Z~1,g8!

whereg8/g5a (12Q)/2 andN is just the total number of de
grees of freedom we integrate over. Hence we find the
lowing expression for the expectation value of the total
tion including the pseudofermions:

^S&5
N

2a
1

12Q

2a
g

]

]g
ln Z~1,g!.

The second term on the right vanishes by virtue of the f
that the partition function does not depend ong—as guaran-
teed by the existence of the Nicolai map. Thus we see
the mean action~with a51) merely counts the number o
degrees of freedom including the pseudofermions. Furth
more, since the existence of the Nicolai map implies a
persymmetry we can also regard the value of the mean ac
computed in the simulation as an order parameter for su
symmetry breaking—if we find it depends on coupling a
differs from its value for the free theory we know that supe
symmetry has been broken.

B. Wess-Zumino model

The analysis of the previous section carries over to
Wess-Zumino model with the appropriate interpretation
the index and field content. Thus we expect the mean lat
action to be equal to the number of degrees of freedom^S&
52L2 for a lattice of linear sizeL ~the two counts the two
real degrees of freedom at each lattice point in either bo
or fermion sector!. Likewise we expect the Ward identit
based on the variationd1 to be exact for arbitrary lattice
spacing:

^c i
ac̄ j

b&1^Nj
bxi

a&50. ~10!

Similarly we expect the following three Ward identities to b
satisfied asa→0:

05^ ig3
agc i

gc̄ j
b&1^ ig3

bgN̄j
gxi

a&

05^g1
agc̄ i

gc j
b&1^Qj

bxi
a&

05^g2
agc̄ i

gc j
b&1^ ig3

bgQ̄j
gxi

a&. ~11!

V. NUMERICAL RESULTS

To check these conclusions we have chosen to simu
the model forW8(f)5mf1gf2. We have used a hybrid
Monte Carlo algorithm@9# to handle the integration over th
pseudofermion fields. In order to reduce the computat
time for large lattices we have implemented a refinemen
1-5
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SIMON CATTERALL AND SERGEY KARAMOV PHYSICAL REVIEW D 65 094501
this algorithm using Fourier acceleration techniques. Det
are given in@6# and more recently@10#. In the latter paper we
show that the autocorrelation time for SUSY quantum m
chanics is drastically reduced—the dynamical critical ex
nentz is reduced fromz;2 for the usual hybrid Monte Carlo
~HMC! algorithm toz;0 with Fourier acceleration. In the
Wess-Zumino case the gains are also large.

A. Weak coupling

In order to compare our results with other continuum a
perturbative calculations we simulated the model initially
zero and small couplingg. We show data form510, g50
and g53 obtained from 13106 HMC trajectories atL54,
and L58, 23105 HMC trajectories atL516 and 23104

HMC trajectories atL532. To take the continuum limit we
imagine holding the physical size of the lattice fixed at un
~we are neglecting finite size effects since our bare ma
are relatively large!. This allows us to extract the lattice spa
ing a51/L. Since our lattice action contains only dimensio
less quantities the bare physical couplingsg andm must be
translated to bare lattice quantitiesgL5g/L, mL5m/L in the
lattice action. The continuum limit is then reached by simp
taking L→`.

Table I shows the mean action as a function of lattice s
for both g50 and g53. As is evident the mean action
close to the predicted value of 2L2 consistent with a non-
breaking of SUSY~this is expected since the Witten inde
for this modelD52).

To extract information on the spectrum of the model
have studied zero momentum correlation functions which
given by averaging the fields transverse to the direction
propagation:

Gab
B ~ t !5

1

L2 (
j , j 8

^xa~0,j !xb~ t, j 8!&c

and

Gab
F ~ t !5

1

L2 (
j , j 8

^c̄a~0,j !cb~ t, j 8!&.

On account of the periodic boundary conditions we exp
the boson correlatorGB(t)5A(t2L/2) whereA is a sym-
metric function of its argument. Conversely the fermion
correlator can be expected to take the form

Gab
F ~ t !5k„I abB~ t2L/2!1lgab

t C~ t2L/2!…

TABLE I. Mean total action vs lattice size.

L g50.0 g53.0

4 32.01(4) 31.93(6)
8 127.98(6) 127.97(7)
16 512.5(3) 512.0(3)
32 2048(1) 2046(3)
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where B(x) and C(x) are symmetric and antisymmetri
functions of their arguments,l is a numerical coefficient and
g t is the gamma matrix appropriate to thet direction. For
large x we expect a single mass state to dominate in wh
case A(x),B(x)→cosh(mg

Lx) and C(x)→sinh(mg
Lx). These

latter functional forms were found to yield good fits over t
whole range of parameters studied. The parametermg

L corre-
sponds to the mass gap of the model expressed in la
units. To convert this value to physical units we merely ha
to divide by the lattice spacinga, mg5mg

L(a)/a.
Figure 1 and Fig. 2 showGab

B (t) and Gab
F (t) for L

516, g53, a5b52 andt lying along the 1-direction. This
choice of time direction implies that the fermio
correlator will be purely diagonal withG11

F (t)5cosh„mg
L(t

2L/2)…1lsinh„mg
L(t2L/2)… and G22

F (t)5cosh„mg
L(t

2L/2)…2lsinh„mg
L(t2L/2)…. For weak coupling we find

that the numerical value ofl extracted from the fit is con-
sistent with unity which would be expected for a free theo
as a→0. Notice that although the lattice action does n
satisfy reflection positivity there is no sign of a problem
the correlation functions at weak coupling.

FIG. 1. Boson correlator atL516 andm510.0, g53.0.

FIG. 2. Fermion correlator atL516 andm510.0, g53.0.
1-6
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EXACT LATTICE SUPERSYMMETRY: THE TWO- . . . PHYSICAL REVIEW D 65 094501
In Table II we show the results for the mass gaps in phy
cal unitsmg as a function of the lattice spacing. It is cle
that the boson and fermion masses are degenerate w
statistical errors and increase smoothly with decreasing
tice spacing.

Figure 3 is a plot of physical~fermion! massmg(a) ex-
tracted from the simulations as a function of lattice spaci
For smallg/m5gL/mL we expect perturbation theory to pro
vide a good approximation. The one loop result for the m
gap is

mg
pert5mS 12

2

3A3
S g

mD 2D
which yields mg

pert59.65 for g53.0. Notice that since this
theory is finite there is no need to introduce a scale dep
dent renormalized mass—the physical mass gap of
theory is a finite function of the bare parameters in phys
units. It is encouraging that reasonable extrapolations
mg(a) to a50 are consistent with the one loop result. The
numerical results are also consistent with ones which w
previously obtained using a stochastic approach based o
Nicolai map@11#.

To understand whether the continuum limit will descri
anN52 supersymmetry we have also checked the four W
identities written down in the last section. We again choo
to average the correlations transverse to a chosent direction

TABLE II. Physical mass gapsmg vs lattice size form510.0
andg53.0.

L mB mF

4 5.09(2) 4.95(8)
8 6.52(2) 6.44(5)
16 7.76(4) 7.75(6)
32 8.29(19) 8.33(30)

FIG. 3. Mass gaps vs lattice spacinga51/L for m510.0, g
53.0.
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(t51 as before!. Each Ward identity then yields two inde
pendent relations between components of boson and ferm
correlators. Figure 4 shows a plot of2G22

F (t) and
^x2(0)N2(t)& versus timet. The first Ward identity requires
the sum of these two curves to vanish—clearly to a v
good statistical accuracy the numerical data support this c
clusion. The first Ward identity also predicts a relationsh
betweenG11

F (t) and^x1(0)N1(t)& which we also observe to
be true within~small! statistical errors. Thus, as expected, t
existence of the exact SUSY Eq.~3! leads to a Ward identity
relating correlation functions which we observe to be ac
rately satisfied on the lattice.

We have also examined the other Ward identities co
sponding to the other three broken symmetries—Fig. 5 p
G22

F (t) vs ^x1(0)N̄1(t)&. Again, if the 2nd Ward identity
were to hold exactly the sum of these two curves wo
again vanish—and it appears that the data are consistent
this. Indeed, we have found that each of these three W
identities is also satisfied within statistical error at th
~weak! coupling. The explanation for this seems to lie in t
magnitude of the symmetry breaking—as we have argued
breaking effects come in atO(ga2)5g/L3 yielding correc-
tions to the broken Ward identities which are too small to
resolved over our statistical errors.

B. Strong coupling

Having checked by explicit simulation that this lattic
model appears to possess the correct supersymmetric s
ture at weak coupling we have extended our simulations
strong coupling. This allows us to probe directly the nonp
turbative structure of the theory. Classically the model h
two vacua, corresponding tof50 and f52m/g. These
vacua are separated classically by a barrier of he
m2(m/4g)2. For smallg we are effectively confined to the
f50 well but for largeg/m we would expect both vacua t
be sampled. In addition since the terms in the action t

FIG. 4. Fermionic and bosonic contributions to 1st Ward ide
tity for m510.0, g53.0.
1-7
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SIMON CATTERALL AND SERGEY KARAMOV PHYSICAL REVIEW D 65 094501
violate reflection positivity are proportional tog we might
wonder whether a sensible continuum limit even exists
strong coupling.

We have examined this issue by simulations atm55 and
g52.5, g55.0 andg510.0 for lattices fromL58 through
L532 as before and with similar statistics. The choice o
smaller bare mass parameterm reduces the barrier height an
allows our simulation to more effectively tunnel between t
two classical vacua. For largeg we were forced to refine ou
hybrid Monte Carlo scheme to eliminate problems stemm
from large pseudofermion forces occasionally encountere
the vicinity of such tunneling configurations of the bos
field. Essentially an entire trajectory is abandoned as soo
a force component larger than some threshold is seen—
trajectory is restarted with new momenta. This process
creases the autocorrelation time of the algorithm but for
parameters at which we performed simulations the effect
not overly severe.

FIG. 5. Fermionic and bosonic contributions to 2nd Ward ide
tity for m510.0, g53.0.

FIG. 6. Bosonic correlatorm55, g55, L516.
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The results forg52.5 are similar to those obtained in th
previous section and will not be examined further. In
cases we have observed that the mean action^S&52L2 in-
dependent ofg andm. This is again evidence that supersym
metry is not broken even outside of perturbation theory.
have also seen that typical configurations extend over a
gion of field space encompassing both classical minim
indeed we have found that^Ref&52m/2g very accurately.

The correlation functionsG22
B (t) and G22

F (t) for g55.0
(g/m51) are shown in Fig. 6 and Fig. 7. We again choo
time along the 1-direction. The boson is again accurat
fitted by a simple hyperbolic cosine function and yields
physical mass ofmB54.35(7) at this lattice spacing. Th
fermionic correlator is a little more complicated—at th
coupling the fits favor a signal which is predominantly giv
by a hyperbolic sine function with a small admixture of h
perbolic cosine~typically l;4/5). The use of a three param
eter fit yields a larger error in the fermion mass estimat
mF55.5(4). Theresults for all the lattice sizes are summ
rized in Table III.

It is not clear whether the discrepancy between boson
fermion mass gaps is significant or merely reflects the la
errors in the fermion mass determination. More interesting
the gaps in the table forL58 arise because it was not po
sible to extract a mass from the small latticeL58—the sig-
nal descends into noise after just one time slice. This is
true for smallerg and may indicate a problem with reflectio
positivity at this lattice spacing. A similar problem occurs f
L516 wheng is increased tog510.0. Figure 8 shows a plo
of the bosonic correlator there. We conjecture the oscillati

TABLE III. Physical mass gaps vs lattice size form55.0 and
g55.0.

L mB mF

8
16 4.35(7) 5.5(4)
32 6.0(2) 4.4(7)

-

FIG. 7. Fermionic correlatorm55, g55, L516.
1-8
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EXACT LATTICE SUPERSYMMETRY: THE TWO- . . . PHYSICAL REVIEW D 65 094501
visible in the signal are a signal for a mass spectrum whic
not real positive. This might indicate that the problem cou
indeed be attributed to the lack of reflection positivity in t
lattice action. However, even if this were the case, the pr
lem appears to diminish with lattice spacing—the correlat
for L532 at thissamecoupling g510 exhibited none of
these problems and allowed fits for both boson and ferm
mass gapsmB54.7(1) andmF54.9(7) forL532. Interest-
ingly, in the region of parameter space where the two-po
functions show this oscillatory behavior we have also o
served that the sign of the fermion determinant may fluctu
also. In practice the sign changes were relatively infrequ
and their effects could be taken into account by reweight
the measured observables in the usual manner. However
effect also disappeared with decreasing lattice spacing
fixed coupling.

Similar results were obtained at other values of the b
parameters. Hence we speculate that, while problems as
ated with a lack of reflection positivity may be evident o
coarse lattices, these effects disappear with decreasing la

FIG. 8. Bosonic correlatorm55, g510, L516.

FIG. 9. Fermionic and bosonic contributions to 1st Ward ide
tity for m55.0, g55.0 L516.
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spacing. Thus a well-defined continuum limit may be defin
for all finite g.

Finally we have examined the Ward identities. Again, t
presence of an exact symmetry yields a relationship betw
boson and fermion correlators for arbitrarily largeg which is
exhibited in Fig. 9 which shows the same correlators de
ing from the first Ward identity now form55, g55 andL
516. The middle curve~diamonds! shows the sum of the
two contributions which is seen to be consistent with zero
all t within errors. Contrast this with Fig. 10 which exhibi
the bosonic^x1(0)Q1(t)& and fermionicG11

F (t) contribu-
tions to the third Ward identity. The middle~diamond! curve
is no longer zero and indeed shows a marked variation w
t. Similar effects are seen in the fourth Ward identity.

VI. DISCUSSION AND CONCLUSIONS

In this paper we have studied a lattice version of the tw
dimensional Wess-Zumino model withN52 supersymmetry.
The lattice action we use was first derived in@3,4# and fol-
lows from a discretization of the continuum Nicolai map f
the model. We have rederived it in a different way by requ
ing that the lattice field theory model exhibit a single para
eter SUSY-like invariance. This approach has the advant
that is allows us to identify the other broken invarianc
which would yield a fullN52 SUSY in the naive continuum
limit. From the form of those transformations we have d
rived a set of Ward identities which would be satisfied in t
continuum limit. We furthermore argue that the presence
one exact symmetry~together with the finiteness of the con
tinuum theory! guarantees that the full symmetry is restor
without fine tuning in the continuum limit.

These conclusions have been checked by an explicit
merical simulation of the Euclidean lattice theory in whic
the boson and fermion mass gaps and a set of supersym
ric Ward identities were computed at a variety of lattice sp
ings. We utilized a Fourier accelerated hybrid Monte Ca
algorithm to handle the fermionic integrations.

At weak coupling we were able to extract boson and f
mion masses and verify their equality within statistical e

-

FIG. 10. Fermionic and bosonic contributions to 3rd Ward ide
tity for m55.0, g55.0 L516.
1-9
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SIMON CATTERALL AND SERGEY KARAMOV PHYSICAL REVIEW D 65 094501
rors. We also found that all the Ward identities were satisfi
to high precision. We have argued that the small magnit
O(ga2) of the symmetry breaking effects places the corr
tions within the statistical noise inherent in our calculatio
Most importantly, the numerical results show no sign of a
problems stemming from the lack of reflection positivity
the lattice action.

At strong coupling we found difficulties in extractin
masses and interpreting the theory for coarse lattices bu
least for the parameters we studied, these effects seem
go away on finer lattices. Our simulations, while efficien
sampling the classical vacua of the model, show no evide
for supersymmetry breaking—the mean action remained
2L2 and the Ward identities corresponding to the exact sy
metry were still satisfied within errors. However at stro
coupling we did observe clear corrections to some of
other approximate Ward identities.
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Of course the interesting question is whether one can g
eralize any of these ideas to gauge models in higher dim
sions. A Nicolai map is known for the continuumN52 super
Yang Mills model in two dimensions@12# ~indeed it can be
obtained by dimensional reduction of a map forN51 super
Yang Mills in four dimensions!. Unfortunately, a naive tran
scription to the lattice is problematic since the map utiliz
an explicit noncompact formulation for the gauge field. R
placing continuum derivatives by finite differences as for t
Wess Zumino model would then lead to an action which w
not gauge invariant.
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