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Exact lattice supersymmetry: The two-dimensionalN =2 Wess-Zumino model
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We study the two-dimensional Wess-Zumino model with extered® supersymmetry on the lattice. The
lattice prescription we choose has the merit of presereixagtlya single supersymmetric invariance at finite
lattice spacinga. Furthermore, we construct three other transformations of the lattice fields under which the
variation of the lattice action vanishes ®(ga?) where g is a typical interaction coupling. These four
transformations correspond to the two Majorana supercharges of the continuum theory. We also derive lattice
Ward identities corresponding to these exact and approximate symmetries. We use dynamical fermion simu-
lations to check the equality of the mass gaps in the boson and fermion sectors and to check the lattice Ward
identities. At least for weak coupling we see no problems associated with a lack of reflection positivity in the
lattice action and find good agreement with theory. At strong coupling we provide evidence that problems
associated with a lack of reflection positivity are evaded for small enough lattice spacing.
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I. INTRODUCTION presence of extra fermionic modes furnishes yet another
source of supersymmetry breaking since typically they are
SupersymmetrySUSY) is thought to be an important in- not paired with corresponding bosonic states. Furthermore,
gredient of many theories which attempt to unify the separatenost methods of eliminating the extra fermionic modes serve
interactions contained in the standard model of particle physto break supersymmetry also.
ics. Since low energy physics is manifestly not supersym- In this paper we employ a lattice formulation of the two-
metric it is necessary that this symmetry be broken at somdimensional Wess-Zumino model which was first written
energy scale. A set of nonrenormalization theorems ensuretown in[3,4]. In these earlier works the lattice formulation
that if SUSY is not broken at the tree level then it cannot bes found by discretizing the Nicolai map for the mod8g]. In
broken in any finite order of perturbation theory see Ely.  our case we rederive the formulation in a slightly different
Thus we are led to investigate nonperturbative mechanismsay—we start from a simple discrete model which exhibits a
for SUSY breaking. The lattice furnishes the only tool for aone parameter local, supersymmetric invariance and show
systematic investigation of nonperturbative effects in fieldhow this model may be generalized to a two dimensional
theories and so significant effort has gone into formulatingeuclidean lattice field theory provided certain integrability
SUSY theories on the lattide]. conditions are satisfied. Thd=2 Wess-Zumino model is
Unfortunately, there are several barriers to such latticehen found as the essentially unique solution to these condi-
formulations. First, supersymmetry is a spacetime symmetryions. Since the continuum model contains two Majorana su-
which is generically broken by the discretization procedurepercharges we would expect the lattice model to possess
In this it resembles Poincar@variance which is also not three further transformations which are invariances of the
preserved in a lattice theory. However, unlike Poincare action in the naive continuum limit. We construct these trans-
variance there is usually no SUSY analogue of the discretéormations explicitly and from them derive a set of exact and
translation and cubic rotation groups which are left unbrokerbroken lattice Ward identities.
on the lattice. In the latter case the existence of these remain- To check these ideas explicitly we have simulated the
ing discrete symmetries is sufficient to prohibit the appearsimplest realization of the model for a range of masses and
ance of relevant operators in the long wavelength lattice efeouplings, computing both boson and fermion mass gaps and
fective action which violate théull symmetry group. This the correlation functions needed for checking the supersym-
ensures that Poincaiievariance is achieved automatically metric Ward identities. To perform the simulations we have
without fine-tuningn the continuum limit. Since generic lat- replaced the fermionic fields by commuting pseudofermionic
ticizations of supersymmetric theories do not have this propfields in the usual manner.
erty their effective actions typically contain relevant super- The outline of the paper is as follows: first we introduce a
symmetry  breaking interactions. To achieve asimple discrete model with an exact SUSY-like symmetry,
supersymmetric continuum limit then requires fine-tuningshowing how it can be used to describe a lattice version of
the bare lattice couplings of all these SUSY violating supersymmetric guantum mechanics and then discussing its
terms—typically a very difficult proposition. extension to two-dimensional field theory. The Ward identi-
Secondly, supersymmetric theories necessarily involveies are then introduced and we show how the expectation
fermionic fields which suffer from so-called doubling prob- value of the total action(including the contribution of
lems when we attempt to define them on the lattice. Thepseudofermion fieldscan be used as an order parameter for
SUSY breaking. Following from this theoretical introduction
we present our numerical results both for weak and strong
*Corresponding author: Email address: smc@physics.syr.edu coupling. The final section contains our conclusions.
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Il. SIMPLE SUSY LATTICE MODEL as it contains a new cross tel@n= Pi’(x)Dﬁxj which would
be a total derivativéand hence zepan the continuum but is

Consider a set oP real commuting variables; and two o . .
9 ' nonvanishing on the lattice and required to ensure the trans-

sets of P real Grassmann variableg; and ¢; with i formation Eq.(2) is an exact symmetry of the theory. Notice
=1...P governed by an actio(x, ¢,¢) of the form that this extra term also vanishes on the lattice fdres
1 N theory whereP’ (x) = mx because of the antisymmetry of the
R B . S
S=SNIOON () + o o (v ~maxDg. o .
2 IX; Notice that if | imagine changing variables in the partition

. . . . . i = —S(X,4h,4) i _
with the fieldN;(x) an arbitrary function ok; . It is easy to functionZ=Dxe ’ from x to N the Jacobian result
see that this action is invariant under the following SUSYN9 from this transformation cancels the fermion determinant

yielding a trivial Gaussian theory in the fieM. This is an

transformation: example of a Nicolai map and the existence of such a trans-
1= & formation of the bosonic degrees of freedom can be shown to
imply an exact supersymmetfp]. While most supersym-
S1i =N & metric theories admit such a map, in the generic case it is
nonlocal—that is the mapped Nicolai fiehlwill be a func-
514=0 tion of arbitrarily high derivatives of the original boson field

X. In the case of SUSY quantum mechaniaad as we will
N; — N; see later thdN=2 Wess-Zumino modglthe expression is
0S=N; -~ X+ 8¢ -~ ¥ local. It can then serve as a basis for constructing a lattice
! ) theory with an exact supersymmetry as was pointed out in
N [3,4] and[8].
=NiW{¢j &l So far we have neglected the fact that the form of the
) fermion action appears to admit doubles—the symmetric dif-

) ) S . . .
which vanishes on account of the Grassmann nature of th€rence operatoD;; behaves like sikain lattice momentum

infinitesimal parameteg. Notice that the variation of the space yielding zeros at bokta=0 and the Brillouin zone
matrix dN; /9x; , boundaryka= 7. Indeed, both the fermioniand bosonic

actions now contain spurious modes which are not part of the

AN; 1 #°N; continuum theory. The extra bosonic modes arise from using
3_)(1_‘/’1:5 m{‘ﬂk-’ﬂjhf’ DSDS as the kinetic operator rather than the usual scalar
lattice Laplaciaid=D D _ . However, we can use our free-
also vanishes for similar reasons. dom in choosing the interaction matriX’(x) to add a Wil-

Let us now choose the fields, i, to lie on a spatial son term to the fermion action:
lattice equipped with periodic boundary conditions and take
the fermion matrixM;; = 9N, /dx; to be of the form Pi(x)=— D{?+Ioca| interaction terms

Mij = Dﬁ‘L Pij (%). where the matrixD{?: %(Dﬁ—Di}):D” . By construction
S s this eliminates the doubles from the free fermion action com-
'I_'he symm.etrlcl: difference opera_thij _replaces the con- pletely; what is, perhaps, more surprising is that it also ren-
tinuum derivative and can be written in ter.ms of the usualyers the hoson spectrum double free too. This can be seen to
forward and backward difference operators: be a consequence of the lattice supersymmetry.

One further observation is in order. Consider a second

1 .

Dﬁ :E(D‘T +Dj)) supersymmetry transformation
and Pi’}(x) is some(local) interaction matrix polynomial in X =&
the scalar fieldx. The resulting model is easily recognized .
as supersymmetric quantum mechanics regularized as a (0 St =N;é
+1)-dimensional Euclidean lattice thed§]. Furthermore it
is trivial to find a fieldN;(x) which yields this fermion ma- Sori=0

. . .. 2!#'

trix under differentiation

N;=DSx;+P/(x). where
Notice, however, that the resulting bosonic act§chhi2 is not IN; T S

. . D . : —=-—M'=D7—P!(x).

a simple discretization of its continuum counterpart IX; g g 1]

The action in Eq(1) is no longer invariant under this trans-

E 1 2 ’ 2
Son= | d75 (907 +[P'(0)]?) formation
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The resultant fermion matrix is easily recognized as a

625= 5 82(NZ—N?) discrete version of the continuum Wess-Zumino model and is
the same fermion operator appearing3m]. Having chosen
=26,C (2)  this fermion matrix we can attempt to find a veci¢ft whose

derivative yieldsM ﬁB. Clearly N{* must have the form
but transforms into the supersymmetry variation(fice)
the cross ternC. As we have argued, for a free lattice theory N{= 7ZﬁDﬁXjB+ fr
or in the naive continuum limit this term will vanish and the
model will be invariant under this second supersymmetrywhere f{* which represent mass and interaction terms must
For the lattice theory in the presence of interactipR$(x)  Still be determined. Ignoring for a moment the spacetime
~gx",n>1], this second symmetry will be broken by terms indices it is clear that strong restrictions are placed on the
O(ga®) where the suppression by two powers of the latticevector f“. We must have
spacing reflects the fact th&S= g .+ O(a?). Thus the . ) .
second supersymmetry is broken only inselevant opera- A oft of® ot of”
tors. Since quantum mechanics is a finite theory we then oxt ox?’ axL Xy’
expect that the continuum theory will have the two invari-
ances that we expect of supersymmetric quantum mechanicf course these are just Cauchy-Riemann conditions. In
[7]. We have verified this explicitly ii6] in which a com-  other words the integrability condition thit be a derivative
putation of both the mass spectrum and the supersymmetrisf some vectoiN imposes a complex structure on the scalar
Ward identities revealed the existenceNof 2 supersymme- fields in the theory. Indeed, the bosonic part of the action can

try in the continuum limit. now be rewritten in terms of a complex vectaf')(¢)
whose real and imaginary parts are just the two components
lll. THE LATTICE WESS-ZUMINO MODEL N* andN? respectively\we have again suppressed spacetime
indices for clarity, Sg=3%7" % where Rep=x' and

The action Eq.(1) and supersymmetry transformations ey
Eqg. (2) do not depend strongly on the existence of a back-lm ¢=x"and
ground lattice of given dimensionality—indeed this physical W=D B+ W
interpretation only arises when we choose the form of the 7=Dz¢ (4)
fermpn operator. This _allovys us to use itas a bas]s for CONiyhere we have introduced complex coordinates (x
structing candidate lattice field theories in higher dimensions . — .
which admit supersymmetry. +1y)/2, z=(x—1y)/2 so that

In two dimensions the fermions will be represented by D.=D.—iD
two independent two-component spinors whose components z 7l 2
we will assume to be redthis restriction will turn outto be ith p,, D, derivative operators in the two dimensional
valid for N=2 theories in Euclidean spaceThus we will - |attice. The significance of the superscript @f") will be
imagine that the indices,j can be promoted to compound pecome apparent latétv’ () is an arbitrary analytic func-
indicesi—i,a, j—],B labeling spacetime and spinor com- ion of the complex fieldd with E its complex conjugate
ponents respec_tively. we ?mmediately reaILze that there WiIﬁzurthermore, in this language the fieldsandB are nothing.
bg two scglar.flelds now in the theory—x" and the fer- o raal and imaginary parts W (). Expanding the
mion matrix will take the forerij—>Di‘}B (from now on we | 5s0nic action yields
will use D in place of DS). To maintain contact with the
simple, discrete model we will require a Euclidean fermion 1 _ _ -
operator which is also entirely real. Then the most general ~ Sg=75 2, D7D+ W' (H)W' () +D,pW' ()
fermion matrix respecting this condition takes the form zz

+D7oW'(¢).

o The first two terms go over as—0 to the bosonic part of
where A(x) and B(x) are real matrix fields and we have ha continuum action for theu=2 Wess-Zumino model

- - . - 2
chosen a Majorana basis for the Dirac matrices soghay”  \yhile the last two terms are clearly total derivatives which

Mﬁﬁz ’y';LBDIIJL‘FA” 5aﬁ+ B”l ’yzﬁ

. 3 .
andiy* are also real: will vanish both in the continuum and for a free lattice
theory. For an interacting theory they are necessary to pre-
1 0 0o -1 0 -1 : .
yi= =  iya= ) serve the lattice supersymmetry transformation. However
0 -1 -1 0 1 0 they spoil the reflection positivity of the lattice action, a

) ) point we shall return to when we present our numerical re-
To remove the doubles we again add a Wilson term to theis.

. . . _ A . . . )
interaction matrixA;; = — Dj; +interactions where So far we have shown that the lattice action
12 1
A__ + - ANI@ | AN
Dij_igl(Dﬁ —Dfi ). S=5Ni'N; +yiMEPyL
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admits the following invariance The variation of the action under this second supersymmetry
involves the supersymmetry variation of terms which vanish
O1X{ = yi'§ as total derivatives in the continuum limit. On the lattice
these terms will be of ordega? with g a typical interaction
S14{=0 coupling. Hence, at least in perturbation theory such a term
would constitute an irrelevant operator and the continuum
51%‘"=Ni“§ ©)) limit should exhibit this second supersymmetry. One might

worry that the presence of such a SUSY-violating term in the
determined by a single Grassmann paraméteorrespond- bare lattice action might lead to relevant breaking terms in
ing to a single supercharge. We know that the contindNim the long distance effective action. However, it is not possible
=2 Wess-Zumino model possesses four such Supercharg@swrite down any such counterterms which Simultaneously
corresponding to two independent two component Majoran@reserve the one exact SUSY. Thus, the existence of a subset
Charges_ Thus we might expect that the lattice model Wi||0f the full SUSY in the lattice model is indeed sufficient to
admit three further transformations which become invari-protect the broken supersymmetries so that no fine-tuning is
ances as—0. The Comp|ex form of the bosonic action im- required to achieve the full symmetry in the continuum limit.
mediately suggests three further bosonic actions which will Turning to »®) we can see that it generates yet another
differ from each other by terms which become total deriva-fermion matrix of the form
tives in the continuum limit. These are

Q¢
_ B)aB__<!
n?=D,6~W'(4) e
j
7=D,p—W'($) where the vectoQ® again carries the real and imaginary
B parts of 7. Again, M) may be expressed in terms of the
7M=D,p+W' (o). (4) original M
— 3)_ TA,1
Let N be the(rea) two component vector corresponding to ME)=—MTy

the complex field7(®). Under differentiation it generates a

new fermion matrix which proves that an action based around will once

again constitute a lattice theory of the continuum Wess-

IN® Zumino model with yet another supersymmetry. In terms of
(M@)ab=— the original fermion fields this third transformation will yield
: &xf” another approximate invariance of the original action

Using the arguments of the previous section we can now 53Xia:ﬁﬁ%ﬁ§
write down a new lattice actioB(®,

1 — O3 =0

S(Z):E 77D+ M@,
S3h7 =Qf'¢. (7

where y and o are new anticommuting spinor fields(?) The final anbroximate invariance can be derived similarl
will, of course, possess a new supersymmetry invariance in- ! pproxi invar Ived simitarly

H INE o (4) i _q . :
volving now not the vectoN but N. Furthermore it is easy to ;rom 7 (or its real vector formQy’) and yields the trans
see thatM@ =i y;Miy,. Hence these two lattice theories formations
generate(up to total derivative-like termsthe samecon-

tinuum action. Indeed, if we make the identifications O4Xi'= 7§'B¢iﬁ§
Y=iyzw Sath?=0
y=ivysx 5 Sa=iy5PQPe. 8

we can see that the original lattice action has a second ag,s far we have again assumed that the variation of the
proximate supersymmetry given by fermion matrix under these supersymmetry transformations

Sux—i BB is zero. However, the simple proof we gave in the previous
X =1737E section for the absence of such a terms® does not hold
when the variation of the field involves nontrivial gamma

a__ J—
24 =0 matrices acting ony or ¢. If we examine the general struc-
— . apB ture of such a variation we find that it has the fofme
Ot =iv5"NPE. (6)  suppress spacetime indices which play no essential role
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. _ g2fe We will from now on restrict ourselves to lattice actions
66M =95 ———T7°9°9F which derive from a fieldN; of the form
axPax”

B B N;=Dj;x;+ M;;x;+gx2.
where 0, 6 represent eithey or . This can be seen to be ) ) ) )
the trace of a product of a symmetric matfike term in- In this case a simple scaling argument allows us to rewrite
volving derivatives off) with the gamma matrix’ and the Eq.(9) as
antisymmetric matrix formed by the product of tAgerms. Z(a,g)=aN2Z(1g')
Thus, forl'= vy, or I'= v, this is the trace of an antisymmet- ' '
ric matrix and is hence zero. Fbr=i y; the resultant matrix whereg’/g=a*~ "2 andN is just the total number of de-

is now symmetric but the trace can be shown to still vanistyrees of freedom we integrate over. Hence we find the fol-
as a consequence of the Cauchy-Riemann conditions applysying expression for the expectation value of the total ac-

ing to the derivatives of. tion including the pseudofermions:

IV. WARD IDENTITIES N 1-Q ¢
<S>—2a+ 5 gagInZ(l,g).

A. Quantum mechanics
The invariance of the quantum mechanical lattice actionfhe second term on the right vanishes by virtue of the fact
under the discrete supersymmetry transformation @y. that the partition function does not dependgr-as guaran-
leads to a set of Ward identities connecting bosonic and fetteed by the existence of the Nicolai map. Thus we see that
mionic correlation functions. We can derive these followingthe mean actiorfwith a=1) merely counts the number of
the usual procedure by adding a set of source terms to thdegrees of freedom including the pseudofermions. Further-
action and carrying out arinfinitesima) supersymmetry more, since the existence of the Nicolai map implies a su-
variation of the fields. Since the partition function, measurepersymmetry we can also regard the value of the mean action
and action are all invariant under this change of variables weomputed in the simulation as an order parameter for super-
immediately derive the result symmetry breaking—if we find it depends on coupling and
differs from its value for the free theory we know that super-
5Z=O=J DyD ¢DXE_S+J'X+0'Z(J' SX+0-8,1). symmetry has been broken.

S . . . B. Wess-Zumino model
Indeed any derivative of this expression with respect to the

source termswhich are set to zero at the enig also van- The analysis of the previous section carries over to the
ishing. Thus we are led immediately to the first nontrivial esS-Zumino model with the appropriate interpretation of
supersymmetric Ward identity the index and field content. Thus we expect the mean lattice

action to be equal to the number of degrees of freedSm
=2L2 for a lattice of linear sizd. (the two counts the two
real degrees of freedom at each lattice point in either boson
or fermion sector Likewise we expect the Ward identity
based on the variatiod; to be exact for arbitrary lattice
spacing:

(i) +(Nix;)=0

relating the fermion correlation function to one depending
only on bosonic fields. Notice also that in the continuum
limit there will be a second set of Ward identities following

from the second invariance given by the variatiéy .y @

glven by i (IR +(NEx) =0, (10

(1#@1') +<Nixj>: 0. Similarly we expect the following three Ward identities to be
satisfied am—0:
To perform a simulation of this model we will replace the B o
integral over anticommuting fieldg, ¢ by one over dreal) 0=(i y§7¢f¢j3>+(i ygyNjyxf‘)
pseudofermion fieldy whose actionSpe=x"(M™™M) 1y
yields the same fermion determinant @é¢{x)). Consider 0:<7a7$v¢_ﬁ>+<Qﬁx.a>
. .. . 1 i ¥ IR
now the generalized partition functiaf(«) where
O=(3 i)+ (i v8 Q). (1D

Z(a)zf DxDye «Sx), 9)
V. NUMERICAL RESULTS

This allows us to write down a simple expression for the 1o check these conclusions we have chosen to simulate

mean action including the pseudofermions the model forW'(é)=md¢+gh2. We have used a hybrid
Monte Carlo algorithnj9] to handle the integration over the

(S)=— dInZ(a) pseudofermion fields. In order to reduce the computation

da time for large lattices we have implemented a refinement of
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TABLE |I. Mean total action vs lattice size. 0.02 . :
q

L g=0.0 g=3.0
4 32.01(4) 31.93(6) 0.015 | S ]
8 127.98(6) 127.97(7) mMy=7.76(4)
16 512.5(3) 512.0(3)
32 2048(1) 2046(3) =

m‘ﬁ 0.01 -

(0]

this algorithm using Fourier acceleration techniques. Details

are given i 6] and more recentl{10]. In the latter paper we 0.005
show that the autocorrelation time for SUSY quantum me-
chanics is drastically reduced—the dynamical critical expo-
nentzis reduced fronz~ 2 for the usual hybrid Monte Carlo

(HMC) algorithm toz~0 with Fourier acceleration. In the %% 5 10 15
Wess-Zumino case the gains are also large. t

) FIG. 1. Boson correlator dt=16 andm=10.0, g=3.0.
A. Weak coupling

In order to compare our results with other continuum and}’\'here B(x) and C(x) are symmetric and antisymmetric

perturbative calculations we simulated the model initially at LJtnptlons of their argument& 'Sa _numerlcal C.oeff|-C|ent and
zero and small coupling. We show data fom=10, g=0 v' is the gamma matrix appropriate to thelirection. For

andg=3 obtained from & 1° HMC trajectories at =4, large x we expect a singLIe mass state to_ domLinate in which
andL=8, 2x10° HMC trajectories al_=16 and 2< 10 caseA(x),!S(x)Hcoshmgx) and C(x)ﬁsmh(mgx).. These
HMC trajectories at=32. To take the continuum limit we latter functional forms were foun.d to yield good fits over the
imagine holding the physical size of the lattice fixed at unityWhole range of parameters studied. The pararmageco_rre— _
(we are neglecting finite size effects since our bare massePOnds to the mass gap of the model expressed in lattice
are relatively large This allows us to extract the lattice spac- UNits. To convert this value to physical Lunlts we merely have
ing a=1/L. Since our lattice action contains only dimension- {0 divide by the lattice spacing, my=mg(a)/a.
less quantities the bare physical couplimgand m must be Figure 1 and Fig. 2 showB,(t) and Gy 4(t) for L
translated to bare lattice quantitigs=g/L, m*=m/L inthe =~ =16,9=3, a=B=2 andt lying along the 1-direction. This
lattice action. The continuum limit is then reached by simplychoice of time direction implies that the fermion
taking L — . correlator will be purely diagonal WitIGEl(t)zcosk(m'E'(t
Table | shows the mean action as a function of lattice size-L/2))+ )\sinh(m'é(t— L/2)) and ng(t) =coshmg(t
for bothg=0 andg=3. As is evident the mean action is —L/2))—\sinh(my(t—L/2)). For weak coupling we find
close to the predicted value ofL2 consistent with a non- that the numerical value of extracted from the fit is con-
breaking of SUSY(this is expected since the Witten index sistent with unity which would be expected for a free theory
for this modelA =2). as a—0. Notice that although the lattice action does not
To extract information on the spectrum of the model wesatisfy reflection positivity there is no sign of a problem in
have studied zero momentum correlation functions which arghe correlation functions at weak coupling.
given by averaging the fields transverse to the direction of

propagation: 0.04
B 1 ) . 0.03 8
GEa()=" 2 (Xal0,))X4(t,]"))c
Ly ©m.=7.75(6)
0.02 |
and
g ootf

1 —
GLa(D= 5 2 (a0 ¥s(t] ).
B

On account of the periodic boundary conditions we expect  _go1 | i
the boson correlatoGB(t)=A(t—L/2) whereA is a sym-
metric function of its argument. Conversely the fermionic 002 ‘ ‘

correlator can be expected to take the form 0 5 10 15
t

GZB(t) =k(l,zB(t—L/2)+\ ?’taﬁc(t —L/2)) FIG. 2. Fermion correlator dt=16 andm=10.0, g=3.0.
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TABLE II. Physical mass gapsy, vs lattice size fom=10.0 0.04 . . ‘ : : :
andg=3.0.
:
L mg Mg ooz | ) <x2sO)N2(t)> |
4 5.09(2) 4.95(8) ' " -G )
8 6.52(2) 6.44(5)
16 7.76(4) 7.75(6)
32 8.29(19) 8.33(30) ol |
In Table Il we show the results for the mass gaps in physi- /)'
cal unitsmy as a function of the lattice spacing. It is clear _gp2 | ~ i
that the boson and fermion masses are degenerate withi /
statistical errors and increase smoothly with decreasing lat: "
tice spacing.
Figure 3 is a plot of physicalfermion) massmg(a) ex- -0.04 é ‘ ; ‘ é - 8

tracted from the simulations as a function of lattice spacing.

For smallg/m=g“/m" we expect perturbation theory to pro- t

vide a good approximation. The one loop result for the mass FIG. 4. Fermionic and bosonic contributions to 1st Ward iden-
gap is tity for m=10.0,g=3.0.
- i(g)z) (t=1 as beforg Each Ward identity then yields two inde-
3y3im pendent relathns between components of bosgn and fermion
correlators. Figure 4 shows a plot of G,(t) and
which yields msertz 9.65 for g=3.0. Notice that since this (x2(0)N,(t)) versus timet. The first Wgrd identity requires
theory is finite there is no need to introduce a scale deperfl® Sum of these two curves to vanish—clearly to a very

dent renormalized mass—the physical mass gap of th ood statistical accuracy the numerical data support this con-
theory is a finite function of the bare parameters in physicaf'USion- The first Ward identity also predicts a relationship
units. It is encouraging that reasonable extrapolations of€tWeenGyy(t) and(x;(0)N4(t)) which we also observe to
m,(a) to a=0 are consistent with the one loop result. ThesdP€ true within(smal) statistical errors. Thus, as expected, the
9 i ; ; i xistence of the exact SUSY E@) leads to a Ward identit
numerical results are also consistent with ones which wer€ Yy

previously obtained using a stochastic approach based on tffglating correlation functions which we observe to be accu-
Nicolai map[11]. rately satisfied on the lattice.

To understand whether the continuum limit will describe e have also examined the other Ward identities corre-

anN=2 supersymmetry we have also checked the four WargPonding to the other three broken symmetries—Fig. 5 plots
identities written down in the last section. We again chooseé35x(t) Vs (x1(0)Ny(t)). Again, if the 2nd Ward identity
to average the correlations transverse to a chostrection ~ were to hold exactly the sum of these two curves would
again vanish—and it appears that the data are consistent with
this. Indeed, we have found that each of these three Ward
identities is also satisfied within statistical error at this
(weak coupling. The explanation for this seems to lie in the
magnitude of the symmetry breaking—as we have argued the
10 - o oM=10,G=3 1 t_)reaking effects come in_@(g_g2)=g/!_3 yielding correc-

] tions to the broken Ward identities which are too small to be

pert_
Mg m

12 T

1"+ :

9r i resolved over our statistical errors.
£8- 1
E B. Strong coupling
Having checked by explicit simulation that this lattice
6 - | model appears to possess the correct supersymmetric struc-

] ture at weak coupling we have extended our simulations to
51 J strong coupling. This allows us to probe directly the nonper-
turbative structure of the theory. Classically the model has

4 I

0 0.1

0.2
a

0.3

0.4

FIG. 3. Mass gaps vs lattice spaciag-1/L for m=10.0, g

=3.0.

two vacua, corresponding t¢=0 and ¢=—m/g. These
vacua are separated classically by a barrier of height
m2(m/4g)?. For smallg we are effectively confined to the
=0 well but for largeg/m we would expect both vacua to
be sampled. In addition since the terms in the action that
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0.04 T T " T " T , 0.04

N ® <x,(0)Nbar, (1)> | 002t " S S mees.d8(d0) ]
0.02 F =G 2

N 0r b
0 1 ‘o
-0.02 g
-0.02 i
b
-0.04 ‘ ‘
0 5 10 15
-0.04 L . L . 1 N t
0 2 4 6 8
t FIG. 7. Fermionic correlatom=5, g=5, L=16.

FIG. 5. Fermionic and bosonic contributions to 2nd Ward iden-

tity for m=10.0,g=3.0. The results fog= 2.5 are similar to those obtained in the
previous section and will not be examined further. In all

violate reflection positivity are proportional {p we might cases we have observed that the mean ad®r-2L2 in-
wonder whether a sensible continuum limit even exists fordependent of andm. This is again evidence that supersym-
strong coupling. metry is not broken even outside of perturbation theory. We

We have examined this issue by simulationsnat5 and  have also seen that typical configurations extend over a re-
g=2.5, g=5.0 andg=10.0 for lattices fromL=8 through gion of field space encompassing both classical minima—
L =32 as before and with similar statistics. The choice of andeed we have found théRe¢)=—m/2g very accurately.
smaller bare mass parametereduces the barrier heightand ~ The correlation functionss5,(t) and G5(t) for g=5.0
allows our simulation to more effectively tunnel between the(g/m=1) are shown in Fig. 6 and Fig. 7. We again choose
two classical vacua. For largewe were forced to refine our time along the 1-direction. The boson is again accurately
hybrid Monte Carlo scheme to eliminate problems stemminditted by a simple hyperbolic cosine function and yields a
from large pseudofermion forces occasionally encountered iphysical mass ofmg=4.35(7) at this lattice spacing. The
the vicinity of such tunneling configurations of the bosonfermionic correlator is a little more complicated—at this
field. Essentially an entire trajectory is abandoned as soon asupling the fits favor a signal which is predominantly given
a force component larger than some threshold is seen—th®y a hyperbolic sine function with a small admixture of hy-
trajectory is restarted with new momenta. This process inperbolic cosindtypically A ~4/5). The use of a three param-
creases the autocorrelation time of the algorithm but for theeter fit yields a larger error in the fermion mass estimate—
parameters at which we performed simulations the effect wam-=5.5(4). Theresults for all the lattice sizes are summa-

not overly severe. rized in Table III.
It is not clear whether the discrepancy between boson and
0.06 . . fermion mass gaps is significant or merely reflects the large
3 errors in the fermion mass determination. More interestingly,
the gaps in the table fdt=8 arise because it was not pos-
0.05 | * M=5, G=5, m_=4.35(7) 1 sible to extract a mass from the small lattice- 8—the sig-
G4t nal descends into noise after just one time slice. This is not
true for smallerg and may indicate a problem with reflection
0.04 - positivity at this lattice spacing. A similar problem occurs for
2 L =16 wheng is increased tg=10.0. Figure 8 shows a plot
o) of the bosonic correlator there. We conjecture the oscillations
0.03 |
TABLE lIl. Physical mass gaps vs lattice size for=5.0 and
g=>5.0.
0.02 |
L mg mg
001 0 5 10 15 8
; 16 4.35(7) 5.5(4)
32 6.0(2) 4.4(7)

FIG. 6. Bosonic correlatom=5, g=5, L=16.

094501-8



EXACT LATTICE SUPERSYMMETRY: THE TWG. .. PHYSICAL REVIEW D 65 094501

0.2 T 0.05 T

01 -0.05
= kS
m(;’ -0.1
0 G=5,M=5
-0.15 i
-0.2 ! :
0 5 10 15
-0.1 ! ‘ t
0 5 10 15
t FIG. 10. Fermionic and bosonic contributions to 3rd Ward iden-

FIG. 8. Bosonic correlatom=5, g=10, L=16. tity for m=5.0, g=5.0L=16.

visible in the signal are a signal for a mass spectrum which i pacing. Thus a well-defined continuum limit may be defined

not real positive. This might indicate that the problem could or all finite g.

indeed be attributed to the lack of reflection positivity in the Finally we have examined the Ward |dent|'g|es. Again, the
lattice action. However, even if this were the case, the probpresence of an exact symmetry yields a relationship between

lem appears to diminish with lattice spacing—the correlator?os.or.] anc_i fermon correlators for arbitrarily largevhich is .
for L=32 at thissamecoupling g=10 exhibited none of exhibited in Fig. 9 which shows the same correlators deriv-

: ._ing from the first Ward identity now fom=5, g=5 andL
DB e 1 L et o i he e cunedamonds shows te sur of e

ingly, in the region of parameter space where the tWO-poinIWO contributions which is seen to be consistent with zero for

functions show this oscillatory behavior we have also op.all t within errors. Contrast this with Fig. 10 which exhibits

served that the sign of the fermion determinant may fluctuatéhe bosomc(x_l(O)Ql(t)) and fermmr_chf_l(t) contribu-
also. In practice the sign changes were relatively infrequentfons to the third Ward_ldentlty. The middl(eiamond curve
and their effects could be taken into account by reweightin S nho I.onger zero and mdegd shows a markeq variation with
the measured observables in the usual manner. However, thisSimilar effects are seen in the fourth Ward identity.

effect also disappeared with decreasing lattice spacing at

fixed coupling. VI. DISCUSSION AND CONCLUSIONS

Similar results were obtained at other values of the bare |, this paper we have studied a lattice version of the two-

parameters. Hence we speculate that, while problems assogjiiyensional Wess-zumino model with=2 supersymmetry.
ated with a lack of reflection positivity may be evident on 14 |attice action we use was first derived[8)4] and fol-

coarse lattices, these effects disappear with decreasing latti¢&, < trom a discretization of the continuum Nicolai map for

the model. We have rederived it in a different way by requir-
0.04 . ing that the lattice field theory model exhibit a single param-
eter SUSY-like invariance. This approach has the advantage
that is allows us to identify the other broken invariances
which would yield a fullN=2 SUSY in the naive continuum
limit. From the form of those transformations we have de-
rived a set of Ward identities which would be satisfied in the
continuum limit. We furthermore argue that the presence of
one exact symmetrgtogether with the finiteness of the con-
tinuum theory guarantees that the full symmetry is restored
without fine tuning in the continuum limit.

These conclusions have been checked by an explicit nu-
merical simulation of the Euclidean lattice theory in which
the boson and fermion mass gaps and a set of supersymmet-
‘ ric Ward identities were computed at a variety of lattice spac-
5 t 10 5 ings. We utilized a Fourier accelerated hybrid Monte Carlo

algorithm to handle the fermionic integrations.

FIG. 9. Fermionic and bosonic contributions to 1st Ward iden- At weak coupling we were able to extract boson and fer-
tity for m=5.0, g=5.0L=16. mion masses and verify their equality within statistical er-

—o <x2$0)N2(t)>

[,
0.02 G,

-0.02
[

-0.04
0
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rors. We also found that all the Ward identities were satisfied Of course the interesting question is whether one can gen-
to high precision. We have argued that the small magnituderalize any of these ideas to gauge models in higher dimen-
0O(ga?) of the symmetry breaking effects places the correcsions. A Nicolai map is known for the continuuxh= 2 super
tions within the statistical noise inherent in our calculation.yang Mills model in two dimensiong12] (indeed it can be
Most importantly, the numerical results show no sign of anyoptained by dimensional reduction of a map fo= 1 super
problems stemming from the lack of reflection positivity in yang Mills in four dimensions Unfortunately, a naive tran-
the lattice action. scription to the lattice is problematic since the map utilizes
At strong coupling we found difficulties in extracting an explicit noncompact formulation for the gauge field. Re-
masses and interpreting the theory for coarse lattices but, lacing continuum derivatives by finite differences as for the

least for the parameters we studied, these effects seemed\iss Zumino model would then lead to an action which was
go away on finer lattices. Our simulations, while efficiently not gauge invariant.

sampling the classical vacua of the model, show no evidence
for supersymmetry breaking—the mean action remained at
2L2 and the Ward identities corresponding to the exact sym-
metry were still satisfied within errors. However at strong
coupling we did observe clear corrections to some of the Simon Catterall was supported in part by DOE grant DE-
other approximate Ward identities. FG02-85ER40237.
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