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Nonperturbative Landau gauge and infrared critical exponents in QCD
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We discuss Faddeev-Popov quantization at the nonperturbative level and show that Gribov’s prescription of
cutting off the functional integral at the Gribov horizon does not change the Schwinger-Dyson equations, but
rather resolves an ambiguity in the solution of these equations. We note that Gribov’s prescription is not exact,
and we therefore turn to the method of stochastic quantization in its time-independent formulation, and recall
the proof that it is correct at the nonperturbative level. The nonperturbative Landau gauge is derived as a
limiting case, and it is found that it yields the Faddeev-Popov method in the Landau gauge with a cutoff at the
Gribov horizon, plus a novel term that corrects for overcounting of Gribov copies inside the Gribov horizon.
Nonperturbative but truncated coupled Schwinger-Dyson equations for the gluon and ghost projfiadgtors
andG(k) in the Landau gauge are solved asymptotically in the infrared region. The infrared critical exponents
or anomalous dimensions, defined Byk)~ 1/(k?)1"3 and G(k)~1/(k?)1* 3¢, are obtained in space-time
dimensionsd=2, 3, 4. Two possible solutions are obtained with the valuesl=rt dimensionsag=1, ap
=-2, orag= (93— 1201)/98<0.595353a,= — 2a¢ .
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[. INTRODUCTION gence of the stochastic process has been studied theoretically
[10].

The problem of confinement in QCD presents a challenge We briefly review Faddeev-Popov quantization as a non-
to the theorist. One would like to understand how and whyperturbative formulation. We note that the Faddeev-Popov
QCD describes a world of color-neutral hadrons with a massveight P-(A) possessesodal surfacesn A space where
gap, even though it appears perturbatively to be a theory dhe Faddeev-Popov determinant vanishes, and that a cutoff of
unconfined and massless gluons and quarks. A basic insigtie functional integral on a nodal surface does not alter the
into the origin of the mass gap in gluodynamics was pro-Schwinger-Dyson equations, because it does not introduce
vided by Feynmari1], Gribov[2], and Cutkosky3]. These boundary terms. As a result, Gribov’s prescription to cut off
authors proposed that the mass gap is produced by the drastite functional integral at thefirst) Gribov horizon[2], a
reduction of the physical configuration space in non-Abeliar’odal @ surface that completely surrounds the orfditl,
gauge theory that results from the physical identificationdoes not change the Schwinger-Dyson equations of Faddeev-
A,~A,, of distinct but gauge-equivalent field configura- Popov theory at all, but rather it resolves an ambiguity in the

tions, A,=9A,. A simple analogy is the change in the spec-s’omtIon of these equations.

trum of a free particle moving on a line, when points on the We recall that Grlbpvs prescription is not |n.fact exact
. . o o because there are Gribov copies inside the Gribov horizon
line are identified modulo2. The real line is reduced to the

circle so the continuous spectrum becomes discrete. In anﬂ-]at get overcounted. We then turn to the method of stochas-
. . pectr . L ' fic quantization as described by a time-independent diffusion
lytic calculations, the appropriate identification of gauge-

. . ) . . - equation inA space(so there is no fictitious “fifth time} [4].
equivalent configurations requires nonperturbative gauge fixrhis method by-passes the Gribov problem of choosing a

ing, and in this article we approach the confinement problemg s esentative on each gauge orbit because gauge fixing is
by considering how the nonperturbative gauge fixing impact$eplaced by the introduction of a “drift force” that is the
the Schwinger-Dyson equations of gluodynamics and theiharmless generator of a gauge transformation. We next de-
solution. We discuss both the Faddeev-POpOV formulationpive a formulation of the Landau gauge, which is valid non-
for which the Gribov problem may have an approximate—perturbatively, as a limiting case of stochastic quantization. It
but not an exact—solution, and stochastic gauge fixingjields the Faddeev-Popov theory with a cutoff at the Gribov
which overcomes this difficultj4]. We also briefly compare horizon, plus a novel term that corrects for overcounting in-
our results for the infrared critical exponents with numericalside the Gribov horizon.
evaluations of QCD propagators. In this connection we note However attractive a formulation may be that is valid at
that stochastic gauge fixing of the type considered here hase nonperturbative level, it would remain largely ornamental
been implemented numerically with good statistics on im-without actual nonperturbative calculations. Fortunately,
pressively large lattices (4& 64) [5,6,7,9. This opens the progress in finding approximate but nonperturbative solu-
exciting perspective of the close comparison of analytic andions for the propagators in QCD has been achieved recently
numerical calculations in this gauge. Stochastic quantizatiowithin the framework of Faddeev-Popov theory both in Cou-
has also been adapted to Abelian projec{i®h and conver- lomb gauge using the Hamiltonian formalig2], and in
Landau gauge by solving a truncated set of Schwinger-
Dyson equationg13,14], and [15]. The Schwinger-Dyson
*Email address: Daniel.Zwanziger@nyu.edu approach is reviewed ifl6]. In the latter part of the present
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article we solve the Schwinger-Dyson equations in the nontive inside() and vanishes o#). It is known that the Gribov
perturbative Landau gauge to obtain the infrared critical extegion has the following three properties(i) it is a convex
ponents or anomalous dimensions of the gluon and ghosegion of A spacejii) it is bounded in every direction, and
propagatorsD (k) and G(k) in d=2, 3, and 4 space-time (iii) it includes the origin11].

dimensions. The novel term is ignored here, in order to com- The existence of nodal surfaces Qt(A") implies that
pare with other recent calculations, but we explicitly selectthe solution of the Schwinger-DysofSD) equation for
the solution to the Schwinger-Dyson equations that vanishe&(J") is not unique. For if the integral2.2) that defines
outside the Gribov horizon. Although a truncation is necesZ(J") is cut off on any nodal surface, the same SD equation
sarily required to solve these equations, nevertheless the vébllows, without any boundary contribution. Moreover, since
ues obtained for the infrared asymptotic dimensions agrethe SD equation foZ(J") is linear, any linear combination
with exact results for probability distributions that vanish of two solutions is a solution. These ambiguities are reflected
outside the Gribov horizoifil7], namely the vanishing of in corresponding ambiguities in the solution of the SD equa-
D(k) atk=0, and an enhanced infrared singularity®fk).  tion for W(J")=In Z(J"), and for the effective actioRi(A"),
These properties also characterize the nonperturbative solgbtained fromw(J") by the Legendre transformation.

tions of the Schwinger-Dyson equations in QCD obtained in  [We illustrate these points with a baby model. We replace
recent studie$13,14,13, and we verify that they have also the field AZ(X) by a real variable, and the Faddeev-Popov
adopted the solution that vanishes outside the Gribov horiweigthFP(A") by p(a)=exp(1a)(1—g%?), which van-

Zon. ishes on the “Gribov horizon’a=+g~!. The partition
function Z,(j)=J"Zdap(a)exp(a) satisfies the SD equa-
Il. FADDEEV-POPOV QUANTIZATION AT THE tion

NONPERTURBATIVE LEVEL

The standard Faddeev-Pop@vP) Euclidean weight in I3 [ 9 J g\t
Land is given b —a | 572 =| 5= a7
andau gauge is given by 78\ 7] Z4(j) [aj (1+gaj>
Pee(A)=QpeA") 8(3,A,), g\t
: : o[ -9 7] }Zl“')
Qe A") =N ex — Sym(A")] 1
xdef —a,D ,(A")] (2.1 =]Z1(j), (2.9

with partition function
corresponding to the actioB = 3a®—In(1—ga®. Suppose
we restrict the integral to the Gribov regiofa|<g~?!, so
Z(J):f dA Peg(A)exp(J,A) the partition function is given instead byZ,(j)
zfl,’gl,gda p(a)exp(a). The change occurs only foa?
2.2 >1/g%, s0Z,(j) andZ,(j) have the same perturbative ex-
' pansion. It is clear that,(j) andZ,(j) satisfy thesameSD
equation (2.4) without a boundary contribution, because
where §,A)=[d*xJ%A% . It depends only on the transverse p(a) vanishes on the boundarmy=+1/g. Moreover, be-
components ofl and we writeZ=Z(J"). The complete set cause the SD equation f@(j) is linear, any linear combi-
of Schwinger-Dysor(SD) equations reads nation, Z(j) = aZ.(j)+ BZ»(j) also satisfies the same SD
equation. Of course only one of them corresponds to a
weight that is positive everywhere. This example easily gen-
(2.3 - ’ :
eralizes to any number of dimensiohs.
Gribov proposed to cut off the integral on the boundary
whereX (A") =Sy (A") — TrIn[—4d,D (A" ]. 9Q of what we now call the Gribov regiof, so the partition
The Faddeev-Popov operatof-d,D5%(A") = — 9?82 function is given by
—f3A1P5, is Hermitian becaus@" is transverseg, A
=0. However, it is not positive for everj". Because the
Faddeev-Popov determinant is the product of nontrivial ei- tr Zf tr tr tr atr
genvalues, det-d,D,(A")]=II,\,(A"), it vanishes to- ZaJ)= QdA Qrel AT eXp(JTAT), 29
gether withQrs(A") whenever any eigenvalue vanishes, and
the equation\,(A")=0 defines anodal surfaceof Qrp(A")
in A" space. The nodal surface where the lowest nontriviafor he conjectured that the region where the Faddeev-
eigenvalue vanishes, defined hy(A") =0, defines what is Popov operator is positive contains only one gauge copy
known as théfirst) Gribov horizon. It forms the boundary of on each gauge orbit. Since() is a nodal surfaceZg
the region(), known as the Gribov region, with the defining satisfies the same Schwinger-Dyson equation(2.3),
property that all nontrivial eigenvalues of the Faddeev-Popo\( 3./ 5A") (81 53")Z,=J3"Z,, . Instead, Gribov’s proposal se-
operator— a#DM(A") are positive. ClearfQro(A") is posi- lects a particular one out of a class of nonperturbative solu-

= f dA"Qrs( AN exp(J,Al),

2 1 1
i (61832=3"Z,
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tions of these equatiorts. overcounting with gauge fixing in Monte Carlo simulations,
It is now known, however, that Gribov’s conjecture is not which is achieved by a gauge transformation of choice after

exact. Indeed, there are Gribov copies inside the Gribowany sweep, nor is there one in stochastic or bulk quantization

horizon? We shall show, however, that an exact nonpertur-which relies on an infinitesimal gauge transformation. In the

bative formulation yields Gribov's proposal plus a well- five-dimensional formulation, the fieldl = A%(x,t) depends

defined correction term that corrects for overcounting insiden the four Euclidean coordinates and on the fifth time.

the Gribov horizon. One may easily write down the SD equations for this formu-
There is an alternative proposal to make the Faddeevation which involves a local five-dimensional action, and

Popov method valid nonperturbatively. It is conjectured thatBRST invariances and Slavnov-Taylor identities are avail-

if one sums over all Gribov copies using the signed Faddeevable to control divergencd®2,23, and[24]. However the

Popov determinant det d,D,(A")], then additional Gribov  five-dimensional propagatdd=D(k? w) depends on two

copies cancel in pairs, the reason being that the signed detéfvariantsk? and w, which makes the solution of the SD

minant counts the signed intersection number which is a toequations in five dimensions more complicated, and we shall

pological invariant. This is presumably the outcome ofnot attempt it here.

Becchi-Rouet-Stora-TyutiiBRST) quantization which has Instead we turn to an older four-dimensional formulation

formal properties that suggest it may be valid nonperturbaof stochastic quantizatiofd]. It is based on an analogy

tively [18]. Moreover, this conjecture is supported by simplebetween the (formal) Euclidean weight Pyy(A)

models[19] and [20]. However, it is not known at present =exg—S,,(A)] and the Boltzmann distributionP(x)

how to turn this prescription into a nonperturbative calcula-=exg—\V(x)]. The latter is the solution of the time-

tional scheme in QCD, for example, by selecting a particulaindependent diffusion equation

solution of the SD equations and moreover, if the measure is

not everywhere positive there is the danger of delicate can-

cellations that may cause an approximate solution to be un- i(i ﬂ) -0

reliable. On the other hand, the Gribov proposal is easily X\ ax;  IX '

implemented, for example by requiring that the solution of

the SD equation possess positivity properties. ) ,
where the drift force i&;= — dV/dx; . We shall shortly con-

sider more general drift forcek; that are not necessarily
IIl. TIME-INDEPENDENT STOCHASTIC QUANTIZATION conservative. The field-theoretic analog of this equation is

The difficulties with Faddeev-Popov gauge fixing pointed S S 8Syw
out by Gribov are by-passed by stochastic or bulk quantiza- HymP(A)= —f d*x SA(X) ( SAL(X) + SA. (X)
tion. This method is a formalization of a Monte Carlo simu- # " #
lation[21], and in its most powerful formulation it makes use XP(A)=0, (3.2
of a fictitious “fifth time” that corresponds to computer time
or number of sweeps of the lattice in a Monte Carlo simula- . . .
tion. Despite the Gribov ambiguity, there is no problem ofWwhere the drift force iy, ,(X)=—3dSyw /A, (), which
is solved byP(A)=exp(—Sywm)-
For a gauge theory, this solution is not normalizable.
IFor partition functionZ,,, the expectation value oA" in the ~ HHOWeVer, for a gauge t_heory one may modify the drift force
presence of the sourcl' is Ay=(A") = 6W,, /83", whereW,  Kym—Kym+Kg by adding to it a *force”Kq, tangent to the
=InZ,. Because the probability distribution in the presence ofdauge orbit, without changing the expectation value of
sourcesQ(ANexp@d!,A") is positive in the Gribov regiof), and ~ gauge-invariant observableéd(A). Such a force has the
becausd) is convex, it follows thai, lies in (. Consequently the form of an infinitesimal gauge transformatioi<}, ,
effective actionl'o(A.), obtained by Legendre transform from =(D,v)® wherev?®(x;A) is an element of the Lie algebra,
Wy, , is defined only on the Gribov region. and O ,v)%=d,0%+ f"‘bCAE’LvC is its gauge-covariant deriva-
?As shown in Sec. IV, they are given BA, whereg=gnin(X) is  tive. This force is not conservative, which means that it can-
any local minimum of the functionaF 5(g)=/d*x|9A]?, where ot pe expressed as a gradielt ,# — J3/5A,, so this

[ -1 H . . h . . .
9A=g "Ag+g" g is the transform of\ by the local gauge trans-  method is not available in a local action formalism in four
formationg(x). In a lattice discretization, the link variable corre- dimensions. The total drift force is given by

sponding to the fieldA(x) is generically a random field, so the

minimization problem is of spin-glass type which is known to have

many solutions. On the other hand, for a smooth configuration, such K =K +K
. 1% YM, u gt,u
as the vacuumA=0, there are few solutions. Thus the number of
copies is different for different orbits. Moreover, since the Faddeev- _ 0Sym D 3.2
Popov weight is positive inside the Gribov horizon, there can be no a 5A, uUs (3.2

cancellations to save the day. Note also that, in a lattice discretiza-

tion, the variables that characterize a configuration take values in a

compact space, so a minimizing configuration always exists, whicland P(A) is the solution of the modified time-independent
shows that() contains at least one Gribov copy for each orbit. diffusion equation
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HP=(Hyy+HgP values of the gauge parameter! the probability gets con-
centrated near the local minima of this functional restricted

_f 4 o ( o N OSym D olp to gauge orbit variation$At a local minimum the first varia-

SA A, OA, © tion vanishes for allw, 5F(A)=—2€(w,d,A,)=0, as we

have just seen, so at a minimum, the Landau gauge condition
(3.3 d,A,=0, is satisfied.In addition the second variation
in gauge orbit directions is non-negatives’F(A)
=—-2€e(w,d,0A,)=—2€*(w,d,D ,0)=0, for all w, which
is the statement that the Faddeev-Popov operMd@A)
=-49,D,(A) is positive. These are the defining properties
of the Gribov region, and we conclude that in the limit in
which the gauge parameter approaches zero0, the prob-
=G(v)=f d*x v (x)G(x), ability P(A) gets concentrated on transverse configurations
A=A" that lie inside the Gribov horizon. We have noted
above that there are Gribov copies inside the Gribov horizon.

(3.9 However, the present method does not require that the prob-
ability gets concentrated on any particular one of them such
as, for example, the absolute minimum of the minimizing
function, and for finite gauge parameterthe gauge-fixing is
“soft” in the sense that no particular gauge condition is im-

osed. For gauge-invariant observables, it does not matter

ow the probability is distributed along a gauge orbit, but
only that it be correctly distributed between gauge orbits.
This is assured because a harmless gauge transformation was
introduced instead of gauge fixing.

We have noted thaf becomes purely transverse in the
limit a—0. We shall solve Eq(3.6) in this limit by the
Born-Oppenheimer method in order to obtain the nonpertur-
bative Landau gauge. For small the longitudinal compo-
nent of A is small and, as we shall see, it evolves rapidly

It is easy to show[4] that the expectation valugO)
=JdA O(A)P(A) of gauge-invariant observablg3(A) is
independent o, using the fact that-lgt is the generator of
an infinitesimal local gauge transformation

G0)=Dygz~,
and thatO(A) andHy), are gauge invarianG(x)O=0, and
[G(X),Hym]=0.

The additional drift forcek , =D, v must be chosen so
that it is globally a restoring force along gauge orbits, thu
preventing the escape of probability to infinity along the
gauge orbit whereSy), is flat. This may be achieved by
choosingKy to be in the direction of steepest descent, re-
stricted to gauge orbit directions, of some conveniently cho-
sen minimizing functionaF (A). A convenient choice is the
Hilbert square normF(A)=|Al|>=fd*x|A,|%. For a ge-
neric infinitesimal variation restricted to gauge orbit direc-
tions 6A,= €D ,, we have

SF(A)=2(A,,6A,)=2(A, €D —2¢(A. 9 compared to the transverse component. However, because of
(A)=2( w=2 €Duw)=2¢€( w) the factora™! in Eq. (3.6), the mean value of the longitudi-
=—2€(d,A,,0). (3.5 nal part of the gluon propagator strongly influences the trans-

verse propagator in the lima— 0.
The direction of steepest descent|éf|, restricted to gauge  We decomposa into its transverse and longitudinal parts
orbit directions, is seen to béA,=e€D o for w=d\A\.  according toAb /_\trb+ al?y (32) 1Lh, S04, Ab al2 b,
Thus if we choose =a ™~ 14,A, , wherea is a positive gauge gn( 5/5Ab (5/5Atr b) a‘l’za (5/5Lb) In terms of these
parameter, the drift forck , ,=a “Ip «\A) points globally varlables Eq(3.6) reads
in the direction of steepest descent restricted to gauge orbit
directions, of the minimizing functmn:ﬁlAH2 In the follow-

; A o \ 5 &S,
ing we shall use the time-independent diffusion equation J 4 M_ -1
d*x 5A" 5A”+ oA, a “"q(A,XL)
o .
—j d*x ( + St OSym
oA\ A, OA, ( (92) +a1’2(9
WA,
-a 'D,9,\A )P
S Dﬂ(A)L> P=0, (4.2)
=0. (3.6
The five-dimensional formulation is based on the correWhEEfj e have used the notatiorKXL)"=[K,L]"
sponding time-dependent diffusion equation fPCKELY for elementsK and L of the Lie algebra The
leading terms irH are of ordera™ %, a~*?, anda’, and we
dPlot=—HP. (3.7 expand P=Py+a'?P,;+---. The Ieading term, of order
a1, reads

IV. NONPERTURBATIVE LANDAU GAUGE

Because the gauge-fixing force points in the direction of 3These conditions define a local minimumggk) =1 of the func-
steepest descent of the minimizing functioglA) =||/A|>,  tional on the gauge orbit throughA defined by Fa(g)
restricted to gauge orbit directions, it follows that for Iarge = [d*x|9A]2.
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) ) and we have use®°d(x,y;A")=(L°(x)L%y)). We now
4 2 tr . .
A 5[ (799 5~ duDu(ADL [Po=0. (42  take the limit a—0, namely P(A)—lim, oP(A)
=lim, .o Po(A). With L=a~25,A, this gives

This is solved byP, that is Gaussian i,
P(A)=Q(A"8(d,A,), (4.9
Po(A",L)=Q(A")(detX) 12
where Q(A") is the solution of Eq(4.6). This defines the
xexd —1/2(L,XL)], nonperturbative Landau gauge.
To exhibit the relation between the nonperturbative Lan-
dau gauge and the Faddeev-Popov theory, we decompose

Kgteff, given in Eq.(4.7), according to

4.3

whereXP¢(x,y;A") is a symmetric kernel. Equatio@.?) is
satisfied providedX satisfies[L,X(—#%)XL]—(L,XML)
=0 identically for allL, and tf(—#%)X—M]=0. HereM
=M(A")=-4,D,(A") is the Faddeev-Popov operator that
is symmetric for A transverse. The first equation yields
X(—20)X=XM+MX, or MY+YM=-24* for Y

theff: Ki+Ksy,

KS (x)=—£2¢% (M~H%(x,y)|,—y, 4.9

=X"1. Moreover, when this equation is satisfied it implies (%) ul ) y)Iy X 49
that the second equation is also satisfied. The equatio¥ for "
is linear. To solve it we take matrix elements in the basis Kg (X):J dt bedaM(aZ)’l{[Zﬁz,exq—Mt)]
provided by the eigenfunctions of the Faddeev-Popov opera- . 0

tr — — tr H
tor M(A"u,=\,U,, wherex,=\,(A"), and obtain Xexq—Mt)}Cd(x,y)|y:X.

71 —
(U, X77Un) = (Un Y U The first term may be written
=(AmtAm)  Hup,(—2%)uy). (4.9
b _ S(trinM) I3

We see that the Gaussian solutiBg(A",L) is normalizable K1u()= 5A2’b(x) - 5A;£’b(x) ' (4.10

in L only when all the eigenvalueks,(A") are positive,

tr; i 7 H . . . . .
namely, forA™ inside the Gribov region. However, we have 5o K ; is a conservative drift force, derived from an action

seen above that in the limi— 0 the solutionP(A) is sup-

S=triInM=—(IndetM) that precisely reproduces the

ported inside the Gribov region. Thus the coefficient functionagdeev-Popov determinant. Sd<i§ were neglected we re-
Q(A") carries a facto®(\o(A")), which restricts the sup- gain the Faddeev-Popov theory, with the added stipulation to

port of P, to this region. Finally we note that fok" in the
Gribov region,Y may be written

X l=y= f:dtexp(— Mt)(—2d%)exp(—Mt). (4.5

This representation shows explicitly thétis a positive op-
erator forA" inside the Gribov region.

To determineQ(A") we substitute Eq(4.3) into Eq.(4.1),
and integrate ovet. This kills the term ind/SL. It also
kills the term of ordera™? in a '?A,xL=a""{A]
+a'9,(#®) 'L]XL because this term is odd ib. This
gives in the limita— 0, the finite equation foQ(A"),

5[ 8 S
f d'x 5A"(5A"+ oA (Atr)‘theﬁ,u(A”))Q(A")=0.
w " w

(4.9

HereK; ¢ is the average over of the gauge-transformation

force, with weight (deX) Y?exd —1/2(L,XL)], namely,
KS et (AN = (2203, (6%) "L () LY (X))
=£2%99,,(%) " 1Y*Ux,yi AT) |y
= fo dtf*edg,,(9%) ~ L exp(—Mt)(—24?)

X exp(—Mt)1°4x,y)]y-x, (4.7

choose the solution that vanishes outside the Gribov horizon.
The second term may be simplified using the identity

[%,exg —Mt)]=— ftdsexp(— Ms)[d%,M]
0

Xexg —M(t—s)], (4.11
which gives
K3, (x)=— Fds fedg (9%t
0
x{exp(—Ms)[4*,M]
Xexp—Ms)MHex,y) |y, (4.12

whereM =M (A"). The “drift force” K, is a novel term. Its
presence is required to correct the overcounting, discussed in
Sec. Il, that occurs when the Faddeev-Popov theory is cut off
at the Gribov horizoH.

“In our derivation we used the Born-Oppenheimer method that is
nonperturbative irg in order to obtain the— 0 limit at finite g. So
the presence of the new teid is not in contradiction with the fact
that the Faddeev-Popov theory provides a formal perturbative ex-
pansion that has all the correct properties, including perturbative
unitarity.
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V. SCHWINGER-DYSON EQUATIONS f . 5T(A”) [5]"(A")
YN —tr+ Ktot eff,
PYREEY :

B
AT+ D(A") < A") } =0,
(5.9

The partition function is defined by

Z(3)= f dA QA" 8(9,A,)exp(J,A)

where the argument ofKyef IS written in  matrix
notation, and is given explicity by Az(x)

=f dA"Q(AM exp(J,A"). (5.0 +JdYD,,(x,y;AN[S/6AY(Y)].  Here D, ,(xy;A")

=[6A"(y)/53"(x)] is the gluon propagator in the presence
It depends only on the transverse componEnbf J,, (on- of sources. _
shell gauge conditionand we writez = Z(J"). Generally, in To obtain tr:re SD equation for the propagator, we expand
the Faddeev-Popov approach, one relaxes the transversalify POWers ofA™,
condition, by writing5(d,A,) = fdbexp(fd*xbg AL, and
then one uses SIavnov-Taonr identities to determine longi- ST (A" Latr
tudinal parts of vertices. However, these identities have not W:(D ADute,
yet been derived in the present four-dimensional stochastic a
approach, and we shall solve the SD equations using the
on-shell formalism for the gauge condition. The on-shell cor- KL
relation functions, such as propagators, are the same as the — ©teffx
off-shell ones, but the verticésne-particle irreducible func-
tions) are strictly transverse. Renormalization theory IS NOtyhere we have again used matrix notation. Hée,
well articulated at present in the on-shell formalism, but we_ p L,(x—y) is the gluon propagator in the absence of
shall not encounter ultraviolet divergences in the SD equasources and
tions in the infrared limit. Moreover, we shall see that in this
limit the SD equations are invariant under the renormaliza-
tion group®
The partition functionZ(J"), which is the generating

functional of(transversgcorrelation functions, is the Fourier
transform of the probability distributiorQ(A"). Conse-
quently the SD equation faZ(J") is simply the diffusion
equation(4.6), expressed in terms of the Fourier-transformed
variables,

4yt
deJ;

Here we have introduced the total effectivi®t eff) drift
force

A"+ D(A")

o
Atr) ~(RA"),+ (5.6

1)
RMV(X_Y)E - [W Kg)t eff,u

)
x| AT+ D(AY) w)(x) (5.7

Alr=0

Both D andR are identically transverse, and in momentum
space by virtue of Lorentz invariance, are of the form
}Z(J“)=O. (5.2) (K =D(K)[8,,—k,k,/k?] and R,,(K)=R(K*)[,,
—k k,/K?]. Upon equatlng terms quadranc A" in Eq
(5. 5) we obtain

J'+K o
m tot eff,u 5Jtr

4 —1ptr -1_ tr _
__ Sy . de[D AJOL(DTI=RIALI(X)=0, (5.8
Ktoteﬁ,u(A )= A — (A )+theﬁ'M(A ). (5.3
7

which we write in matrix notation as
Only the transverse component Bf ., appears in the

following. The free energyV(J")=InZ(J"), which is the (DAY [D~1-RJA"=0 (5.9
generating functional of connected correlation functions, sat- ' ' '

isfies the SD equation
f d*x J}, }=0- (5.4  tors that commuteDR=RD. As a result, the operator ap-
pearing in the last equation is symmetric and must vanish,

The effective action is obtained by Legendre transformation,
T'(A")=(J", A" —W(J") by inverting AT= 6W/ 83" It sat- D D '-R)=0. (5.10
isfies the SD equation

This holds identically inA". From the expressions for
SW(JY) S D,.(k) andR,,(k), we see that both are symmetric opera-

J;i-l— Ktoteff,,u(W + W

This gives the SD equation for the gluon propagator

51t should also be noted that it is not known at present how to

-1_

maintain the Slavnov-Taylor identities exactly at the nonperturba- D=R, (5.13
tive level in the off-shell formalism, although methods for dealing

with this have been proposé¢as. whereR is given in Eq.(5.7).
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VI. SOLUTION OF SD EQUATION IN THE INFRARED lim D(k)=0. 6.3

. k—
Recall the decompositiorKy ¢s=K;+K;, where K, 0

= 5(trIn M)/5AT(x) is the drift force that, in the absence of The horizon conditiorti) is equivalent to the statement that
K2, describes the Faddeev-Popov theory in the Landags ) diverges more rapidly than @2, or
gauge. Since it is not without interest to solve the Faddeev-
Popov theory nonperturbatively in the Landau gauge, and in lim[p2G(p)] t=0. (6.4
order to compare our results with other authors, we shall here p—0
ignoreK,, the novel term that corrects the overcounting that
occurs when the Faddeev-Popov theory is cut off at thdndeed if we divide the SD equatid6.2) by p?, and impose
Gribov horizon. this condition, we obtain

The remaining drift forceK,, describes Faddeev-Popov
theory_ in the La_lnd_au_gauge. We have seen in SEC: Il that 5M)\:N92(2,n.)—df d% G(k)DW(k)FM(O,k) (6.5
there is an ambiguity in the solution of the SD equations of
the Faddeev-Popov theory, with no clear prescription to re-_ . .
solve it at the nonperturbative level. Fortunately the presenf NiS IS the nonperturbative statement that the ghost self-
derivation provides the additional information that is needecNergy: which is of the form (p)=p, X ,(p)p, because of
to resolve this ambiguity: we must choose the solution of thd"€ factorization of the external ghost momentum, exactly
SD equations that vanishes outside the Gribov horizon bef@ncels the tree level term pt=0,
cause, as we have se€(A") vanishes outside the Gribov
horizon in the limita— 0. With this choice it is likely that
qualitative features of the exact theofwith K,) will be
preserved.

With neglect ofK, we may write directly the familiar SD
equations of the Faddeev-Popov theory in Landau gauge,
an arbitrary numbed of Euclidean dimensions

8,0 =3,,(0). (6.6)

Equations(6.5) and(6.6) are the form of the horizon condi-
tion given in[26—28.” We will see that it is sufficient to
apply either conditiori) or (ii), and the other condition then
fbllows automatically. The horizon condition allows us to
write the SD equation for the ghost propagatér?), in the

form
D, 100 =(5,4°k,k,) +NG(2m) ¢ a*p Glp+k)
“1my = Na2(o—d [ qd
X (p+k),,G(p)T,(p.k)+ (gluon loops, (6.1 G (P =Ng(2m) fd K PuD k)
X[Fv,)\(ovk)G(k)
67 (p) PN (2m) [ ikt p) PaApRGkIDID, (67
X(k+p)uD (KT ,(pk), (6.2 where we have used,D (k) =0. This equation was solved

. . numerically in three-dimensions 28], using an assumed
where G(p) is the ghost propagatol,,(p,k) is the full form for D(K).

ghost-ghost-gluon vertex. In the Landau gauge, a factoriza- We wish to determine the asymptotias form of the
tion of the external ghost momentum occurs, so the ghost- as .2 as

ghost-gluon vertex is of the fornh',(p,k)=I", \(p,K)p, - progatozrs Irat low mometrrﬂum,G ). andz D.ﬂ“’(k)
As a result there is no independent renormalization of D°(K)P,,(K), where P, (k)=0,,~kk,/k" is the

I',.(p.k), and the renormalization constants in Landau gaugéransverse projector. For this purpose we let the external mo-

2 =z _ B menta in the SD equations be asymptotically small compared
are related by iZ575=1, wherego =240, Do=Z3D;, and QCD mass scales. In this case the loop integration will be

Go=23G,. So far, we have written the SD equations for dominated by asymptotically small loop momenta, so the
unrenormalized quantities, with the index O suppressed.  propagators inside the integrals may also be replaced by their
We must select the solution to these equations that correzsymptotic values. This is true provided that the resulting
sponds to a probability distributioQ(A") that vanishes out- integrals converge, as will be verified. We shall also truncate
side the Gribov horizon. To do so, it is sufficient to imposethe SD equations by neglecting transverse vertex corrections,
any property that holds for this distribution, provided only as usual, in order to obtain a closed system of equations,

that it determines a unique solution of the SD equationsp(p k) P" (k)p,. Such truncations may, possibly, be
Besides positivity, which will be discussed in the concluding a g

section, there are two exact properties that hold for a prob——-
ability distribution P(A") that vanishes outside the Gribov 7, 5 space of high dimensidwthe probability distribution within

horizon: (i) the horizon condition andii) the vanishing of 5 smooth surface such as a sphereR gets concentrated near the
the gluon propagator &=0 [17]° surfacer =R because of the entropy or phase-space fadtordr.
The horizon condition is the statement that the probability distribu-
tion within the Gribov horizon is concentrated on the Gribov hori-
5The vanishing of the gluon propagatorkat 0 results from the  zon because the dimensidhof A space diverges with the volume
proximity of the Gribov horizon in infrared directions. V in, say, a lattice discretization.
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justified a posterioriby calculating corrections to see if they sulting integral convergesWe take the asymptotic infrared
are small. Becausk ,,(K) is transverse, the SD equation for limit of Eq. (6.1) with external projectors and obtain
the ghost propagator simplifies to

[D(k*)]™ Py, (k)

(Ga%ﬂ(pZ):NgZ(zw)*df Aok (k?) L
X[p?k?—(p-k)2]D3Kk?)
< {GKA)— G (k+p)?T}. (68

= N92(2w)‘dPZA(k)f dp p,G*{(k+p)?]
X G*(p?)p Py, (k). (6.19

. L . o We take the trace on Lorentz indices and obtain
This equation is invariant under renormalization because of

the identityZ5Z;Z5=1. This allows us to take all quantities [D¥k?)] t=Ng(2m) (d—1)k?]*
in Eq. (6.8 to be renormalized ones, with suppression of the
indexr. - o I Xf d’p[p?k*—(p-k)?]
Because the asymptotic infrared limit is a critical limit,
the asymptotic propagators obey simple power laws, X G (k+ p)2]G™p?). 6.12

as [(2) — 2ap(n2\— (1+ap)
Dk =coue(p?) ' Like the ghost equatio(6.8), this equation is invariant under
(6.9 . . 52_
9G¥ p?) = capuleet (4-d2(p2)~(1+ag) renormalization because of the |dentK§Zng—1, and we
may again take all quantities to be renormalized with sup-
according to standard renormalization-group argumentspression of the index. We substitute the power law§.10
Hereap, andag are infrared critical exponents or anomalousinto this equation. By using the power-counting argument
dimensions that we shall determine, whilés a mass scale, that was used for the ghost propagator, we again obtain the
and cp and cg are dimensionless parameters. The horizorf€lation of the infrared critical exponentgy +2ag=—(4

condition (6.4) implies ag>0, whereas Eq(6.3 implies  —d)/2. This integral converges in the ultraviolet fdr-2

ap<—1. Upon changing the integration variable according<4(1+ag), or ag>(d—2)/4.

to k,=|p|k/,, and equating like powers qf we obtain The gluon and ghost SD equations now read
ap+2ac=—(4-d)/2. (6.10 (cocd) *=lp(ag)=lg(ag), (6.13

The integral is an ultraviolet convergent fdr2(1+ ap) where
—2(1+ ag) —2<0, where two powers ok are gained be-

cause of the differencéG3{k)?— G3] (k+p)?]}. With ap Ip(ag)=N(27) 9(d—1)"1(k?) ~(2*e)
=—2ag—(4—d)/2, this givesag<1 as the condition for
ultraviolet convergence, soOag<1. XJ’ dp[p?k?—(p-k)?]
We now turn to the SD equation for the gluon propagator
(6.1). In the exact Faddeev-Popov theory with off-shell X[(k+p)2]~ (1t ed)[(p)2]~(1*ea), (6.14

gauge condition, the right-hand side of E§.1) is exactly
transverse itk on both free Lorentz indiceg andv by virtue

of the Slavnov-Taylor identities. This allows us to apply
transverse projector@ji,#(k) =6, kMkV/k2 and Ptlf,v(k)

to these indices. In our derivation, with the on-shell gauge
condition, the projectors are automatically applied. As a re- 2y~ (1+ag) 27-(1+ag)
sult, since the gluon propagators are transverse, only the x{(k%) ¢ —[(k+p)7] e},
transverse parts of the vertices contribute on the right-hand (6.15
side. We therefore make the truncation approximation of re-

placing these transverse vertices by their tree-level expresind it is understood thaip= —2ag— (4—d)/2. The critical
sions. We now estimate the various terms on the right-handxponentag is determined by the equality.13. The inte-
side of the SD equatiof6.1) for D(k). We just concluded grals Ip(ag) and lg(ag) are evaluated in the Appendix,
from the horizon condition and the SD equation f8(p)  without angular approximation, in arbitrary Euclidean di-
thatag>0 andap<0. As a result, on the right-hand side of mensiond.

Eq. (6.1), the ghost loop that we have written explicitly is

more singular in the infrared than the gluon loops. Moreover, ;1 HETERMINATION OF INFRARED CRITICAL

lg(ag)=N(2m) 4(p?)~(*++ee

x [ o= ok e

in the infrared,Dfl(k)~(k2)(2““D) is more singular ak EXPONENTS
=0 than the tree-level term k* becausexp<0. We now let
the external momentunk have an asymptotically small To determine the critical exponents, we substitute the

value, so the loop integration is dominated by asymptoticallyformulas for Ip(ag) andIg(eg), given in the Appendix,
small values of the integration variabfe(provided the re- into the equationp(«ag)=1g(@g) and obtain, fore=ag,
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Coo_d-Dm I'(1+2a)
d(@)= sin(ma)T(—2a+d2)T(1+ a+d/2)

T(d—2a)
T (—atdi)T(1+ 2a—di2)

1.

(7.
We take the dimensiod of space-time in the intervald
=<4. The integrald p(a) andlp(«) are both convergent in
the ultraviolet only fora in the interval 0<(d—2)/4<a«
<1, so the equation which determinasholds only in this
interval. However, whereas$y(a) is manifestly positive
throughout this interval, the expression fe «) is negative
for a>d/4, because T/(—2a+d/2) changes sign atr
=d/4, so we look for a solution only in the reduced interval

0=s(d—-2)/4sa<=d/4<1. (7.2
The identity, I'(—2a+d/2)I"(1+2a—d/2)= m/sin 7(— 2«
+d/2)], gives

(d—1)sin m(—2a+d/2)]

fa(a)=

sin(wa)
[(1+2a) T(d-2a)
Tt atd2) T(—atd2)

1.

(7.3

For the case of physical interest=4, the allowed inter-
val is 1/2< a=<1, and the functiorf,(«) contains the factor
sin 7(—2a+2)]/sin(ra)=sin 7(—2a)]/sin(ma) which is of
the indeterminate form 0/0 at=1. To control this(and a
similar indeterminacy fod=2 ata=0), we first consided
in the range 2.d<4, and then take the limil—4 (andd
—2). Ford in this range, one sees that the functig«) is
positive and finite, f4(a)>0, for « in the interior of the
allowed interval i —2)/4< o< d/4, but vanishes diothend
points fy[(d—2)/4]=f4(d/4)=0 because of the factor
sin m(—2a+d/2)]. It follows that the equatiofiy(a) =1 has
an evennumber of solutiongif any)8 for 2<d<4. We now
setd=4 and obtain

—3sin27a) I'(1l+2a)'(4—2a) B
sin(7a) I'3+a)l'(2—a)

fa(a)=
(7.4

We use

I'l+2a)I'(4—2a)

=(3-2a)(2—2a)(1-2a)2aw/sin27a),
(7.9

8From numerical plots it appears that for2l<4 there are al-
ways two distinct real roots in the range 2)/4< a<<d/4, except
possibly nead~2.662 where there may be a double root near
~0.33095.

PHYSICAL REVIEW D65 094039

I'G+a)l'(2—a)=(2+ a)(1+ a)a(l—ga)m/sin(7Ta),
and obtain

(3—2a)(2a—1) B

fale)=12 2ra)(ita) b

(7.6

where we have usesin(2ra)/ sin(ma)][sin(ma)l sin(2ma)]
=1, which is valid only for 1/2Z «<1. This yields a qua-
dratic equation with roots @=[93* /(1201)]/98~[93
+34.66]/98. Only one root a~0.5953 lies in the interval
1/2< a<1. On the other hand, we have just seen that for 2
<d<4, there is arevennumber of roots. The resolution is
that ford=4— € there are two roots, and the second root is
given by a=1-0(e), so in the limitd—4, there is a sec-
ond root ata=1.

We conclude that the infrared critical exponents ag
and ap=—2ap—(4—d)/2 are given, ind=4 dimensions,
by two possible sets of values

CYG:]., ap= _2,
ag=[93—(1201)]/98~0.5953, (7.7
ap=—[93— (1201 ]/49~ — 1.1906.
In the same way one finds far=2,
aG:O, ap= _1,
(7.9
aG=1/5, ap= _7/5
For d=3, one obtains the equation,
32a(1— a)[1—cob(ma)]
f3(a)= =
(3+2a)(1+2a)
with roots in the interval 1/4 a<3/4, given by
CYG:]./Z, ap= _3/2
(7.9

a5~0.3976, ap~—1.2952.

We expect that in each case one of the roots is spurious, and
arises because E{r.3) does not express the full content of
the theory.

We note that in each case one solution corresponds to
ag=(d—2)/2=0, 1/2, and 1, ford=2, 3, and 4, which
gives G(k) ~1/(k?)%2. This may be too infrared singular to
be acceptable. But fod=2, the other solution, witheg
=1/5, is even more infrared singular, which suggests that for
d=2 the first solution may be preferred namedy,=—1
and ag=0, which may make the cask=2 pathological in
the Landau gauge. This case is exactly solvable in the axial
gauge because the nonlinear term in the2 Yang-Mills
field is absent in this gauge, and gives an area law at the
classical level. There can, of course, be no physical gluons in
d=1+1 dimensions even in the free theory which may thus
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be considered confining. Clearly the cake?2 in the Landau In the second part of the article, where we calculated the
gauge requires a more detailed investigation that we do nahfrared critical exponents, we have, however, ignored the
attempt here. new termK, in order to compare with other authors, and
because it is not without interest to calculate the infrared

VIIl. DISCUSSION AND CONCLUSION critical exponents nonperturbatively in the Faddeev-Popov

. theory with a cutoff at the Gribov horizon.
We have seen that because the Faddeev-Popov weight i is noteworthy that all our values for the critical expo-

Prs(A) contains nodal surfaces, the SD equations COMehonts ind=2, 3, and 4 dimensions agree with the exact

;pondmg to the Faddeev-Popov method are ambiguous, aflsults for a probability distribution that is cutoff at the Gri-
in practice one does not know how to select an exact an ov horizon namely, the vanishirid7] of the gluon propa-

globally correct solution. Gribov's proposal, to cut off the
) . . atorD(k)—0 ask—0, and the enhancemelr#6,27,2§ of
Faddeev-Popov integral at the first nodal surface, producest e ghost propagatdik?G(k)]~1—0 (except for the first

positive probability distribution, but it is not exact because it S T _ 4
overcounts some gauge orbits, although it may give a usefifiolution ind=2 which is marginal, withag=0 andap
approximation. =—1). The vanishing oiD(k) atk=0is counterintuitive,
By contrast the method of stochastic quantization by_and has no other explanation than the proximity of the Gri-
passes the Gribov prob|em Of Se'ecting a Sing'e represent&.ov horizon in infrared directions. Th|S Suppl’eSSES the infl’a-
tive in each gauge orbit. Instead the diffusion equatiodin red components(k) of the gluon field, and thus of the
space, Eq.(3.6), contains an additional “drift force” gluon propagatoD (k) =(|A(k)|?). Since our calculation in-
a 'D,d- A that is a harmless generator of a gauge transforvolves a truncation of the SD equations which is an uncon-
mation. The corresponding DS equation that defines the norirolled approximation, the stability of our results should be
perturbative Landau gauge was obtained by solving the limitested by estimating corrections. As for the future, an imme-
a—0 of this equation by the Born-Oppenheimer method.diate challenge is to include the effect of the new te¢m
The limiting probability distributionQ(A") was shown to  Eq. (4.9, that was not evaluated in the present calculation.
vanish outside the Gribov horizon. It is determined by a dif-One must also introduce quarks.
fusion equation that contains the novel tekp, Eq. (4.9), We wish to compare our values of the infrared asymptotic
that corrects the Faddeev-Popov distribution cutoff at thelimensions with those reported (43,14, and[15]. But first
Gribov horizon for overcounting inside the Gribov horizon. we must verify whether they also selected the solution of the
[We may mention here an alternative approach. The LansSD equations of Faddeev-Popov theory that vanishes outside
dau gauge is the singular limat—0 of more regular gauges, the Gribov horizon. Note that to obtain a particular solution
and contains a nonlocal effective drift forkg; ., EQ.(4.9. it is sufficient to require any one of its properties, provided
For this reason it may be preferable to calculate with gaugehat this requirement selects a unique solution. Indeed a
parametera finite, so the drift force,K,=—4dSyy/6A,  unique solution was obtained [13] by requiring that both
+ aleM,u-A, remains local, and there is no horizon outsidethe gluon and ghost propagat@$k) andG(k) be positive.
of which the probability distribution vanishes exactly. In this These properties by no means follow from the Faddeev-
case the SD equatiob.5) for the effective actionl’ gets  Popov weighi2.1) that oscillates in sign, whereas restriction
replaced by to the Gribov region does imply the positivity of bo@ik)
andD (k). So in fact the restriction to the Gribov region is
ST'(A) 6 also implemented in this way ifl3]. Likewise the assump-
TM“LKM A+D(A) 51 ]| =0. tions made in14] and[15] to obtain a solution of the SD
(8.2 equations are equivalent to the horizon condition, B,
that we imposed in Sec. VI.
The gluon propagator is given b =R, where R It is reassuring that the values given in E@.7) for
=— (8 SA)K[A+D(A)(8/5A)]|a—o, as in Eq.(5.7). One d=4 agree qualitatively with the values reported in
would hope to solve the SD equations for the full propaga{13], namely ag=[61—(1897)]/19~0.92 and ap=
tors in this approach, and not just their infrared asymptotic-2ag~—1.84, in the sense that the gluon propagator
limit. An advantage of this approach is that the solution for aD (k) ~1/(k?)1* 2 vanishes ak=0, and the ghost propaga-
finite value of the gauge parametercould be directly com-  tor G(k)~1/(k?)1"2s is enhanced. This may be an indica-
pared with the numerical lattice data [pf] and[8] that is  tion that these qualitative features of the solution are not
taken with stochastic gauge fixing and gauge parameter merely an artifact of the approximations made. For the two
=0.1. To control ultraviolet divergences, it will be necessarytreatments of the SD equations are quite different. Indeed in
to develop Ward-type identities appropriate to this scheme.13], the gauge condition is treated off-shell, by imposing the
They were not needed in the present calculation because rfgavnov-Taylor identities to determine longitudinal parts of
ultraviolet divergences appeared in the infrared limit. Suchvertices, and by using the method[@6] to adjust the gluon
identities in the BRST form are available in the five- propagator. On the other hand, we have treated the gauge
dimensional scheme that is based on the time-dependent dig¢ondition on shell, so only transverse quantities occur. There
fusion equation[22,23,24, and alternatively one may at- is a similar qualitative agreement for=4 with the values
tempt to solve the SD equations of the five-dimensionakeported in[14], ag=[77—/(2281)]/38~0.769479, and
scheme nonperturbatively. ag= —2ag, Where an angular approximation was made.

SI'(A
fd“x A)
oA,
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The approximations made ifil5] appear to be similar to So what have we learned about propagators and the con-
ours, although the method of solution is quite different. Thefinement problem in QCD? We may summarize results quali-
value reported there fol=4, ag=1 andap=—2, agrees tatively by the statement that in the infrared region in non-
with our first solution’ perturbative Landau gauge there is strong suppression or
We also wish to compare our results with numericalvanishing of the would-be physical gluon propagator, and
Monte Carlo studies of propagators in Landau gauge. NuStrong enhancement of unphysical propagatdéis is true
merical gauge fixing to the Landau gauge is achieved b)lpoth for the analytic solutions of the Schwinger-Dyson equa-

minimizing, with respect to gauge transformations, the latticdionS obtained ir13,16,15,29 and here, and for the numeri-

analog of F(g)=/d%|9A[2, which indubitably produces cal lattice data just discussed, with similar numerical data in
configurations that lie inside the Gribov horizon. This gaugec.(ljlulc:mt;I %ﬁu%e' tW? t_expe(_‘i_ththat the_(sje qua_lltatllve_ {e_a:_tures
fixing, like stochastic gauge fixing, has a Euclidean WeightWI stan € test of ime. 1hey provide a simpie intuitive

that is everywhere positive, without overcounting. However,p'Ctu.re of confmement in which the su_ppressed masslgss
it is not in the class of Faddeev-Popov gauges for which th hysical gluon disappears from the physical spectrum while

. e - . .the enhanced unphysical components provide a long-range
determnjent alternates in sign, so a comparison with analyt'ﬁolor-confining force.(This long-range force should also
calculations by the Faddeev-Popov method does not have @ fine quarks, but that has not been addressed)hese.
completely clear interpretation. _ . discussed previouslj35] both features may be understood

The infrared behavior of the lattice propagators is veryas the result of the restriction to the Gribov region, which
sensitive to finite-volume effects, and control of the volumeragyits from the identification of gauge-equivalent configura-
dependence at fixe@=2N/g3 is required. In particular tions. The infrared suppression of the transverse gluon
D(k) does not and should not vanishlat 0 at any finite  propagator results from the proximity of the Gribov horizon
lattice volume, but only when extrapolated to infinite vol- in infrared directions, while the enhancement of the unphysi-
ume. We have not attempted here to fit the dat&Zpdind[8]  cal components is an entropy effect that results from high
without an estimate of the finite-volume correction and thepopulation in the neighborhood of the Gribov horizon, where
effect of the finite gauge parameter, but this is a promisinghe inverse Faddeev-Popov operator is enhanced.
avenue for future comparison of numerical and analytic re-
sults. However, we do note that it was reported 7y with ACKNOWLEDGMENTS
stochastic gauge fixing at gauge paramate0.1 (with Lan-
dau gauge aa=0), that a fit to the Gribov formulaD (k)
=ZK[(k?)2+M*]" 1, (strong infrared suppressipoan ex-
plain the gross feature of the data. Recent studies in th
Landau gauge at finite lattice volume indicate a suppressio
of the gluon propagator in the infrard®0], and are not
incompatible with an enhancement of the ghost propagator
[31]. The infrared behavior of the lattice gluon propagator APPENDIX: EVALUATION OF INTEGRALS
D(k) has been studied in §P) gauge theory in the Landau
gauge ind=3 Euclidean dimension2]. It was found that

It is a pleasure to thank Reinhard Alkofer, Alexander
Rutenburg, Adrian Seufert, Alan Sokal, and Lorenz von
gmekal for valuable discussions. This research was partially
upported by the National Science Foundation under grant
HY-0099393.

To evaluate the gluon self-energiy(«g), Eq. (6.14), we

- . it
D(k) has a maximum ak~350 MeV (normalized to the write
physical value of the string tensipthat is practicallyg in- w
dependent, and th&t(k) decreases dsdecreases below this U (p—k)?tree=T"Y1+ aG)f dx x*e
value. This decrease is interpreted as resulting from the prox- 0
imity of the Gribov horizon in infrared directions. A similar xexg —x(p—k)?], (A1)

behavior is expected for the three-dimensionally transverse

part of the gluon propagator in the Coulomb gauge, in fourang similarly for 1f(p)2]**“c. This gives
Euclidean dimensions. This has been observed, and an ex-

trapolation to infinite lattice volume at fixe@ was in fact Io(ag)=N[(d—1)(k?)2*2)2(1+ ag)] L
found, notably, to be consistent with tlkanishingof D (k) at

k=0 [33] and[34]. We emphasize that this behavior is not % dexfwd (xy)?6J
seen at finite lattice volume but only in the extrapolation to 0 0 yoxy '
infinite lattice volume, at fixeB. For this reason it is impor-

tant to extend the lattice calculations in Landau, Coulombyyhere

and stochastic gauges to larger volumes, and to extrapolate to

infinite lattice volume before attempting a fit to continuum

formulas. 10The “unphysical propagator” that is infrared enhanced may be
either the ghost propagator in the nonperturbative Landau-gauge
Faddeev-Popov theory, or the 44-component of the gluon propaga-
%After the completion of this article, L. von Smekal kindly in- tor in Coulomb gauge. The ghost propagator coincides, approxi-
formed me that the first valueyg=[93—/(1201)]/98 in d=4 di- mately, with the remnant of the longitudinal gluon propagator that
mensions, was also obtained by C. Ler¢ae). survives the Landau-gauge limit in stochastic quantization.

(A2)
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N
— —d d 21,2 _ k)2 —
‘]_(27T) f d p[p k (p k) ] IG(aG) (p2)1+aGF(2+aD)l“(l+aG)

xexg —x(p—k)?—yp? w (e (1
HL=x(p yr'l xf dxf dyf dz xotlyectll - (A9)
=(d_1)k2[2(4ﬂ_)d/2(x+y)1+d/2]7l 0 0 0

xexg — (x+y) xyk]. (A3)
where

We introduce the identity % [dyS(x+y—vy) and change

variable according t&x=yx’ andy=yy’. This gives, after B
dropping primes, L=(2m) [ d%pPe (p-K)2(p7-20K)
_ _ 2_ _Nn\2
|D(aG):N(k2)—(1+aD) XeXp{ [X+y(1 Z)]k yZ(k p) }r (AlO)
X[2(4m)YT2(1+ ag)] XK, (A4)

_(pHA(d—1) x+y-2yz
- 2(47T)d/2 (X+y)2+d/2

KEdexJ’wdnydy6(x+y—1)(xy)“G +v(1— 2
0 0 0 Xexy{—yz[x ))(/Ery 2)]p (ALD)
X 520692 gy — Y]
=(k?)"2eetrd2 This gives
I'(2ag+1—d/2)T%(— aG+d/2) A
T(d—2ag) (A5) | B N(d—1)(p*)* *c
ol96) = S 2T (2+ ag) T (1+ ag) >
This gives (Al2)
N X+y—2yz
= 1,,a 1
lo(ac)= 5 ae def dyJ dz xotlyeet Xy
I'(2ag+1-d/2)T4 —ag+d/2) yZAx+y(1-2)]p?
T2(1+ ag)T(d—2ag) (AB) x P( - Ty ) (A13)

where we usedvp=—2ag—(4—d)/2. . . . B
To evaluate the ghost self-enerdy(ag), Eq. (6.15, we e adain introduce the identity :1{d76(x+y y) and
: o change variables according to=yx' and y=1yy’. This
use the identities . . )
gives, after dropping primes,

o o ] 1
=f dyf dxf dyf dzé(x+y—1)
0 0 0 0

X XaD+lyaG+ l( 1— 2y2)

1
[(KWFZT % T(2+ap)

fmdx xeotl
0

X exp( —xk?), (A7)

1 1 Xy *cexp—yAx+y(1-2)]yp?, (Al4)
[(k)z]““e_ [(k—p)Z]tTee

J=(p?)* ' (1-ag)
I(1+a )f dy y*e " i[(k—p)*—Kk?] 1 (1 ;
xf dyf dz y*e H(1-y)*o*1(1-2y2)
' - —p)2+(1-2)k?]} s
XdeZGXp[ ylz(k—p)“+( ’ x[yz(l—yz)]“Gfl, (A15)
(A8)

where we again usetly = —2a¢— (4—d)/2. We change the
which allow us to cancel the leading power lokxplicitly. ~ variable of integration tou=yz(1—yz), with du=y(1

This gives —2y2z)dz, and obtain

094039-12
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J=(p?)e tag' T (1-ag)

1
X f dy yZaG(l_y)—aG—1+d/2
0

(p)*e T (1 ag)
- -
T(1+2ae)T(—ag+d/2)
T(ag+1+d2)

(Al6)

where we have again usedp=—2ag—(4—d)/2. This

PHYSICAL REVIEW D65 094039
gives
| 3 N(d—1) T
G(aG) - 2(47T)d/2 Sin(’7TaG)

T (2ag+1)T(—ag+d/2)
T2 agt DI(—2agt A2 (agt1+di2)’
(A17)

where we have usedl (ag)l'(1— ag)= w/sin(mrag). This
integral is positive forag<<d/4.

[1] R. P. Feynman, Nucl. Phy&188 479 (1981J).

[2] V. N. Gribov, Nucl. PhysB139, 1 (1978.

[3] R. E. Cutkosky, J. Math. Phy&5, 939(1984); R. E. Cutkosky
and K. Wang, Phys. Rev. B7, 3024(1988; R. E. Cutkosky,
Czech. J. Phys40, 252(1990.

[4] D. Zwanziger, Nucl. PhysB192, 259(1981).

[5] A. Nakamura and M. MizutaniNumerical study of gauge fix-
ing ambiguity Vistas Astron.37, 305(1993.

[6] M. Mizutani and A. Nakamura, Nucl. Phys. @roc. Supp).
34, 253(19949.

[7] H. Aiso, M. Fukuda, T. lwamiya, A. Nakamura, T. Nakamura,

and M. Yoshida, Prog. Theor. Phys. Suph22, 123(1996.

[8] H. Aiso, J. Fromm, M. Fukuda, T. Iwamiya, A. Nakamura, T.

Nakamura, M. Stingl, and M. Yoshida, Nucl. Phys.(Broc.
Suppl) 53, 570(1997).

[9] F. Shoji, T. Suzuki, H. Kodama, and A. Nakamura, Phys. Lett.

B 476, 199 (2000.

[10] F. DiRenzo and L. Scorzato, Nucl. Phys(Broc. Supp). 83—
84, 822 (2000.

[11] D. Zzwanziger, Nucl. PhysB209, 336 (1982.

[12] A. P. Szczepaniak and E. S. Swanson, Phys. Rew5D
025012(2002.

[13] L. von Smekal, A. Hauck, and R. Alkofer, Ann. Phy#.Y.)
267, 1 (1998; Phys. Rev. Lett.79, 3591 (1997; L. von
Smekal, Habilitationsschrift, Friedrich-Alexander Universita
Erlangen-Nunberg, 1998.

[14] D. Atkinson and J. C. R. Bloch, Phys. Rev. &8, 094036
(1998.

[15] D. Atkinson and J. C. R. Bloch, Mod. Phys. Lett.18, 1055
(1998.

[16] R. Alkofer and L. von Smekal, Phys. ReRb3 281 (2001).

[17] D. Zwanziger, Vanishing of zero-momentum lattice gluon
propagator and color confinemeniNucl. Phys.B364, 127
(199).

[18] L. Baulieu, Phys. Repl29, 1 (1985.

[19] P. Hirschfeld, Nucl. PhysB157, 37 (1979.

[20] R. Friedberg, T. D. Lee, Y. Pang, H. C. Ren, Ann. PH)&Y.)
246, 381(1996.

[21] G. Parisi, Y. S. Wu, Sci. SirR4, 484 (198)).

[22] L. Baulieu and D. Zwanziger, Nucl. PhyB581, 604 (2000.

[23] L. Baulieu, P. A. Grassi, and D. Zwanziger, Nucl. Ph$597,
583 (2001.

[24] L. Baulieu and D. Zwanziger, J. High Energy Phg8, 015
(2002).

[25] N. Brown and M. R. Pennington, Phys. Rev. &8, 2266
(1988; 39, 2723(1989.

[26] D. Zwanziger, Nucl. PhysB399, 477 (1993.

[27] M. Schaden and D. Zwanziger, hep-th/9410019.

[28] A. Cucchieri and D. Zwanziger, Phys. Rev. Lefi8, 3814
(1997.

[29] C. Lerche and L. von Smekal, “On the infrared exponent for
gluon and ghost propagation in Landau gauge QCD,”
hep-ph/0202194.

[30] F. Bonnet, P. O. Bowman, D. B. Leinweber, and A. G. Will-
iams, Phys. Rev. 2, 051501(2000.

[31] H. Suman and K. Schilling, Phys. Lett. 873 314(1996.

[32] A. Cucchieri, Phys. Rev. B0, 034508(1999.

[33] A. Cucchieri and D. Zwanziger, Phys. Rev. &, 014001
(2002.

[34] A. Cucchieri and D. Zwanziger, Phys. Lett.324, 123(2002.

[35] D. Zwanziger, Nucl. PhysB378, 525 (1992.

094039-13



