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Semiclassical quantization of effective string theory and Regge trajectories
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We begin with an effective string theory for long distance QCD, and evaluate the semiclassical expansion of
this theory about a classical rotating string solution, taking into account the dynamics of the boundary of the
string. We show that, after renormalization, the zero point energy of the string fluctuations remains finite when
the masses of the quarks on the ends of the string approach zero. The theory is then conformally invariant in
any spacetime dimensidd. For D =26 the energy spectrum of the rotating string formally coincides with that
of the open string in classical bosonic string theory. However, its physical origin is different. It is a semiclas-
sical spectrum of an effective string theory valid only for large values of the angular momentub=Harthe
first semiclassical correction adds the constant 1/12 to the classical Regge formula.
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[. INTRODUCTION We also treat the quark motion quantum mechanically, so
that the boundaries of the string become dynamical variables
String models provide a simple picture of quark confine-which couple to the interior degrees of freedom of the string.
ment, and have been used to understand the hadronic spad/e evaluate the contribution of string fluctuations to Regge
trum since well before QCD was established as the theory dfajectories in the limit of massless quarks, and in the limit
strong interactions. A straight rotating string gives rise towhere one quark is massless and the other is heavy. Finally,
linear Regge trajectories relating the angular momenta otve generalize our expressions for Regge trajectorie® to
mesons composed of light quarks to the squares of thefPacetime dimensions, and compare with the spectrum of the
masses. A fixed straight string gives a linear potential beclassical bosonic string.
tween heavy quarks, and the zero point energy of the long
wavelength fluctuations of this string gives rise to a universal
correction to the linear potentifl]. Excited states of a fluc-
tuating string with fixed ends give potentials of hybrid me- In Sec. Ill we review the results obtained [i], giving
sons|[2]. In this paper we calculate the effect of string fluc- the expression for the functional integral representation of
tuations on the Regge trajectories of mesons. the effective string theory. We give the expression for the
In a previous papef3], we derived an effective string contribution of string fluctuations to the Wilson loop of the
theory of vortices, beginning with a field theory containing effective string theory, calculated in the classical background
classical vortex solutiongdual superconducting vortices of a world sheet with rotating quarks on its ends. This ex-
[4—11]. The field theory itself was an effective field theory of pression exhibits a logarithmic divergence as the quark mass
long distance QCD, describing phenomena at distancegoes to zero. In Sec. IV, we show how to remove the loga-
greater than the radius of the flux tube whose center is thathmic divergence by renormalization, and take the zero
location of the vortex. The resulting effective string theory mass limit.
was obtained as a development of earlier work by many au- In Sec. V, we take into account the quantum fluctuations
thors[1,12—23. We then used this effective string theory to of the positions of the quark and antiquark at the ends of the
calculate the zero point energy of the string fluctuationsstring. We obtain an effective Lagrangian for the rotating
around a straight, rotating string with quarks on its ends. Thatring from which the meson energy levels can be deter-
classical equations of motion determined the distance bemined. This effective Lagrangian.s(w) is determined by a
tween the quarks in terms of their angular veloeityand the  functional integral of the effective string theory evaluated in
fluctuations of the ends of the string were not taken intothe steepest descent approximation about a classical rotating
account. The calculated zero point energy gave a correctiostring solution. The action determining this path integral is
to the classical formula for the leading Regge trajectory. Fothe Nambu-Goto action, added to the action of the point
static quarks separated by a fixed distaRg¢he expression particles on the ends of the string.
for the zero point energy reduced ton/12R, the result of In Secs. VI-VIII, we expand the action to quadratic order
Luscher for the contribution of string fluctuations to the in small fluctuations about the classical rotating string solu-
static quark-antiquark potential. However, for rotating quarkgion. These fluctuations separate into two classes, interior
the zero point energy diverged logarithmically as the quarkdegrees of freedom determining the positions of the interior
massm approached zero, and we were not able to calculat@oints of the string and boundary degrees of freedom deter-
Regge trajectories for zero mass quarks. mining the fluctuations of the positions of the quark-
In this paper, we show how to take the mass zero limitantiquark pair at the ends of the string. The fluctuations of
the ends of the string excite the interior points, which in turn
react back on the ends, producing an effective quark-
*Email address: baker@phys.washington.edu antiquark interaction. The remaining interior string fluctua-
"Email address: rsteinke@w-link.net tions are decoupled from the fluctuations of the positions of
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the quarks. In Sec. IX, we calculate the zero point energy of o
these interior fluctuations, generalizing the resultg3jfto W[F]=J DDA pe'SerlX], (3.2
the case where the quark masses are not equal.
In Sec. X, we find the propagator for the boundary fluc-ywhere
tuations from the effective boundary action. We show that for
zero mass quarks, the poles in the propagator are at integral r{
multiples of w. These frequencies are the same as the fre- Arp=De —_—— (3.3
quencies of the harmonic oscillators determining the interior V=g oft of? 9¢* ¢
Lagrangian. That is, for massless quarks, we find that taking . o
the fluctuations of the boundary into account does not changg the Faddeev-Popov determinant produced by gauge fixing
the spectrum of the excited states of the rotating string. W&1€ reparametrization symmetry, and wheye-g is the
also evaluate the position of the poles in the propagator whepduare root of the determinant of the induced meggig:
one quark is heavy and the other is massless. We find that the -~ o~
spectrum in this case is shifted when boundary effects are _OxEax,
taken into account. Gab= 9E% 9gb
In Sec. XI, we evaluate the results of Secs. IX and X in

certain physical limits. Our results are valid when the masseShe path integral(3.2) goes over string fluctuations with
of the quarks are either zero or very large and when theuavelengths greater than the radius1sf the flux tube. The
string length is large compared to its thickness. In Sec. Xlimeasure of the path integréd.2) is universal and parametri-
we calculate the Regge trajectories of mesons containingation invariant. The factoArp came from rewriting the

zero mass quarks. The ground state of the rotating stringriginal field theory path integral as a ratio of path integrals
gives the leading Regge trajectory, and the excited states @f two string theorie$3,12).
the rotating string give rise to daughter Regge trajectories 14 actions JA%*] can be expanded in powers of the
determining the spectrum of hybrid mesons. We also calcu- . . ¢ A =
late the Regge trajectories for mesons composed of ongxtrinsic curvature tensot 5, of the world sheek”:
heavy quark and one light quark.

In Sec. XIII, we extend the calculations of this papebto Ser X*]= _Uf d2§\/__g_5f d2§\/—_g(IC§b)2+ .
spacetime dimensions, and compare with the spectrum of

classical bosonic string theory. (3.9

€MeB gk gx¥ gx* IxP

(3.9

The extrinsic curvature tensor is

IIl. PREVIOUS WORK
9PxH

9E29Ed’

A. Effective string theory Khp=n4(8) (3.6)

In Ref.[3], we began with a quantum field theory having
classical vortex solutions. The dual Abelian Higgs model i

an example of such a field theory. The surfaééét, ¢?) of
zeros of the complex dual Higgs field is the location of the
vortex sheet, and electric flux is confined to tubes of radjus
wherea™'=M, the mass of the vector particle in the theory.
The path integral, which defines the Wilson 10&f1"] of

Svvherenﬁ(g), A=1,2, are vectors normal to the world sheet

at the poinix*(£). The string tensiowr and the rigidity3 are
determined by the parameters of the underlying effective
field theory.

The extrinsic curvaturdC s, is of the order of magnitude

the field theory, goes over all field configurations containingOf thg angylar VEIOC'W’)’ ar.'d thezexpansmn parameter in the
semiclassical approximation i®“/o~1/J, whereJ is the

a vortex sheet bounded by the lobpformed by the world angular momentum of the rotating string. Therefore, in the
lines of the trajectories of the quark and antiquark on the 9 ng 9. o

. = ) i region of largel where the effective theory is applicable, the
ends of the vortex. The actid®.q x*] of the effective string

. X o . ; o action(3.5) can be replaced by the Nambu-Goto actifg :
theory is obtained by first integrating only over field configu-

rations containing a vortex on a particular surfate The ~_ B J 2e"g

remaining integral over the surface then givesw[I'] the Ser X*]=Sye=~0 | d°EV—0. 3.7

form of an effective string theory of vortices.

The actionSeff[i“] is invariant under reparametrizations B. Semiclassical calculation in the background

£-¢'3(¢8), a=1,2, of the world sheet“(&) of the vortex. of a rotating string

We choose a particular parametrizationxéfin terms of the Using Egs.(3.2 and (3.7), we calculatedW[I'] in the

amplitudesf®(¢), a=1,2, of the two transverse fluctuations |eading semiclassical approximation in the background of a

of the vortex: world sheet generated by a straight string attached to quarks
~ o niel ) 1o rotating with uniform angular velocityy (see Fig. 1L The
xk=x*(f2(£),19(£),£.£). 3.9 qguarks have masses; and m,, move with velocitiesv,

=wR; andv,=wR,, and are separated by a fixed distance
This givesW[T"] the form R=R;+R,. The parameter§=(t,r) are the timet and the
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The Lagrangian_®""is the sum of a classical parf™

and a fluctuating pait $9,

Lstring: Liltring_’_ L;Slgi:ng! (3_12)
where
. o — Ry
L=~ ?f d?éV-g= —aJ dryl-r?e?.
(3.13
FIG. 1. The string coordinate system. The effective Lagrangian for the quark-antiquark pair is ob-

tained by adding quark mass termsLtg™9:

coordinater, which runs along the string from R, to R,, so 5
that the transverse velocity of the straight string is zero when -
r=0. d gnsiing Ler(Ri Rz, 0)= = 3, ML= (0R)Z+ LR, Ry, ).

The amplituded (£) of the transverse fluctuations are the (3.149
spherical coordinateg(r,t) and ¢(r,t) of a point on the
string. These angles are defined in an unconventional mannéhe effective Lagrangian is the sum of a classical part and a
so thaté(r,t)=¢(r,t)=0 is a straight string rotating in the fluctuating part:
xy plane. The ends of the string are fixed to their classical <trin
trajectories: Le(R1,R2, @) =Lc(Ry, Rz, @)+ Liuc ARy, R, ,w)(, 5

3.1
0(—Ry1,1)=0(Ry,1) = p(—Ry,1) = p(R,,1)=0. (3.8
where

The fluctuating world sheet“ then has the parametrization

2

~ R

x“(r,t) given by Ly=—2> my1— (R 2—0’f * dry1-r2a?
=1 -R;

X1 1) =XH(0(r 1), (1 1)1 1)

2 .
__3 U& arc5|r(vi)+7._l)+m.y-_l}
= te&h+r{cose(r,t)cog (r,t) + wt]&} =172\ o i Vi .
+cosé(r,t)si 1)+ wt]e _
so(r,t)sinf &(r,t) + wt]e; with

—sind(r,t)e}, (3.9 .
g i=7— Vi=oR. 3.1
whereet, =0, .. .,3, areunit vectors along the four fixed vi J1-v? UiT @R (3.17

spacetime axe®= 5" . . o ToLS is obtained { 4
The classical rotating straight string‘(r,t) has the pa- The expression fok,;~ IS obtained from Eq(;.l]) an
At ; —_n- the semiclassical calculation oV[I']. It contains terms
rametrization(3.9) with 6= ¢=0: . . . o .
which are quadratically, linearly, and logarithmically diver-
gent in the cutoffM. The quadratically divergent term is a
renormalization of the string tension, the linearly divergent
R R R term is a renormalization of the quark mass, and the loga-
=tejtr[coswte] +sinwtes]. rithmically divergent term is proportional to the integral of
(3.10  the scalar curvature over the whole world shggt After
. . absorbing the quadratically and linearly divergent terms into
The corresponding metrig,,,= g, X*] and the classical ac- renormalizations, we obtained an expression I.f@[f'cng [3].

tion Syg[X“] are independent of the tinteso thatw[['] has ~ The following is a generalization of that expression to the

XH(r ) =x*(0(r,t)=0,p(r,t)=0r,t)

the form case of unequal quark masdsse Sec. IX
i trin 2
W[I‘]:eITLS YR1.Ry, ) (3.1 strin o wU;Y;i MR,
’ = - +
Lflucg(RlaRva) 12Rp Z:l p In 7i2_1 1
whereT is the elapsed time. For massless quarks, the ends of
the string move with the velocity of light, and singularities E
appear in_%""9. To regulate these singularities, we retain the ot oli(vyv,), (3.18

guark mass as a cutoff and take the massless limit at the end
when evaluating physical quantities for massless quarks. whereR, is the proper length of the string,

094042-3



M. BAKER AND R. STEINKE

1
szz(arcsinvﬁ— arcsinv,),

and

s +(0171+0272)SC0tf(5Rpw)+01710272
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(3.19

1 (=
f(Ul,Uz): - ;jo dsin

The functionf(vq,v,) vanishes whenw,; andv, approach
unity, so that the last term in E¢3.18 is small for relativ-
istic quarks.

In the limit 0— 0, R,—R; + R, =R, andL ¥ reduces to

the result of Ligcher for the correction to the static quark-

antiquark potential due to string fluctuations:

Liise (R, Rz 0=0)= = 152

(3.2

Viische™ —

For w#0, L3ng

fuc  contains a logarithmically divergent part.

(stv1y1)(stvzy2) (320

IV. RENORMALIZATION OF THE GEODESIC
CURVATURE

We now define the geodesic curvat{igd], and renormal-
ize Eq.(3.25. In the same way that the action for the string
(3.5 can be expanded in powers of the extrinsic curvature,
the action for the boundary can be expanded in powers of the
geodesic curvature. Using the notatifhfor the positions of
the ends of the string,

We simplify this term using the classical equation of motion,the boundary par§, of the action is

o =0 (3.22
Rilg :

to expressﬁi in terms of w. Equation(3.22 gives the rela-
tion
oR=mi(y7 1), (3.23

wherey; is equal toy; evaluated aR =R;. The solution of
Eq. (3.23 for R; as a function ofw is

ﬁ— 1 mjw 2 1 m;w 39
I A s B v
Using the relation3.23 in Eq. (3.18 gives
z M
Lﬁg&ng Z |7| ( Or-ni Y
+wf(vy,v,). (3.29

The logarithmically divergent quantity in the square brackets

is independent of the dynamical parameterThis is impor-
tant, because the quantityv;vy; diverges whem;—0.

XF(O)=Xx*(—1)'Ri(1),1), 4.0
Sy=— E dty —x# — E fdt
x"2
_ d x’
X[(_1)It,uv:||r:(—l)iRi(t)a\/7: (4.2

wheret ,, is the antisymmetric string world sheet orientation

tensor:

€ gx* gx¥
N aga a0’

The first term in Eq(4.2) is the quark mass term. The second
is the contribution of the geodesic curvature of the boundary
(the extrinsic curvature of the boundary in the plane of the
string world sheet The factor of (1)' multiplying t,,is
present so thai({‘(—l)‘t uv 1S @lways an outward pointing
radial vector.

For a straight string rotating with angular velocity the
geodesic curvature is equal to:viyiz. Inserting this in Eq.
(4.2) and dropping the integral over time gives the boundary
Lagrangian

t,u.]/_

4.3

2

-2y

L boundary_

TUmit koviyit -], (4.4

In the next section, we will show that the term containing
the logarithmic divergence can be absorbed by renormalizavhere «; is the coefficient of the first order term in this
tion of a contribution to the string action called the geodesicexpansion. The logarithmic divergence in Eqg. 3.25 can then
curvature. When this divergence is removed, the theory wilbe regarded as a renormalization f. In the limit where
be finite in them;—0 limit. This renormalization was not the quark is massless, we must take tife~0 limit before
done in[3], and is important because it will produce a finite we take the cutofM to infinity, since we have an effective
limit of the theory for massless quarks. theory. In them;—0 limit, the requirement that the action
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(4.4) is finite then forces the renormalized valuegfto be
zero (note that this does not prevert from being zero for
nonzerom;). The logarithmic divergence ikl may therefore

PHYSICAL REVIEW D 65 094042

The values of the coordinateandt at the ends of the string
are determined by the equatians — R;(t) andr =Ry(t), so
the string has the representati@9) with

be absorbed into a renormalization of the geodesic curvature

in the case where eithen;=0 orv;<1.
Removing the terms in Eq. 3.25 proportional do;y;
gives an expression foky'® which is applicable in the

massless quark limit:

. m 1
L= 1oR, * ot @f(vava)

(4.5
In the case of two light mesons witn;=m,=0 (y1,7>
—0), Egs. 3.19 and 3.20 givR,= 7/w andf(vy,v,)=0,
so that Eq. 4.5 becomes

Lstrin w w

7
fluc g(w)|m1:m2:021_2+521—2w. (4.6

In the case of one heavy and one light quark,—= (v,
—0) andm,=0 (y,—»), Ry=7/2w and

f(01=0p,—1)= 1Jm| “s|=-2, @
(v1=0p,— )——; . n cot ES == (4.7)
o)
strin my—e_ @ “’_ﬂ__
Lf|UCg(w)|m12:0_€+E 4—12(1) (48)

V. FLUCTUATIONS IN THE MOTION OF THE QUARKS
AT THE ENDS OF THE STRING

In the previous discussion, the quark-antiquark pair

moved in a fixed classical trajectory in thg plane[see Fig.

1 and Egs(3.8) and (3.24)]. We now take into account the

fluctuations of the positionﬁl(t) andiz(t) of the quarks at

—Ry(t)<r=Ry(t). (5.2

We extend the functional integréB.2) to include a path

integral overx,(t) and >?2(t), and add the action of the
quarks to the string actio(3.7). This extension replaces
WI[T'] by the “partition function” Z,

1 - -
Z= —J DFY(&)DF?(E) DX () DXo(t) App
Zy

2
><exp( —iaf ngJ__g_i_El m, mlzdt\/l—iﬁ(t)),
i= el

(5.3

whereZ,, is the partition function of two freéscalaj quarks:

zb:f DX (1) DXo(t)

2 .
><exp( —i> miJW dt[ 1—>Zi2(t)]). (5.4)
i=1 -T/2

Dividing by Z, removes the vacuum energy of the quarks.
The partition functionZ sums over all string states. In
choosing the parametrizatiof8.9) for X*(&), we have re-
placedZ with a partition function which contains a sum over
those string states with a particular value of the average an-
gular velocityw. We denote this partition function B( w).
Under the parametrizatio(8.9), the integration measure
DFfYDf?Ap for the interior of the string becomes

2

V=g
(5.5

DI E)DI2(E)App=D[sinO(r,t)]Dep(r ,t)De\{

the ends of the rotating string, so that these coordinates areh€ integration measure for the end points is

no longer fixed by Eqs(3.8) and (3.24). The radial coordi-

natesR;(t) and R,(t), along with the angular coordinates

O(—=Ry(1),1), (= Rl(t){), 9(R2(t);t) and ¢(Ry(1),1), pa-
rametrize the end points;(t) and x,(t) of the string in a
reference frame rotating with angular velocityin the xy
plane:

X1(t) = —Ry(){cosf(— Ry(t),t)cog ¢(— Ry(1),t)+ wt]e;
+c0s6(— Ry(1),0)sin (— Ry(1), 1)+ wt ],
—sinB(— Ry (1),)8s},

X2(1) =Ry(1){cosf(R(1),1)cog ¢ (Ry(1),t)+ wt]ey
+c0s8(R,(1),t)siN p(R(1),t) + wt]e,

—sinf(Ry(t),t)es}. (5.1)

DX, DXp=D(siN0)| ;- g yDhlr = —r (1)
X DR]_D(S“’] 0) | r=Ry(t)
X D¢p|,—r,PRDe{RIIDe(R;]. (5.6

The path integral5.3), with the parametrization&3.9) and
(5.1, is then

1 . r2
Z(w):Z_bJ D(sin)DdpDR,DR,Def| ——

=9
T2 -

x Def R¥]Def Rg]exp( i J lzdtL[x"]) ,
-T

(5.7)

where the Lagrangiah[X*] is

094042-5



M. BAKER AND R. STEINKE PHYSICAL REVIEW D65 094042

, _
Rz(t)ode—_g— Zl myV=x¢2, (5.8 5= dhal@) (5.16

dow

wherex* is the time derivative ok”, defined in Eq. 4.1.

The functional integral5.7) evaluated in the steepest de-
scent approximation about the classical solutié(r,t) .
= ¢(r,t)=0, R (t)=R; determines the effective Lagrangian Efuc(J) = — Lauc(w(J)). (5.17
for the rotating quark-antiquark pair:

The zero point energy of the fluctuations is then

Equations 5.16 and 5.17 give the leading semiclassical cor-
rection to the energies of mesons on the leading Regge tra-

Equation 5.9 is the extension of Eg. 3.11 to include quctuaJeCtory'

tions of the boundary. The effective Lagrangian is the sum of
a classical part and a fluctuating part: VI. QUADRATIC EXPANSION OF THE ACTION

Z(w)=g'Tteil(®), (5.9

Le(w)=Lg(w)+ Ly w), (5.10 To evaluate the effective Lagrangiags(w) from Eqg. 5.9,
o ) we must first expand the Lagrangi&fix*] to quadratic or-
whereL y(w) is given by Eq. 3.16. The fluctuation parfuc  der in the small fluctuations about the classical solution. We

contains contributions both from fluctuations of the interior cq|i r, (t) andr,(t) the fluctuations oR;(t) andR,(t) about
of the string and from fluctuations of the boundary of thethe classical valuel andﬁz, Eq. 3.24:

string.
In Appendix A, using the methods of Dashen, Hasslacher, . o
and Neved24], we obtain from the full partition functio@ Ri(t)=R;+rq(t), Ry(t)=Ry+r,(t). (6.1

a quantization condition on the angular momentum, and

show how to find the energies of the physical meson stateﬁ. dratic order i Il . h | di
We summarize these results here. The angular momeditum © quadratic order In sma fuctugtlons, the angular coordi-
. ' nates of the ends of the string((—1)'R;(t),t) and

'S &((—1)'R;(1),t) can be evaluated at the classical values of
dLeg( ) the R(t).
J= o (5.11 The degrees of freedom in the Lagrangian can be viewed
w

as a combination of string degrees of freedpe(r,t) and

whereL (o) is determined by Eq. 5.9 in terms of the par- 9(T:t) for —R;<r<R] and quark degrees of freedom
ticular partition function(5.7). The angular momentum is

fixed by the WKB quantization condition 0(_§17t)v H(EZ,t), ¢(_§11t), ¢(§2,t), ry(t), ro(t).
1 (6.2
J=|+E, =0,12... . (5.12

The quark degrees of freedom depend only up¢and not
r), and we refer to them as “boundary” degrees of freedom.

The energyE(w) is given by the corresponding Hamil- The string degrees of freedom depend on ko#mdr, and

tonian: we refer to them as the “interior” degrees of freedom. Equa-
dLex( ) tions 5.9 and(5.10 for Lcy(w) reduce to Egs. 3.11 and
E(w)=w ;w —Le(w). (5.13 (3.12 when the boundary degrees of freedom are set equal to

zero, and become boundary conditions on the interior de-
. . grees of freedom. Inclusion of these boundary degrees of
The energy is equal to the classical enefgy(w), plus a freedom gives an additional contribution tQg( ).

correction due to fluctuations. To first order in the perturba- :
tion Lg,(w), the correction to the energy is minus the cor- We now expand the Lagrangiah.g) and the correspond-

rection to the Lagrangiaf25], ing actionf "2 ,dtL[x*] to quadratic order in the small fluc-
tuationsé(r,t), ¢(r,t) andr;(t) about the classical solution
E(w)=Eqy(®)— L), (5.14 0=¢=0,r;=0. We first evaluate the string tension term.
Using the parametrizatiof8.9) of the world sheet, we obtain
where the tangent vectors t*:
Ec|(5)=5dl_;£w) —Ly(o), (5.15 X#=gl'—r f[sin 6 cog ¢+ wt) e+ sin f sin( ¢+ wt)es
w

B +c0s0el ]+ ( ¢+ w)cosh — sin( ¢+ wt) el
and wherew is given as a function ofl by the classical -
relation +cog ¢+ wt)e],
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axH Ra(t) R, .1 .
X' H=— j dr\/—g=f 2 dr Yy 1-r2wyd— =r?y(6?>— 0?6?
or —Ry(t) -Ry 2

=[cosf cog ¢+ wt) e+ cosh sin( ¢+ wt) el gy ;rzy%}ﬁz— y_2¢,2)}
—sin#e4]—r6'[sind cog ¢+ wt) e+ sin g sin( ¢

+ wt) el +coshel]+r ¢’ cosd] —sin( ¢+ wt) el +Ei iy = r?wyd)|—(-uir,
+cog ¢+ wt)&5]. (6.3 1 1i2d7—1 66
The components of the metric are " E(_ i dr r=(-1)R ©6

O =X"X,= —1+120?+12($p+ w)? cogY,

) ) ) The second term in Eq6.6), which is linear in¢, is a
grt=xMxL=r200’ +1%(p+ w) @' cog, perfect time derivative, and contributes a term in the action
iven b

Ore =X'#X}, = 1+1260'2+r2¢'? cos6. (6.4) g y

To quadratic order ir9 and ¢, the square root of the deter- JT’Z dtf drr2ywdb
minant of the metric is T2 Ry y

.1 . T T
\/—g='y*l—r2w'y¢—Erz'y(ﬁz—wzﬁz—yfzﬂ'z) =—j _drrzyw ¢(§’r)_¢<_§’r”:0' (6.7
_Rl
_Er 3(ch2— ~ 242 (6.5 The quantity in square brackets is zero, since the angular
Y (d?—y 2", : AUl _ \
velocity w is defined to be the angle traversed by the string
wherey 1= \/1—r2w2. in time T, divided by the timeT. The constraint6.7) is the

To evaluate the string tension term to quadratic order, weondition that the fluctuatiosh not contribute to first order to
must also expand the limits of integratienR, (t) andR,(t)  the angular momentum of the string, and hence contribute
about—R; andR, respectively. Using Eqg6.1) and (6.3,  only to vibrational modes.
we obtain Next we expand the quark mass term in Eg8):

[~ — dép((—1)'Ri(t),1)
—(Xf+rX “)2|r:(—1)iRi(t):7i 1_Ri(t)2w7|r:(—1)iRi(t)

dt
1 1 . 1.
SR’ SR —SwR(D?
r=(-1)R, r=(-1)R,
Cd(yt 1 ,d%(y?
=y (=D (;,r ) 7+§ri2 (72 )
r=(-1'R, dr r=(-1)R,
— do(Ri(1),1) S Ld(r?y) 1
_§i27iw+_(_1)'ri¢w ar 7_§R| Yi(62—0?0%)|,_(—1yRr
r=(-1)R;
1., —
— SRS _—vnm% (6.9
r=(—-1)'R

Inserting Eqs(6.6) and(6.8) into Eq. (5.8 and applying the constrairi6.7) gives
~ 1 R, . .
L1 = L)+ 50 [ arleon 7= w?07= 3 20 412925y 297)]

2 1 ., 1
+i21 —mi7iri+§(07iRiw

2

.7+(_0-;i_1+ miaﬁiwz)rﬁ-
r=(—-1)'R

r=(-1)R;

+m )i +[oyRPo+my (v + DR w]rid (6.9

r=(-1R;
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The term in Eq{(6.9) which is linear inr; vanishes, becauﬁ satisfies the classical equation of moti@24). Replacingo
using Eq.(3.24) in the terms in Eq(6.9) which containr; gives

1 . 1.
L[Xx*]=Lg(w)+ zof dr[r2y(62— w262 — y 20" +1293%(p*— y 24’ D]+ > mm[gﬁf(ﬁz—wzﬁz)
! r=(-1)R,

1 — .
it (2 —1)w’ri+2y’Rior ¢ B (6.10
r=(-1)iR, r=(-1)iR

+SREV

Equation(6.10 is the complete quadratic expansion of the Lagrangian, and it includes both interior and boundary degrees of
freedom. The interior-interior interactions are all contained in the integral p\end the boundary-boundary interactions in

the last term are proportional to the quark masses. Interior-boundary interactions occur in the terms in the integral containing
0’ and ¢’, which couple interior and boundary parts ®find ¢ through the spatial derivative.

VII. COUPLING OF QUARKS TO EXTERNAL SOURCES 2

i ) : 3
The effective Lagrangian5.9) determines the energy L fourcs 2 ~Dipy0{ri(sinot+5(1)]

(5.17) of the ground state of a rotating quark-antiquark pair . _
having angular momentud We will also calculate the en- +R¢((—1)'R;,t)cod wt+ 5(1)]}. (7.5
ergies of the excited states of the mesghgbrid mesons
lying on daughter Regge trajectoriesy examining the poles  The Lagrangiar. %, ..gives the e coupling of the source to the
in the Green’s function which describes the coupling of thetransverse fluctuations((— 1)'R; ,t), while LZ ,..gives the
end points of the string. To obtain this Green sefunct|on wecoupling of the sources to the in plane degrees of freedom
add toL[x*] a termLgq,ceCoupling the positiong;(t) and  r;(t) and ¢((—1)'R;,t) (see Fig. L The phases; give the
X,(t) of the quarks to external forces(t), i=1,2: direction of the external force in the plane of rotation in the
space-fixed system, and the angles+ 5, give the angle
between this force and the instantaneous position of the ro-
(7.  tating string.
The Lagrangian6.10 does not couple the traverse de-
grees of freedon®(r,t) to the in-plane degrees of freedom
where ¢(r,t) andr;(t), so we can treat them independently. We can
write

><¢

2
SOLII’ 2

p'=pl,sindie + pl, COSSE+ plyes. (7.2 L+ Loguree=Ler+ Lot Lo, (7.6)
The source:pi(, couple to the fluctuationg transverse to the where
plane of rotation, Whi|@'¢ and §; are the polar coordinates
of the forces coupling to the fluctuations r, andr, lying Ly=
in this plane. The Lagrangiai®.10 couples the interior and

boundary degrees of freedom, so that sources acting on the

N| =

R: . -
af Zdryr (02— 0?0~y 20’3+ L,
_Rl

boundary will also couple to the interio_r degrees of freedor_n, L,= %UfRi dry’r2(¢2—y 2¢'2) + |:¢,
and are capable of generating the excited states of the string. —Ry
Inserting the expressiofb.1) for the quark coordinate; (7.7
into Lsouce and keeping the leading term in small fluctua- g
tions gives
124 (297 22
LSOUI‘CE‘: Lsgource+ Lg’ourceﬂ (73) 2‘ I ‘y{ ( )w I
1
where +2R T ¢+ R7y, ¢?
r=(-1)R;
2 (D' ORO(-DRLD, (79 +3 (-1)pllrsinet+8)+Rd|
: r=(-1)R,
and X coq wt+ 5;)],
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2
“ 1 . J 0 -
Lezzl[zmiﬁiz%(ﬁz—wzﬂz) _ﬁ_rz(r)Y 2&7_(”2_(:)2(” ye(r,v)=0, (8.9
- satisfying the boundary conditions
+(—1)'p'0Ri0} (7.8 fying y
r=(-1)iR,

Ue(—1)'R;,v)= " i(v). (8.7

The quantities. , and £¢ contain the quark mass terms \yx qefine the “interior part’v: (r .») of & as
and the source terms, and depend only on the boundary vaYy partyy(r,v) of ¢

ues(6.2). The remaining terms in E{7.7) are the contribu-
tions of the string Lagrangian o, andL 4, and they depend
upon both the interior and boundary degrees of freedom. In . ~ .
the next section we will decouple the interior and boundary S @ result of the boundary conditici8.7), 4 is entirely
degrees of freedom, and will obtain an expression for théletermined by the/y, ;. Equation(8.6) guarantees thapg
action as a sum of an interior contribution and a boundaryloes not couple t@, . Notice that, by definition,
contribution. We will do this separately in each “sectord (

Yn(r,v)="9(r,v) = Pg(r,v). (8.9

and ¢) using a common procedure. h(— 1)i§i ,v)=0, (8.9
VIIl. DECOUPLING THE INTERIOR so that the fields), do not involve the boundary fluctuations.
FROM THE BOUNDARY Replacingys in Eq. (8.4) with ¥ and ¥, and integrating

We write the two equationé7.7) for L, andL, as spe- by parts yields

cializations of an equation fdr,, (= 6,¢):

Sy=Si,y* Sy (8.10
_1 (R 2 2 2112 with
Ly=50 EdrE(r)[w (r)=Cy(r,t) —y “y'(r,)]
"1
R o(dv (R, -~ d 0
+Ly,. (8.1 Sl,.p:—gf EJ_;lde[—Ez(f)v ZE
The constan€ is w? in the 6 sector, and zero in thé sector. ) -
The function3.(r) is —(v°=C)X(r) ¢ (8.11
E(r)|L6: yre, E(r)|L¢: yre. (8.2 and
The actionS,, for each sector can be expressed in terms of o 2 : =
the Fourier transform of with respect to time, Sey="7 Z:l (—D'E[(=D'Ri
Tp(r,v)sf dte™""'y(r b). (8.3 Xfﬂ~;i(ﬁ_%) +f dtl,.
27" ar r:(—l)iﬁi
(8.12

S—de— O'J'dvfﬁzd..* (72 _,d
e Y B 7 I T

2
—(vz—cm(r)}@— = 2, (~1E[(-D'R]

The interior action depends only on the interior degrees of
freedom[the values ofy(r,») for —R;<r<R,], while the
boundary action only depends ?&g,i(v).

To expressg in terms of theyy, ;, we use the Green’s
function G(r,r’,v) satisfying the equation

-2k &7"0 r
Xy Y| — + | dtL,, (8.9
M\ ar =
r=(-1)'R 9 P
- _ — 2Ny P = (V= OX(N) [G(rr w) = =),
where_wb,i are the values ofy evaluated at the ends 8.13
(—1)'R; of the string: '

for —R,;<r<R,, and the boundary conditions

o i(v)=¢(—1)'R;,v). (8.9
B _ G(—1)'R;,r',v)=0. (8.19

We next define the “boundary pariyg(r,v) of ¥(r,v) to
be the solution to the differential equation The solution of Eq(8.6) with boundary condition$8.7) is

094042-9
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2

2 (-

Pg(r,v)= D= DRIy Zi(v)

(8.19

J
x—,G(r,r',v)
ar r’=(fl)iEi

Inserting the expressiof8.15 for s into the definition
(8.12 of Sg 4, we find

- o & dv- L
SB,(ﬂ:f d“—w_fi’iztl fﬂ‘//g,iell},@)%,j,
(8.16
where
Gl(n=(-D"E[(-D'RIZ[(- DRIy %y

(92

(8.17

r'=(-1)R,’

G(r,r’,v)‘
r=(-1)iR;

arar’

Equation (8.16 gives the boundary action in terms of
1//b «(v) and the function&'} (v) which are evaluated in Ap-
pendix B[Egs.(B12) and(Bl?)] The term mvolvmgGIJ in
Eq. (8.16 represents the “back reaction” of the |nter|or de-
grees of freedom to the boundary variables.

Inserting Eq.(7.8) into Eq. (8.16 gives the boundary ac-
tions Sg y andSg 4 :

21
SB,Q_ {l—ElimlR 7i( 2 — w? |6b|(V |
g 2 ..
—5 2 051G by(v)
i,j=1
2
+§1(‘1)' P * (MR 0b.(v)] (8.18
and
d -

SB,¢=J2;[2 mi; [v +(292- 1) 0?][Fi(v)|?

1
—2Rwy?vIm[T} (1) $oi(v)]+ 5 RZ Y2 02|y i(v)|?

2 -1 i _ . ~
+241 T)[PL/;*(V"_‘U)[RiQSb,i(V)_iri(V)]
+py* (v=0)[Ridp () +iTi(»)]]

2
- % ij§=:l Tﬁ’é,i(V)Gl};(V)Eb,j(v)] ‘ (8.19

We have introduced the Fourier transforms refand the
sourcespy andpy, :

PHYSICAL REVIEW D65 094042
?i(u)zfdte-‘“ri(t), ;;(y)zfdte—'“ L(t),

Zid)(v)zfdte"” 1i0pl(t). (8.20

The functlonpd)(v) incorporates two degrees of freedom,
p¢(t) and §;(t), so it is an arbitrary complex function. The
other two Fourier transforms satisfy the reality conditions

Ti(—v)=TF(v), py(—v)=p,*(v). (82D

Using the definition(8.2) of %(r) and C in Eg. (8.12)
gives the interior actions

a’J‘dva2
2) 2w R,

"‘*[_i,y—l 2 J

— (12— w?) yrz}é. (8.22
and
d J
f Vf r¢| [——yr - y2y3r2}¢
(8.23

The total action is the sum of the independent contributions,

f dt(L+ Lsouch: J' dtLC|+ S|,t‘)+ S|’¢+ SB,0+ SB,¢)1

(8.24
and the partition functioZ(w) is a corresponding product:
Z(w0)=eT-(IZ,(0) Zg(w). (8.29
The interior partition function is
. . r?
zl(w):Jm.e'Swf Dd),e'sl,rﬁDet{\/__g , (8.2

where Dditr?/\/—g] is replaced by its classical value. The
boundary partition function is

2
il:[l [Deb,iD¢b,iDriDel[ﬁiz]]eiSB‘gﬂsB“/’-

(8.27

We will evaluate these two parts separately in the next two
sections.

1
Zg(w)= Z

IX. EVALUATION OF THE INTERIOR PARTITION
FUNCTION Z,(w)

In this section, we evaluatg (w) and derive Eq(3.29
for Liin9, generalizing the results ¢8] to the case where

the quark masses are unequal. The interior action depends
exclusively on the function®,(r,») and ¢,(r,»), which

094042-10
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vanish atr=(— 1)‘§i. We simplify S, , andS, , by chang-
ing coordinates fronm to

1

X= —arcsinwr. (9.1
w

We also change our integration variablgsand ¢, to differ-
ently normalized functions

- 1
0|(r,v)=Fk(x,t),

- 1
¢|(r,v)=7f(x,t). (9.2

The components of the action become

Ik
x1
a’fdvszd "

2) 22) | " e

f, 9.3

- VZ] k,

+ 2w? seCwx— 1?

where the limits of integration are

1 —
X;=—arcsinwR; .
w

9.9

In terms of the new variable@®.2), the interior partition
function (8.26) is

Z,(a))ZJ’ DkDfe'Sioti1S1g, (9.5

Doing the integrals ovef andk gives

Z,(w)=Det ¥4 —v?|Det Y] - V2+2w? sedwx],
(9.6

where —V? is the Laplacian in the,t coordinate system.
This coordinate system is conformally flat, i®@,= —0y,
0x=0, so we can use the resut al. [1], that for a static
string in the large time limit,

Det Y[ —V2]=el-™AR  static quark background,

(9.7
whereR is the length of the string antlis the time elapsed.
In Eq. (9.3), the string lengthX;+ X, obtained from Eq.
(9.4 is Ry, given by Eq.(3.19, which is the “proper
length” of a relativistic rotating string. Making the replace-
mentR=R, in Eq. (9.7 gives
Det [ - V?]=e (712 (TIRy) - rotating quark background.

9.9

We therefore see that

PHYSICAL REVIEW D 65 094042

_y? 2
Zl(a)):e(*#/lZ)(T/Rp)Detfl/z Vit+2w Se(‘_?a)x
_V2
— e Thie @), 0o
so that
! —V2+2w? seCwx
strm
fluc g(w 12R T'|'r |0g o
(9.10

is the contribution of the interior degrees of freedontjg; .
We can express the trace in E®.10 in terms of the
eigenvaluesu,, and A, determined by the spatial boundary

problems

(92
— —+2w?seCwx | f,(X)= unfn(X),
ax?

2

- _zkn(x):)\nkn(x)v (9.1

where —X;<x<X,, and f,(x) and k,(x) vanish at the
boundaries. The differential equatio(&11) are identical to
Egs.(B14) and(B8), and the eigenvalugs,, and\,, as well

as the corresponding eigenfunctions, are given by Egs.
(C17), (C18), (C31, and (C32. The eigenvalues are ob-
tained from the equations

V1Y1tU2Y2

tan(vVunRp) = Vinw

2
Mn— W V1Y10272

in
Nrwas

p

(9.12

The solutionu,= w? to the first of these two equations does
not produce a valid eigenvalue, as the corresponding eigen-
function vanishes everywhere.

Taking a Fourier transform in time and performing a Wick
rotation on Eq.(9.10 gives

+j dv AERP |

— 7ln

27 n=1
AR,

_+2

V2+:“n
V2+)\n

ko

12R,

strin
I-fluc

)_

| o=

(9.13

The sum ovem is logarithmically divergent, so we have
imposed a cutoff, restricting ourselves to spatial eigenvalues
less thanA. Since our evaluation of the determinants took
place in thex coordinate system, this is a cutoff in the
coordinate space. It is related to the cutbffin ther coor-
dinate space by the equation

—M&r—M -1 9.1
=M—=My™. (9.19
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Using the methods df3] to evaluate the surt9.13 gives the result3.25 for LY w).

X. EVALUATING THE BOUNDARY PARTITION FUNCTION  Zg(w)

We begin our evaluation dfz(w), Eq. (8.27), by writing down the explicit form of the partition function. Inserting the
expression$8.18 and (8.19 givesZg the form

1 (dv o Z I ~ L
Zg(w)= 7- H [D8y, Db, D Def R ]]exp[lfﬁ—gij; [85,(1)GH(#) B, j(v)+ B ()G (1) b (v)]

+Zlmﬁ(%[v2+<2 ~Do*[r(»)*~ 2Ry vim[T! <v>¢b.<v>]+1 RE(v2 = ?)[By,(v)[?

1o 2 B L, B = L,
+§ yv? (v +2( 1'lp (V)Riab,i(V)+§P¢ (r+o)[Rigpi(v)—iri(v)]+ 504" (v
~ )[Ry, (») +iFi(v)] ] (10.7
Doing the integral over the; gives
2 2 i
f [1 D?iexwg—”z M| 327 (27— DI ()2 2Ry (1) ()] (7 (v w)
=1 = 2 ' Vi
+lp'o*(v—w)]7i(V)H
2 . 2 2 2
=Det 2 Iljl my[v2+ (27— 1) 0] exp{if Z WWM(V”Z
2 i —
(-1'— - -2y ov ~ e 2y wv
2 R‘Re( e ay—nw P T V2+(2§i2—1)w2>
12 1 . .
X (1) =g 2 ﬁz[v +(29F 1)w2]—1|5;<v+w>—"b;s<v—w)lzl]. (10.2

Inserting Eq.(10.2 into Eq.(10.1), and using the fact that, * is equal to Def »?], up to an overall constant, gives the
following expression foZg(w):

2
Zg(w)=(cons) | 1] [DBy Dby, 1Det

y _fdv
exp i 5—

2 1
+2, (—DiﬁiR{—
=1 2

Det[ v?]

2
11 [+ 2y~ 1)0?]

1
Z (65 (TS 1 () B () + (1T () by ()]

~ vz—wz—Z;-zw(V—w) ~ vz—w2+2;-2w(v+w)
Py (vt o) : oy  (v—w) :
¢ 12+ (272 — 1) w? ¢ 2+ (272 —1) w?

X bpi(v)+[ply* (v) By, (v)]

2
2 ﬁz[vﬂz 1>w2]1|7)Ls(v+w>—7);5<v—w>|2H, (10.3

where
'~ Y(v)=8;m R (v2— w?)— aGli(v) (10.9
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and

” 1(”) 5ljml_3§I2 2”

— oG ( V). (10.5

The quantitied™ ~* are the coefficients of the quadratic termsﬁni and ?q'bb,i . They determine the contribution of the
boundary fluctuations to the string energy, and are closely related to the physical propagator for driven oscillations of the string
modes. Inserting the explicit form®12) and (B17) of G andG}}, and using Eq(3.23 to replacem;, we find

ii—1 VO'Uin 14
I Yv)= ——2| 8| —=—cot(vRy) | +(1-&;)csd vRy) (10.6
w WU Yi
and
Pi-1(p)= 6. 2UVZUi;(VZ_wZ) —ﬂ(vz—w )5||[VU|7’| sin(vRp) — wUl?’lvz?’zCOS(VRp)]"' (1- 511)“)U|710272
’ Lo P2y - De?] o (V2= 0201710272 SINVRY) — v@(v1 71+ V272) O VRy)
(10.79
Doing thed,; and ¢y, ; integrations in Eq(10.3 gives
ZB(w):eisboundary*'issource?* (10.8
where
2 ~12rpij-1 ~12rpij—1
. Det s, Det Iy
e'Soundan=Det™ 2 [ [12+ (22— 1) 0?] 1 ] 1 ] Def[ 2] (10.9
=1

Det Y4 §;mR RZy,]Det ¥4 8ijmR _,2;3]

defines the normalized boundary action. In the limit of large elapsed Tin8g,unqaryiS proportional toT, so we define the
effective boundary Lagrangian

Lboundar)(w) T Sboundar)(w) (10.10

— 00

We evaluaté. o yngarf @) in Appendix C.
The source terms in E¢10.8 are
Vz—w2—2;jzw(v—w)

2+ (297 - 1) 0?

_ é dv i+ip.p. 1~| * ij ~i %
Ssources_i’]_:1 fﬂ(_l) I:ziR _Pe (ny (V)Pe(V)+ F (V) Py (v+w)

~ . ) 12— w2+ Z;J-Zw(v-i- ) ~ ( : Vz—wz—Z;izw(V—w) -, ( Vz—w2+2;i2w(v+w)
+ V—w v+ w + y—
Po v2+(2§j2—1)w2 Py 2+ (292 - 1) w? Py 2+ (292 1)0?
b [+ (27— 1)w? —13|~i +w)—ply(v—o)|? 10.1
—ﬁz Yim Do ] glpy(vtw)—py(v w)|?|. (10.11
m; yik

The first two terms in Eq(10.11) were produced by th@b,i and?ﬁb,i integrals. The third was produced by ﬁ']e'ntegral, and
does not couple the two ends of the string to each other.

XI. EXPLICIT EVALUATIONS OF L guc AND Sqources Lol @) = L5 6) + L poungarf © (11.2
Combining Egs(8.25), (9.9), and(10.8 gives
Z( ) = e/ Ttal@)+ L) +iSsources (11.) The terms on the right-hand side of E¢1.2 are defined by

Egs. (4.5 and(10.10.
whereL ,(w) is defined by Eq(3.16), SqourcesiS defined by We now evaluate the partition function for appropriate
Eqg. (10.11, andLg, is physical limits of the quark masses. As we previously dis-
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cussed in Sec. IV, because of the renormalization of the geo-
desic curvature, our results are only valid when the quark
masses are either very large or exactly zero. The case where

PHYSICAL REVIEW D65 094042

14 14
5”‘ CO[( 77—) —(1- 5ij)C$f< W—)}
w w

(119

K‘i(u)=i
0 vo

both masses are large is relevant only to the evaluation of the

potential. We therefore have two physical limit&) the
light-light case, wheren;=m,=0 (y1,y,—=), and(2) the
heavy-light case, wheren;— (v;—0) and m,=0 (v,
—). We now evaluate (@) and Sy cesin these limits.

This has a double pole at=0 due to the translation mode in
the direction perpendicular to the plane of rotation, which
does not correspond to an excited string state.

The single poles at=kw for v#0 are due to the excited

This will give us the zero point energy and the excitationstates of the string. These are the same poles as appear in

energies of the fluctuations. _

We begin withL 4,c, and its two parts 5 andL poungary
In the light-light limit L5 is (7/12)w, and in the heavy-
light limit it is (5/12)w [see Eqs(4.6) and(4.8)]. We evalu-
ate L poungaryin Appendix C, and find, in the light-light limit,

I—boundary:0 (113
and, in the heavy-light limit,
1
I-boundary: - Zw- (11.4
Thus, in the light-light limit,
7
Luc( @)= 1_2‘0 (1195
and, in the heavy-light limit,
1
Luc( @)= Ew' (116

We next evaluatSg,,cesin these limits. Consider first the
excitations in thefd sector. We sep'¢ equal to zero in Eq.
(10.1) to obtain the thed sector propagator:

Ki ()=~ RRIY(»). (11.7
The propagatoKiaj v) has a simple pole whereveris equal
to the energy of one of the excited modes. There is also

double pole atv=0 due to the invariance of the Lagrangian
under a translation of the string in the direction perpendicular

G'(v), Eq.(B12), and consequently iK'} ~(v), in the limit
of massless quarks. The locations of these poles are the same
in K} (v) andK') ~*(v) because de&t}}(v) = —1/v?0? in the
massless quark limit. B

In the heavy-light case, the componentsigf * are

2
Vo
L )= —Fvi+ 0@,

221 _ vo mv
rs (v)——;co 55 TOW),
vo mV
Féz_l(v)=yvlcsc(z +0(v?). (11.10

Inverting the 2<2 matrix (11.10 gives, up to an overall
normalization, the components of tidepropagator:

w
K§'(v)= ——v1+0(vd),
Vo

2 1 TV
Ka(V)Z—;ta 50 +0(v4),
a 12 w TV 2
K(,(V)ZTSG 2w v1+0(v7). (11.11
Vo

to the plane of rotation. This translation mode does not cor-

respond to an excited state of the string.

We see that, in the limiin;— (v;—0), only the light-

A general excited state will include multiple excitations of light componean,z( v) is nonvanishing. It has poles at
each mode, so its energy will be a sum of multiples of the

energy of each mode. Only single excitations will appear in

the propagatorKioj(v), because of the harmonic oscillator
selection rules. We obtain an explicit form fdﬂioj(v) by
inverting l“ioj(v)‘l (in the sense of inverting a two by two
matrix). In the light-light case, E¢(10.6) becomes

+(1—5ij)csc<7r£”,

(11.9

Fij_l(v)= i -8 co 771
[ wz 1 w

so the# propagator is

v=(2k+1)w, k=0,1,2..., (11.12
corresponding to the normal modes of a string with one end
fixed. The remaining components of the propagator are pro-
portional to the heavy quark velocity. The heavy-heavy com-
ponentKJ(;l( v) contains only a double pole at=0, corre-
sponding to the translation mode, and the heavy-light
component }(v) has poles corresponding both to excited
vibrational states and to the translation mode.

We next obtain thep sector propagator by examining Eq.
(10.12. With some rearranging of terms, Eq.0.1) is
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: 1~ * ij 1 ij ~j 1 ~iox i+ipD.
Ssources™ 2: 5 _Po (vKj (V)Pa(V)+_P (V)K¢(V)P¢(V)+ZR Py (v+w)| (=1) RiRj
V2_w2_2;i2w(v—w) i )yz—a)2+2;1'20)(1/+w) Sij 1 "j( )
v -— V-
PrRP-De? 0 2r@A-De?  my 22y -Dw?)

], (11.13

whereK (v) is

EPNEY
Cl)= 1 1 )+( 1) e

+
4m,'yI ( V2—2vw+2;i2w2 V2+2vw+2;i2w2

V2—2vw—2;i2w(v—2w) V2—2vw—2;j2w(v—2w)
X

I'l(v—o)

—2vo+ 2;i2w2 —2vo+ Z;J-Za)2

P+ 2vw+ Z;izw( v+2w) vV’+2ve+ Z;J-Zw( v+2w)
Y+ 2ve+ Z;izwz Y+ 2ve+ Z;jzwz

I'l(v+o)|. (11.149

In some of the terms in Eq11.13 we have translated the The factory v(v?>— w?)] %, combined with the trigonomet—
integration variables by + w to make the argument @f,, be  ric functions in Eq.(11.16, produce double poles ifi,(v)

v instead ofv* w. There are three terms in E(L1.13: at v=0,*w, and single poles atv=ko for k= +2
(1) TheK!}(») term. This is thed sector propagator which =3, ... . B

we examined earlier. The ¢ sector propagator, written in terms Bﬂ,, is
(2) TheK}(») term, where the arguments of the tyb) A

factors are equal. This is thg sector propagator. Kil ()= (=) (v— Zw)zrij(v_ o)+ (v+2w)?
(3) The p¢*(v+ )ply(v—w) term, where the arguments ¢ 4 o? ¢ o?

of the two p¢, factors differ by 2v. Since the natural fre-
qguency of the classical rotating string ds, driving it at a xF‘(};(Van) _
frequencyr produces sidebands at- 2w (to leading semi-
classical order The third term in Eq(11.13 is a manifes-
tation of this effect. The double poles i (v) at v=* w do not produce poles
The poles in K”(v) give the energies of the excited inthe propagatoK”(v) due to the prefactors in E¢11.17).
modes of the strlng We now consider how the poles ininstead, they produce a double polewat0. This double
(v) relate to the poles if"! (V). Smcel‘” appears in Eq. pole is the effect of the two translation modes in the direc-
(11 14 with the argumentv+w the double pole |rK” at tions parallel to the plane of string rotation, which are
»=0 due to the translation modes of the string will appear inpresent in the propagator for all values of the quark mass.
'(}5 as double poles at= *+ w. Likewise, the single poles in The double pole id™"}(v) at v=0 produces double poles
4 giving the energies of singly excited states of the stringin Ki(v) at v=*0. These poles arise for the following

(11.17

WI|| be shifted by when they appear |i1“” reason the conditioni6.7) that the average of the fluctua-
In the light-light limit, 1“'1 1 Eq.(10.7), ,S tions of the angular momentum of the string vanish means
that the zero frequency component of the motion of the
. ov(vV2— w?) v string is constrained. This constraint removes from the mo-
F'(i_l(V)= T 2 CO( ) tion the zero frequency component of a global rotation. This

global rotation is contained in th&byi(v) boundary degrees
v of freedom. However, we have coupled all components of
+(1 5'J)CS(< ” (11.19 &p,i(v) to the sourcep!,(v). Elimination of the coupling to
- the zero frequency component of the global rotational mode
sol'} is will remove the double poles a)(v) atv=*o.
The single poles of !} 4(v) at v=*ko for k=2 produce

S CO< 7,1) +(1— 6ij)csc< 171”. single poles in the propagatKr‘qL(v) at
w w
(11.16 v=v=ko, fork=1.2,.... (11.18
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These are the true vibrational frequencies of the motion oflust as in the sector, the heavy end propagal@il(v) only
the string in the plane of rotation, and give the energies otouples to the translation mode ms— . In this limit, the
the excited states of the mesons corresponding to the excitgnly poles ml“l are double poles at=*w, so the only

tion of a single quanta of frequenay,. The spectrum of
excited states in the sector is then the same as in the
sector, for a meson composed of zero mass quarks.

In the heavy-light case, Eq10.7) is
o (VP—w?)?

w® V24 w?

Y v)=— v1+0(v?),

2 2
221 _a’v(v —w°) fd
121, y__ 9.5 o0 v 2
Iy (v)= wS(V ?) vlse(<2w +0O(v1),
(11.19

so the components dTidj) are

3 v2+w2

1, @ vrTe
Iy(v)= p (Vz—wz)zvl +0(1),

I%(v)= +0(vy),

w* [( Ty
————COol —
ov(v’— w?) 2w

o* V2 + w? TV
v)=—— csq 5—
( ) ov 2 2 20

) + O(Ul).
(11.20

The components of theé sector propagator are

i) = wvl( 1 1

+
4o \ 12— 2vw+20w? V24 2ve+ 202

(v—2w)%7% 1

b (v2—2vw+2w2)? ¢

(v—w)

(v+ 2w)4vi
4w’ (VP +2vw+2w?)?

I'(v+w)+0(vd),

(v—2w)? (v+2w)?
4e? 4o*

K(Zﬁz(v)= Fiz(v—w)-l— Flzﬁz(y-l— )

+0(vy),

(V-2w)3vl
403(VP—2vw+2w?)

K;Z(v)— F(v—o)

(v+2w)3,
403V +2vw+2w?)

I'JAv+w)+0(vf).

(11.21

pole in K is a double pole av=0. At the light quark end,
I'?? does not have poles at + w, as the cotangent vanishes
there Just as in the sector, in the heavy-light limit the light
end propagatoK2 does not couple to the translation modes
of the string. The simple poles iy’ at even multiples ofs
produce poles ik at v= +(2n+ 1Do.

The spectrum of singly excited string modes in tite
sector is then the same as in thsector, and the degeneracy
of the light-light excitations is repeated in the heavy-light
excitations. The remaining pole %%, a double pole av
=0, is present for reasons already discussed in considering
the light-light case. The heavy-light component of the propa-
gatorK}f( v) couples to both light end and heavy end modes,
just as it did in thed sector.

Xll. MESON SPECTRUM

In this section, we use the result$1.5 and (11.6, as
well as the energies of the string excited states, to derive the
meson Regge trajectories to leading semiclassical order. We
begin by calculating classical Regge trajectories from the
classical Lagrangiaii3.16. The angular momentum of the
meson and its energf.(w) are given by Eqgs(5.16 and

(5.15:

aLc, arcsin; -1
- +
EI 2U| v; miRiv;vi |,
L arcsin;
E=w o _LC| E O'Ri - +m;y;|.
i

(12.1)

From the classical equation of motion we derived 8323,
which shows thatR; is proportional tO'yiz for large ;.
Evaluating Egs.(3.16 and (12.1) in the limit of massless
quarks, where the quark velocity goes to one, yields the
classical results

L 7o J_ﬂ'a’ E_7T0' J—E
@)= g I BT oy
(12.2
In the heavy-light case; goes to zero and, goes to one, so
Eq—my)?
:( cl 1) . (12.3
mTo

We now include the correctiofb.17) to the energy due to
fluctuations. In the light-light case Eqé5.17), (11.5, and
(12.2 give

To 7
E(J)=E¢(w)—Laylw)=— PR (12.9
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for the case of two light quarks. The value®fis given as a XII. GENERALIZATION TO D#4 DIMENSIONS
function of J through the classical relatiow=/7wo/2J.
Squaring both sides of Eq12.4 and dropping the term
quadratic inLy, yields

It is interesting to compare the resul($2.6 with the
corresponding result from classical bosonic string theory. To
do this, we need to generalize Ed.2.6) to D dimensions.
This dependence comes from the dependende,gfw) on
. (12,5 D, which in turn comes frorn_ﬁgfc”g(_w) and Lpoyngarf @),

since the classical string energy is independer of

Our calculation ofL pongarf @) separated the boundary

Using the WKB quantization conditod=1+1/2 in Eq. fluctuations perpendicular to the plane of rotation of the

momentum quantum numbéto the meson energy: contributed toL poundarf @) (see Appendix & Going from
four dimensions t® dimensions only add® — 4 additional

directions for perpendicular fluctuations. These fluctuations

£ +Lio
12

" 270 E

2
|= E + i+0 —. (12.  Will each give the same contribution tGygarf @) that the
2mo 12 E2 fluctuations perpendicular to the plane of rotation did in

the four dimensional case, namely zero. The function
In the heavy-light case, Eqél1.6 and(12.3 give the Regge  Lpoungarf @) is therefore zero, independent Df

trajectory The functionL; 'Y w) was derived fromz,(w), which
was expressed in Eq9.6) as the product of two determi-
(E-mp)? 1 1 (E-mp? 1 nants, one due to string modes perpendicular to the plane of
I= Tme 6 27 ae 3 (129 rotation and one due to string modes in the plane of rotation.

Just as in the case bfyongarf @), adding more dimensions

The energies of the excited states of the light mesons ar@dds additional string modes perpendicular to the plane of
obtained by adding the excitation energias to Eq.(12.4): rotation, so the generalization of E§.6) to D dimensions is

Z/(w)=Det (P~3F —v2|Det ¥ — V?+20w? sewX]

En(@)= 22— Lot (12.8
W)=—— —=wTtho. .
" o 12 o ] —v2+20w2seCox
—Det (@ 2)’2[—V2]Det 1/2 2
Since there are many combinations of string normal modes -V

which give the sama (e.g., a doubly excited=1 mode and (13.9)

a singly exciteck=2 mode each giva=2), the spectrumis The first of the determinants produces a termd (
highly degenerate. There are twe-1 trajectories, each cor- —2)m/24R,, in L9 ), equal to the Lscher term inD

. . s fluc
responding to a single excitation of one of the 1 normal  gimensjons, with the lengtR of the string replaced with its
modes. Higher values of have higher degeneracies.

! . proper lengtiR, [see Eq(3.19]. We have already evaluated
From Eq.(12.9 for the nth excited hybrid energy level he second determinant, which, after renormalization, gave
we derive the “daughter” Regge trajectory: the second and third terms in E@.5). For massless quarks,
R,=m/w, and the contribution of the second determinant is

E2 1 o /2, so that the generalization of EG.2.6) to D dimensions
ﬁ+1—2—n+0 E) (12.9 is
. ) ) 7o D-2 1)
In the heavy-light case, the normal modes with frequencies En(w)= o oa @~ E+nw. (13.2

of (2k+1)w can combine to form states with excitation en-
ergiesnw for any n, though the degeneracies are different.this can be rewritten to g&?2 as a function of:
The “daughter” Regge trajectories of E¢L2.7) are then

E2=2m0]l - > 2 4ntol - 13
(E_ml)z 1 =470 7 n I— . (13.3
= —§—n+O 5 (12.10
i (E-my In 26 dimensions, the equation for the energy is
Equations(12.9 and(12.10 give the leading semiclassi- ) 1
cal correction to the classical Regge formuld?.2 and E*=2mo|l-1+n+0 T/ (13.49

(12.3. To compute th@(o/E?) corrections to this result, it
would be necessary to compute the contribution of two loopThe spectrum(13.4 coincides with the spectrum of open
vacuum diagrams in the two dimensional field theory to findstrings in classical bosonic string theory. However, in our
the energy of the lowest lying trajectory, and to compute onepproach Eq(13.4 is valid only in the leading semiclassical
loop corrections to the propagators to find the energies of thepproximation, so it cannot be used fer 0, where it would
excited states. yield the scalar tachyon of the open bosonic string.
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FIG. 2. Regge trajectorie§l2.9 with n=0,1,2, and meson
masses in the-a, sector.

XIV. COMPARISON WITH MESON MASSES

In Fig. 2, we plot the leading trajectory and first two
daughterdEq. (12.6) for n=0,1,2] using the string tension
o=(0.436Y GeV 2, corresponding to a valuea’
«'=0.89 GeV ? for the slope of the trajectory. The plot-
ted points are meson masses on pha, trajectory, and on
possible daughters of this trajectory. We have added one

the orbital angular momentum to account for the spin of the

quarks g=I1+s=1+1). The plotted points lie to the right of

the leading trajectory, so the predicted masses are too lo
This may be due to the fact that we are using scalar instealf
of fermionic quarks. In any case, the semiclassical correctioff X
is small, and the leading trajectory lies close to the classicdl"

one.

We therefore compare the differences in the square

masses between the lowest lying meson for éauid higher

energy states with the predictions of the semiclassical for

mula (12.6):

2 2
Mexcited” Miowest

- =n, n=12,... .

(14.7
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states givesAm?/2ro=0.98, compared to the predicted
value of unity. For thep mesons, with =0, the semiclassical
theory is not applicable, and the excited states in Table | are
not readily identified with the predictions of E(l4.1).

XV. SUMMARY AND CONCLUSIONS

(1) Beginning with an effective string theory of vortices
which describes long distance QCD, we have calculated, in
the semiclassical approximation, the effect of string fluctua-
tions on Regge trajectories, both for mesons containing light
(zero masp quarks, and for mesons containing one heavy
and one light quark. The semiclassical correction to the lead-
ing Regge trajectory for light quarks adds a constabt (
—2)/24 to the classical Regge formula. The small size of this
semiclassical correction fdd =4 could explain why Regge
trajectories are linear at values lobf order 1.

(2) These results depended on two extensions of our pre-
vious work:

(a) The renormalization of the geodesic curvature in the
semiclassical expansion about a rotating string solution,
needed to take the zero quark mass limit.

(b) The decoupling of the boundary and interior degrees
of freedom of the string to obtain the back reaction of the
tgterior degrees of freedom on the boundary.

(3) The spectrum of the energies of the excited states for-

mally coincides with the spectrum of the open string of

\posonic string theory in its critical dimensidh=26. Here,

ye obtained this spectrum for ay from the semiclassical
xpansion of an effective string theory. The functional deter-
inant A, determining the measure for the path integral
33.2) made the theory conformally invariant in the limit of
gero mass quarks. Perhaps this quantization of effective
string theory might prove useful towards efforts in quantiz-
ing fundamental string theories in non-critical dimensions.
(4) We treated the light quarks as massless scalar par-
ticles. This is appropriate at best for determining the energies
of excited states of the string, where the dependence on the
boundary of the string is small. The effect of chiral symmetry
breaking, generating a constituent quark mass, must play a

This energy difference is entirely due to the excited states gfominant role in determining the masses of mesons which

the string, and therefore may not be so sensitive to the kin&
of quarks used in the model. The values of the mass diffe
ence(14.1) are shown in Table | for the excited states of the

p (I1=0) anda, (I=1). Forn=1, the semiclassical string

re ground states of quark-antiquark systems. However, this

rconstituent mass should approximately cancel in the mass

differences between mesons on the leading and first daughter
trajectories. The effective string theory should then describe

theory predicts 2 degenerate states. This double degeneralf}ft €xcitation energies of the mesons.

will be broken by higher order corrections, and we expect the
predictedn=1 mass to lie halfway between the physical

masses of the twa=1 particles. This works very well for
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TABLE I|. Squared mass differences for the excited states opthrajectory.

I Lowest state Excited state Miowest Mexcited Am? Am?2mo
1 p p(1450) 0.769 GeV  1.465GeV  1.555 G&V 1.30
1 P p(1700) 0.769 GeV  1.700 GeV  2.299 G&V 1.92
1 o p(2150) 0.760 GeV  2.149 GeV  4.027 GeV 3.37
2 a,(1320) a,(1660) 1.318 GeV  1.660 GeV  1.019 GeV 0.85
2 a,(1320) a,(1750) 1.318 GeV 1752 GeV  1.332 GBV 1.12
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APPENDIX A: QUANTIZING THE ANGULAR ) 1 . .
MOMENTUM e-””szp‘”'f’d'%z—b J DIL(E)DF?(&) DXy (1) DXo(t) App

In this appendix, we quantize the angular momentum of
the string semiclassically, using the semiclassical methods of > s j 26 [T
Dashen, Hasslacher, and Ney&d] (DHN) for obtaining the ex lo | d°6V-g
energies of periodic orbits. DHN find the energies of these

i 2 T2 N
states by looking at the trace of the propagator —iz miJ dt /1—xi2(t)>, (A2)
i=1 -T2

G(E)=itrf dTeEMT (A1)
0 where the variable$' and ;(i are required to satisfy the

whereH is the Hamiltonian. The operator on the right handPoundary conditions
side is defined in terms of a partition function with periodic . . . .
boundary conditions. In our case, it is f'lro=f'| _1i20 Xilt2=Xi| _1/2- (A3)

1. Euler angles

The first step in quantizing the angular momentum is to introduce collective coordinates for the rotational degrees of
freedom of the string. We parametrize the rigid body rotations of a straight string using the Eulera@nglesndy, defined
by the rotation matrixvi:

COSa COSB coSy—Ssina siny COSa cosSBsiny+sinacosy  cosasinB

M=| — sina cosB cosy—cosa Siny —sina cosB siny+cosa cosy —sinasinf (Ad)
—sinB cosy —sinBsiny cosp
|
The anglesy, 8, andy are functions of the tim? The rate of J)'>20= 0, (A7)
change of the matri¥ acting on a fixed vectan defines the
angular veIocityJ): wherex, is the classical position of the string.

The two physical angular degrees of freedom are the Eu-
ler anglesa(t) and B(t) determining the orientation of the

d “ N R
MM =Mn=wXx(Mn). (AS) vectorX,, chosen to be thej axis in the body fixed frame:

Sincen is an arbitrary vector, we find Xo=COSa Sin B, —sina sinBe,+cospe;.  (A8)

1 The conditionx,- =0, that there be no rotations about the

(f,[%lg,a]z_iéeiik(MMfl)ik string axis, is

— — a8y+ B(COSad, + Sinady) a cospt y=0. (A9)

o N LA This means thaty is superfluous. Substituting foy using
y(cosBe;— sinB sinae, Eq. (A9) gives

+sinB cosae,). (A6) . . o - .

o[ B,a]=— asinB(sinBe;+sina cospe,— cosa cospe;)
In the limit of small fluctuations about a straight rotating

string, the string only has two rotational degrees of freedom.

Classically, the angular velocity about the axis of the string 14 jnroduce the Euler angles into the functional integral

must be Zero. Any contribution to.this component of the(A2), we must definew and 8 as functionals of the string
angular velocity must be of quadratic order in small fluctua-

tions about the classical solution, since it takes one fluctuaROSItionx”. Let~the function2[x*](t) be the angular veloc-
tion to give the string a moment of inertia about its own axis, ity of the stringx* at timet. The form of this function is not
and another to give it rotation about that axis. Therefore, t;mmeeded for our calculation. We fix[ «,8] at all times by
quadratic order, inserting a factor of 1 into the partition function:

+ B(cosae,+sinaey). (A10)
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5 s~ oA dwl doX
_ @ o — Grxm ijkgi 9@ 99”
1 fpﬂpaa [o—Q[X ]]Det{e V7 98

(A11)

- orbit for a.=n/2

e

conjugate points

/

Because the argument of ti&function only has two non-
zero component§A1l) only contains twoé functions. In-

serting the definitiofA10) of o in the determinant gives

o) > i d? z ~ orbit for o =0
1= | D(cosB)Da s w—Q[x*]]Det — —|.
dt FIG. 3. Orbits of the end of the string for different valuescaof
(A12)
. . .. . iSrotatd @8] 1 ij <. TI%
Inserting the factoA12) into the partition function al- e ti= - dR? | Df;Df;DX;DXoAep
lows us to write the center of mass partition function in terms b
of rotational degrees of freedom and S: X §A(RIX)—é))
o1 . - Ci bR :
Zoetode o j D(cosB) DaDf 1 Df DX, DXpApp ><5(2)[(»'—R”QJ[X"]]GXP(I f dtLx“]/.
2 (A17)
Nr = A
x ot )[w—Q[x“]]De\{ - @ To enable us to extract the sum over classical solutions,

we will explicitly divide o and g into parts which change the
classical solution and parts which perturb the fields away
: (A13)  from the classical solution. We first divide the fieldt) into
fluctuations which change the classical solution and fluctua-
tions which move the field away from its classical value.
Classically,«(t) can be any constaniy. The choice of this
constant determines which of the planes passing thrgigh

=0 will contain the string rotation. We note that, sin@@
= a’sir’B+ 3%, « always appears in the action in terms of

» i , ) the form a sin B, which is classically zero. We define a new
We evaluate the partition functio13) semiclassically. \ariaple

It will then contain a sum over all classical solutions of pe-
riod T. We now explicitly extract this sum from the func- a=asing. (A18)
tional integral. The classical solutions(iA13) correspond to

motion where the axig(t) of the string rotates with uni- In terms of the functiora(t), «(t) is
form angular velocity. We can parametrize these solutions by
the Euler angles

Xexp{if dtL[x*]

«a is the angle between theaxis and the normal to the plane
of rotation. 3 is the(angulaj position of the end of the string
in the plane of rotation.

2. Extracting the sum over classical solutions

t a(t)
a(t)=ao+J dt' ————. (A19)
a=const, B= wt. (Al14) o sing(t")
Becausea only depends om, its classical value is indepen-
dent of the choice of the constang,.

The factor of sir3 in the definition ofa produces a com-

The constant satisfies the equation

_ 2mn plication. Comparing the inverse propagatorsxainda, we
0= — (A15)
T see that
for some integen. We can always make a global rotation to S _ Esinﬁ(t) 9*s sin(t) i
ensure that the classical solution ferand 8 has the form da(t)da(t’) o dt da(t)oa(t’) dt’
(A14), so we write (A20)

When B is a multiple of 7, the inverse propagator af
giSrotatd .51 vanishes, but the same is not true of the inverse propagator
of a. At these points, the end of the string is at either the
(A16)  point3=0 or its antipodgd= 7, independent of the value of
a (see Fig. 3 These points are called conjugate points. At
where these points classical trajectories with different values ef

o d?
zpeiodic= | p(cosB)DaDef — —
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partition function picks up a phase af/2 at each of these Detper.od,({ ? BT

points when we do ther integral, analogous to the phase ! !
shift at a WKB turning poinf26]. Thea propagator does not (sj—Sj-1)?

have this singularity, so the partition function will not receive —e = t-— IAS,}
a phase shift from tha integral. In changing variables from !
a to a, we must add this phase shift to the partition function.As a result of the additional term in the action, we must
The integration measure far is translate each of the; to be able to do the integral. This

translation is

meet. As a result of the singularity in the propagatoxpthe 51 (s,—51)2
1= fd)\JdSl -dsjex

(A27)
t,

T2 .
Da=dayDaDet Y7 — §?]Det™ [ sin B]exp( i12 J dtﬁ) .
—Tr2 A
Si—Si+1=t. (A28)
(A21) 2

The argument of the exponential is equal? multiplied  The effect of this translation on each term is

by the number of timeg passes through a multiple of,

which is the phase shift. The integral oveg is present (si—si_1)? (si—si_1)?% .

because is independent of the constant partaf «, varies Tt -t —IMSi—Si-1)
between 0 and 2. In terms of these new variables, the

artition function is A2
P +Z(ti_ti—i): (A29)
2
Zpemd'c:f dayDBDaDet"? — exp( ISrotatd @, 8] while the effect on thews; term is
T/2 )\2
+i/2f dtB)- (A22) INSj—INS = . (A30)

We next extract the sum over the classical frequeneies The total effect of this transformation is that

=27n/T from the integral ove. Let b(t) = B(t) — w, and s ) Si (Sp—57)2
=B(t=0). Thenp(t) is given by Detgeriodic[—atkf d?\f ds;---dsiexp — n ot
t 2 2
B(t)=Bo+ wt+f dt’b(t"). (A23) (Sj—sj-1)° A
0 —_— e — _tj
t—t_, 4
As a result of the boundary conditions @y b(t) is subject 2
to the restriction =Det ¥4 — 3t2]f d)\exp[ - ZT]
T2
f dtb=B(T/2)—B(—T/2)—wT=0. (A24) =
T2 =Det ¥4 - 92]2 \[? (A31)

The functionb(t) is also independent ¢8,.
The change of variables frog to b produces a change in  This gives the factor we have included in E425). A more
the functional integration measure: general version of this derivation, valid for all Gaussian
functional integrals, is done ifiL0]. Making the change of
B a2 k variables(A23) and implementing the restrictiq/h24) gives
DB= _2 T DbdBoDet 1 ﬁt]z\[T' (A25)  the partition function the form

w=2mn/

i i - - a

The factor of 2/_77/T appears in E_q_(A25) becaus_e _the inte ZPeriodic_ 5 \[ f daod B,DaDbs
gral has periodic boundary conditions. The definition of the To= an/
determinant of— 9?2 is [27] .

2 2 X f dtb(t) | e'Srtad @A +iTwl2  (A3D)

1 o S1  (s2—sy) ~T/2
Det 2[—(9t]— dSl"'deEX —t——?—-"
! 2 Equation(A32) givesZP®°dcas a sum over semiclassical
(sj—sj,l)z integrals about classical solutions:
- (A26)
tj—tj_q
periodic_ \ﬁ iTw/2

However, in the case of periodic boundary conditioss, z 2 Tw:;mn e 2(w), (A33)
=5,=0. Because of this, we need a Lagrange multiplier to
identify the values of at these two points: whereZ(w) is
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1 - - - d
Z(w)E _J daodBODand RJDlef2DX1DX2 iy T Leﬁ((z))+ E+ 2
Zy daT 2
XAFpﬁ(Z)(R”)A(f)—é's) w da) dLeff 1
- =Leg(w)+E+ = 5 +TOI Ao —_— 4+ = 5=
X & f dtb(t))5<2>[5‘—Riiﬁi[7w]] (A38)
-T2
The definitionw=27n/T gives
xexr{if dtL[x"]). (A34)
dw o A39
=T (A39)
Doing the integrations oves, b, ag, and B, in Eq. (A34)
gives so the energy is
dl—eﬁ
1 I E=w —Le(w). (A40)
Z(a))= Z_ Dlef2DX1DX2AFp dow
b

Equation(A40) implicitly definesw as a function ok, sow
is independent of, while T is proportional tan. The integral
also produces a factor of

x(s(w—|<ﬁ[§w]>|)exp(if dtL[x“]].

(A35) /
1 2 w —1/2
. . Vr 5 — T(Leﬂ<w>+E+—
The constraints that have been placed@mand B restrict 2 dT2 2
Z(w) to those string configurations with angular veloaity _1p
The expressiolA35) is equivalent to the partition function — 2T ,dLesr Al
Z(w) defined in Eq(5.7), up to thed function: TN @ 02 ' (A41)
o ; —1/2 ; .
Sw—[(B[X))). (A36) whlch_cancels the factor of in Eq. (A37). The propa
gator is
. . . . —-1/2
This 5funct|0£1 implements the boundary conditit17) as a G(E)=2i W\/—E dLeff e TlLei(@) +E+0/2]
constraint onx*. The constraint is due to the fact that, in
obtaining the sum over classical solutions, we have removed (A42)
the zero frequency component of one degree of freedom
from the partition function. To do the sum oven, we make then dependence explicit

by writing T=27n/w everywhere:

3. Summing over classical solutions L 1/2
! ff
We now insert the sum over classical soluti¢A83) into G(E)=16i 773\/5( w? g ez)
Eqg. (Al) and use Eq(5.9. This expresses the propagator @
G(E) in terms ofLo(w): * Le(w) E 1
E 2min ef —+ =
. n= w w 2]
G(E)_If dT2\/—= @i T[E+ w/2+ Leg(w)]
T =2t (A43)
(A37)

Doing the sum, and replacirig using Eq.(A40), gives

We evaluate of thel integral by the method of stationary o La(w) E 1

phase. The poles in the propagate(E) appear at those Z p{z in| =22, = —”

values ofE for which the sum oven diverges. Therefore, we = @ © 2

must approximate thé& integral in a way which is valid for 1

largen. As n becomes large, the classical solution will con- = -1. (A44)

dLew 1
energy. ThereforeT is large in the largen limit, and the do o 2)]
phase in the exponential fluctuates wildly. We do Thiate-
gral by expanding about the stationary point of this phaseTherefore, the propagator has poles whenehek/dw is an
This point definesT as a function ofE: odd half integer:

sist of many orbits at some frequeneydetermined by the 1—exp{ 2i
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2

dLeff_ 2 J
vt —
x>

do —I+§.

(A45) a’(x,v)=0 (B8)

This is the WKB quantization condition for angular momen-
tum. It tells us the angular velocities of the angular momen-and the boundary conditions
tum states. EquatiofA40) then gives the energies of those

states. The poles in the propaga®{E) come from the di- (—1)
vergence of the sum over orbits for _Iarge number§ qf orbits qlﬂ( arcsin; ,,,) = 5ij(_1)i§i_ (B9)
(largeT), soLes(w) is defined by taking the larg€ limit: w
—i
Let(@)= lim —InZ(w). (A46)  Therefore, they are
T—ew
.V
APPENDIX B: EVALUATION OF G'i(») _sin VX—I—(—l)';arCSinv;)
a’(x,v)=R; (B10)

We will now evaluate Eq(8.17), sin(vR,) '

Gl(n=(—1"S[(-1)RIZ[(—1)R ]y 2y, ?
WM=CDTEIEDRIEC-DIR]y whereuv; is the “other” velocity, i.e.v5=v, andvi=v,, and

92 R, is given by Eq.(3.19.
x G(rr',v)| . (B1) The functions f(r,v) are therefore
aror’ =R :
r:(—l)iﬁj
14 .
The Green’s functiorG(r,r’,v) can be written in terms of R sin ;[arcsir(wr)Jr(—1)'arcsinv;]>
functionsl;(r,v), |i0(r,,,): - i i
r sin(vRy) ®1D
[1(r<)1o(r
Grr == 1)( fiZ(f)l , (B2)
r 1 ii .
(N Wi l2] andG})(v) is
and their Wronskian,
alq(r aly(r ij R o2
W[|1’|2]:(£|2(r)_ 2 )Il(r)). (B3) GIHJ(V):5ij<—:+VRiCOt(VRp)
ar or Yi
The functiond(r,v) satisfy the differential equation —(1- 5i,-)v§i§jcso{ vRp). (B12)
J J
(——y—zz(r)——E(r)(yz—c))li(r,y)zo, (B4) Next, consider the¢ sector. We define the functions
ar or ¢ .
qi (X!V)!'
with the boundary conditions
- 1
ll((_l)]RJ 1V):5ij . (B5) |i¢(r,V):qu¢(X,V). (Bls)

We will evaluateG;} in both the sector, where&C= w? and
3(r)=yr?, and the¢ sector, where€=0 and3(r)=»%2  Theq/ satisfy the differential equation

We begin with thef sector. The first thing we do is
change variables. We use the “proper length” coordingte
previously defined Eq9.1) to be

&2
2+ P 2w25e8(wx)) q’(x,»)=0,  (B14)
X

1
X= Zarcsir(wr). (B6)
with boundary conditions
We also change the normalization of the functimﬂ(s',v).

We define the functiong’(x, v): (—1)] o
a? arcsiv;,v|=8;(—1)'Ry;.  (B15
1
A’ (x,v)= ZI/(r,v). (B7)
The qid’ are related to the eigenfunctioft331), and are given
The qi” satisfy the differential equation by
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a0 1) =Riyi| [ 12— (— 1ywvn¢amwmy—¢ygn1m+(—1ﬂ£amgm;—ywn—lymmwm+v5ﬂ

v - _ _
XCO{ VX+(—1)'ZarCSinv}) [(Vz—wzvlylvzyz)sin(va)—Vw(vly1+v2y2)COS(VRp)]_1. (B16)

This gives the value 06} (v)

2 i P DU
. —— v v Sii[ vuiy;SI(VYR,) — wv{y102Y,C0L YR, |+ (1— 6 ) wv; y1v
Gg(V):_5ij'}’iRi_2+_3(V2_w2) |][ 2|7’| 2( _p) ¢ 1.71 27Y2C0g pH ( S |]) iY1 272. (B17)
O (V"= 0 v1Y10272)SINVRY) = vo(v1y1+v2Y2)COSVR))
APPENDIX C: EVALUATION OF L poundary
We now evaluate the contributidny,,nqaryOf the boundary degrees of freedom to the effective Lagrangian:
; 2 2 2 2 ij—1 j
—i 1 v+ (2yT— Do 1 Iy 1 pA
L =lim—1 — = Trin| ——————|—sTrin| ——==— |- sTrin| —==—1 (. (C)
boundary T T [ I:El V2 2 5ijmi§i27i 2 2 iJ_m_§2_3 2

Converting the traces to integrals, inserting the explicit fqd@.4) of l“ig’l and (10.5 of Fg,*l, and Wick rotatingyv—
—iv givesLpoungarythe form

L 1f av trin| & vz_(zaz_l)wz +trin| & vt + 7|7,G J(—iv) | +trin| &; ’ +(2 +h)o®
- | — - . _\/ v -
boundary 2) o ij B ij 1/2 V2 vV ij V2—(2yi—l)w
3
LY i
s(—1V)| 1 (C2

S ==
Vo Nviyivjy;

The traces in Eq(C2) are over the indicek,j.

The integral over the first trace in EQC2) is zero. The integrals over the second and third terms are logarithmically
divergent in the cutoff on the wavelengths of string modes. Three of these modes are translation modes, so their contribution
to Lboundaryshould not be included in our calculation of meson masses. Normally these modes would contribute nothing to
Lboundary since they appear at=0. However, two of these modes are in ihesector, and as a result of the frequency shifting
in that sector, they appear as polezﬂg atv==* . These modes contribute tQ,qay@S harmonic oscillators with frequency
o, so the contribution of the translation modes.{Q,ngaryiS

. [0)
translatiol
L =0———

w
boundary — 2 E =T . (03)

Subtracting this contribution from g ngarygives

1, dv o+ w? 'Y|7’1 i v +(2 +1)w? o3 1 i
L bound =——f— trin 5—-—+— —Gy(—iv)|+trin| —+——G (—iv)
oundary 2) 24 ij 2 12 viv; ij V2—(2‘yi —1)w 2 ,vi;vj?j ¢
+ w. (Co

We see that there is a logarithmic divergence jig,nqary/0y Noting that, without a cutoffG"(—lv) andG!l (—Iv) are

, R .
GM—hﬂ=&«—u$+v§%mHV&Q)—ﬂ—&ﬂv&RpmﬁvRQ,

Yi

5|][Vv|7|S|nHVRp)+wvlle272003h VRp)] (1- §Ij)wUI71v2y2

Gg(—iv)=5ij;§i%__(v to €9

(V+w Ulylvzyz)sml’( vR,)+ Vw(vlyl+ vgyz)cosf( vR;)

The functions(C5) are proportional ta in the largev limit. We pull this divergence outside of the logarithm by adding and
subtracting the trace d&" from the integrals. This breaks E@C4) into four parts,
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log term log term cutoff cutoff
I-boundary I— 9 L 9 I— I— (CG)

1( dv
logterm_ _ —
Ly = 2f—zw{trln

2 w3 §|2
— o2
_21 ?Ui% vR; COtI’(va)—R—p ,

where

) e
5| 1+ 'y'cotf(vR )—(1—5ij);\/vlylvz'yzcscf(VRp)

1(dv 1P+ w?
Llogterm:__f_ trin 25..——(V2+w2)
¢ 2) 27 V2 (292 1) w?

v v
5 ( sinh(vR,) + RCIRZTITN. VR)

3
VuiYi

w —
_(1_5ij);\/vi710272 2
-3 o 1
=112y Vi

(V24 0201710, 72)sink( vR,)+ v(v1y1+v57y,)cOSK vRp) [

_ﬁ v
i
w2

UV17Y1U272 v
— _1 e 5 — ——3(V2+ wz)
o(V1y1tU272) T 0 R0y, @

Vvi;Sinf’( vRy) + wu 1;10 Z;ZCOSP( vR;)

w, (C7)

(V2 + w0 1y10,57,)SINN vRp) +vo(viy1+v,72)COSHVR))

and where

w
|<|

L cutoff _ __ dv
0

N =
iy
3

[Gh(—iv)~G(0)],

<

2(1)

3

d

| S

We have grouped the term with the ¢ sector, since it was introduced to cancel the contribution of the translation modes in
the ¢ sector. The presence 6f,(0) andG;(0) in the cutoff terms removes a divergencerat0. The logarithmic divergence
is now entirely inL$"*" and Lfﬁ““’“. Sincel 109 te™ andL'g‘Zg M are cutoff independent, we have inserted the explicit functions
(C5) into their definitions(C8).

Naive insertion of the functions EqC5) into and LCUtOff in (C4) would make these integrals divergent. We must

therefore include the dependence of the Greens fundﬂ()nr ,v) on the cutoffA in the definitions ofG" and G” We
determine the cutoff dependence®(r,r’,v) by writing it as a sum of functions,(r),

cutoff _ __
L ¢ -

[Gh(—iv)—Gl(0)]. (C8)

N

14
aw

N| =
N

1
Ve Ui

L cutoff

Tmax Sn(r)sn(r”)

G(r,r’,v)=21X T , (C9Y
n= n—_ 2 dr/rz r” Sg "
3 (r")sa(r”)

which satisfy the eigenfunction equation

Sp(r)=0, (C10

TSy 2o s C
2Ny "o +2(D0+C)
with eigenvaluey,, and boundary conditions

Sn(—R1) =5,(Rp) =0. (c11)
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The upper limit of the sum in EqC9) is defined by the equation
X SAP<Xn i1 (C12
Inserting Eq.(C9) in the definition(8.17) for the G gives
1 s({( D'RIs{(-D'Rj].

GY»=(-D IS~ DRI DRI% 23 —— (13
Xn drrlz(rll)s (rrr)

The cutoff dependent part &y, ngaryhas the form

i 1 2 w8 ;2
L oo =_§j -2 R CU =Gl (C19
Inserting Eq.(C13) into Eq.(C14) gives
1(dv & Mmax {5/ (—1)'R;]}2 1 1
L= 3 2 o BCDRIY T
= f dr/rz(ru)s (I'") Xn V n
2 n 2
2 o AS (DRI
=5 2 v DRI xn P (C19
- J dr//z(r//)sn(r//)
For the 6 sector, the eigenfunctiorss(r) are
1 [arcsinwr
Sn(N)= ko —— (C16)
wherek,, is defined by
[ n
kn(x)=5|n(R—(x+Xl) , (C1?
p
and the eigenvalueg, are
mn 2
Xn— R_ . (C18
p
Replacing thes,(r) with Eq. (C16) gives
2
1 — Ro! 1
L™ ==5 2w 2 —. (C19
Replacing the sum over with a contour integral with poles at= 7n/R, gives
2 1
| Gutoff— i .21 wf dz_ cot(R,2). (C20

The contour runs along the line Re 7/(2R,) and along a semicircle whefe|=A, the cutoff, and the real part afis
positive.
We divide Eq.(C20 into two integrals over the parts of the contour to get

2.2 arccosr/2R,A) .
Lgutoff:_ fVA IRy —tanr(pr)Jrf P d6cot( ARye"’) |. (C21

— 772/4R —arccosfr/2R,A)

2R,
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The cotangent in th@ integral is proportional to the sign df for large A, so the# integral vanishes. The integral ovgis
real, because the imaginary part of the integrand changes signywheny:

N2_ 2
Lcutoﬁ _ E Yiv; wf A= /4RP dy——— tanf‘(pr) (C22

We extract the cutoff dependence from the integral to get

2MR

wv;%Yi
Lcutoﬁ: _ !
0 Z 2

TYi

o u
P +f du —(tanhu—1) |. (C23
0

2
J’__
4

We have replaced , the cutoff for the coordinatg, by M/vy,, whereM is the cutoff for the physical coordinate as we did
in Eq. (9.14. We have also changed integration variablesitoy R, .

The logarithmic dependence of E€23) on M is removed by renormalization of the coefficienof the geodesic curvature
term defined in Eq(4.2). Since the geodesic curvature diverges in the small quark mass limit, our choice of renormalization
point determines the coefficient of the leading term in the effective Lagrangian in that limit. In the final result, the renormalized
geodesic curvature term will cancel the divergence of the semiclassical corrections in the small quark mass limit. We therefore
choose the renormalization point for which there is no small quark mass divergence in the semiclassical corrections. We must
evaluate both.'99"*™and L since both contribute to the small mass limit divergence.

The termLS%®™in LyoungaryiS

1(dv
logterm_ _ — | ~
Ly ZJ 277['”

We can simplify this integral by rewriting the integrand:

Llogterm_ j
+fmdy [
0 2 n

Integrating by parts in the second integral gives

w —_ —_ (,L)2 — P
1+ (0171Hv2y2) CONPRY) + — 01710272
14

|7|2

cothivR,) — } ] . (C29
Ry

wv(v1Y11+v272) ———[coth vR,) — 1]1

2+ v0(v1 71+ 0272) + 020171027,

_E |7|

w — w J— 1
1+;U171 1+;027’2 CIHVR)_?'J : (C29

»dvy wV(V1y1+ VoY wviyi [ | v+ ovy; —
ngg term_ _ [ "0l 1 > (V1Y1+V272) _ [coth VRp) 17|+ E i7i _|7| In(v+ wv;7,)
0 2m +v0(v1y1+V2Y2) + 0701 Y102Y2 ro2m WUy,
vinvy 1 ®
- —In(vRy) cotr(va)— Ry f dvIn(vRpy)| csch(vRy) — —— | ¢ - (C26
wvl% P 0 v Rp
Evaluating this expression and making the change of varidbtedk,, gives
=dv 0v(V1y1+ VY-
nggterm:_f —inl1 . (v1y1tv2Y2) _ _[COﬂ’(va) 1]
2m v +Vw(0171+0272)+w U17Y1U272
I AL fmdtl t| escf(t)— = c2
o N(Rpwv;yi) , dtintjese (t) el (C27)
The sum ofl§"°" and L 09" s
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wv(v1y1+FV2Y2)
g 1Y17T U272 — [cothvRy)—1]
2+ v0(v1y1+027,) + 020171027,

Lcutoff Llog term_ f—ln

0UY; 2M
+> 27':/' In(

m; * u * 1
+1+f du Z(tanhu—l)—J' dtint cscﬁ(t)——2 ,  (C28
o 0 2 m 0 t

where we have used the classical equation of ma{®23 to simplify the argument of the logarithm. The terms in the sum
are renormalizations of the geodesic curvature, so, after renormalization,

wv(v1Y1+ VY-
. (v1y11+v272) _ _[Cotf(VR) 1|,

V +10(0171+0272) + 0201710272

Lcutof‘f+ Llog term_ f _|n (C29

For two massless quarks the integf@29 is zero, and for one massless and one heavy quark it has the wdfue
+O(Uheav3)'

We next evaluate;“tOﬁ, using the formulgC15) as we did forL$"°". For the sector, the eigenfunctiors(r) are
1 arcsinwr
Sn(r):an ) (C30
wheref,, is defined by

f (%) = VxnCOL VxnX+ 8,) + wtan wX)sin( vy X+ 8,), (C31)

and the eigenvalueg, satisfy the equation

V17140275

tan(\xnRp) = Vino —— 5 ———. (C32

Xn= W U1Y10272

The solutiony,= w? to Eq.(C32) is not a valid eigenvalue, as it causes Eg31) to vanish everywhere. The phasésare

Xn VX
o= ~“arcsinv 1 Tarcta —
w OUERZ]

- r( X (33
WU 2Y2
The definition(C32) of y, makes the two definitions fof,, equivalent.
Replacing thes,(r) with Eqg. (C30) gives
|_cutoff E 2 1 (Vn_wz) C’)0171 va;Z o
=—x Yiviw
¢ I \/V_n (vo+ wzviz;?) vyt wzvi% v+ w%%}%
=S 0?1 i (C34
5 nT %) ——| 1— — — .
2 n \/V—n R & wU1Y1 wv2Y2
P 2% wzvi;i vht w2v5§
The function
d 22— 0201710 2Y5)SINRLZ) — 0Z(v 1 Y1+ v>7,)COI R, Z
F(z)= —In ( 1Y10272)SIN( p ) (v1y1t+voy2)c0g p ) (C35
dz 72— 2

has poles of the residue onezt =+ \/v,,. We rewrite the suniC34) as a contour integral
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1 1 R
L::butoff: _ _f dZ(Zz_ wZ)_ 1— — p — F(Z) (C36)
4qri z R+ U1y, wU2Y2

p
22+ wzvi;% 22+ wzv '575

The contour is the same as for EG20. The poles in the term in square brackets in &36) all lie on the imaginary axis,
which lies outside of the integration contour. Evaluatih@) gives

R

P — {[24+Ryw(v171+v,72)12SiNRy2) +[Z2R,
wv1Y1 wu2Y2

22+ 0% i;i 22+ w? %;%

1 1
cutoff _ __ 2_ 2\ —
Ly 47rif dz(z°—w )Z 1

Ry +

—0(v1y1+0272) — szpU 1710272]c0d sz)}[(zz_ ®2v11027,)SiN( Rp2)— o 2(v1y1+v27,)C0d Ry2)] 71

2z
it (C37
The term 2/(z?>— w?) does not contribute to the integral, since its poles are canceled by the faztor of in the integrand.
We divide the integral over into an integral over the line at Re=7/(2R,) and an integral over the semicircle [at
= A. The integral over the semicircle vanishes, and the integral over the line is

1 A2 721aR? 7 \? 1
Lcutoff:__f ™ P d —— +w2
o " am) e PV TR, I
2R,
— — -1
®v ®v
| r[ R.— 171 _ 272 q

P p T \2 o \2

; 2 i 2 272
y—l—) —w?iy; (y—l—) — 02y
( 2R, 2R,

2

. m - - - - .
X[ y_IZ_Rp Rp+w(017’1+0272)+wZRpUm’le)’z sinh(Rpy)
_ — oo
+[2+Rpw(viyitvays)] T coshRpy)
P
w \? - - _ -1
X1l y=igs| +0%1y10272|COSHRyY) + 0| y—i 5| (viy1+vay2)sinh(Ryy) . (C39
2R, 2R,
Extracting the divergent part gives
Eo 2
VY 2MR 1 (=~ T 1
Lo N 1 | 2220 +—f dyR [( —i—) o | ——
? EiZWRi 7y | 27)o ’ Ry Yt
2R,
wUl;l " wUz?z
(y—iw/ZRp)z—wzvi;i (y—iﬂ'/ZRp)Z—wzvgﬁ o \? — —
_ — Y=g Rpto(viyi1+vs72)
wU171 wU27Y2 p

P (y—iW/ZRp)Z—wzviﬁ - (y—iTr/ZRp)z—wzv%;g

) _
+ 0 Rpv1Y10272

o ers 2
sinrery>+<2+Rpw<v17l+vz?z>)(y—iZ—Rp)cosanw]H(y—iz—Rp)

+ 0 1;1v 2;2 cosh{Ryy) + w

. T - - . -1
y_lﬁ)(U171+027’2)5|”Wpr)] _2 — . (C39
p I
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where we have replacetl with M/ just as we did with_ ¢

We are interested in the value bf"°" in two limits, one wherey;, y,—, and one where ;<1, y,—. In the first limit,
the integral(C39) is dominated by the region wheyas large. Ify is of orderw, the term in the integrand which contains the

hyperbolic functions is of orde*yi’l, so we can make the approximation
. 1
sinh(Ryy)=coshR,y)= Eepr (C40

to simplify the integrand:

p
wv-; 2MR 1 © dy |2
Lcutoff:_ | _p +_RJ — ] + 2
¢ zl 2m TY; 27 o —il y 2R, 1)
2R,
\
\
1
+
- y—l5n T oviy
WU Y 2R — —
x| 2 —7 = —2 ooy p+O(y . (C4D
. WUy,
AR L >
P i T 2 22
(y_'Z_Rp) — 0y,
J

The terms in the integrand can be rearranged to extract the most important part of the integrand for large
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The second integral in EqC42) is zero. We can rewrite it as an integral fronw to «, since the real part of the integrand

is symmetric whery— —y. We can then convert it into an integral over a closed contour by adding a semicircle which passes
throughy= —i«. The integrand has no poles inside this contour, so the integral is zero. The first integral@4Bgcan be

done exactly, giving
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in the limit y; , yo— .

In the limit v,<1, y,—, Lj,““’ﬁ splits into two parts. One part, dominated Yy wv,y,+O(1), is evaluated the same
way as in the light-light case. The other part is dominated by synatid is handled differently. Using the resi@43) to
evaluate the first part and taking the Iinﬂ—mo in the second part gives
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Sincey—iw/2R, is always at least of order 1, the integrand in Bg44) is of order 1, and the term containing the integral

is of orderv . The difference between the first two terms in Egi44) and the terms in EqC43) is also of ordew ;. Therefore,
in the heavy-light limit,
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We next evaluatel';'gg M We can simplify the integral by separating it into two parts which are smalb$ow and one
part which does not contain hyperbolic functions. We break:tligtegral into three pieces:

L9 eM= — 1, — 1,13, (C46)
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The second and third integrals are dominated by the region whexamall. We can evaluatlg exactly, since the argument
of the logarithm factorizes. We find
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In both the light-light and heavy-light limits we take the Iinﬁ—m. In this limit, the three integralC47) are
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where we have changed integration variables,iandl 5 to s= v/ w.
In the light-light limit, we takey;—o and find
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in this limit. The combination_'('jjg term., Lj,”“’“ is then
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After renormalizing the geodesic curvature, we obtain
ngg term+ L(;‘/)utoff: 0, (C53)
in the limit of massless quarks.
In the heavy-light limit, we take;—0 in Eq.(C49 and find
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Thus, in this limit, after renormalizing the geodesic curvature,
log term cutoff 3 -1
(W +Ly =—§w+0(vllnvl,'yz ). (C5H
Combining Eq.(C29 with Eq. (C53 givesLP%"aYin the light-light limit,
L boundary— 0, (C56
and combining Eq(C29) with Eq. (C55 givesLP°"%in the heavy-light limit:
1
I-boundary: - Zw- (C57
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