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Semiclassical quantization of effective string theory and Regge trajectories
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We begin with an effective string theory for long distance QCD, and evaluate the semiclassical expansion of
this theory about a classical rotating string solution, taking into account the dynamics of the boundary of the
string. We show that, after renormalization, the zero point energy of the string fluctuations remains finite when
the masses of the quarks on the ends of the string approach zero. The theory is then conformally invariant in
any spacetime dimensionD. For D526 the energy spectrum of the rotating string formally coincides with that
of the open string in classical bosonic string theory. However, its physical origin is different. It is a semiclas-
sical spectrum of an effective string theory valid only for large values of the angular momentum. ForD54, the
first semiclassical correction adds the constant 1/12 to the classical Regge formula.
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I. INTRODUCTION

String models provide a simple picture of quark confin
ment, and have been used to understand the hadronic s
trum since well before QCD was established as the theor
strong interactions. A straight rotating string gives rise
linear Regge trajectories relating the angular momenta
mesons composed of light quarks to the squares of t
masses. A fixed straight string gives a linear potential
tween heavy quarks, and the zero point energy of the l
wavelength fluctuations of this string gives rise to a univer
correction to the linear potential@1#. Excited states of a fluc
tuating string with fixed ends give potentials of hybrid m
sons@2#. In this paper we calculate the effect of string flu
tuations on the Regge trajectories of mesons.

In a previous paper@3#, we derived an effective string
theory of vortices, beginning with a field theory containin
classical vortex solutions~dual superconducting vortices!
@4–11#. The field theory itself was an effective field theory
long distance QCD, describing phenomena at distan
greater than the radius of the flux tube whose center is
location of the vortex. The resulting effective string theo
was obtained as a development of earlier work by many
thors @1,12–22#. We then used this effective string theory
calculate the zero point energy of the string fluctuatio
around a straight, rotating string with quarks on its ends. T
classical equations of motion determined the distance
tween the quarks in terms of their angular velocityv, and the
fluctuations of the ends of the string were not taken i
account. The calculated zero point energy gave a correc
to the classical formula for the leading Regge trajectory.
static quarks separated by a fixed distanceR, the expression
for the zero point energy reduced to2p/12R, the result of
Lüscher for the contribution of string fluctuations to th
static quark-antiquark potential. However, for rotating qua
the zero point energy diverged logarithmically as the qu
massm approached zero, and we were not able to calcu
Regge trajectories for zero mass quarks.

In this paper, we show how to take the mass zero lim
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We also treat the quark motion quantum mechanically,
that the boundaries of the string become dynamical varia
which couple to the interior degrees of freedom of the stri
We evaluate the contribution of string fluctuations to Reg
trajectories in the limit of massless quarks, and in the lim
where one quark is massless and the other is heavy. Fin
we generalize our expressions for Regge trajectories tD
spacetime dimensions, and compare with the spectrum o
classical bosonic string.

II. OUTLINE

In Sec. III we review the results obtained in@3#, giving
the expression for the functional integral representation
the effective string theory. We give the expression for t
contribution of string fluctuations to the Wilson loop of th
effective string theory, calculated in the classical backgrou
of a world sheet with rotating quarks on its ends. This e
pression exhibits a logarithmic divergence as the quark m
goes to zero. In Sec. IV, we show how to remove the lo
rithmic divergence by renormalization, and take the ze
mass limit.

In Sec. V, we take into account the quantum fluctuatio
of the positions of the quark and antiquark at the ends of
string. We obtain an effective Lagrangian for the rotati
string from which the meson energy levels can be de
mined. This effective LagrangianLeff(v) is determined by a
functional integral of the effective string theory evaluated
the steepest descent approximation about a classical rot
string solution. The action determining this path integral
the Nambu-Goto action, added to the action of the po
particles on the ends of the string.

In Secs. VI–VIII, we expand the action to quadratic ord
in small fluctuations about the classical rotating string so
tion. These fluctuations separate into two classes, inte
degrees of freedom determining the positions of the inte
points of the string and boundary degrees of freedom de
mining the fluctuations of the positions of the quar
antiquark pair at the ends of the string. The fluctuations
the ends of the string excite the interior points, which in tu
react back on the ends, producing an effective qua
antiquark interaction. The remaining interior string fluctu
tions are decoupled from the fluctuations of the positions
©2002 The American Physical Society42-1
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the quarks. In Sec. IX, we calculate the zero point energy
these interior fluctuations, generalizing the results of@3# to
the case where the quark masses are not equal.

In Sec. X, we find the propagator for the boundary flu
tuations from the effective boundary action. We show that
zero mass quarks, the poles in the propagator are at inte
multiples of v. These frequencies are the same as the
quencies of the harmonic oscillators determining the inte
Lagrangian. That is, for massless quarks, we find that tak
the fluctuations of the boundary into account does not cha
the spectrum of the excited states of the rotating string.
also evaluate the position of the poles in the propagator w
one quark is heavy and the other is massless. We find tha
spectrum in this case is shifted when boundary effects
taken into account.

In Sec. XI, we evaluate the results of Secs. IX and X
certain physical limits. Our results are valid when the mas
of the quarks are either zero or very large and when
string length is large compared to its thickness. In Sec. X
we calculate the Regge trajectories of mesons contain
zero mass quarks. The ground state of the rotating st
gives the leading Regge trajectory, and the excited state
the rotating string give rise to daughter Regge trajecto
determining the spectrum of hybrid mesons. We also ca
late the Regge trajectories for mesons composed of
heavy quark and one light quark.

In Sec. XIII, we extend the calculations of this paper toD
spacetime dimensions, and compare with the spectrum
classical bosonic string theory.

III. PREVIOUS WORK

A. Effective string theory

In Ref. @3#, we began with a quantum field theory havin
classical vortex solutions. The dual Abelian Higgs mode
an example of such a field theory. The surfacex̃m(j1,j2) of
zeros of the complex dual Higgs field is the location of t
vortex sheet, and electric flux is confined to tubes of radiua,
wherea215M , the mass of the vector particle in the theo

The path integral, which defines the Wilson loopW@G# of
the field theory, goes over all field configurations contain
a vortex sheet bounded by the loopG formed by the world
lines of the trajectories of the quark and antiquark on
ends of the vortex. The actionSeff@ x̃m# of the effective string
theory is obtained by first integrating only over field config
rations containing a vortex on a particular surfacex̃m. The
remaining integral over the surfacesx̃m then givesW@G# the
form of an effective string theory of vortices.

The actionSeff@ x̃m# is invariant under reparametrization
ja→j8a(j), a51,2, of the world sheetx̃m(j) of the vortex.
We choose a particular parametrization ofx̃m in terms of the
amplitudesf a(j), a51,2, of the two transverse fluctuation
of the vortex:

x̃m5xm
„f 1~j!, f 2~j!,j1,j2

…. ~3.1!

This givesW@G# the form
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W@G#5E Df 1Df 2DFPeiSeff[ x̃
m] , ~3.2!

where

DFP5DetF emnab

A2g

]xm

] f 1

]xn

] f 2

] x̃a

]j1

] x̃b

]j2G ~3.3!

is the Faddeev-Popov determinant produced by gauge fi
the reparametrization symmetry, and whereA2g is the
square root of the determinant of the induced metricgab :

gab5
] x̃m

]ja

] x̃m

]jb
. ~3.4!

The path integral~3.2! goes over string fluctuations with
wavelengths greater than the radius 1/M of the flux tube. The
measure of the path integral~3.2! is universal and parametri
zation invariant. The factorDFP came from rewriting the
original field theory path integral as a ratio of path integr
of two string theories@3,12#.

The actionSeff@ x̃m# can be expanded in powers of th
extrinsic curvature tensorK ab

A of the world sheetx̃m:

Seff@ x̃m#52sE d2jA2g2bE d2jA2g~K ab
A !21•••.

~3.5!

The extrinsic curvature tensor is

K ab
A 5nm

A~j!
]2x̃m

]ja]jb
, ~3.6!

wherenm
A(j), A51,2, are vectors normal to the world she

at the pointx̃m(j). The string tensions and the rigidityb are
determined by the parameters of the underlying effect
field theory.

The extrinsic curvatureK ab
A is of the order of magnitude

of the angular velocityv, and the expansion parameter in th
semiclassical approximation isv2/s;1/J, where J is the
angular momentum of the rotating string. Therefore, in
region of largeJ where the effective theory is applicable, th
action~3.5! can be replaced by the Nambu-Goto actionSNG:

Seff@ x̃m#5SNG52sE d2jA2g. ~3.7!

B. Semiclassical calculation in the background
of a rotating string

Using Eqs.~3.2! and ~3.7!, we calculatedW@G# in the
leading semiclassical approximation in the background o
world sheet generated by a straight string attached to qu
rotating with uniform angular velocityv ~see Fig. 1!. The
quarks have massesm1 and m2, move with velocitiesv1
5vR1 andv25vR2, and are separated by a fixed distan
R5R11R2. The parametersj5(t,r ) are the timet and the
2-2
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coordinater, which runs along the string from2R1 to R2, so
that the transverse velocity of the straight string is zero w
r 50.

The amplitudesf (j) of the transverse fluctuations are th
spherical coordinatesu(r ,t) and f(r ,t) of a point on the
string. These angles are defined in an unconventional ma
so thatu(r ,t)5f(r ,t)50 is a straight string rotating in th
xy plane. The ends of the string are fixed to their class
trajectories:

u~2R1 ,t !5u~R2 ,t !5f~2R1 ,t !5f~R2 ,t !50. ~3.8!

The fluctuating world sheetx̃m then has the parametrizatio
x̃m(r ,t) given by

x̃m~r ,t !5xm
„u~r ,t !,f~r ,t !,r ,t…

5tê0
m1r $cosu~r ,t !cos@f~r ,t !1vt#ê1

m

1cosu~r ,t !sin@f~r ,t !1vt#ê2
m

2sinu~r ,t !ê3
m%, ~3.9!

whereêa
m , a50, . . . ,3, areunit vectors along the four fixed

spacetime axes,êa
m5da

m .

The classical rotating straight stringx̄m(r ,t) has the pa-
rametrization~3.9! with u5f50:

x̄m~r ,t !5xm
„u~r ,t !50,f~r ,t !50,r ,t…

5tê0
m1r @cosvtê1

m1sinvtê2
m#.

~3.10!

The corresponding metricḡab5gab@ x̄m# and the classical ac
tion SNG@ x̄m# are independent of the timet, so thatW@G# has
the form

W@G#5eiTLstring(R1 ,R2 ,v), ~3.11!

whereT is the elapsed time. For massless quarks, the end
the string move with the velocity of light, and singularitie
appear inLstring. To regulate these singularities, we retain t
quark mass as a cutoff and take the massless limit at the
when evaluating physical quantities for massless quarks

FIG. 1. The string coordinate system.
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The LagrangianLstring is the sum of a classical partLcl
string

and a fluctuating partLfluc
string,

Lstring5Lcl
string1Lfluc

string, ~3.12!

where

Lcl
string52

s

TE d2jA2ḡ52sE
2R1

R2
drA12r 2v2.

~3.13!

The effective Lagrangian for the quark-antiquark pair is o
tained by adding quark mass terms toLstring:

Leff~R1 ,R2 ,v!52(
i 51

2

miA12~vRi !
21Lstring~R1 ,R2 ,v!.

~3.14!

The effective Lagrangian is the sum of a classical part an
fluctuating part:

Leff~R1 ,R2 ,v!5Lcl~R1 ,R2 ,v!1Lfluc
string~R1 ,R2 ,v!,

~3.15!

where

Lcl52(
i 51

2

miA12~vRi !
22sE

2R1

R2
drA12r 2v2

52(
i 51

2 Fs Ri

2 S arcsin~v i !

v i
1g i

21D1mig i
21G ,

~3.16!

with

g i5
1

A12v i
2

, v i5vRi . ~3.17!

The expression forLfluc
string is obtained from Eq.~3.11! and

the semiclassical calculation ofW@G#. It contains terms
which are quadratically, linearly, and logarithmically dive
gent in the cutoffM. The quadratically divergent term is
renormalization of the string tension, the linearly diverge
term is a renormalization of the quark mass, and the lo
rithmically divergent term is proportional to the integral
the scalar curvature over the whole world sheet@1#. After
absorbing the quadratically and linearly divergent terms i
renormalizations, we obtained an expression forLfluc

string @3#.
The following is a generalization of that expression to t
case of unequal quark masses~see Sec. IX!:

Lfluc
string~R1 ,R2 ,v!5

p

12Rp
2(

i 51

2
vv ig i

p F lnS MRi

g i
221

D 11G
1

1

2
v1v f ~v1 ,v2!, ~3.18!

whereRp is the proper length of the string,
2-3
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Rp5
1

v
~arcsinv11arcsinv2!, ~3.19!

and

f ~v1 ,v2!52
1

pE0

`

ds lnFs21~v1g11v2g2!s coth~sRpv!1v1g1v2g2

~s1v1g1!~s1v2g2! G . ~3.20!
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The function f (v1 ,v2) vanishes whenv1 and v2 approach
unity, so that the last term in Eq.~3.18! is small for relativ-
istic quarks.

In the limit v→0, Rp→R11R25R, andLfluc
string reduces to

the result of Lu¨scher for the correction to the static quar
antiquark potential due to string fluctuations:

VLüscher52Lfluc
string~R1 ,R2 ,v50!52

p

12R
. ~3.21!

For vÞ0, Lfluc
string contains a logarithmically divergent par

We simplify this term using the classical equation of motio

]Lcl

]Ri
U

Ri5R̄i

50, ~3.22!

to expressR̄i in terms ofv. Equation~3.22! gives the rela-
tion

sR̄i5mi~ ḡ i
221!, ~3.23!

whereḡ i is equal tog i evaluated atRi5R̄i . The solution of
Eq. ~3.23! for R̄i as a function ofv is

R̄i5
1

v FAS miv

2 s D 2

112
miv

2 s G . ~3.24!

Using the relation~3.23! in Eq. ~3.18! gives

Lfluc
string5

p

12Rp
2(

i 51

2
vv i ḡ i

p F lnS Mmi

s D11G1
1

2
v

1v f ~v1 ,v2!. ~3.25!

The logarithmically divergent quantity in the square brack
is independent of the dynamical parameterv. This is impor-
tant, because the quantityvv i ḡ i diverges whenmi→0.

In the next section, we will show that the term containi
the logarithmic divergence can be absorbed by renorma
tion of a contribution to the string action called the geode
curvature. When this divergence is removed, the theory
be finite in themi→0 limit. This renormalization was no
done in@3#, and is important because it will produce a fini
limit of the theory for massless quarks.
09404
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IV. RENORMALIZATION OF THE GEODESIC
CURVATURE

We now define the geodesic curvature@23#, and renormal-
ize Eq.~3.25!. In the same way that the action for the strin
~3.5! can be expanded in powers of the extrinsic curvatu
the action for the boundary can be expanded in powers of
geodesic curvature. Using the notationxi

m for the positions of
the ends of the string,

xi
m~ t ![ x̃m

„~21! iRi~ t !,t…, ~4.1!

the boundary partSb of the action is

Sb52(
i 51

2

miE dtA2 ẋm i
2
2(

i 51

2

k iE dt
ẋi

m

A2 ẋi
m2

3@~21! i tmn#ur 5(21)iRi (t)

d

dt

ẋi
n

A2 ẋi
m2

, ~4.2!

wheretmn is the antisymmetric string world sheet orientatio
tensor:

tmn[
eab

A2g

] x̃m

]ja

] x̃n

]jb
. ~4.3!

The first term in Eq.~4.2! is the quark mass term. The secon
is the contribution of the geodesic curvature of the bound
~the extrinsic curvature of the boundary in the plane of
string world sheet!. The factor of (21)i multiplying tmn is
present so thatẋi

m(21)i tmn is always an outward pointing
radial vector.

For a straight string rotating with angular velocityv, the
geodesic curvature is equal tovv ig i

2 . Inserting this in Eq.
~4.2! and dropping the integral over time gives the bound
Lagrangian

Lboundary52(
i 51

2

g i
21@mi1k ivv ig i

21•••#, ~4.4!

where k i is the coefficient of the first order term in thi
expansion. The logarithmic divergence in Eq. 3.25 can th
be regarded as a renormalization ofk i . In the limit where
the quark is massless, we must take themi→0 limit before
we take the cutoffM to infinity, since we have an effective
theory. In themi→0 limit, the requirement that the actio
2-4
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~4.4! is finite then forces the renormalized value ofk i to be
zero ~note that this does not preventk i from being zero for
nonzeromi). The logarithmic divergence inM may therefore
be absorbed into a renormalization of the geodesic curva
in the case where eithermi50 or v i!1.

Removing the terms in Eq. 3.25 proportional tovv ig i

gives an expression forLfluc
string which is applicable in the

massless quark limit:

Lfluc
string5

p

12Rp
1

1

2
v1v f ~v1 ,v2!. ~4.5!

In the case of two light mesons withm15m250 (ḡ1 ,ḡ2
→`), Eqs. 3.19 and 3.20 giveRp5p/v and f (v1 ,v2)50,
so that Eq. 4.5 becomes

Lfluc
string~v!um15m2505

v

12
1

v

2
5

7

12
v. ~4.6!

In the case of one heavy and one light quark,m1→` (v1

→0) andm250 (ḡ2→`), Rp5p/2v and

f ~v150,v2→1!52
1

pE0

`

ln cothS p

2
sD52

v

4
, ~4.7!

so

Lfluc
string~v!um1→`

m250
5

v

6
1

v

2
2

v

4
5

5

12
v. ~4.8!

V. FLUCTUATIONS IN THE MOTION OF THE QUARKS
AT THE ENDS OF THE STRING

In the previous discussion, the quark-antiquark p
moved in a fixed classical trajectory in thexy plane@see Fig.
1 and Eqs.~3.8! and ~3.24!#. We now take into account th
fluctuations of the positionsx¢1(t) andx¢2(t) of the quarks at
the ends of the rotating string, so that these coordinates
no longer fixed by Eqs.~3.8! and ~3.24!. The radial coordi-
natesR1(t) and R2(t), along with the angular coordinate
u„2R1(t),t…, f„2R1(t),t…, u„R2(t),t… andf„R2(t),t…, pa-
rametrize the end pointsx¢1(t) and x¢2(t) of the string in a
reference frame rotating with angular velocityv in the xy
plane:

xW1~ t !52R1~ t !$cosu„2R1~ t !,t…cos@f„2R1~ t !,t…1vt#ê1

1cosu„2R1~ t !,t…sin@f„2R1~ t !,t…1vt#ê2

2sinu„2R1~ t !,t…ê3%,

xW2~ t !5R2~ t !$cosu„R2~ t !,t…cos@f„R2~ t !,t…1vt#ê1

1cosu„R2~ t !,t…sin@f„R2~ t !,t…1vt#ê2

2sinu„R2~ t !,t…ê3%. ~5.1!
09404
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The values of the coordinatesr andt at the ends of the string
are determined by the equationsr 52R1(t) andr 5R2(t), so
the string has the representation~3.9! with

2R1~ t !<r<R2~ t !. ~5.2!

We extend the functional integral~3.2! to include a path
integral overxW1(t) and x¢2(t), and add the action of the
quarks to the string action~3.7!. This extension replace
W@G# by the ‘‘partition function’’ Z,

Z5
1

Zb
E Df 1~j!Df 2~j!DxW1~ t !Dx¢2~ t !DFP

3expS 2 isE d2jA2g2 i(
i 51

2

miE
2T/2

T/2

dtA12xẆ i
2~ t !D ,

~5.3!

whereZb is the partition function of two free~scalar! quarks:

Zb5E Dx¢1~ t !Dx¢2~ t !

3expS 2 i(
i 51

2

miE
2T/2

T/2

dt@A12xẆ i
2~ t !# D . ~5.4!

Dividing by Zb removes the vacuum energy of the quarks
The partition functionZ sums over all string states. I

choosing the parametrization~3.9! for x̃m(j), we have re-
placedZ with a partition function which contains a sum ov
those string states with a particular value of the average
gular velocityv. We denote this partition function byZ(v).

Under the parametrization~3.9!, the integration measure
Df 1Df 2DFP for the interior of the string becomes

Df 1~j!Df 2~j!DFP5D@sinu~r ,t !#Df~r ,t !DetF r 2

A2g
G .

~5.5!

The integration measure for the end points is

Dx¢1Dx¢25D~sinu!ur 52R1(t)Dfur 52R1(t)

3DR1D~sinu!ur 5R2(t)

3Dfur 5R2(t)DR2Det@R1
2#Det@R2

2#. ~5.6!

The path integral~5.3!, with the parametrizations~3.9! and
~5.1!, is then

Z~v!5
1

Zb
E D~sinu!DfDR1DR2DetF r 2

A2g
G

3Det@R1
2#Det@R2

2#expS i E
2T/2

T/2

dtL@ x̃m# D ,

~5.7!

where the LagrangianL@ x̃m# is
2-5
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L@ x̃m#52sE
2R1(t)

R2(t)

drA2g2(
i 51

2

miA2 ẋi
m2, ~5.8!

whereẋi
m is the time derivative ofxi

m , defined in Eq. 4.1.
The functional integral~5.7! evaluated in the steepest d

scent approximation about the classical solutionu(r ,t)
5f(r ,t)50, Ri(t)5R̄i determines the effective Lagrangia
for the rotating quark-antiquark pair:

Z~v!5eiTLeff(v). ~5.9!

Equation 5.9 is the extension of Eq. 3.11 to include fluct
tions of the boundary. The effective Lagrangian is the sum
a classical part and a fluctuating part:

Leff~v!5Lcl~v!1Lfluc~v!, ~5.10!

whereLcl(v) is given by Eq. 3.16. The fluctuation partLfluc
contains contributions both from fluctuations of the inter
of the string and from fluctuations of the boundary of t
string.

In Appendix A, using the methods of Dashen, Hasslach
and Neveu@24#, we obtain from the full partition functionZ
a quantization condition on the angular momentum, a
show how to find the energies of the physical meson sta
We summarize these results here. The angular momentuJ
is

J5
dLeff~v!

dv
, ~5.11!

whereLeff(v) is determined by Eq. 5.9 in terms of the pa
ticular partition function~5.7!. The angular momentum i
fixed by the WKB quantization condition

J5 l 1
1

2
, l 50,1,2, . . . . ~5.12!

The energyE(v) is given by the corresponding Hami
tonian:

E~v!5v
dLeff~v!

dv
2Leff~v!. ~5.13!

The energy is equal to the classical energyEcl(v), plus a
correction due to fluctuations. To first order in the perturb
tion Lfluc(v), the correction to the energy is minus the co
rection to the Lagrangian@25#,

E~v̄ !5Ecl~v̄ !2Lfluc~v̄ !, ~5.14!

where

Ecl~v̄ !5v̄
dLcl~v̄ !

dv̄
2Lcl~v̄ !, ~5.15!

and wherev̄ is given as a function ofJ by the classical
relation
09404
-
f

r

r,

d
s.

-
-

J5
dLcl~v̄ !

dv̄
. ~5.16!

The zero point energy of the fluctuations is then

Efluc~J!52Lfluc„v̄~J!…. ~5.17!

Equations 5.16 and 5.17 give the leading semiclassical
rection to the energies of mesons on the leading Regge
jectory.

VI. QUADRATIC EXPANSION OF THE ACTION

To evaluate the effective LagrangianLeff(v) from Eq. 5.9,
we must first expand the LagrangianL@ x̃m# to quadratic or-
der in the small fluctuations about the classical solution.
call r 1(t) andr 2(t) the fluctuations ofR1(t) andR2(t) about
the classical valuesR̄1 and R̄2, Eq. 3.24:

R1~ t !5R̄11r 1~ t !, R2~ t !5R̄21r 2~ t !. ~6.1!

To quadratic order in small fluctuations, the angular coor
nates of the ends of the stringu„(21)iRi(t),t… and
f„(21)iRi(t),t… can be evaluated at the classical values
the Ri(t).

The degrees of freedom in the Lagrangian can be view
as a combination of string degrees of freedom@f(r ,t) and
u(r ,t) for 2R̄1,r ,R̄2# and quark degrees of freedom

u~2R̄1 ,t !, u~R̄2 ,t !, f~2R̄1 ,t !, f~R̄2 ,t !, r 1~ t !, r 2~ t !.

~6.2!

The quark degrees of freedom depend only upont ~and not
r ), and we refer to them as ‘‘boundary’’ degrees of freedo
The string degrees of freedom depend on botht and r, and
we refer to them as the ‘‘interior’’ degrees of freedom. Equ
tions 5.9 and~5.10! for Leff(v) reduce to Eqs. 3.11 an
~3.12! when the boundary degrees of freedom are set equ
zero, and become boundary conditions on the interior
grees of freedom. Inclusion of these boundary degrees
freedom gives an additional contribution toLeff(v).

We now expand the Lagrangian~5.8! and the correspond
ing action*2T/2

T/2 dtL@ x̃m# to quadratic order in the small fluc
tuationsu(r ,t), f(r ,t) andr i(t) about the classical solution
u5f50, r i50. We first evaluate the string tension term
Using the parametrization~3.9! of the world sheet, we obtain
the tangent vectors tox̃m:

ẋm5ê0
m2r u̇@sinu cos~f1vt !ê1

m1sinu sin~f1vt !ê2
m

1cosuê3
m#1r ~ḟ1v!cosu@2sin~f1vt !ê1

m

1cos~f1vt !ê2
m#,
2-6
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x8m[
]xm

]r

5@cosu cos~f1vt !ê1
m1cosu sin~f1vt !ê2

m

2sinuê3
m#2ru8@sinu cos~f1vt !ê1

m1sinu sin~f

1vt !ê2
m1cosuê3

m#1rf8cosu@2sin~f1vt !ê1
m

1cos~f1vt !ê2
m#. ~6.3!

The components of the metric are

gtt5 ẋmẋm5211r 2u̇21r 2~ḟ1v!2 cos2u,

grt5 ẋmxm8 5r 2u̇u81r 2~ḟ1v!f8cos2u,

grr 5x8mxm8 511r 2u821r 2f82 cos2u. ~6.4!

To quadratic order inu andf, the square root of the dete
minant of the metric is

A2g5g212r 2vgḟ2
1

2
r 2g~u̇22v2u22g22u82!

2
1

2
r 2g3~ḟ22g22f82!, ~6.5!

whereg215A12r 2v2.
To evaluate the string tension term to quadratic order,

must also expand the limits of integration2R1(t) andR2(t)
about2R̄1 and R̄2 respectively. Using Eqs.~6.1! and ~6.3!,
we obtain
09404
e

E
2R1(t)

R2(t)

drA2g5E
2R̄1

R̄2
drFg212r 2vgḟ2

1

2
r 2g~u̇22v2u2

2g22u82!2
1

2
r 2g3~ḟ22g22f82!G

1(
i F r i~g212r 2vgḟ!U r 5(21)i R̄i

1
1

2
~21! i r i

2 dg21

dr U
r 5(21)i R̄i

G . ~6.6!

The second term in Eq.~6.6!, which is linear inf, is a
perfect time derivative, and contributes a term in the act
given by

2E
2T/2

T/2

dtE
2R̄1

R̄2
drr 2gvḟ

52E
2R̄1

R̄2
drr 2gvFfS T

2
,r D2fS 2

T

2
,r D G50. ~6.7!

The quantity in square brackets is zero, since the ang
velocity v is defined to be the angle traversed by the str
in time T, divided by the timeT. The constraint~6.7! is the
condition that the fluctuationḟ not contribute to first order to
the angular momentum of the string, and hence contrib
only to vibrational modes.

Next we expand the quark mass term in Eq.~5.8!:
A2~ ẋ̃m1 ṙ x̃8m!2ur 5(21)iRi (t)
5ḡ i

212Ri~ t !2vgur 5(21)iRi (t)

df„~21! iRi~ t !,t…

dt

2
1

2
R̄i

2ḡ i~ u̇22v2u2!U
r 5(21)i R̄i

2
1

2
R̄i

2ḡ i
3ḟ2U

r 5(21)i R̄i

2
1

2
ḡ i Ṙi~ t !2

5ḡ i
211~21! i r i

d~g21!

dr U
r 5(21)i R̄i

1
1

2
r i

2 d2~g21!

dr2 U
r 5(21)i R̄i

2R̄i
2ḡ iv

df~Ri~ t !,t !

dt
2~21! i r iḟv

d~r 2g!

dr U
r 5(21)i R̄i

2
1

2
R̄i

2ḡ i~ u̇22v2u2!U r 5(21)i R̄i

2
1

2
R̄i

2ḡ i
3ḟ2U

r 5(21)i R̄i

2
1

2
ḡ i ṙ i~ t !2. ~6.8!

Inserting Eqs.~6.6! and ~6.8! into Eq. ~5.8! and applying the constraint~6.7! gives

L@ x̃m#5Lcl~v!1
1

2
sE

2R̄1

R̄2
dr@r 2g~u̇22v2u22g22u82!1r 2g3~ḟ22g22f82!#

1(
i 51

2 F miR̄i
2~ u̇22v2u2!U

r 5(21)i R̄i

1 miR̄i
2ḟ2U

r 5(21)i R̄i

1~2sḡ i
211mi ḡ i R̄iv

2!r i1
1

2
mi ḡ i ṙ i

21
1

2
~sḡ i R̄iv

2

1mi ḡ i
3v2!r i

21@sḡ i R̄i
2v1mi ḡ i~ ḡ i

211!R̄iv#r iḟU
r 5(21)i R̄i

. ~6.9!
2-7
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The term in Eq.~6.9! which is linear inr i vanishes, becauseR̄i satisfies the classical equation of motion~3.24!. Replacings
using Eq.~3.24! in the terms in Eq.~6.9! which containr i gives

L@ x̃m#5Lcl~v!1
1

2
sE

2R̄1

R̄2
dr@r 2g~u̇22v2u22g22u82!1r 2g3~ḟ22g22f82!#1(

i
mi ḡ iF1

2
R̄i

2~ u̇22v2u2!U
r 5(21)i R̄i

1
1

2
R̄i

2ḡ i
2ḟ2U

r 5(21)i R̄i

1
1

2
ṙ i

21
1

2
~2ḡ i

221!v2r i
212ḡ i

2R̄ivr iḟU
r 5(21)i R̄i

. ~6.10!

Equation~6.10! is the complete quadratic expansion of the Lagrangian, and it includes both interior and boundary deg
freedom. The interior-interior interactions are all contained in the integral overr, and the boundary-boundary interactions
the last term are proportional to the quark masses. Interior-boundary interactions occur in the terms in the integral co
u8 andf8, which couple interior and boundary parts ofu andf through the spatial derivative.
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VII. COUPLING OF QUARKS TO EXTERNAL SOURCES

The effective Lagrangian~5.9! determines the energ
~5.17! of the ground state of a rotating quark-antiquark p
having angular momentumJ. We will also calculate the en
ergies of the excited states of the mesons~hybrid mesons
lying on daughter Regge trajectories! by examining the poles
in the Green’s function which describes the coupling of
end points of the string. To obtain this Green’s function,
add toL@ x̃m# a termLsourcecoupling the positionsx¢1(t) and
x¢2(t) of the quarks to external forcesrW i(t), i 51,2:

Lsource5(
i 51

2

rW i~ t !•x¢ i~ t !, ~7.1!

where

rW i5rf
i sind i ê11rf

i cosd i ê21ru
i ê3 . ~7.2!

The sourcesru
i couple to the fluctuationsu transverse to the

plane of rotation, whilerf
i andd i are the polar coordinate

of the forces coupling to the fluctuationsf, r 1, andr 2 lying
in this plane. The Lagrangian~6.10! couples the interior and
boundary degrees of freedom, so that sources acting on
boundary will also couple to the interior degrees of freedo
and are capable of generating the excited states of the st

Inserting the expression~5.1! for the quark coordinatex¢ i
into Lsource, and keeping the leading term in small fluctu
tions gives

Lsource5Lsource
u 1Lsource

f , ~7.3!

where

Lsource
u 5(

i 51

2

~21! iru
i ~ t !R̄iu„~21! i R̄i ,t…, ~7.4!

and
09404
r

e

he
,
g.

Lsource
f 5(

i 51

2

~21! irf
i ~ t !$r i~ t !sin@vt1d i~ t !#

1R̄if„~21! i R̄i ,t…cos@vt1d i~ t !#%. ~7.5!

The LagrangianLsource
u gives the coupling of the source to th

transverse fluctuationsu„(21)i R̄i ,t…, while Lsource
f gives the

coupling of the sources to the in plane degrees of freed
r i(t) andf„(21)i R̄i ,t… ~see Fig. 1!. The phasesd i give the
direction of the external force in the plane of rotation in t
space-fixed system, and the anglesvt1d i give the angle
between this force and the instantaneous position of the
tating string.

The Lagrangian~6.10! does not couple the traverse d
grees of freedomu(r ,t) to the in-plane degrees of freedo
f(r ,t) andr i(t), so we can treat them independently. We c
write

L1Lsource5Lcl1Lu1Lf , ~7.6!

where

Lu5
1

2
sE

2R̄1

R̄2
drgr 2~ u̇22v2u22g22u82!1L̂u ,

Lf5
1

2
sE

2R̄1

R̄2
drg3r 2~ḟ22g22f82!1L̂f ,

~7.7!

and

L̂f5(
i

mi ḡ iF1

2
ṙ i

21
1

2
~2ḡ i

221!v2r i
2

12R̄ivḡ i
2r iḟ1

1

2
R̄i

2ḡ i
2ḟ2GU

r 5(21)i R̄i

1(
i

(21)irf
i [ r isin~vt1d i !1R̄ifU

r 5(21)i R̄i

3cos~vt1d i !],
2-8
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L̂u5(
i 51

2 F1

2
miR̄i

2ḡ i~ u̇22v2u2!

1~21! iru
i R̄iuGU

r 5(21)i R̄i

. ~7.8!

The quantitiesL̂u and L̂f contain the quark mass term
and the source terms, and depend only on the boundary
ues~6.2!. The remaining terms in Eq.~7.7! are the contribu-
tions of the string Lagrangian toLu andLf , and they depend
upon both the interior and boundary degrees of freedom
the next section we will decouple the interior and bound
degrees of freedom, and will obtain an expression for
action as a sum of an interior contribution and a bound
contribution. We will do this separately in each ‘‘sector’’ (u
andf! using a common procedure.

VIII. DECOUPLING THE INTERIOR
FROM THE BOUNDARY

We write the two equations~7.7! for Lu and Lf as spe-
cializations of an equation forLc (c5u,f):

Lc5
1

2
sE

2R̄1

R̄2
drS~r !@ċ2~r ,t !2Cc2~r ,t !2g22c82~r ,t !#

1L̂c . ~8.1!

The constantC is v2 in theu sector, and zero in thef sector.
The functionS(r ) is

S~r !uLu
5gr 2, S~r !uLf

5g3r 2. ~8.2!

The actionSc for each sector can be expressed in terms
the Fourier transform ofc with respect to time,

c̃~r ,n![E dte2 intc~r ,t !. ~8.3!

Sc5E dtLc52
s

2E dn

2pE2R̄1

R̄2
drc̃* F2

]

]r
S~r !g22

]

]r

2~n22C!S~r !G c̃2
s

2 (
i 51

2

~21! iS@~21! i R̄i #

3ḡ i
22c̃b,i* S ]c̃

]r
D U

r 5(21)i R̄i

1E dtL̂c , ~8.4!

where c̃b,i are the values ofc̃ evaluated at the end
(21)i R̄i of the string:

c̃b,i~n![c̃„~21! i R̄i ,n…. ~8.5!

We next define the ‘‘boundary part’’c̃B(r ,n) of c̃(r ,n) to
be the solution to the differential equation
09404
al-

In
y
e
y

f

F2
]

]r
S~r !g22

]

]r
2~n22C!S~r !G c̃B~r ,n!50, ~8.6!

satisfying the boundary conditions

c̃B„~21! i R̄i ,n…5c̃b,i~n!. ~8.7!

We define the ‘‘interior part’’c̃ I(r ,n) of c̃ as

c̃ I~r ,n!5c̃~r ,n!2c̃B~r ,n!. ~8.8!

As a result of the boundary condition~8.7!, c̃B is entirely
determined by thec̃b,i . Equation~8.6! guarantees thatc̃B

does not couple toc̃ I . Notice that, by definition,

c̃ I„~21! i R̄i ,n…50, ~8.9!

so that the fieldsc̃ I do not involve the boundary fluctuations
Replacingc̃ in Eq. ~8.4! with c̃B and c̃ I and integrating

by parts yields

Sc5SI ,c1SB,c , ~8.10!

with

SI ,c52
s

2E dn

2pE2R̄1

R̄2
drc̃ I* F2

]

]r
S~r !g22

]

]r

2~n22C!S~r !G c̃ I ~8.11!

and

SB,c52
s

2 (
i 51

2

~21! iS@~21! i R̄i #ḡ i
22

3E dn

2p
c̃b,i* S ]c̃B

]r
D U

r 5(21)i R̄i

1E dtL̂c .

~8.12!

The interior action depends only on the interior degrees
freedom@the values ofc̃(r ,n) for 2R̄1,r ,R̄2#, while the
boundary action only depends ofc̃b,i(n).

To expressc̃B in terms of thec̃b,i , we use the Green’s
function G(r ,r 8,n) satisfying the equation

F2
]

]r
S~r !g22

]

]r
2~n22C!S~r !GG~r ,r 8,n!5d~r 2r 8!,

~8.13!

for 2R̄1,r ,R̄2, and the boundary conditions

G„~21! i R̄i ,r 8,n…50. ~8.14!

The solution of Eq.~8.6! with boundary conditions~8.7! is
2-9
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c̃B~r ,n!5(
i 51

2

~21! i 11S@~21! i R̄i #ḡ i
22c̃b,i~n!

3
]

]r 8
G~r ,r 8,n!U

r 85(21)i R̄i

. ~8.15!

Inserting the expression~8.15! for c̃B into the definition
~8.12! of SB,c , we find

SB,c5E dtL̂c2
s

2 (
i , j 51

2 E dn

2p
c̃b,i* Gc

i j ~n!c̃b, j ,

~8.16!

where

Gc
i j ~n![~21! i 1 jS@~21! i R̄i #S@~21! j R̄j #ḡ i

22ḡ j
22

3
]2

]r ]r 8
G~r ,r 8,n!U

r 85(21)i R̄i

r 5(21) j R̄j

. ~8.17!

Equation ~8.16! gives the boundary action in terms o
c̃b,i(n) and the functionsGc

i j (n) which are evaluated in Ap
pendix B@Eqs.~B12! and~B17!#. The term involvingGc

i j in
Eq. ~8.16! represents the ‘‘back reaction’’ of the interior d
grees of freedom to the boundary variables.

Inserting Eq.~7.8! into Eq. ~8.16! gives the boundary ac
tions SB,u andSB,f :

SB,u5E dn

2p H (
i 51

2
1

2
miR̄i

2ḡ i~n22v2!uũb,i~n!u2

2
s

2 (
i , j 51

2

ũb,i* ~n!Gu
i j ~n!ũb, j~n!

1(
i 51

2

~21! i r̃u
i * ~n!R̄i ũb,i~n!J ~8.18!

and

SB,f5E dn

2p H (
i 51

2

mi ḡ iF1

2
@n21~2ḡ i

221!v2#u r̃ i~n!u2

22R̄ivḡ i
2nIm@ r̃ i* ~n!f̃b,i~n!#1

1

2
R̄i

2ḡ i
2n2uf̃b,i~n!u2G

1(
i 51

2
~21! i

2
@ r̃f

i * ~n1v!@R̄if̃b,i~n!2 i r̃ i~n!#

1 r̃f
i * ~n2v!@R̄if̃b,i~n!1 i r̃ i~n!##

2
s

2 (
i , j 51

2

f̃b,i* ~n!Gf
i j ~n!f̃b, j~n!J . ~8.19!

We have introduced the Fourier transforms ofr i and the
sourcesru

i andrf
i :
09404
r̃ i~n![E dte2 intr i~ t !, r̃u
i ~n![E dte2 intru

i ~ t !,

r̃f
i ~n![E dte2 int2 id i (t)rf

i ~ t !. ~8.20!

The function r̃f
i (n) incorporates two degrees of freedom

rf
i (t) andd i(t), so it is an arbitrary complex function. Th

other two Fourier transforms satisfy the reality conditions

r̃ i~2n!5 r̃ i* ~n!, r̃u
i ~2n!5 r̃u

i * ~n!. ~8.21!

Using the definition~8.2! of S(r ) and C in Eq. ~8.11!
gives the interior actions

SI ,u52
s

2E dn

2pER̄1

R̄2
dr ũ I* F2

]

]r
g21r 2

]

]r

2~n22v2!gr 2G ũ I ~8.22!

and

SI ,f52
s

2E dn

2pER̄1

R̄2
drf̃ I* F2

]

]r
gr 2

]

]r
2n2g3r 2G f̃ I .

~8.23!

The total action is the sum of the independent contributio

E dt~L1Lsource!5E dtLcl1SI ,u1SI ,f1SB,u1SB,f ,

~8.24!

and the partition functionZ(v) is a corresponding product

Z~v!5eiTLcl(v)ZI~v!ZB~v!. ~8.25!

The interior partition function is

ZI~v!5E Du Ie
iSI ,uE Df Ie

iSI ,fDetF r 2

A2g
G , ~8.26!

where Det@r 2/A2g# is replaced by its classical value. Th
boundary partition function is

ZB~v!5
1

Zb
E )

i 51

2

@Dub,iDfb,iDr iDet@R̄i
2##eiSB,u1 iSB,f.

~8.27!

We will evaluate these two parts separately in the next t
sections.

IX. EVALUATION OF THE INTERIOR PARTITION
FUNCTION ZI „v…

In this section, we evaluateZI(v) and derive Eq.~3.25!
for Lfluc

string, generalizing the results of@3# to the case where
the quark masses are unequal. The interior action depe
exclusively on the functionsũ I(r ,n) and f̃ I(r ,n), which
2-10
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vanish atr 5(21)i R̄i . We simplify SI ,u andSI ,f by chang-
ing coordinates fromr to

x5
1

v
arcsinvr . ~9.1!

We also change our integration variablesũ I andf̃ I to differ-
ently normalized functions

ũ I~r ,n!5
1

r
k~x,t !,

f̃ I~r ,n!5
1

gr
f ~x,t !. ~9.2!

The components of the action become

SI ,u52
s

2E dn

2pE2X1

X2
dxk* F2

]2

]x2
2n2Gk,

SI ,f52
s

2E dn

2pE2X1

X2
dx f* F2

]2

]x2

12v2 sec2vx2n2G f , ~9.3!

where the limits of integration are

Xi5
1

v
arcsinvR̄i . ~9.4!

In terms of the new variables~9.2!, the interior partition
function ~8.26! is

ZI~v!5E DkDf eiSI ,u1 iSI ,f. ~9.5!

Doing the integrals overf andk gives

ZI~v!5Det21/2@2¹2#Det21/2@2¹212v2 sec2vx#,
~9.6!

where 2¹2 is the Laplacian in thex,t coordinate system
This coordinate system is conformally flat, i.e.gxx52gtt ,
gxt50, so we can use the resultet al. @1#, that for a static
string in the large time limit,

Det21@2¹2#5e(2p/12)(T/R) : static quark background,

~9.7!

whereR is the length of the string andT is the time elapsed
In Eq. ~9.3!, the string lengthX11X2 obtained from Eq.
~9.4! is Rp , given by Eq. ~3.19!, which is the ‘‘proper
length’’ of a relativistic rotating string. Making the replace
mentR5Rp in Eq. ~9.7! gives

Det21@2¹2#5e2~p/12! ~T/Rp! : rotating quark background.
~9.8!

We therefore see that
09404
ZI~v!5e(2p/12)(T/Rp)Det21/2F2¹212v2 sec2vx

2¹2 G
[e2TLfluc

string(v), ~9.9!

so that

Lfluc
string~v!5

p

12Rp
2

i

T
Tr logF2¹212v2 sec2vx

2¹2 G
~9.10!

is the contribution of the interior degrees of freedom toLfluc .
We can express the trace in Eq.~9.10! in terms of the

eigenvaluesmn and ln determined by the spatial bounda
problems

S 2
]2

]x2
12v2 sec2vxD f n~x!5mnf n~x!,

2
]2

]x2
kn~x!5lnkn~x!, ~9.11!

where 2X1,x,X2, and f n(x) and kn(x) vanish at the
boundaries. The differential equations~9.11! are identical to
Eqs.~B14! and~B8!, and the eigenvaluesmn andln , as well
as the corresponding eigenfunctions, are given by E
~C17!, ~C18!, ~C31!, and ~C32!. The eigenvalues are ob
tained from the equations

tan~AmnRp!5Amnv
v1ḡ11v2ḡ2

mn2v2v1ḡ1v2ḡ2

,

Aln5
pn

Rp
. ~9.12!

The solutionmn5v2 to the first of these two equations doe
not produce a valid eigenvalue, as the corresponding eig
function vanishes everywhere.

Taking a Fourier transform in time and performing a Wi
rotation on Eq.~9.10! gives

Lfluc
string~v!5

p

12Rp
1E dn

2p (
n51

LRp

p lnFn21mn

n21ln
G

5
p

12Rp
1 (

n51

LRp

pFAmn2
pn

Rp
G .

~9.13!

The sum overn is logarithmically divergent, so we hav
imposed a cutoff, restricting ourselves to spatial eigenval
less thanL. Since our evaluation of the determinants to
place in thex coordinate system, this is a cutoff in thex
coordinate space. It is related to the cutoffM in the r coor-
dinate space by the equation

L5M
]r

]x
5Mg21. ~9.14!
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Using the methods of@3# to evaluate the sum~9.13! gives the result~3.25! for Lfluc
string(v).

X. EVALUATING THE BOUNDARY PARTITION FUNCTION ZB„v…

We begin our evaluation ofZB(v), Eq. ~8.27!, by writing down the explicit form of the partition function. Inserting th
expressions~8.18! and ~8.19! givesZB the form

ZB~v!5
1

Zb
E )

i 51

2

@Dũb,iDf̃b,iDr̃ iDet@R̄i
2##expH i E dn

2p
2

s

2 (
i , j 51

2

@ ũb,i* ~n!Gu
i j ~n!ũb, j~n!1f̃b,i* ~n!Gf

i j ~n!f̃b, j~n!#

1(
i 51

2

mi ḡ i S 1

2
@n21~2ḡ i

221!v2#u r̃ i~n!u222R̄ivḡ i
2nIm@ r̃ i* ~n!f̃b,i~n!#1

1

2
R̄i

2~n22v2!uũb,i~n!u2

1
1

2
R̄i

2ḡ i
2n2uf̃b,i~n!u2D1(

i 51

2

~21! iF r̃u
i * ~n!R̄i ũb,i~n!1

1

2
r̃f

i * ~n1v!@R̄if̃b,i~n!2 i r̃ i~n!#1
1

2
r̃f

i * ~n

2v!@R̄if̃b,i~n!1 i r̃ i~n!#G J . ~10.1!

Doing the integral over ther̃ i gives

E )
i 51

2

Dr̃ iexpH i E dn

2p (
i 51

2

mi ḡ iF1

2
@n21~2ḡ i

221!v2#u r̃ i~n!u222R̄ivḡ i
2nIm@ r̃ i* ~n!f̃b,i~n!#1

~21! i

mi ḡ i

@2 i r̃u
i * ~n1v!

1 i r̃u
i * ~n2v!# r̃ i~n!G J

5Det21/2F)
i 51

2

mi ḡ i@n21~2ḡ i
221!v2#GexpH i E dn

2p (
i 51

2 F22miR̄i
2ḡ i

5 n2v2

n21~2ḡ i
221!v2

uf̃b,i~n!u2

1(
i 51

2
~21! i

2
R̄iReS r̃f

i * ~n1v!
22ḡ i

2vn

n21~2ḡ i
221!v2

1 r̃f
i * ~n2v!

2ḡ i
2vn

n21~2ḡ i
221!v2D

3f̃b,i~n!2
1

8 (
i 51

2
1

mi ḡ i R̄i
2 @n21~2ḡ i

221!v2#21ur̃f
i ~n1v!2 r̃f

i ~n2v!u2G J . ~10.2!

Inserting Eq.~10.2! into Eq. ~10.1!, and using the fact thatZb
21 is equal to Det3@n2#, up to an overall constant, gives th

following expression forZB(v):

ZB~v!5~const!E )
i 51

2

@Dũb,iDf̃b,i #Det21/2F)
i 51

2

@n21~2ḡ i
221!v2#GDet3@n2#

3expH i E dn

2p F2
1

2 (
i , j 51

2

@ ũb,i* ~n!Gu
i j 21~n!ũb, j~n!1f̃b,i* ~n!Gf

i j 21~n!f̃b, j~n!#

1(
i 51

2

~21! i R̄iReF1

2 S r̃f
i * ~n1v!

n22v222ḡ i
2v~n2v!

n21~2ḡ i
221!v2

1 r̃f
i * ~n2v!

n22v212ḡ i
2v~n1v!

n21~2ḡ i
221!v2 D

3f̃b,i~n!1@ r̃u
i * ~n!ũb,i~n!#G2

1

8 (
i 51

2
1

mi ḡ i R̄i
2 @n21~2ḡ i

221!v2#21ur̃f
i ~n1v!2 r̃f

i ~n2v!u2G J , ~10.3!

where

Gu
i j 21~n!5d i j mi ḡ i R̄i

2~n22v̄2!2sGu
i j ~n! ~10.4!
094042-12



e
he string

SEMICLASSICAL QUANTIZATION OF EFFECTIVE . . . PHYSICAL REVIEW D 65 094042
and

Gf
i j 21~n!5d i j mi ḡ i

3R̄i
2n2

n22~2ḡ i
211!v2

n21~2ḡ i
221!v2

2sGf
i j ~n!. ~10.5!

The quantitiesG i j 21 are the coefficients of the quadratic terms inũb,i and f̃b,i . They determine the contribution of th
boundary fluctuations to the string energy, and are closely related to the physical propagator for driven oscillations of t
modes. Inserting the explicit forms~B12! and ~B17! of Gu

i j andGf
i j , and using Eq.~3.23! to replacemi , we find

Gu
i j 21~n!5

nsv iv j

v2 Fd i j S n

vv i ḡ i

2cot~nRp!D 1~12d i j !csc~nRp!G ~10.6!

and

Gf
i j 21~n!5d i j

2sn2v i ḡ i~n22v2!

v3@n21~2ḡ i
221!v2#

2
sn

v3
~n22v2!

d i j @nv i ḡ i sin~nRp!2vv1ḡ1v2ḡ2 cos~nRp!#1~12d i j !vv i ḡ1v2ḡ2

~n22v2v1ḡ1v2ḡ2!sin~nRp!2nv~v1ḡ11v2ḡ2!cos~nRp!
.

~10.7!

Doing theũb,i and f̃b,i integrations in Eq.~10.3! gives

ZB~v!5eiSboundary1 iSsources, ~10.8!

where

eiSboundary5Det21/2F)
i 51

2

@n21~2ḡ i
221!v2#G Det21/2@Gu

i j 21#

Det21/2@d i j miR̄i
2ḡ i #

Det21/2@Gf
i j 21#

Det21/2@d i j miR̄i
2ḡ i

3#
Det3@n2# ~10.9!

defines the normalized boundary action. In the limit of large elapsed timeT, Sboundaryis proportional toT, so we define the
effective boundary Lagrangian

Lboundary~v!5 lim
T→`

2 i

T
Sboundary~v!. ~10.10!

We evaluateLboundary(v) in Appendix C.
The source terms in Eq.~10.8! are

Ssources5 (
i , j 51

2 E dn

2p
~21! i 1 j R̄i R̄jF1

2
r̃u

i * ~n!Gu
i j ~n!r̃u

j ~n!1
1

8
Gf

i j ~n!S r̃f
i * ~n1v!

n22v222ḡ j
2v~n2v!

n21~2ḡ j
221!v2

1 r̃f
i * ~n2v!

n22v212ḡ j
2v~n1v!

n21~2ḡ j
221!v2 D S r̃f

j ~n1v!
n22v222ḡ i

2v~n2v!

n21~2ḡ i
221!v2

1 r̃f
j ~n2v!

n22v212ḡ i
2v~n1v!

n21~2ḡ i
221!v2 D

1
d i j

mi ḡ i R̄i
2 @n21~2ḡ i

221!v2#21
1

8
ur̃f

i ~n1v!2 r̃f
i ~n2v!u2G . ~10.11!

The first two terms in Eq.~10.11! were produced by theũb,i andf̃b,i integrals. The third was produced by ther̃ i integral, and
does not couple the two ends of the string to each other.
te
is-
XI. EXPLICIT EVALUATIONS OF L fluc AND Ssources

Combining Eqs.~8.25!, ~9.9!, and~10.8! gives

Z~v!5eiTLcl(v)1Lfluc(v)1 iSsources, ~11.1!

whereLcl(v) is defined by Eq.~3.16!, Ssourcesis defined by
Eq. ~10.11!, andLfluc is
09404
Lfluc~v!5Lfluc
string~v!1Lboundary~v!. ~11.2!

The terms on the right-hand side of Eq.~11.2! are defined by
Eqs.~4.5! and ~10.10!.

We now evaluate the partition function for appropria
physical limits of the quark masses. As we previously d
2-13
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cussed in Sec. IV, because of the renormalization of the g
desic curvature, our results are only valid when the qu
masses are either very large or exactly zero. The case w
both masses are large is relevant only to the evaluation o
potential. We therefore have two physical limits:~1! the
light-light case, wherem15m250 (ḡ1 ,ḡ2→`), and~2! the
heavy-light case, wherem1→` (v1→0) and m250 (ḡ2
→`). We now evaluateLfluc(v) andSsourcesin these limits.
This will give us the zero point energy and the excitati
energies of the fluctuations.

We begin withLfluc , and its two partsLfluc
string andLboundary.

In the light-light limit Lfluc
string is (7/12)v, and in the heavy-

light limit it is (5/12)v @see Eqs.~4.6! and~4.8!#. We evalu-
ateLboundaryin Appendix C, and find, in the light-light limit,

Lboundary50 ~11.3!

and, in the heavy-light limit,

Lboundary52
1

4
v. ~11.4!

Thus, in the light-light limit,

Lfluc~v!5
7

12
v ~11.5!

and, in the heavy-light limit,

Lfluc~v!5
1

6
v. ~11.6!

We next evaluateSsourcesin these limits. Consider first the
excitations in theu sector. We setrf

i equal to zero in Eq.
~10.11! to obtain the theu sector propagator:

Ku
i j ~n![~21! i 1 j R̄i R̄jGu

i j ~n!. ~11.7!

The propagatorKu
i j (n) has a simple pole wherevern is equal

to the energy of one of the excited modes. There is als
double pole atn50 due to the invariance of the Lagrangia
under a translation of the string in the direction perpendicu
to the plane of rotation. This translation mode does not c
respond to an excited state of the string.

A general excited state will include multiple excitations
each mode, so its energy will be a sum of multiples of
energy of each mode. Only single excitations will appear
the propagatorKu

i j (n), because of the harmonic oscillato
selection rules. We obtain an explicit form forKu

i j (n) by
inverting Gu

i j (n)21 ~in the sense of inverting a two by tw
matrix!. In the light-light case, Eq.~10.6! becomes

Gu
i j 21~n!5

ns

v2 F2d i j cotS p
n

v D1~12d i j !cscS p
n

v D G ,
~11.8!

so theu propagator is
09404
o-
k
ere
he

a

r
r-

e
n

Ku
i j ~n!5

1

ns Fd i j cotS p
n

v D2~12d i j !cscS p
n

v D G .
~11.9!

This has a double pole atn50 due to the translation mode i
the direction perpendicular to the plane of rotation, whi
does not correspond to an excited string state.

The single poles atn5kv for nÞ0 are due to the excited
states of the string. These are the same poles as appe
Gu

i j (n), Eq.~B12!, and consequently inKu
i j 21(n), in the limit

of massless quarks. The locations of these poles are the s
in Ku

i j (n) andKu
i j 21(n) because detKu

i j (n)521/n2s2 in the
massless quark limit.

In the heavy-light case, the components ofGu
i j 21 are

Gu
1121~n!5

n2s

v3
v11O~v1

2!,

Gu
2221~n!52

ns

v2
cotS pn

2v D1O~v1!,

Gu
1221~n!5

ns

v2
v1 cscS pn

2v D1O~v1
2!. ~11.10!

Inverting the 232 matrix ~11.10! gives, up to an overall
normalization, the components of theu propagator:

Ku
11~n!5

v

n2s
v11O~v1

2!,

Ku
22~n!52

1

ns
tanS pn

2v D1O~v1!,

Ku
12~n!5

v

n2s
secS pn

2v D v11O~v1
2!. ~11.11!

We see that, in the limitm1→` (v1→0), only the light-
light componentKu

22(n) is nonvanishing. It has poles at

n5~2k11!v, k50,1,2, . . . , ~11.12!

corresponding to the normal modes of a string with one e
fixed. The remaining components of the propagator are p
portional to the heavy quark velocity. The heavy-heavy co
ponentKu

11(n) contains only a double pole atn50, corre-
sponding to the translation mode, and the heavy-li
componentKu

12(n) has poles corresponding both to excit
vibrational states and to the translation mode.

We next obtain thef sector propagator by examining Eq
~10.11!. With some rearranging of terms, Eq.~10.11! is
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Ssources5 (
i , j 51

2 E dn

2p H 1

2
r̃u

i * ~n!Ku
i j ~n!r̃u

j ~n!1
1

2
r̃f

i * ~n!Kf
i j ~n!r̃f

j ~n!1
1

4
ReF r̃f

i * ~n1v!S ~21! i 1 j R̄i R̄j

3
n22v222ḡ i

2v~n2v!

n21~2ḡ i
221!v2

Gf
i j ~n!

n22v212ḡ j
2v~n1v!

n21~2ḡ j
221!v2

2
d i j

mi ḡ i

1

n21~2ḡ i
221!v2D r̃f

j ~n2v!G J , ~11.13!

whereKf
i j (n) is

Kf
i j ~n![

d i j

4mi ḡ i
S 1

n222nv12ḡ i
2v2

1
1

n212nv12ḡ i
2v2D 1

~21! i 1 j

4
R̄i R̄j

3F n222nv22ḡ i
2v~n22v!

n222nv12ḡ i
2v2

n222nv22ḡ j
2v~n22v!

n222nv12ḡ j
2v2

Gf
i j ~n2v!

1
n212nv12ḡ i

2v~n12v!

n212nv12ḡ i
2v2

n212nv12ḡ j
2v~n12v!

n212nv12ḡ j
2v2

Gf
i j ~n1v!G . ~11.14!
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In some of the terms in Eq.~11.13! we have translated th
integration variablen by 6v to make the argument ofr̃f

i be
n instead ofn6v. There are three terms in Eq.~11.13!:

~1! TheKu
i j (n) term. This is theu sector propagator which

we examined earlier.
~2! The Kf

i j (n) term, where the arguments of the twor̃f
i

factors are equal. This is thef sector propagator.
~3! The r̃f

i * (n1v) r̃f
j (n2v) term, where the argument

of the two r̃f
i factors differ by 2v. Since the natural fre-

quency of the classical rotating string isv, driving it at a
frequencyn produces sidebands atn62v ~to leading semi-
classical order!. The third term in Eq.~11.13! is a manifes-
tation of this effect.

The poles inKf
i j (n) give the energies of the excite

modes of the string. We now consider how the poles
Kf

i j (n) relate to the poles inGf
i j (n). SinceGf

i j appears in Eq.
~11.14! with the argumentn6v, the double pole inKf

i j at
n50 due to the translation modes of the string will appea
Gf

i j as double poles atn56v. Likewise, the single poles in
Kf

i j giving the energies of singly excited states of the str
will be shifted byv when they appear inGf

i j .
In the light-light limit, Gf

i j 21, Eq. ~10.7!, is

Gf
i j 21~n!5

sn~n22v2!

v4 F2d i j cotS p
n

v D
1~12d i j !cscS p

n

v D G , ~11.15!

so Gf
i j is

Gf
i j ~n!5

v4

sn~n22v2!
Fd i j cotS p

n

v D1~12d i j !cscS p
n

v D G .
~11.16!
09404
n

n

g

The factors@n(n22v2)#21, combined with the trigonomet
ric functions in Eq.~11.16!, produce double poles inGf

i j (n)
at n50,6v, and single poles atn5kv for k562,
63, . . . .

The f sector propagator, written in terms ofGf
i j , is

Kf
i j ~n!5

~21! i 1 j

4 S ~n22v!2

v4
Gf

i j ~n2v!1
~n12v!2

v4

3Gf
i j ~n1v!D . ~11.17!

The double poles inGf
i j (n) at n56v do not produce poles

in the propagatorKf
i j (n) due to the prefactors in Eq.~11.17!.

Instead, they produce a double pole atn50. This double
pole is the effect of the two translation modes in the dire
tions parallel to the plane of string rotation, which a
present in the propagator for all values of the quark mas

The double pole inGf
i j (n) at n50 produces double pole

in Kf
i j (n) at n56v. These poles arise for the followin

reason: the condition~6.7! that the average of the fluctua
tions of the angular momentum of the string vanish me
that the zero frequency component of the motion of
string is constrained. This constraint removes from the m
tion the zero frequency component of a global rotation. T
global rotation is contained in thef̃b,i(n) boundary degrees
of freedom. However, we have coupled all components
f̃b,i(n) to the sourcesr̃f

i (n). Elimination of the coupling to
the zero frequency component of the global rotational mo
will remove the double poles ofKf

i j (n) at n56v.
The single poles ofGf

i j (n) at n56kv for k>2 produce
single poles in the propagatorKf

i j (n) at

n5nk5kv, for k51,2, . . . . ~11.18!
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These are the true vibrational frequencies of the motion
the string in the plane of rotation, and give the energies
the excited states of the mesons corresponding to the ex
tion of a single quanta of frequencynk . The spectrum of
excited states in thef sector is then the same as in theu
sector, for a meson composed of zero mass quarks.

In the heavy-light case, Eq.~10.7! is

Gf
1121~n!5

s

v3

~n22v2!2

n21v2
v11O~v1

2!,

Gf
2221~n!5

sn~n22v2!

v4
tanS pn

2v D1O~v1!,

Gf
1221~n!52

s

v3
~n22v2!2v1secS pn

2v D1O~v1
2!,

~11.19!

so the components ofGf
i j are

Gf
11~n!5

v3

s

n21v2

~n22v2!2
v1

211O~1!,

Gf
22~n!5

v4

sn~n22v2!
cotS pn

2v D1O~v1!,

Gf
12~n!52

v4

sn

n21v2

n22v2
cscS pn

2v D1O~v1!.

~11.20!

The components of thef sector propagator are

Kf
11~n!5

vv1

4s S 1

n222nv12v2
1

1

n212nv12v2D
1

~n22v!4v1
2

4v2~n222nv12v2!2
Gf

11~n2v!

1
~n12v!4v1

2

4v2~n212nv12v2!2
Gf

11~n1v!1O~v1
2!,

Kf
22~n!5

~n22v!2

4v4
Gf

22~n2v!1
~n12v!2

4v4
Gf

22~n1v!

1O~v1!,

Kf
12~n!5

~n22v!3v1

4v3~n222nv12v2!
Gf

12~n2v!

2
~n12v!3v1

4v3~n212nv12v2!
Gf

12~n1v!1O~v1
2!.

~11.21!
09404
f
f

ta-

Just as in theu sector, the heavy end propagatorKf
11(n) only

couples to the translation mode asm1→`. In this limit, the
only poles inGf

11 are double poles atn56v, so the only
pole in Kf

11 is a double pole atn50. At the light quark end,
Gf

22 does not have poles atn56v, as the cotangent vanishe
there. Just as in theu sector, in the heavy-light limit the ligh
end propagatorKf

22 does not couple to the translation mod
of the string. The simple poles inGf

22 at even multiples ofv
produce poles inKf

22 at n56(2n11)v.
The spectrum of singly excited string modes in thef

sector is then the same as in theu sector, and the degenerac
of the light-light excitations is repeated in the heavy-lig
excitations. The remaining pole inGf

22, a double pole atn
50, is present for reasons already discussed in conside
the light-light case. The heavy-light component of the prop
gatorKf

12(n) couples to both light end and heavy end mod
just as it did in theu sector.

XII. MESON SPECTRUM

In this section, we use the results~11.5! and ~11.6!, as
well as the energies of the string excited states, to derive
meson Regge trajectories to leading semiclassical order.
begin by calculating classical Regge trajectories from
classical Lagrangian~3.16!. The angular momentum of th
meson and its energyEcl(v) are given by Eqs.~5.16! and
~5.15!:

J5
]Lcl

]v
5(

i
Fs

Ri
2

2v i
S arcsinv i

v i
2g i

21D1miRiv ig i G ,
E5v

]Lcl

]v
2Lcl5(

i
S sRi

arcsinv i

v i
1mig i D .

~12.1!

From the classical equation of motion we derived Eq.~3.23!,
which shows thatRi is proportional tog i

2 for large g i .
Evaluating Eqs.~3.16! and ~12.1! in the limit of massless
quarks, where the quark velocityv i goes to one, yields the
classical results

Lcl~v!52
ps

2v
, J5

ps

2v2
, Ecl5

ps

v
, J5

Ecl
2

2ps
.

~12.2!

In the heavy-light casev1 goes to zero andv2 goes to one, so

J5
~Ecl2m1!2

ps
. ~12.3!

We now include the correction~5.17! to the energy due to
fluctuations. In the light-light case Eqs.~5.17!, ~11.5!, and
~12.2! give

E~J!5Ecl~v!2Lfluc~v!5
ps

v
2

7

12
v, ~12.4!
2-16
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for the case of two light quarks. The value ofv is given as a
function of J through the classical relationv5Aps/2J.
Squaring both sides of Eq.~12.4! and dropping the term
quadratic inLfluc yields

J5
E2

2ps
1

7

12
1OS s

E2D . ~12.5!

Using the WKB quantization conditionJ5 l 11/2 in Eq.
~12.5! gives the leading Regge trajectory, relating the angu
momentum quantum numberl to the meson energyE:

l 5
E2

2ps
1

1

12
1OS s

E2D . ~12.6!

In the heavy-light case, Eqs.~11.6! and~12.3! give the Regge
trajectory

l 5
~E2m1!2

ps
1

1

6
2

1

2
5

~E2m1!2

ps
2

1

3
. ~12.7!

The energies of the excited states of the light mesons
obtained by adding the excitation energiesnv to Eq. ~12.4!:

En~v!5
ps

v
2

7

12
v1nv. ~12.8!

Since there are many combinations of string normal mo
which give the samen ~e.g., a doubly excitedk51 mode and
a singly excitedk52 mode each given52), the spectrum is
highly degenerate. There are twon51 trajectories, each cor
responding to a single excitation of one of thek51 normal
modes. Higher values ofn have higher degeneracies.

From Eq.~12.8! for the nth excited hybrid energy leve
we derive the ‘‘daughter’’ Regge trajectory:

l 5
E2

2ps
1

1

12
2n1OS s

E2D . ~12.9!

In the heavy-light case, the normal modes with frequenc
of (2k11)v can combine to form states with excitation e
ergiesnv for any n, though the degeneracies are differe
The ‘‘daughter’’ Regge trajectories of Eq.~12.7! are then

l 5
~E2m1!2

ps
2

1

3
2n1OS s

~E2m1!2D . ~12.10!

Equations~12.9! and ~12.10! give the leading semiclass
cal correction to the classical Regge formulas~12.2! and
~12.3!. To compute theO(s/E2) corrections to this result, i
would be necessary to compute the contribution of two lo
vacuum diagrams in the two dimensional field theory to fi
the energy of the lowest lying trajectory, and to compute o
loop corrections to the propagators to find the energies of
excited states.
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XIII. GENERALIZATION TO DÅ4 DIMENSIONS

It is interesting to compare the results~12.6! with the
corresponding result from classical bosonic string theory.
do this, we need to generalize Eq.~12.6! to D dimensions.
This dependence comes from the dependence ofLeff(v) on
D, which in turn comes fromLfluc

string(v) and Lboundary(v),
since the classical string energy is independent ofD.

Our calculation ofLboundary(v) separated the boundar
fluctuations perpendicular to the plane of rotation of t
string and the fluctuations in that plane. Neither of the
contributed toLboundary(v) ~see Appendix C!. Going from
four dimensions toD dimensions only addsD24 additional
directions for perpendicular fluctuations. These fluctuatio
will each give the same contribution toLboundary(v) that the
fluctuations perpendicular to the plane of rotation did
the four dimensional case, namely zero. The funct
Lboundary(v) is therefore zero, independent ofD.

The functionLfluc
string(v) was derived fromZI(v), which

was expressed in Eq.~9.6! as the product of two determi
nants, one due to string modes perpendicular to the plan
rotation and one due to string modes in the plane of rotat
Just as in the case ofLboundary(v), adding more dimensions
adds additional string modes perpendicular to the plane
rotation, so the generalization of Eq.~9.6! to D dimensions is

ZI~v!5Det2(D23)/2@2¹2#Det21/2@2¹212v2 sec2vx#

5Det2(D22)/2@2¹2#Det21/2F2¹212v2 sec2vx

2¹2 G .

~13.1!

The first of the determinants produces a termD
22)p/24Rp in Lfluc

string(v), equal to the Lu¨scher term inD
dimensions, with the lengthR of the string replaced with its
proper lengthRp @see Eq.~3.19!#. We have already evaluate
the second determinant, which, after renormalization, g
the second and third terms in Eq.~4.5!. For massless quarks
Rp5p/v, and the contribution of the second determinant
v/2, so that the generalization of Eq.~12.6! to D dimensions
is

En~v!5
ps

v
2

D22

24
v2

v

2
1nv. ~13.2!

This can be rewritten to getE2 as a function ofl:

E252psF l 2
D22

24
1n1OS 1

l D G . ~13.3!

In 26 dimensions, the equation for the energy is

E252psF l 211n1OS 1

l D G . ~13.4!

The spectrum~13.4! coincides with the spectrum of ope
strings in classical bosonic string theory. However, in o
approach Eq.~13.4! is valid only in the leading semiclassica
approximation, so it cannot be used forl 50, where it would
yield the scalar tachyon of the open bosonic string.
2-17
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XIV. COMPARISON WITH MESON MASSES

In Fig. 2, we plot the leading trajectory and first tw
daughters@Eq. ~12.6! for n50,1,2# using the string tension
s5(0.436)2 GeV22, corresponding to a valuea8
a850.89 GeV22 for the slope of ther trajectory. The plot-
ted points are meson masses on ther-a2 trajectory, and on
possible daughters of this trajectory. We have added on
the orbital angular momentum to account for the spin of
quarks (J5 l 1s5 l 11). The plotted points lie to the right o
the leading trajectory, so the predicted masses are too
This may be due to the fact that we are using scalar ins
of fermionic quarks. In any case, the semiclassical correc
is small, and the leading trajectory lies close to the class
one.

We therefore compare the differences in the squa
masses between the lowest lying meson for eachl and higher
energy states with the predictions of the semiclassical
mula ~12.6!:

mexcited
2 2mlowest

2

2ps
5n, n51,2, . . . . ~14.1!

This energy difference is entirely due to the excited state
the string, and therefore may not be so sensitive to the k
of quarks used in the model. The values of the mass dif
ence~14.1! are shown in Table I for the excited states of t
r ( l 50) anda2 ( l 51). For n51, the semiclassical string
theory predicts 2 degenerate states. This double degene
will be broken by higher order corrections, and we expect
predictedn51 mass to lie halfway between the physic
masses of the twon51 particles. This works very well for
thea2 meson, where averaging the masses of the two exc

FIG. 2. Regge trajectories~12.9! with n50,1,2, and meson
masses in ther-a2 sector.
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states givesDm2/2ps50.98, compared to the predicte
value of unity. For ther mesons, withl 50, the semiclassica
theory is not applicable, and the excited states in Table I
not readily identified with the predictions of Eq.~14.1!.

XV. SUMMARY AND CONCLUSIONS

~1! Beginning with an effective string theory of vortice
which describes long distance QCD, we have calculated
the semiclassical approximation, the effect of string fluctu
tions on Regge trajectories, both for mesons containing li
~zero mass! quarks, and for mesons containing one hea
and one light quark. The semiclassical correction to the le
ing Regge trajectory for light quarks adds a constantD
22)/24 to the classical Regge formula. The small size of t
semiclassical correction forD54 could explain why Regge
trajectories are linear at values ofl of order 1.

~2! These results depended on two extensions of our
vious work:

~a! The renormalization of the geodesic curvature in t
semiclassical expansion about a rotating string soluti
needed to take the zero quark mass limit.

~b! The decoupling of the boundary and interior degre
of freedom of the string to obtain the back reaction of t
interior degrees of freedom on the boundary.

~3! The spectrum of the energies of the excited states
mally coincides with the spectrum of the open string
bosonic string theory in its critical dimensionD526. Here,
we obtained this spectrum for anyD from the semiclassica
expansion of an effective string theory. The functional det
minant DFP determining the measure for the path integ
~3.2! made the theory conformally invariant in the limit o
zero mass quarks. Perhaps this quantization of effec
string theory might prove useful towards efforts in quant
ing fundamental string theories in non-critical dimensions

~4! We treated the light quarks as massless scalar
ticles. This is appropriate at best for determining the energ
of excited states of the string, where the dependence on
boundary of the string is small. The effect of chiral symme
breaking, generating a constituent quark mass, must pla
dominant role in determining the masses of mesons wh
are ground states of quark-antiquark systems. However,
constituent mass should approximately cancel in the m
differences between mesons on the leading and first daug
trajectories. The effective string theory should then descr
the excitation energies of the mesons.
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TABLE I. Squared mass differences for the excited states of ther trajectory.

l Lowest state Excited state mlowest mexcited Dm2 Dm2/2ps

1 r r(1450) 0.769 GeV 1.465 GeV 1.555 GeV2 1.30
1 r r(1700) 0.769 GeV 1.700 GeV 2.299 GeV2 1.92
1 r r(2150) 0.769 GeV 2.149 GeV 4.027 GeV2 3.37
2 a2(1320) a2(1660) 1.318 GeV 1.660 GeV 1.019 GeV2 0.85
2 a2(1320) a2(1750) 1.318 GeV 1.752 GeV 1.332 GeV2 1.12
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APPENDIX A: QUANTIZING THE ANGULAR
MOMENTUM

In this appendix, we quantize the angular momentum
the string semiclassically, using the semiclassical method
Dashen, Hasslacher, and Neveu@24# ~DHN! for obtaining the
energies of periodic orbits. DHN find the energies of the
states by looking at the trace of the propagator

G~E!5 i trE
0

`

dTei (E2H)T, ~A1!

whereH is the Hamiltonian. The operator on the right ha
side is defined in terms of a partition function with period
boundary conditions. In our case, it is
g
m

in
he
a

tu
is
, t

09404
f
of

e

e2 iHT[Zperiodic5
1

Zb
E Df 1~j!Df 2~j!Dx¢1~ t !Dx¢2~ t !DFP

3expS 2 isE d2jA2g

2 i(
i 51

2

miE
2T/2

T/2

dtA12x¢̇ i
2~ t !D , ~A2!

where the variablesf i and x¢ i are required to satisfy the
boundary conditions

f i uT/25 f i u2T/2 , x¢ i uT/25x¢ i u2T/2 . ~A3!
rees of
1. Euler angles

The first step in quantizing the angular momentum is to introduce collective coordinates for the rotational deg
freedom of the string. We parametrize the rigid body rotations of a straight string using the Euler anglesa, b, andg, defined
by the rotation matrixM:

M5S cosa cosb cosg2sina sing cosa cosb sing1sina cosg cosa sinb

2sina cosb cosg2cosa sing 2sina cosb sing1cosa cosg 2sina sinb

2sinb cosg 2sinb sing cosb
D . ~A4!
Eu-

e

ral
The anglesa,b, andg are functions of the timet. The rate of
change of the matrixM acting on a fixed vectorn̂ defines the
angular velocityvW :

d

dt
~Mn̂!5Ṁ n̂[vW 3~Mn̂!. ~A5!

Sincen̂ is an arbitrary vector, we find

vW @g,b,a#[2
1

2
êie

i jk~ṀM 21! jk

52ȧê31ḃ~cosaê21sinaê1!

2ġ~cosbê32sinb sinaê2

1sinb cosaê1!. ~A6!

In the limit of small fluctuations about a straight rotatin
string, the string only has two rotational degrees of freedo
Classically, the angular velocity about the axis of the str
must be zero. Any contribution to this component of t
angular velocity must be of quadratic order in small fluctu
tions about the classical solution, since it takes one fluc
tion to give the string a moment of inertia about its own ax
and another to give it rotation about that axis. Therefore
quadratic order,
.
g

-
a-
,
o

vW •xW050, ~A7!

wherexW0 is the classical position of the string.
The two physical angular degrees of freedom are the

ler anglesa(t) and b(t) determining the orientation of the
vector x̂0, chosen to be theê38 axis in the body fixed frame:

x̂05cosa sinbê12sina sinbê21cosbê3 . ~A8!

The conditionx̂0•vW 50, that there be no rotations about th
string axis, is

ȧ cosb1ġ50. ~A9!

This means thatg is superfluous. Substituting forg using
Eq. ~A9! gives

vW @b,a#52ȧ sinb~sinbê31sina cosbê22cosa cosbê1!

1ḃ~cosaê21sinaê1!. ~A10!

To introduce the Euler angles into the functional integ
~A2!, we must definea and b as functionals of the string
positionx̃m. Let the functionVW @ x̃m#(t) be the angular veloc-
ity of the stringx̃m at timet. The form of this function is not
needed for our calculation. We fixvW @a,b# at all times by
inserting a factor of 1 into the partition function:
2-19
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15E DbDad (2)@vW 2VW @ x̃m##DetFe i jk x̂0
i ]v j

]a

]vk

]b G .
~A11!

Because the argument of thed function only has two non-
zero components,~A11! only contains twod functions. In-
serting the definition~A10! of vW in the determinant gives

15E D~cosb!Dad (2)@vW 2VW @ x̃m##DetF2
d2

dt2
G .

~A12!

Inserting the factor~A12! into the partition function al-
lows us to write the center of mass partition function in ter
of rotational degrees of freedoma andb:

Zperiodic5
1

Zb
E D~cosb!DaDf 1Df 2DxW1DxW2DFP

3d (2)@vW 2VW @ x̃m##DetF2
d2

dt2
G

3expS i E dtL@xm# D . ~A13!

a is the angle between they axis and the normal to the plan
of rotation.b is the~angular! position of the end of the string
in the plane of rotation.

2. Extracting the sum over classical solutions

We evaluate the partition function~A13! semiclassically.
It will then contain a sum over all classical solutions of p
riod T. We now explicitly extract this sum from the func
tional integral. The classical solutions in~A13! correspond to
motion where the axisx̂0(t) of the string rotates with uni-
form angular velocity. We can parametrize these solutions
the Euler angles

a5const, b5vt. ~A14!

The constantv satisfies the equation

v5
2pn

T
~A15!

for some integern. We can always make a global rotation
ensure that the classical solution fora and b has the form
~A14!, so we write

Zperiodic5E D~cosb!DaDetF2
d2

dt2
GeiSrotate[a,b] ,

~A16!

where
09404
s

-

y

eiSrotate[a,b][
1

Zb
E dRi j E Df 1Df 2DxW1DxW2DFP

3d (2)~Ri j x̂0
j 2ê3

i !

3d (2)@vW i2Ri j VW j@ x̃m##expS i E dtL@xm# D .

~A17!

To enable us to extract the sum over classical solutio
we will explicitly divide a andb into parts which change the
classical solution and parts which perturb the fields aw
from the classical solution. We first divide the fielda(t) into
fluctuations which change the classical solution and fluct
tions which move the field away from its classical valu
Classically,a(t) can be any constanta0. The choice of this
constant determines which of the planes passing througb

50 will contain the string rotation. We note that, sincevW 2

5ȧ2sin2b1ḃ2, a always appears in the action in terms
the form ȧ sinb, which is classically zero. We define a ne
variable

a5ȧ sinb. ~A18!

In terms of the functiona(t), a(t) is

a~ t !5a01E
0

t

dt8
a~ t8!

sinb~ t8!
. ~A19!

Becausea only depends onȧ, its classical value is indepen
dent of the choice of the constanta0.

The factor of sinb in the definition ofa produces a com-
plication. Comparing the inverse propagators ofa anda, we
see that

]2S

]a~ t !]a~ t8!
52

d

dt
sinb~ t !

]2S

]a~ t !]a~ t8!
sinb~ t8!

d

dt8
.

~A20!

When b is a multiple of p, the inverse propagator ofa
vanishes, but the same is not true of the inverse propag
of a. At these points, the end of the string is at either t
point b50 or its antipodeb5p, independent of the value o
a ~see Fig. 3!. These points are called conjugate points.
these points classical trajectories with different values ofa0

FIG. 3. Orbits of the end of the string for different values ofa.
2-20
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meet. As a result of the singularity in the propagator ofa, the
partition function picks up a phase ofp/2 at each of these
points when we do thea integral, analogous to the phas
shift at a WKB turning point@26#. Thea propagator does no
have this singularity, so the partition function will not recei
a phase shift from thea integral. In changing variables from
a to a, we must add this phase shift to the partition functio
The integration measure fora is

Da5da0DaDet21/2@2] t
2#Det21@sinb#expS i /2E

2T/2

T/2

dtḃ D .

~A21!

The argument of the exponential is equal top/2 multiplied
by the number of timesb passes through a multiple ofp,
which is the phase shift. The integral overa0 is present
becausea is independent of the constant part ofa. a0 varies
between 0 and 2p. In terms of these new variables, th
partition function is

Zperiodic5E da0DbDaDet1/2F2
d2

dt2
GexpS iSrotate@a,b#

1 i /2E
2T/2

T/2

dtḃ D . ~A22!

We next extract the sum over the classical frequenciev

52pn/T from the integral overb. Let b(t)5ḃ(t)2v, and
b05b(t50). Thenb(t) is given by

b~ t !5b01vt1E
0

t

dt8b~ t8!. ~A23!

As a result of the boundary conditions onb, b(t) is subject
to the restriction

E
2T/2

T/2

dtb5b~T/2!2b~2T/2!2vT50. ~A24!

The functionb(t) is also independent ofb0.
The change of variables fromb to b produces a change i

the functional integration measure:

Db5 (
v52pn/T

Dbdb0Det21/2@2] t
2#2Ap

T
. ~A25!

The factor of 2Ap/T appears in Eq.~A25! because the inte
gral has periodic boundary conditions. The definition of t
determinant of2] t

2 is @27#

Det21/2@2] t
2#5E ds1•••dsjexpH 2

s1
2

t1
2

~s22s1!2

t22t1
2•••

2
~sj2sj 21!2

t j2t j 21
J . ~A26!

However, in the case of periodic boundary conditions,sj
5s050. Because of this, we need a Lagrange multiplier
identify the values ofs at these two points:
09404
.

e

o

Detperiodic
21/2 @2] t

2#5E dlE ds1•••dsjexpH 2
s1

2

t1
2

~s22s1!2

t22t1

2•••2
~sj2sj 21!2

t j2t j 21
1 ilsj J . ~A27!

As a result of the additional term in the action, we mu
translate each of thesi to be able to do the integral. Thi
translation is

si→si1 i
l

2
t i . ~A28!

The effect of this translation on eachs2 term is

2
~si2si 21!2

t i2t i 2 i
→2

~si2si 21!2

t i2t i 2 i
2 il~si2si 21!

1
l2

4
~ t i2t i 2 i !, ~A29!

while the effect on thelsj term is

ilsj→ ilsj2
l2

2
t j . ~A30!

The total effect of this transformation is that

Detperiodic
21/2 @2] t

2#5E dlE ds1•••dsjexpH 2
s1

2

t1
2

~s22s1!2

t22t1

2•••2
~sj2sj 21!2

t j2t j 21
2

l2

4
t j J

5Det21/2@2] t
2#E dlexpH 2

l2

4
TJ

5Det21/2@2] t
2#2Ap

T
. ~A31!

This gives the factor we have included in Eq.~A25!. A more
general version of this derivation, valid for all Gaussi
functional integrals, is done in@10#. Making the change of
variables~A23! and implementing the restriction~A24! gives
the partition function the form

Zperiodic52Ap

T (
v52pn/T

E da0db0DaDbd

3S E
2T/2

T/2

dtb~ t ! D eiSrotate[a,b] 1 iTv/2. ~A32!

Equation~A32! givesZperiodic as a sum over semiclassic
integrals about classical solutions:

Zperiodic52Ap

T (
v52pn/T

eiTv/2Z~v!, ~A33!

whereZ(v) is
2-21
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Z~v![
1

Zb
E da0db0DaDbdRi j Df 1Df 2DxW1DxW2

3DFPd (2)~Ri j x̂0
j 2ê3

i !

3dS E
2T/2

T/2

dtb~ t ! D d (2)@vW i2Ri j VW j@ x̃m##

3expS i E dtL@xm# D . ~A34!

Doing the integrations overa, b, a0, and b0 in Eq. ~A34!
gives

Z~v!5
1

Zb
E Df 1Df 2DxW1DxW2DFP

3d~v2u^VW @ x̃m#&u!expS i E dtL@xm# D .

~A35!

The constraints that have been placed ona and b restrict
Z(v) to those string configurations with angular velocityv.
The expression~A35! is equivalent to the partition function
Z(v) defined in Eq.~5.7!, up to thed function:

d~v2u^VW @ x̃m#&u!. ~A36!

This d function implements the boundary condition~6.7! as a
constraint onx̃m. The constraint is due to the fact that,
obtaining the sum over classical solutions, we have remo
the zero frequency component of one degree of freed
from the partition function.

3. Summing over classical solutions

We now insert the sum over classical solutions~A33! into
Eq. ~A1! and use Eq.~5.9!. This expresses the propagat
G(E) in terms ofLeff(v):

G~E!5 i E
0

`

dT2Ap

T (
v52pn/T

eiT[E1v/21Leff(v)] .

~A37!

We evaluate of theT integral by the method of stationar
phase. The poles in the propagatorG(E) appear at those
values ofE for which the sum overn diverges. Therefore, we
must approximate theT integral in a way which is valid for
largen. As n becomes large, the classical solution will co
sist of many orbits at some frequencyv determined by the
energy. Therefore,T is large in the largen limit, and the
phase in the exponential fluctuates wildly. We do theT inte-
gral by expanding about the stationary point of this pha
This point definesT as a function ofE:
09404
d
m

e.

d

dT FTS Leff~v!1E1
v

2 D G
5Leff~v!1E1

v

2
1T

dv

dT S dLeff

dv
1

1

2D50.

~A38!

The definitionv52pn/T gives

dv

dT
52

v

T
, ~A39!

so the energy is

E5v
dLeff

dv
2Leff~v!. ~A40!

Equation~A40! implicitly definesv as a function ofE, sov
is independent ofn, while T is proportional ton. The integral
also produces a factor of

ApH 1

2

d2

dT2 FTS Leff~v!1E1
v

2 D G J 21/2

5A2pTS v2
dLeff

dv2 D 21/2

, ~A41!

which cancels the factor ofT21/2 in Eq. ~A37!. The propa-
gator is

G~E!52ipA2(
n51

` S v2
dLeff

dv2 D 21/2

eiT[Leff(v)1E1v/2].

~A42!

To do the sum overn, we make then dependence explici
by writing T52pn/v everywhere:

G~E!516ip3A2S v2
dLeff

dv2 D 21/2

3 (
n51

`

expH 2p inS Leff~v!

v
1

E

v
1

1

2D J .

~A43!

Doing the sum, and replacingE using Eq.~A40!, gives

(
n51

`

expH 2p inS Leff~v!

v
1

E

v
1

1

2D J
5

1

12expH 2p i S dLeff

dv
1

1

2D J 21. ~A44!

Therefore, the propagator has poles wheneverdLeff /dv is an
odd half integer:
2-22
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dLeff

dv
5 l 1

1

2
. ~A45!

This is the WKB quantization condition for angular mome
tum. It tells us the angular velocities of the angular mom
tum states. Equation~A40! then gives the energies of thos
states. The poles in the propagatorG(E) come from the di-
vergence of the sum over orbits for large numbers of or
~largeT), soLeff(v) is defined by taking the largeT limit:

Leff~v![ lim
T→`

2 i

T
ln Z~v!. ~A46!

APPENDIX B: EVALUATION OF Gij
„n…

We will now evaluate Eq.~8.17!,

Gc
i j ~n![~21! i 1 jS@~21! i R̄i #S@~21! j R̄j #ḡ i

22ḡ j
22

3
]2

]r ]r 8
G~r ,r 8,n!U

r 85(21)i R̄i

r 5(21) j R̄j

. ~B1!

The Green’s functionG(r ,r 8,n) can be written in terms o
functionsl i(r ,n),

G~r ,r 8,n!52
l 1~r .!l 2~r ,!

S~r !g22W@ l 1 ,l 2#
, ~B2!

and their Wronskian,

W@ l 1 ,l 2#5S ] l 1~r !

]r
l 2~r !2

] l 2~r !

]r
l 1~r ! D . ~B3!

The functionsl i(r ,n) satisfy the differential equation

S 2
]

]r
g22S~r !

]

]r
2S~r !~n22C! D l i~r ,n!50, ~B4!

with the boundary conditions

l i„~21! j R̄j ,n…5d i j . ~B5!

We will evaluateGc
i j in both theu sector, whereC5v2 and

S(r )5gr 2, and thef sector, whereC50 andS(r )5g3r 2.
We begin with theu sector. The first thing we do is

change variables. We use the ‘‘proper length’’ coordinatex,
previously defined Eq.~9.1! to be

x5
1

v
arcsin~vr !. ~B6!

We also change the normalization of the functionsl i
u(r ,n).

We define the functionsqi
u(x,n):

qi
u~x,n!5

1

r
l i
u~r ,n!. ~B7!

The qi
u satisfy the differential equation
09404
-

s

S n21
]2

]x2D qi
u~x,n!50 ~B8!

and the boundary conditions

qi
uS ~21! i

v
arcsinv i ,n D5d i j ~21! i R̄i . ~B9!

Therefore, theqi
u are

qi
u~x,n!5R̄i

sinS nx1~21! i
n

v
arcsinv ı̂ D

sin~nRp!
, ~B10!

wherev ı̂ is the ‘‘other’’ velocity, i.e.v 2̂5v1 andv 1̂5v2, and
Rp is given by Eq.~3.19!.

The functionsl i
u(r ,n) are therefore

l i
u~r ,n!5

R̄i

r

sinS n

v
@arcsin~vr !1~21! iarcsinv ı̂# D

sin~nRp!
,

~B11!

andGu
i j (n) is

Gu
i j ~n!5d i j S 2

R̄i

ḡ i

1nR̄i
2cot~nRp!D

2~12d i j !nR̄i R̄jcsc~nRp!. ~B12!

Next, consider thef sector. We define the function
qi

f(x,n),:

l i
f~r ,n!5

1

gr
qi

f~x,n!. ~B13!

The qi
f satisfy the differential equation

S n21
]2

]x2
22v2sec2~vx!D qi

f~x,n!50, ~B14!

with boundary conditions

qi
fS ~21! j

v
arcsinv j ,n D5d i j ~21! i R̄i ḡ i . ~B15!

Theqi
f are related to the eigenfunctions~C31!, and are given

by
2-23
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qi
f~x,n!5R̄i ḡ iF @n22~21! iv2v ı̂ḡ ı̂tan~vx!#~21! isinS nx1~21! i

n

v
arcsinv î D2nv@~21! i tan~vx!1v ı̂ḡ ı̂#

3cosS nx1~21! i
n

v
arcsinv î D G@~n22v2v1ḡ1v2ḡ2!sin~nRp!2nv~v1ḡ11v2ḡ2!cos~nRp!#21. ~B16!

This gives the value ofGf
i j (n):

Gf
i j ~n!52d i j ḡ i R̄i

n2

v2
1

n

v3
~n22v2!

d i j @nv i ḡ isin~nRp!2vv1ḡ1v2ḡ2cos~nRp!#1~12d i j !vv i ḡ1v2ḡ2

~n22v2v1ḡ1v2ḡ2!sin~nRp!2nv~v1ḡ11v2ḡ2!cos~nRp!
. ~B17!

APPENDIX C: EVALUATION OF L boundary

We now evaluate the contributionLboundaryof the boundary degrees of freedom to the effective Lagrangian:

Lboundary5 lim
T→`

2 i

T H 2
1

2 (
i 51

2

Tr lnF n21~2ḡ i
221!v2

n2 G2
1

2
Tr lnF Gu

i j 21

d i j miR̄i
2ḡ in

2G2
1

2
Tr lnF Gf

i j 21

d i j miR̄i
2ḡ i

3n2G J . ~C1!

Converting the traces to integrals, inserting the explicit form~10.4! of Gu
i j 21 and ~10.5! of Gf

i j 21, and Wick rotatingn→
2 in givesLboundarythe form

Lboundary52
1

2
E dn

2p H tr lnF d i j

n22~2ḡ i
221!v2

n2 G1tr lnF d i j

n21v2

n2
1

v3

n2
Aḡ i ḡ j

v iv j

Gu
i j ~2 in!G1tr lnF d i j

n21~2ḡ i
211!v2

n22~2ḡ i
221!v2

1
v3

n2

1

Av i ḡ iv j ḡ j

Gf
i j ~2 in!G J . ~C2!

The traces in Eq.~C2! are over the indicesi , j .
The integral over the first trace in Eq.~C2! is zero. The integrals over the second and third terms are logarithmi

divergent in the cutoff on the wavelengths of string modes. Three of these modes are translation modes, so their con
to Lboundaryshould not be included in our calculation of meson masses. Normally these modes would contribute no
Lboundary, since they appear atn50. However, two of these modes are in thef sector, and as a result of the frequency shifti
in that sector, they appear as poles inGf

i j at n56v. These modes contribute toLboundaryas harmonic oscillators with frequenc
v, so the contribution of the translation modes toLboundaryis

Lboundary
translation502

v

2
2

v

2
52v. ~C3!

Subtracting this contribution fromLboundarygives

Lboundary52
1

2
E dn

2p H tr lnF d i j

n21v2

n2
1

v3

n2
Aḡ i ḡ j

v iv j

Gu
i j ~2 in!G1tr lnF d i j

n21~2ḡ i
211!v2

n22~2ḡ i
221!v2

1
v3

n2

1

Av i ḡ iv j ḡ j

Gf
i j ~2 in!G J

1v. ~C4!

We see that there is a logarithmic divergence inLboundaryby noting that, without a cutoff,Gu
i j (2 in) andGf

i j (2 in) are

Gu
i j ~2 in!5d i j S 2

R̄i

ḡ i

1nR̄i
2coth~nRp!D 2~12d i j !nR̄i R̄jcsch~nRp!,

Gf
i j ~2 in!5d i j ḡ i R̄i

n2

v2
2

n

v3
~n21v2!

d i j @nv i ḡ isinh~nRp!1vv1ḡ1v2ḡ2cosh~nRp!#2~12d i j !vv i ḡ1v2ḡ2

~n21v2v1ḡ1v2ḡ2!sinh~nRp!1nv~v1ḡ11v2ḡ2!cosh~nRp!
. ~C5!

The functions~C5! are proportional ton in the largen limit. We pull this divergence outside of the logarithm by adding a
subtracting the trace ofGi j from the integrals. This breaks Eq.~C4! into four parts,
094042-24



es in

ons

st

SEMICLASSICAL QUANTIZATION OF EFFECTIVE . . . PHYSICAL REVIEW D 65 094042
Lboundary5Lu
log term1Lf

log term1Lu
cutoff1Lf

cutoff , ~C6!

where

Lu
log term52

1

2E dn

2p H tr lnFd i j S 11
vv i ḡ i

n
coth~nRp! D 2~12d i j !

v

n
Av1ḡ1v2ḡ2csch~nRp!G

2(
i 51

2
v3

n2
v i ḡ i S nR̄i

2coth~nRp!2
R̄i

2

Rp
D J ,

Lf
log term52

1

2E dn

2p
H tr lnF 2d i j

n21v2

n22~2ḡ i
221!v2

2~n21v2!

3

d i j S sinh~nRp!1
vv1ḡ1v2ḡ2

nv i ḡ i

cosh~nRp!D 2~12d i j !
v

n
Av i ḡ1v2ḡ2

~n21v2v1ḡ1v2ḡ2!sinh~nRp!1nv~v1ḡ11v2ḡ2!cosh~nRp!
G2(

i 51

2
v3

n2

1

v i ḡ i
F ḡ i R̄i

n2

v2

1
v1ḡ1v2ḡ2

v~v1ḡ11v2ḡ2!1v2Rpv1ḡ1v2ḡ2

2
n

v3
~n21v2!

3
nv i ḡ isinh~nRp!1vv1ḡ1v2ḡ2cosh~nRp!

~n21v2v1ḡ1v2ḡ2!sinh~nRp!1nv~v1ḡ11v2ḡ2!cosh~nRp!
G J 1v, ~C7!

and where

Lu
cutoff52

1

2E dn

2p (
i 51

2
v3

n2

ḡ i

v i
@Gu

i i ~2 in!2Gu
i i ~0!#,

Lf
cutoff52

1

2E dn

2p (
i 51

2
v3

n2

1

v i ḡ i

@Gf
i i ~2 in!2Gf

i i ~0!#. ~C8!

We have grouped the termv with the f sector, since it was introduced to cancel the contribution of the translation mod
thef sector. The presence ofGu

i i (0) andGf
i i (0) in the cutoff terms removes a divergence atn50. The logarithmic divergence

is now entirely inLu
cutoff andLf

cutoff . SinceLu
log term andLf

log term are cutoff independent, we have inserted the explicit functi
~C5! into their definitions~C8!.

Naive insertion of the functions Eq.~C5! into Lu
cutoff and Lf

cutoff in ~C4! would make these integrals divergent. We mu
therefore include the dependence of the Green’s functionG(r ,r 8,n) on the cutoffL in the definitions ofGu

i j and Gf
i j . We

determine the cutoff dependence ofG(r ,r 8,n) by writing it as a sum of functionssn(r ),

G~r ,r 8,n!5 (
n51

nmax 1

xn2n2

sn~r !sn~r 8!

E
2R̄1

R̄2
dr9S~r 9!sn

2~r 9!

, ~C9!

which satisfy the eigenfunction equation

S 2
]

]r
S~r !g22

]

]r
1S~r !~xn1C! D sn~r !50, ~C10!

with eigenvaluexn and boundary conditions

sn~2R̄1!5sn~R̄2!50. ~C11!
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The upper limit of the sum in Eq.~C9! is defined by the equation

xnmax
<L2,xnmax11 . ~C12!

Inserting Eq.~C9! in the definition~8.17! for the Gi j gives

Gc
i j ~n![~21! i 1 jS@~21! i R̄i #S@~21! j R̄j #ḡ i

22ḡ j
22(

n51

nmax 1

xn2n2

sn8@~21! i R̄i #sn8@~21! i R̄j #

E
2R̄1

R̄2
dr9S~r 9!sn

2~r 9!

. ~C13!

The cutoff dependent part ofLboundaryhas the form

Lc
cutoff52

1

2E dn

2p (
i 51

2
v3

n2

v i ḡ i
2

v2S@~21! i R̄i #
@Gc

i i ~2 in!2Gc
i i ~0!#. ~C14!

Inserting Eq.~C13! into Eq. ~C14! gives

Lc
cutoff52

1

2E dn

2p (
i 51

2
v

n2
v i ḡ i

22S@~21! i R̄i # (
n51

nmax $sn8@~21! i R̄i #%
2

E
2R̄1

R̄2
dr9S~r 9!sn

2~r 9!
S 1

xn1n2
2

1

xn
D

52
v

2 (
i 51

2

v i ḡ i
22S@~21! i R̄i # (

n51

nmax

xn
23/2 $sn8@~21! i R̄i #%

2

E
2R̄1

R̄2
dr9S~r 9!sn

2~r 9!

. ~C15!

For theu sector, the eigenfunctionssn(r ) are

sn~r !5
1

r
knS arcsinvr

v D , ~C16!

wherekn is defined by

kn~x!5sinS pn

Rp
~x1X1! D , ~C17!

and the eigenvaluesxn are

xn5S pn

Rp
D 2

. ~C18!

Replacing thesn(r ) with Eq. ~C16! gives

Lu
cutoff52

1

2 (
i 51

2

ḡ iv iv (
n51

LRp /p
1

pn
. ~C19!

Replacing the sum overn with a contour integral with poles atz5pn/Rp gives

Lu
cutoff52

1

4p i (
i 51

2

ḡ iv ivE dz
1

z
cot~Rpz!. ~C20!

The contour runs along the line Rez5p/(2Rp) and along a semicircle whereuzu5L, the cutoff, and the real part ofz is
positive.

We divide Eq.~C20! into two integrals over the parts of the contour to get

Lu
cutoff52

1

4p (
i 51

2

ḡ iv ivF E2AL22p2/4Rp
2

AL22p2/4Rp
2

dy
1

y2 i
p

2Rp

tanh~Rpy!1E
2arccos(p/2RpL)

arccos(p/2RpL)

du cot~LRpeiu!G . ~C21!
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The cotangent in theu integral is proportional to the sign ofu for largeL, so theu integral vanishes. The integral overy is
real, because the imaginary part of the integrand changes sign wheny→2y:

Lu
cutoff52

1

2p (
i

ḡ iv ivE
0

AL22p2/4Rp
2

dy
y

y21
p2

4Rp
2

tanh~Rpy!. ~C22!

We extract the cutoff dependence from the integral to get

Lu
cutoff52(

i

vv i ḡ i

2p F lnS 2MRp

pḡ i
D 1E

0

`

du
u

u21
p2

4

~ tanhu21!G . ~C23!

We have replacedL, the cutoff for the coordinatex, by M /ḡ i , whereM is the cutoff for the physical coordinater, as we did
in Eq. ~9.14!. We have also changed integration variables tou5yRp .

The logarithmic dependence of Eq.~C23! on M is removed by renormalization of the coefficientk of the geodesic curvature
term defined in Eq.~4.2!. Since the geodesic curvature diverges in the small quark mass limit, our choice of renormal
point determines the coefficient of the leading term in the effective Lagrangian in that limit. In the final result, the renorm
geodesic curvature term will cancel the divergence of the semiclassical corrections in the small quark mass limit. We t
choose the renormalization point for which there is no small quark mass divergence in the semiclassical corrections.
evaluate bothLu

log term andLu
cutoff , since both contribute to the small mass limit divergence.

The termLu
log term in Lboundaryis

Lu
log term52

1

2E dn

2p H lnF11
v

n
~v1ḡ11v2ḡ2!coth~nRp!1

v2

n2
v1ḡ1v2ḡ2G2

vv i ḡ i

n (
i

Fcoth~nRp!2
1

nRp
G J . ~C24!

We can simplify this integral by rewriting the integrand:

Lu
log term52E

0

` dn

2p
lnF11

vn~v1ḡ11v2ḡ2!

n21nv~v1ḡ11v2ḡ2!1v2v1ḡ1v2ḡ2

@coth~nRp!21#G
1E

0

` dn

2p H lnF S 11
v

n
v1ḡ1D S 11

v

n
v2ḡ2D G2(

i

vv i ḡ i

n Fcoth~nRp!2
1

nRp
G J . ~C25!

Integrating by parts in the second integral gives

Lu
log term52E

0

` dn

2p
lnF11

vn~v1ḡ11v2ḡ2!

n21nv~v1ḡ11v2ḡ2!1v2v1ḡ1v2ḡ2

@coth~nRp!21#G1(
i

vv i ḡ i

2p H Fn1vv i ḡ i

vv i ḡ i

ln~n1vv i ḡ i !

2
n ln n

vv i ḡ i

2 ln~nRp!S coth~nRp!2
1

nRp
D GU

0

`

2RpE
0

`

dn ln~nRp!F csch2~nRp!2
1

n2Rp
2G J . ~C26!

Evaluating this expression and making the change of variablest5nRp gives

Lu
log term52E

0

` dn

2p
lnF11

vn~v1ḡ11v2ḡ2!

n21nv~v1ḡ11v2ḡ2!1v2v1ḡ1v2ḡ2

@coth~nRp!21#G
1(

i

vv i ḡ i

2p H 2 ln~Rpvv i ḡ i !112E
0

`

dt ln tFcsch2~ t !2
1

t2G J . ~C27!

The sum ofLu
cutoff andLu

log term is
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Lu
cutoff1Lu

log term52E
0

` dn

2p
lnF11

vn~v1ḡ11v2ḡ2!

n21nv~v1ḡ11v2ḡ2!1v2v1ḡ1v2ḡ2

@coth~nRp!21#G
1(

i

vv i ḡ i

2p H lnS 2Mmi

ps D111E
0

`

du
u

u21
p2

4

~ tanhu21!2E
0

`

dt ln tFcsch2~ t !2
1

t2G J , ~C28!

where we have used the classical equation of motion~3.23! to simplify the argument of the logarithm. The terms in the su
are renormalizations of the geodesic curvature, so, after renormalization,

Lu
cutoff1Lu

log term52E
0

` dn

2p
lnF11

vn~v1ḡ11v2ḡ2!

n21nv~v1ḡ11v2ḡ2!1v2v1ḡ1v2ḡ2

@coth~nRp!21#G , ~C29!

For two massless quarks the integral~C29! is zero, and for one massless and one heavy quark it has the valuev/8
1O(vheavy).

We next evaluateLf
cutoff , using the formula~C15! as we did forLu

cutoff . For thef sector, the eigenfunctionssn(r ) are

sn~r !5
1

gr
f nS arcsinvr

v D , ~C30!

where f n is defined by

f n~x!5Axncos~Axnx1dn!1vtan~vx!sin~Axnx1dn!, ~C31!

and the eigenvaluesxn satisfy the equation

tan~AxnRp!5Axnv
v1ḡ11v2ḡ2

xn2v2v1ḡ1v2ḡ2

. ~C32!

The solutionxn5v2 to Eq. ~C32! is not a valid eigenvalue, as it causes Eq.~C31! to vanish everywhere. The phasesdn are

dn5
Axn

v
arcsinv11arctanS Axn

vv1ḡ1
D

52
Axn

v
arcsinv22arctanS Axn

vv2ḡ2
D . ~C33!

The definition~C32! of xn makes the two definitions fordn equivalent.
Replacing thesn(r ) with Eq. ~C30! gives

Lf
cutoff52

1

2 (
i

ḡ iv iv(
n

1

Ann

~nn2v2!

~nn1v2v i
2ḡ i

2!
FRp1

vv1ḡ1

nn1v2v1
2ḡ1

2
1

vv2ḡ2

nn1v2v2
2ḡ2

2G21

5
1

2 (
n

~nn2v2!
1

AnnF 12
Rp

Rp1
vv1ḡ1

nn1v2v1
2ḡ1

2
1

vv2ḡ2

nn1v2v2
2ḡ2

2
G . ~C34!

The function

F~z!5
d

dz
lnF ~z22v2v1ḡ1v2ḡ2!sin~Rpz!2vz~v1ḡ11v2ḡ2!cos~Rpz!

z22v2 G ~C35!

has poles of the residue one atz56Ann. We rewrite the sum~C34! as a contour integral
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Lf
cutoff52

1

4p i E dz~z22v2!
1

zF 12
Rp

Rp1
vv1ḡ1

z21v2v1
2ḡ1

2
1

vv2ḡ2

z21v2v2
2ḡ2

2
G F~z!. ~C36!

The contour is the same as for Eq.~C20!. The poles in the term in square brackets in Eq.~C36! all lie on the imaginary axis,
which lies outside of the integration contour. EvaluatingF(z) gives

Lf
cutoff52

1

4p i E dz~z22v2!
1

zF 12
Rp

Rp1
vv1ḡ1

z21v2v1
2ḡ1

2
1

vv2ḡ2

z21v2v2
2ḡ2

2
G H $@21Rpv~v1ḡ11v2ḡ2!#z sin~Rpz!1@z2Rp

2v~v1ḡ11v2ḡ2!2v2Rpv1ḡ1v2ḡ2#cos~Rpz!%@~z22v2v1ḡ1v2ḡ2!sin~Rpz!2v z~v1ḡ11v2ḡ2!cos~Rpz!#21

2
2z

z22v2J . ~C37!

The term 2z/(z22v2) does not contribute to the integral, since its poles are canceled by the factor ofz22v2 in the integrand.
We divide the integral overz into an integral over the line at Rez5p/(2Rp) and an integral over the semicircle atuzu

5L. The integral over the semicircle vanishes, and the integral over the line is

Lf
cutoff52

1

4pE2AL22p2/4Rp
2

AL22p2/4Rp
2

dyF S y2 i
p

2Rp
D 2

1v2G 1

y2 i
p

2Rp

3FRpS Rp2
vv1ḡ1

S y2 i
p

2Rp
D 2

2v2v1
2ḡ1

2

2
vv2ḡ2

S y2 i
p

2Rp
D 2

2v2v2
2ḡ2

2D 21

21G
3H F S y2 i

p

2Rp
D 2

Rp1v~v1ḡ11v2ḡ2!1v2Rpv1ḡ1v2ḡ2Gsinh~Rpy!

1@21Rpv~v1ḡ11v2ḡ2!#S y2 i
p

2Rp
D cosh~Rpy!J

3H F S y2 i
p

2Rp
D 2

1v2v1ḡ1v2ḡ2Gcosh~Rpy!1vS y2 i
p

2Rp
D ~v1ḡ11v2ḡ2!sinh~Rpy!J 21

. ~C38!

Extracting the divergent part gives

Lf
cutoff52(

i

v i
2ḡ i

2pR̄i

lnS 2MRp

pḡ i
D 1

1

2pE0

`

dyReS F S y2 i
p

2Rp
D 2

1v2G 1

y2 i
p

2Rp

3

vv1ḡ1

~y2 ip/2Rp!22v2v1
2ḡ1

2
1

vv2ḡ2

~y2 ip/2Rp!22v2v2
2ḡ2

2

Rp2
vv1ḡ1

~y2 ip/2Rp!22v2v1
2ḡ1

2
2

vv2ḡ2

~y2 ip/2Rp!22v2v2
2ḡ2

2

H F S y2 i
p

2Rp
D 2

Rp1v~v1ḡ11v2ḡ2!

1v2Rpv1ḡ1v2ḡ2Gsinh~Rpy!1~21Rpv~v1ḡ11v2ḡ2!!S y2 i
p

2Rp
D cosh~Rpy!J H F S y2 i

p

2Rp
D 2

1v2v1ḡ1v2ḡ2Gcosh~Rpy!1vS y2 i
p

2Rp
D ~v1ḡ11v2ḡ2!sinh~Rpy!J 21

2(
i

vv i ḡ i

y2 i
p

2Rp

D , ~C39!
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where we have replacedL with M /ḡ i just as we did withLu
cutoff .

We are interested in the value ofLu
cutoff in two limits, one whereḡ1 ,ḡ2→`, and one wherev1!1, ḡ2→`. In the first limit,

the integral~C39! is dominated by the region wherey is large. Ify is of orderv, the term in the integrand which contains th
hyperbolic functions is of orderḡ i

21 , so we can make the approximation

sinh~Rpy!.cosh~Rpy!.
1

2
eRpy ~C40!

to simplify the integrand:

Lf
cutoff52(

i

vv i ḡ i

2p
lnS 2MRp

pḡ i
D 1

1

2p
ReE

0

` dy

y2 i
p

2Rp 5 F S y2 i
p

2Rp
D 2

1v2G

3S (
i

vv i ḡ i

S y2 i
p

2Rp
D 2

2v2v i
2ḡ i

2D
Rp1(

i

1

y2 i
p

2Rp
1vv i ḡ i

Rp2(
i

vv i ḡ i

S y2 i
p

2Rp
D 2

2v2v i
2ḡ i

2

2(
i

vv i ḡ i6 1O~ ḡ i
21!. ~C41!

The terms in the integrand can be rearranged to extract the most important part of the integrand for largey:

Lf
cutoff52(

i

vv i ḡ i

2p F lnS 2MRp

pḡ i
D 1ReE

0

` dy

y2 i
p

2Rp

S S y2 i
p

2Rp
D 2

1v2

S y2 i
p

2Rp
D 2

2v2v i
2ḡ i

2

21D G1
1

2p
ReE

0

`

dyF S y2 i
p

2Rp
D 2

1v2G

3S (
i

vv i ḡ i

S y2 i
p

2Rp
D 2

2v2v i
2ḡ i

2D S (
i

1

S y2 i
p

2Rp
D 2

2v2v i
2ḡ i

2D S Rp2(
i

vv i ḡ i

S y2 i
p

2Rp
D 2

2v2v i
2ḡ i

2D 21

1O~ ḡ i
21!.

~C42!

The second integral in Eq.~C42! is zero. We can rewrite it as an integral from2` to `, since the real part of the integran
is symmetric wheny→2y. We can then convert it into an integral over a closed contour by adding a semicircle which p
throughy52 i`. The integrand has no poles inside this contour, so the integral is zero. The first integral in Eq.~C42! can be
done exactly, giving

Lf
cutoff52(

i

vv i ḡ i

2p
lnS M

vv i ḡ i
2D 1O~ ḡ1

21 ,ḡ2
21!, ~C43!

in the limit ḡ1 ,ḡ2→`.
In the limit v1!1, ḡ2→`, Lf

cutoff splits into two parts. One part, dominated byy5vv2ḡ21O(1), is evaluated the same
way as in the light-light case. The other part is dominated by smally and is handled differently. Using the result~C43! to
evaluate the first part and taking the limitḡ2→` in the second part gives
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Lf
cutoff52

vv1ḡ1

2p
lnS 2MRp

pḡ1
D 2

vv2ḡ2

2p
lnS M

vv2ḡ2
2D 1

vv1ḡ1

2p E
0

` dy

y2 i
p

2Rp

ReH S y2 i
p

2Rp
D 2

1v2

RpF S y2 i
p

2Rp
D 2

2v2v1
2ḡ1

2G2vv1ḡ1

3

~v1v2Rpv1ḡ1!sinh~Rpy!1RpvS y2 i
p

2Rp
D cosh~Rpy!

v2v1ḡ1cosh~Rpy!1vS y2 i
p

2Rp
D sinh~Rpy!

21J 1O~ ḡ2
21!. ~C44!

Sincey2 ip/2Rp is always at least of order 1, the integrand in Eq.~C44! is of order 1, and the term containing the integr
is of orderv1. The difference between the first two terms in Eq.~C44! and the terms in Eq.~C43! is also of orderv1. Therefore,
in the heavy-light limit,

Lf
cutoff52(

i

vv i ḡ i

2p
lnS M

vv i ḡ i
2D 1O~v1 ,ḡ2

21!. ~C45!

We next evaluateLf
log term. We can simplify the integral by separating it into two parts which are small forn@v and one

part which does not contain hyperbolic functions. We break then integral into three pieces:

Lf
log term52I 12I 22I 3 , ~C46!

where

I 15(
i
E

0

` dn

2p F lnS ~n21v2!~n212nvv i ḡ i1~2ḡ i
221!v2!

~n22~2ḡ i
221!v2!n~n1vv i ḡ i !

D 2
v i ḡ iv

n1v i ḡ iv
G2v,

I 25E
0

` dn

2p
H tr lnF 2d i j

n21v2

n22~2ḡ i
221!v2

2~n21v2!

3

d i j S sinh~nRp!1
vv1ḡ1v2ḡ2

nv i ḡ i

cosh~nRp!D 2~12d i j !
v

n
Av i ḡ1v2ḡ2

~n21v2v1ḡ1v2ḡ2!sinh~nRp!1nv~v1ḡ11v2ḡ2!cosh~nRp!
G

2(
i

lnS ~n21v2!@n212nvv i ḡ i1~2ḡ i
221!v2#

@n22~2ḡ i
221!v2#n~n1vv i ḡ i !

D J ,

I 352(
i
E

0

` dn

2p H v3

n2

1

v i ḡ i
F ḡ i R̄i

n2

v2
1

v1ḡ1v2ḡ2

v~v1ḡ11v2ḡ2!1v2Rpv1ḡ1v2ḡ2

2
n

v3
~n21v2!

3
nv i ḡ isinh~nRp!1vv1ḡ1v2ḡ2cosh~nRp!

~n21v2v1ḡ1v2ḡ2!sinh~nRp!1nv~v1ḡ11v2ḡ2!cosh~nRp!
G2

vv i ḡ i

n1v i ḡ iv
J . ~C47!

The second and third integrals are dominated by the region wheren is small. We can evaluateI 1 exactly, since the argumen
of the logarithm factorizes. We find

I 15(
i

H vv i ḡ i

2p F12 lnS 2ḡ i
221

ḡ i
221

D 1
p

v i
1

2

v i
arctan~v i !G J . ~C48!

In both the light-light and heavy-light limits we take the limitḡ2→`. In this limit, the three integrals~C47! are
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I 15
vv1ḡ1

2p F12 lnS 2ḡ1
221

ḡ1
221

D 1
p

v1
1

2

v1
arctan~v1!G1

vv2ḡ2

2p S 12 ln 21
3

2
p D1O~ ḡ2

21!,

I 25
v

2pE0

`

ds lnF ~s1v1ḡ1!@~s212ḡ1
221!sinh~svRp!12sv i ḡ icosh~svRp!#

@s cosh~svRp!1v1ḡ1sinh~svRp!#~s212sv1ḡ112ḡ1
221!

G1O~ ḡ2
21!,

I 352
v

2pE0

`

dsF s

s1v1ḡ1

2
~s211!cosh~svRp!

s2 cosh~svRp!1sv1ḡ1sinh~svRp!
1

1

s2

1

11vRpv1ḡ1
G1O~ ḡ2

21!,

~C49!

where we have changed integration variables inI 2 and I 3 to s5n/v.
In the light-light limit, we takeḡ1→` and find

I 15(
i

vv i ḡ i

2p S 12 ln 21
3

2
p D1O~ ḡ1

21 ,ḡ2
21!,

I 25O~ ḡ1
21 ,ḡ2

21!,

I 35O~ ḡ1
21 ,ḡ2

21!, ~C50!

so Lf
log term is

Lf
log term52(

i

vv i ḡ i

2p S 12 ln 21
3

2
p D1O~ ḡ1

21 ,ḡ2
21! ~C51!

in this limit. The combinationLf
log term1Lf

cutoff is then

Lf
log term1Lf

cutoff52(
i

vv i ḡ i

2p F lnS M

vv i ḡ i
2D 112 ln 21

3

2
pG1O~ ḡ1

21 ,ḡ2
21!. ~C52!

After renormalizing the geodesic curvature, we obtain

Lf
log term1Lf

cutoff50, ~C53!

in the limit of massless quarks.
In the heavy-light limit, we takev1→0 in Eq. ~C49! and find

I 15
vv2ḡ2

2p S 12 ln 21
3

2
p D1

1

2
v1O~v1ln v1 ,ḡ2

21!,

I 25
v

2pE0

`

ds ln tanhS p

2
sD1O~v1 ,ḡ2

21!52
1

8
v1O~v1 ,ḡ2

21!,

I 35O~v1 ,ḡ2
21!. ~C54!

Thus, in this limit, after renormalizing the geodesic curvature,

Lf
log term1Lf

cutoff52
3

8
v1O~v1ln v1 ,ḡ2

21!. ~C55!

Combining Eq.~C29! with Eq. ~C53! givesLboundaryin the light-light limit,

Lboundary50, ~C56!

and combining Eq.~C29! with Eq. ~C55! givesLboundaryin the heavy-light limit:

Lboundary52
1

4
v. ~C57!
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