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Nonperturbative Landau gauge and infrared critical exponents in QCD

Daniel Zwanziger*

Physics Department, New York University, New York, New York 10003
~Received 7 November 2001; published 17 May 2002!

We discuss Faddeev-Popov quantization at the nonperturbative level and show that Gribov’s prescription of
cutting off the functional integral at the Gribov horizon does not change the Schwinger-Dyson equations, but
rather resolves an ambiguity in the solution of these equations. We note that Gribov’s prescription is not exact,
and we therefore turn to the method of stochastic quantization in its time-independent formulation, and recall
the proof that it is correct at the nonperturbative level. The nonperturbative Landau gauge is derived as a
limiting case, and it is found that it yields the Faddeev-Popov method in the Landau gauge with a cutoff at the
Gribov horizon, plus a novel term that corrects for overcounting of Gribov copies inside the Gribov horizon.
Nonperturbative but truncated coupled Schwinger-Dyson equations for the gluon and ghost propagatorsD(k)
andG(k) in the Landau gauge are solved asymptotically in the infrared region. The infrared critical exponents
or anomalous dimensions, defined byD(k);1/(k2)11aD and G(k);1/(k2)11aG, are obtained in space-time
dimensionsd52, 3, 4. Two possible solutions are obtained with the values, ind54 dimensions,aG51, aD

522, or aG5(932A1201)/98'0.595353,aD522aG .
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I. INTRODUCTION

The problem of confinement in QCD presents a challe
to the theorist. One would like to understand how and w
QCD describes a world of color-neutral hadrons with a m
gap, even though it appears perturbatively to be a theor
unconfined and massless gluons and quarks. A basic ins
into the origin of the mass gap in gluodynamics was p
vided by Feynman@1#, Gribov @2#, and Cutkosky@3#. These
authors proposed that the mass gap is produced by the dr
reduction of the physical configuration space in non-Abel
gauge theory that results from the physical identificati
A1;A2 , of distinct but gauge-equivalent field configur
tions,A25 gA1 . A simple analogy is the change in the spe
trum of a free particle moving on a line, when points on t
line are identified modulo 2p. The real line is reduced to th
circle so the continuous spectrum becomes discrete. In
lytic calculations, the appropriate identification of gaug
equivalent configurations requires nonperturbative gauge
ing, and in this article we approach the confinement prob
by considering how the nonperturbative gauge fixing impa
the Schwinger-Dyson equations of gluodynamics and th
solution. We discuss both the Faddeev-Popov formulat
for which the Gribov problem may have an approximate
but not an exact—solution, and stochastic gauge fix
which overcomes this difficulty@4#. We also briefly compare
our results for the infrared critical exponents with numeri
evaluations of QCD propagators. In this connection we n
that stochastic gauge fixing of the type considered here
been implemented numerically with good statistics on i
pressively large lattices (483364) @5,6,7,8#. This opens the
exciting perspective of the close comparison of analytic a
numerical calculations in this gauge. Stochastic quantiza
has also been adapted to Abelian projection@9#, and conver-
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gence of the stochastic process has been studied theoret
@10#.

We briefly review Faddeev-Popov quantization as a n
perturbative formulation. We note that the Faddeev-Pop
weight PFP(A) possessesnodal surfacesin A space where
the Faddeev-Popov determinant vanishes, and that a cuto
the functional integral on a nodal surface does not alter
Schwinger-Dyson equations, because it does not introd
boundary terms. As a result, Gribov’s prescription to cut
the functional integral at the~first! Gribov horizon @2#, a
nodal a surface that completely surrounds the origin@11#,
does not change the Schwinger-Dyson equations of Fadd
Popov theory at all, but rather it resolves an ambiguity in
solution of these equations.

We recall that Gribov’s prescription is not in fact exa
because there are Gribov copies inside the Gribov hori
that get overcounted. We then turn to the method of stoch
tic quantization as described by a time-independent diffus
equation inA space~so there is no fictitious ‘‘fifth time’’! @4#.
This method by-passes the Gribov problem of choosin
representative on each gauge orbit because gauge fixin
replaced by the introduction of a ‘‘drift force’’ that is th
harmless generator of a gauge transformation. We next
rive a formulation of the Landau gauge, which is valid no
perturbatively, as a limiting case of stochastic quantization
yields the Faddeev-Popov theory with a cutoff at the Grib
horizon, plus a novel term that corrects for overcounting
side the Gribov horizon.

However attractive a formulation may be that is valid
the nonperturbative level, it would remain largely ornamen
without actual nonperturbative calculations. Fortunate
progress in finding approximate but nonperturbative so
tions for the propagators in QCD has been achieved rece
within the framework of Faddeev-Popov theory both in Co
lomb gauge using the Hamiltonian formalism@12#, and in
Landau gauge by solving a truncated set of Schwing
Dyson equations@13,14#, and @15#. The Schwinger-Dyson
approach is reviewed in@16#. In the latter part of the presen
©2002 The American Physical Society39-1
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article we solve the Schwinger-Dyson equations in the n
perturbative Landau gauge to obtain the infrared critical
ponents or anomalous dimensions of the gluon and g
propagatorsD(k) and G(k) in d52, 3, and 4 space-time
dimensions. The novel term is ignored here, in order to co
pare with other recent calculations, but we explicitly sel
the solution to the Schwinger-Dyson equations that vanis
outside the Gribov horizon. Although a truncation is nec
sarily required to solve these equations, nevertheless the
ues obtained for the infrared asymptotic dimensions ag
with exact results for probability distributions that vani
outside the Gribov horizon@17#, namely the vanishing o
D(k) at k50, and an enhanced infrared singularity ofG(k).
These properties also characterize the nonperturbative s
tions of the Schwinger-Dyson equations in QCD obtained
recent studies@13,14,15#, and we verify that they have als
adopted the solution that vanishes outside the Gribov h
zon.

II. FADDEEV-POPOV QUANTIZATION AT THE
NONPERTURBATIVE LEVEL

The standard Faddeev-Popov~FP! Euclidean weight in
Landau gauge is given by

PFP~A!5QFP~Atr!d~]mAm!,

QFP~Atr!5N exp@2SYM~Atr!#

3det@2]mDm~Atr!# ~2.1!

with partition function

Z~J!5E dA PFP~A!exp~J,A!

5E dAtrQFP~Atr!exp~J,Atr!, ~2.2!

where (J,A)[*d4xJm
a Am

a . It depends only on the transvers
components ofJ and we writeZ5Z(Jtr). The complete se
of Schwinger-Dyson~SD! equations reads

dS

dAtr ~d/dJtr!Z5JtrZ, ~2.3!

whereS(Atr)[SYM(Atr)2Tr ln@2]mDm(Atr)#.
The Faddeev-Popov operator2]mDm

ac(Atr)52]2dac

2 f abcAm
tr,b]m is Hermitian becauseAtr is transverse,]mAm

tr

50. However, it is not positive for everyAtr. Because the
Faddeev-Popov determinant is the product of nontrivial
genvalues, det@2]mDm(Atr)#5Pnln(Atr), it vanishes to-
gether withQFP(A

tr) whenever any eigenvalue vanishes, a
the equationln(Atr)50 defines anodal surfaceof QFP(A

tr)
in Atr space. The nodal surface where the lowest nontri
eigenvalue vanishes, defined byl0(Atr)50, defines what is
known as the~first! Gribov horizon. It forms the boundary o
the regionV, known as the Gribov region, with the definin
property that all nontrivial eigenvalues of the Faddeev-Po
operator2]mDm(Atr) are positive. ClearlyQFP(A

tr) is posi-
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tive insideV and vanishes on]V. It is known that the Gribov
region has the following three properties:~i! it is a convex
region ofA space;~ii ! it is bounded in every direction, an
~iii ! it includes the origin@11#.

The existence of nodal surfaces ofQFP(A
tr) implies that

the solution of the Schwinger-Dyson~SD! equation for
Z(Jtr) is not unique. For if the integral~2.2! that defines
Z(Jtr) is cut off on any nodal surface, the same SD equat
follows, without any boundary contribution. Moreover, sin
the SD equation forZ(Jtr) is linear, any linear combination
of two solutions is a solution. These ambiguities are reflec
in corresponding ambiguities in the solution of the SD eq
tion for W(Jtr)[ ln Z(Jtr), and for the effective actionG(Atr),
obtained fromW(Jtr) by the Legendre transformation.

@We illustrate these points with a baby model. We repla
the fieldAm

tr (x) by a real variablea, and the Faddeev-Popo
weight QFP(A

tr) by p(a)[exp(21
2a

2)(12g2a2), which van-
ishes on the ‘‘Gribov horizon’’a56g21. The partition
function Z1( j )[*2`

1`dap(a)exp(ja) satisfies the SD equa
tion

]S

]a S ]

] j DZ1~ j !5F ]

] j
2gS 11g

]

] j D
21

1gS 12g
]

] j D
21GZ1~ j !

5 jZ1~ j !, ~2.4!

corresponding to the actionS5 1
2 a22 ln(12g2a2). Suppose

we restrict the integral to the Gribov region,uau<g21, so
the partition function is given instead byZ2( j )
5*21/g

1/g da p(a)exp(ja). The change occurs only fora2

.1/g2, so Z1( j ) and Z2( j ) have the same perturbative e
pansion. It is clear thatZ1( j ) andZ2( j ) satisfy thesameSD
equation ~2.4! without a boundary contribution, becaus
p(a) vanishes on the boundarya561/g. Moreover, be-
cause the SD equation forZ( j ) is linear, any linear combi-
nation, Z( j )5aZ1( j )1bZ2( j ) also satisfies the same S
equation. Of course only one of them corresponds to
weight that is positive everywhere. This example easily g
eralizes to any number of dimensions.#

Gribov proposed to cut off the integral on the bounda
]V of what we now call the Gribov regionV, so the partition
function is given by

ZV~Jtr![E
V

dAtrQFP~Atr!exp~Jtr,Atr!, ~2.5!

for he conjectured that the region where the Fadde
Popov operator is positive contains only one gauge c
on each gauge orbit. Since]V is a nodal surface,ZV

satisfies the same Schwinger-Dyson equation~2.3!,
(dS/dAtr)(d/dJtr)ZV5JtrZV . Instead, Gribov’s proposal se
lects a particular one out of a class of nonperturbative so
9-2
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NONPERTURBATIVE LANDAU GAUGE AND INFRARED . . . PHYSICAL REVIEW D65 094039
tions of these equations.1

It is now known, however, that Gribov’s conjecture is n
exact. Indeed, there are Gribov copies inside the Gri
horizon.2 We shall show, however, that an exact nonpert
bative formulation yields Gribov’s proposal plus a we
defined correction term that corrects for overcounting ins
the Gribov horizon.

There is an alternative proposal to make the Fadde
Popov method valid nonperturbatively. It is conjectured t
if one sums over all Gribov copies using the signed Fadde
Popov determinant det@2]mDm(Atr)#, then additional Gribov
copies cancel in pairs, the reason being that the signed d
minant counts the signed intersection number which is a
pological invariant. This is presumably the outcome
Becchi-Rouet-Stora-Tyutin~BRST! quantization which has
formal properties that suggest it may be valid nonpertur
tively @18#. Moreover, this conjecture is supported by simp
models@19# and @20#. However, it is not known at presen
how to turn this prescription into a nonperturbative calcu
tional scheme in QCD, for example, by selecting a particu
solution of the SD equations and moreover, if the measur
not everywhere positive there is the danger of delicate c
cellations that may cause an approximate solution to be
reliable. On the other hand, the Gribov proposal is ea
implemented, for example by requiring that the solution
the SD equation possess positivity properties.

III. TIME-INDEPENDENT STOCHASTIC QUANTIZATION

The difficulties with Faddeev-Popov gauge fixing point
out by Gribov are by-passed by stochastic or bulk quant
tion. This method is a formalization of a Monte Carlo sim
lation @21#, and in its most powerful formulation it makes us
of a fictitious ‘‘fifth time’’ that corresponds to computer tim
or number of sweeps of the lattice in a Monte Carlo simu
tion. Despite the Gribov ambiguity, there is no problem

1For partition functionZV , the expectation value ofAtr in the
presence of the sourceJtr is Acl[^Atr&Jtr5dWV /dJtr, whereWV

5 ln ZV . Because the probability distribution in the presence
sourcesQ(Atr)exp(J tr,Atr) is positive in the Gribov regionV, and
becauseV is convex, it follows thatAcl lies in V. Consequently the
effective actionGV(Acl), obtained by Legendre transform from
WV , is defined only on the Gribov region.

2As shown in Sec. IV, they are given bygA, whereg5gmin(x) is
any local minimum of the functionalFA(g)5*d4xugAu2, where
gA5g21Ag1g21]g is the transform ofA by the local gauge trans
formation g(x). In a lattice discretization, the link variable corre
sponding to the fieldA(x) is generically a random field, so th
minimization problem is of spin-glass type which is known to ha
many solutions. On the other hand, for a smooth configuration, s
as the vacuum,A50, there are few solutions. Thus the number
copies is different for different orbits. Moreover, since the Fadde
Popov weight is positive inside the Gribov horizon, there can be
cancellations to save the day. Note also that, in a lattice discre
tion, the variables that characterize a configuration take values
compact space, so a minimizing configuration always exists, wh
shows thatV contains at least one Gribov copy for each orbit.
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overcounting with gauge fixing in Monte Carlo simulation
which is achieved by a gauge transformation of choice a
any sweep, nor is there one in stochastic or bulk quantiza
which relies on an infinitesimal gauge transformation. In t
five-dimensional formulation, the fieldAm

a 5Am
a (x,t) depends

on the four Euclidean coordinatesxm and on the fifth timet.
One may easily write down the SD equations for this form
lation which involves a local five-dimensional action, an
BRST invariances and Slavnov-Taylor identities are av
able to control divergences@22,23#, and @24#. However the
five-dimensional propagatorD5D(k2,v) depends on two
invariantsk2 and v, which makes the solution of the SD
equations in five dimensions more complicated, and we s
not attempt it here.

Instead we turn to an older four-dimensional formulati
of stochastic quantization@4#. It is based on an analog
between the ~formal! Euclidean weight PYM(A)
5exp@2SYM(A)# and the Boltzmann distributionP(x)
5exp@2V(x)#. The latter is the solution of the time
independent diffusion equation

]

]xi
S ]

]xi
1

]V

]xi
D P50,

where the drift force isKi52]V/]xi . We shall shortly con-
sider more general drift forcesKi that are not necessaril
conservative. The field-theoretic analog of this equation

HYMP~A![2E d4x
d

dAm~x! S d

dAm~x!
1

dSYM

dAm~x! D
3P~A!50, ~3.1!

where the drift force isKYM, m(x)[2]SYM /dAm(x), which
is solved byP(A)5exp(2SYM).

For a gauge theory, this solution is not normalizab
However, for a gauge theory one may modify the drift for
KYM→KYM1Kgt by adding to it a ‘‘force’’Kgt tangent to the
gauge orbit, without changing the expectation value
gauge-invariant observablesO(A). Such a force has the
form of an infinitesimal gauge transformationKgt,m

a

[(Dmv)a, whereva(x;A) is an element of the Lie algebra
and (Dmv)a5]mva1 f abcAm

b vc is its gauge-covariant deriva
tive. This force is not conservative, which means that it c
not be expressed as a gradient,Kgt,mÞ2]S/dAm , so this
method is not available in a local action formalism in fo
dimensions. The total drift force is given by

Km[KYM, m1Kgt,m

52
dSYM

dAm
1Dmv, ~3.2!

and P(A) is the solution of the modified time-independe
diffusion equation

f

ch
f
-
o
a-
a
h
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DANIEL ZWANZIGER PHYSICAL REVIEW D 65 094039
HP5~HYM1Hgt!P

52E d4x
d

dAm
S d

dAm
1

dSYM

dAm
2Dmv D P

50. ~3.3!

It is easy to show@4# that the expectation valuêO&
5*dA O(A)P(A) of gauge-invariant observablesO(A) is
independent ofv, using the fact thatHgt

† is the generator of
an infinitesimal local gauge transformation

Hgt
† 5G~v !5E d4x v~x!G~x!,

G~x![Dm

d

dAm
, ~3.4!

and thatO(A) andHYM are gauge invariant,G(x)O50, and
@G(x),HYM#50.

The additional drift forceKgt,m5Dmv must be chosen so
that it is globally a restoring force along gauge orbits, th
preventing the escape of probability to infinity along t
gauge orbit whereSYM is flat. This may be achieved b
choosingKgt to be in the direction of steepest descent,
stricted to gauge orbit directions, of some conveniently c
sen minimizing functionalF(A). A convenient choice is the
Hilbert square norm,F(A)5iAi25*d4xuAmu2. For a ge-
neric infinitesimal variation restricted to gauge orbit dire
tions dAm5eDmv, we have

dF~A!52~Am ,dAm!52~Am ,eDmv!52e~Am ,]mv!

522e~]mAm ,v!. ~3.5!

The direction of steepest descent ofiAi2, restricted to gauge
orbit directions, is seen to bedAm5eDmv for v5]lAl .
Thus if we choosev5a21]lAl , wherea is a positive gauge
parameter, the drift forceKt,m[a21Dm]lAl points globally
in the direction of steepest descent, restricted to gauge o
directions, of the minimizing functionaliAi2. In the follow-
ing we shall use the time-independent diffusion equation

HP[2E d4x
d

dAm
S d

dAm
1

dSYM

dAm

2a21Dm]lAlD P

50. ~3.6!

The five-dimensional formulation is based on the cor
sponding time-dependent diffusion equation

]P/]t52HP. ~3.7!

IV. NONPERTURBATIVE LANDAU GAUGE

Because the gauge-fixing force points in the direction
steepest descent of the minimizing functionalF(A)5iAi2,
restricted to gauge orbit directions, it follows that for lar
09403
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values of the gauge parametera21 the probability gets con-
centrated near the local minima of this functional restric
to gauge orbit variations.3 At a local minimum the first varia-
tion vanishes for allv, dF(A)522e(v,]mAm)50, as we
have just seen, so at a minimum, the Landau gauge cond
]mAm50, is satisfied. In addition, the second variation
in gauge orbit directions is non-negative,d2F(A)
522e(v,]mdAm)522e2(v,]mDmv)>0, for all v, which
is the statement that the Faddeev-Popov operatorM (A)
[2]mDm(A) is positive. These are the defining properti
of the Gribov region, and we conclude that in the limit
which the gauge parameter approaches zero,a→0, the prob-
ability P(A) gets concentrated on transverse configurati
A5Atr that lie inside the Gribov horizon. We have note
above that there are Gribov copies inside the Gribov horiz
However, the present method does not require that the p
ability gets concentrated on any particular one of them s
as, for example, the absolute minimum of the minimizi
function, and for finite gauge parametera, the gauge-fixing is
‘‘soft’’ in the sense that no particular gauge condition is im
posed. For gauge-invariant observables, it does not ma
how the probability is distributed along a gauge orbit, b
only that it be correctly distributed between gauge orb
This is assured because a harmless gauge transformation
introduced instead of gauge fixing.

We have noted thatA becomes purely transverse in th
limit a→0. We shall solve Eq.~3.6! in this limit by the
Born-Oppenheimer method in order to obtain the nonper
bative Landau gauge. For smalla, the longitudinal compo-
nent of A is small and, as we shall see, it evolves rapid
compared to the transverse component. However, becau
the factora21 in Eq. ~3.6!, the mean value of the longitudi
nal part of the gluon propagator strongly influences the tra
verse propagator in the limita→0.

We decomposeA into its transverse and longitudinal par
according toAm

b 5Am
tr,b1a1/2]m(]2)21Lb, so ]mAm

b 5a1/2Lb,
andd/dAm

b 5(d/dAm
tr,b)2a21/2]m(d/dLb). In terms of these

variables, Eq.~3.6! reads

E d4xF d

dAm
tr S d

dAm
tr 1

dSYM

dAm
2a21/2~Am3L ! D

1a21
d

dL S ~2]2!
d

dL
1a1/2]m

dSYM

dAm

2]mDm~A!L D GP50, ~4.1!

where we have used the notation (K3L)b5@K,L#b

5 f bcdKcLd for elementsK and L of the Lie algebra. The
leading terms inH are of ordera21, a21/2, anda0, and we
expand P5P01a1/2P11¯ . The leading term, of orde
a21, reads

3These conditions define a local minimum atg(x)51 of the func-
tional on the gauge orbit throughA defined by FA(g)
5*d4xugAu2.
9-4



at
s

es
or
si
er

e

io
-

n

n-
pose

n
e
-
n to
on.

d in
t off

t is

ex-
tive
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E d4x
d

dL S ~2]2!
d

dL
2]mDm~Atr!L D P050. ~4.2!

This is solved byP0 that is Gaussian inL,

P0~Atr,L !5Q~Atr!~detX!21/2

3exp@21/2~L,XL!#, ~4.3!

whereXbc(x,y;Atr) is a symmetric kernel. Equation~4.2! is
satisfied providedX satisfies @L,X(2]2)XL#2(L,XML)
50 identically for all L, and tr@(2]2)X2M #50. HereM
5M (Atr)[2]mDm(Atr) is the Faddeev-Popov operator th
is symmetric for A transverse. The first equation yield
X(22]2)X5XM1MX, or MY1Y M522]2 for Y
[X21. Moreover, when this equation is satisfied it impli
that the second equation is also satisfied. The equation fY
is linear. To solve it we take matrix elements in the ba
provided by the eigenfunctions of the Faddeev-Popov op
tor M (Atr)un5lnun , whereln5ln(Atr), and obtain

~um ,X21un!5~un ,Yum!

5~lm1lm!21
„un ,~22]2!um…. ~4.4!

We see that the Gaussian solutionP0(Atr,L) is normalizable
in L only when all the eigenvaluesln(Atr) are positive,
namely, forAtr inside the Gribov region. However, we hav
seen above that in the limita→0 the solutionP(A) is sup-
ported inside the Gribov region. Thus the coefficient funct
Q(Atr) carries a factoru„l0(Atr)…, which restricts the sup
port of P0 to this region. Finally we note that forAtr in the
Gribov region,Y may be written

X215Y5E
0

`

dt exp~2Mt !~22]2!exp~2Mt !. ~4.5!

This representation shows explicitly thatX is a positive op-
erator forAtr inside the Gribov region.

To determineQ(Atr) we substitute Eq.~4.3! into Eq.~4.1!,
and integrate overL. This kills the term ind/dL. It also
kills the term of ordera21/2 in a21/2Am3L5a21/2@Am

tr

1a1/2]m(]2)21L#3L because this term is odd inL. This
gives in the limita→0, the finite equation forQ(Atr),

E d4x
d

dAm
tr S d

dAm
tr 1

dSYM

dAm
~Atr!2Kgt eff,m~Atr! DQ~Atr!50.

~4.6!

HereKgt eff is the average overL of the gauge-transformatio
force, with weight (detX)21/2exp@21/2(L,XL)#, namely,

Kgt eff,m
b ~x;Atr![^ f bcd@]m~]2!21Lc#~x!Ld~x!&

5 f bcd]m~]2!21Ycd~x,y;Atr!uy5x

5E
0

`

dt fbcd]m~]2!21@exp~2Mt !~22]2!

3exp~2Mt !#cd~x,y!uy5x , ~4.7!
09403
s
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and we have usedYcd(x,y;Atr)5^Lc(x)Ld(y)&. We now
take the limit a→0, namely P(A)→ lima→0 P(A)
5 lima→0 P0(A). With L5a21/2]mAm this gives

P~A!5Q~Atr!d~]mAm!, ~4.8!

whereQ(Atr) is the solution of Eq.~4.6!. This defines the
nonperturbative Landau gauge.

To exhibit the relation between the nonperturbative La
dau gauge and the Faddeev-Popov theory, we decom
Kgt eff , given in Eq.~4.7!, according to

Kgt eff5K11K2 ,

K1,m
b ~x!52 f bcd]m~M 21!cd~x,y!uy5x , ~4.9!

K2,m
b ~x!5E

0

`

dt fbcd]m~]2!21$@2]2,exp~2Mt !#

3exp~2Mt !%cd~x,y!uy5x .

The first term may be written

K1,m
b ~x!5

d~ tr ln M !

dAm
tr,b~x!

52
dS

dAm
tr,b~x!

, ~4.10!

so K1 is a conservative drift force, derived from an actio
S[tr ln M52(ln detM) that precisely reproduces th
Faddeev-Popov determinant. So ifK2 were neglected we re
gain the Faddeev-Popov theory, with the added stipulatio
choose the solution that vanishes outside the Gribov horiz

The second term may be simplified using the identity

@]2,exp~2Mt !#52E
0

t

dsexp~2Ms!@]2,M #

3exp@2M ~ t2s!#, ~4.11!

which gives

K2,m
b ~x!52E

0

`

ds fbcd]m~]2!21

3$exp~2Ms!@]2,M #

3exp~2Ms!M 21%cd~x,y!uy5x , ~4.12!

whereM5M (Atr). The ‘‘drift force’’ K2 is a novel term. Its
presence is required to correct the overcounting, discusse
Sec. II, that occurs when the Faddeev-Popov theory is cu
at the Gribov horizon.4

4In our derivation we used the Born-Oppenheimer method tha
nonperturbative ing in order to obtain thea→0 limit at finite g. So
the presence of the new termK2 is not in contradiction with the fact
that the Faddeev-Popov theory provides a formal perturbative
pansion that has all the correct properties, including perturba
unitarity.
9-5
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V. SCHWINGER-DYSON EQUATIONS

The partition function is defined by

Z~J!5E dA Q~Atr!d~]mAm!exp~J,A!

5E dAtrQ~Atr!exp~J,Atr!. ~5.1!

It depends only on the transverse componentJm
tr of Jm ~on-

shell gauge condition!, and we writeZ5Z(Jtr). Generally, in
the Faddeev-Popov approach, one relaxes the transvers
condition, by writingd(]mAm)5*db exp(i*d 4 xb]mAm), and
then one uses Slavnov-Taylor identities to determine lon
tudinal parts of vertices. However, these identities have
yet been derived in the present four-dimensional stocha
approach, and we shall solve the SD equations using
on-shell formalism for the gauge condition. The on-shell c
relation functions, such as propagators, are the same a
off-shell ones, but the vertices~one-particle irreducible func
tions! are strictly transverse. Renormalization theory is n
well articulated at present in the on-shell formalism, but
shall not encounter ultraviolet divergences in the SD eq
tions in the infrared limit. Moreover, we shall see that in th
limit the SD equations are invariant under the renormali
tion group.5

The partition functionZ(Jtr), which is the generating
functional of~transverse! correlation functions, is the Fourie
transform of the probability distributionQ(Atr). Conse-
quently the SD equation forZ(Jtr) is simply the diffusion
equation~4.6!, expressed in terms of the Fourier-transform
variables,

E d4xJm
trFJm

tr1K tot eff,mS d

dJtrD GZ~Jtr!50. ~5.2!

Here we have introduced the total effective~tot eff! drift
force

K tot eff,m~Atr![2
dSYM

dAm
~Atr!1Kgt eff,m~Atr!. ~5.3!

Only the transverse component ofK tot eff,m appears in the
following. The free energyW(Jtr)[ ln Z(J tr), which is the
generating functional of connected correlation functions, s
isfies the SD equation

E d4x Jm
trFJm

tr1K tot eff,mS dW~Jtr!

dJtr 1
d

dJtrD G50. ~5.4!

The effective action is obtained by Legendre transformati
G(Atr)5(Jtr,Atr)2W(Jtr) by invertingAtr5dW/dJtr. It sat-
isfies the SD equation

5It should also be noted that it is not known at present how
maintain the Slavnov-Taylor identities exactly at the nonpertur
tive level in the off-shell formalism, although methods for deali
with this have been proposed@25#.
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E d4x
dT~Atr!

dAm
tr FdG~Atr!

dAm
tr 1K tot eff,mS Atr1D~Atr!

d

dAtrD G50,

~5.5!

where the argument ofK tot eff is written in matrix
notation, and is given explicitly by Am

tr (x)
1*d4yDmn(x,y;Atr)[d/dAn

tr(y)]. Here Dmn(x,y;Atr)
5@dAn

tr(y)/dJn
tr(x)# is the gluon propagator in the presen

of sources.
To obtain the SD equation for the propagator, we expa

in powers ofAtr,

dG~Atr!

dAm
tr 5~D21Atr!m1¯ ,

K tot eff,m
tr S Atr1D~Atr!

d

dAtrD52~RAtr!m1¯ , ~5.6!

where we have again used matrix notation. HereDmn

5Dmn(x2y) is the gluon propagator in the absence
sources, and

Rmn~x2y![2F d

dAn
tr~y!

K tot eff,m
tr

3S Atr1D~Atr!
d

dAtrD ~x!GU
Atr50

. ~5.7!

Both D and R are identically transverse, and in momentu
space, by virtue of Lorentz invariance, are of the fo
Dmn(k)5D(k2)@dmn2kmkn /k2# and Rmn(k)5R(k2)@dmn

2kmkn /k2#. Upon equating terms quadratic inAtr in Eq.
~5.5! we obtain

E d4x@D21Am
tr #~x!@~D212R!Am

tr #~x!50, ~5.8!

which we write in matrix notation as

~D21Atr,@D212R#Atr!50. ~5.9!

This holds identically inAtr. From the expressions fo
Dmn(k) andRmn(k), we see that both are symmetric oper
tors that commute,DR5RD. As a result, the operator ap
pearing in the last equation is symmetric and must vanis

D21~D212R!50. ~5.10!

This gives the SD equation for the gluon propagator

D215R, ~5.11!

whereR is given in Eq.~5.7!.

o
-
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VI. SOLUTION OF SD EQUATION IN THE INFRARED

Recall the decompositionKgt eff5K11K2, where K1
5d(tr ln M)/dAtr(x) is the drift force that, in the absence o
K2 , describes the Faddeev-Popov theory in the Lan
gauge. Since it is not without interest to solve the Fadde
Popov theory nonperturbatively in the Landau gauge, an
order to compare our results with other authors, we shall h
ignoreK2 , the novel term that corrects the overcounting th
occurs when the Faddeev-Popov theory is cut off at
Gribov horizon.

The remaining drift force,K1 , describes Faddeev-Popo
theory in the Landau gauge. We have seen in Sec. II
there is an ambiguity in the solution of the SD equations
the Faddeev-Popov theory, with no clear prescription to
solve it at the nonperturbative level. Fortunately the pres
derivation provides the additional information that is need
to resolve this ambiguity: we must choose the solution of
SD equations that vanishes outside the Gribov horizon
cause, as we have seen,Q(Atr) vanishes outside the Gribo
horizon in the limita→0. With this choice it is likely that
qualitative features of the exact theory~with K2! will be
preserved.

With neglect ofK2 we may write directly the familiar SD
equations of the Faddeev-Popov theory in Landau gauge
an arbitrary numberd of Euclidean dimensions

Dmn
21~k!5~dmnk22kmkn!1Ng2~2p!2dE ddp G~p1k!

3~p1k!mG~p!Gn~p,k!1~gluon loops!, ~6.1!

G21~p!5p22Ng2~2p!2dE ddk G~k1p!

3~k1p!mDmn~k!Gn~p,k!, ~6.2!

where G(p) is the ghost propagator,Gn(p,k) is the full
ghost-ghost-gluon vertex. In the Landau gauge, a factor
tion of the external ghost momentum occurs, so the gh
ghost-gluon vertex is of the formGn(p,k)5Gn,l(p,k)pl .
As a result there is no independent renormalization
Gm(p,k), and the renormalization constants in Landau ga
are related byZg

2Z3Z̃3
251, whereg05Zggr , D05Z3Dr , and

G05Z̃3Gr . So far, we have written the SD equations f
unrenormalized quantities, with the index 0 suppressed.

We must select the solution to these equations that co
sponds to a probability distributionQ(Atr) that vanishes out-
side the Gribov horizon. To do so, it is sufficient to impo
any property that holds for this distribution, provided on
that it determines a unique solution of the SD equatio
Besides positivity, which will be discussed in the concludi
section, there are two exact properties that hold for a pr
ability distribution P(Atr) that vanishes outside the Gribo
horizon: ~i! the horizon condition and~ii ! the vanishing of
the gluon propagator atk50 @17#6

6The vanishing of the gluon propagator atk50 results from the
proximity of the Gribov horizon in infrared directions.
09403
u
v-
in
re
t
e

at
f
-

nt
d
e
e-

in

a-
t-

f
e

e-

s.

b-

lim
k→0

D~k!50. ~6.3!

The horizon condition~i! is equivalent to the statement th
G(p) diverges more rapidly than 1/p2, or

lim
p→0

@p2G~p!#2150. ~6.4!

Indeed if we divide the SD equation~6.2! by p2, and impose
this condition, we obtain

dml5Ng2~2p!2dE ddk G~k!Dmn~k!Gnl~0,k!. ~6.5!

This is the nonperturbative statement that the ghost s
energy, which is of the formS(p)5pmSml(p)pl because of
the factorization of the external ghost momentum, exac
cancels the tree level term atp50,

dml5Sml~0!. ~6.6!

Equations~6.5! and ~6.6! are the form of the horizon condi
tion given in @26–28#.7 We will see that it is sufficient to
apply either condition~i! or ~ii !, and the other condition then
follows automatically. The horizon condition allows us
write the SD equation for the ghost propagator,~6.2!, in the
form

G21~p!5Ng2~2p!2dE ddk pmDmn~k!

3@Gn,l~0,k!G~k!

2Gn,l~p,k!G~k1p!#pl , ~6.7!

where we have usedkmDmn(k)50. This equation was solved
numerically in three-dimensions in@28#, using an assumed
form for D(k).

We wish to determine the asymptotic~as! form of the
propators at low momentum,Gas(p2), and Dmn

as (k)
5Das(k2)Pmn

tr (k), where Pmn
tr (k)5dmn2kmkn /k2 is the

transverse projector. For this purpose we let the external
menta in the SD equations be asymptotically small compa
to QCD mass scales. In this case the loop integration will
dominated by asymptotically small loop momenta, so
propagators inside the integrals may also be replaced by
asymptotic values. This is true provided that the result
integrals converge, as will be verified. We shall also trunc
the SD equations by neglecting transverse vertex correcti
as usual, in order to obtain a closed system of equatio
Gn

tr(p,k)→Pnm
tr (k)pm . Such truncations may, possibly, b

7In a space of high dimensionN the probability distribution within
a smooth surface such as a spherer ,R gets concentrated near th
surfacer 5R because of the entropy or phase-space factorr N21dr.
The horizon condition is the statement that the probability distri
tion within the Gribov horizon is concentrated on the Gribov ho
zon because the dimensionN of A space diverges with the volum
V in, say, a lattice discretization.
9-7
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justifieda posterioriby calculating corrections to see if the
are small. BecauseDmn(k) is transverse, the SD equation fo
the ghost propagator simplifies to

~Gas!21~p2!5Ng2~2p!2dE ddk~k2!21

3@p2k22~p•k!2#Das~k2!

3$Gas~k2!2Gas@~k1p!2#%. ~6.8!

This equation is invariant under renormalization because
the identityZg

2Z3Z̃3
251. This allows us to take all quantitie

in Eq. ~6.8! to be renormalized ones, with suppression of
index r.

Because the asymptotic infrared limit is a critical lim
the asymptotic propagators obey simple power laws,

Das~k2!5cDm2aD~p2!2~11aD!,
~6.9!

gGas~p2!5cGm2aG1~42d!/2~p2!2~11aG!,

according to standard renormalization-group argume
HereaD andaG are infrared critical exponents or anomalo
dimensions that we shall determine, whilem is a mass scale
and cD and cG are dimensionless parameters. The horiz
condition ~6.4! implies aG.0, whereas Eq.~6.3! implies
aD,21. Upon changing the integration variable accordi
to km5upukm8 , and equating like powers ofp we obtain

aD12aG52~42d!/2. ~6.10!

The integral is an ultraviolet convergent ford22(11aD)
22(11aG)22,0, where two powers ofk are gained be-
cause of the difference$Gas(k)22Gas@(k1p)2#%. With aD
522aG2(42d)/2, this givesaG,1 as the condition for
ultraviolet convergence, so 0,aG,1.

We now turn to the SD equation for the gluon propaga
~6.1!. In the exact Faddeev-Popov theory with off-sh
gauge condition, the right-hand side of Eq.~6.1! is exactly
transverse ink on both free Lorentz indicesm andn by virtue
of the Slavnov-Taylor identities. This allows us to app
transverse projectorsPm8m

tr (k)5dmn2kmkn /k2 and Pn8n
tr (k)

to these indices. In our derivation, with the on-shell gau
condition, the projectors are automatically applied. As a
sult, since the gluon propagators are transverse, only
transverse parts of the vertices contribute on the right-h
side. We therefore make the truncation approximation of
placing these transverse vertices by their tree-level exp
sions. We now estimate the various terms on the right-h
side of the SD equation~6.1! for D(k). We just concluded
from the horizon condition and the SD equation forG(p)
thataG.0 andaD,0. As a result, on the right-hand side
Eq. ~6.1!, the ghost loop that we have written explicitly
more singular in the infrared than the gluon loops. Moreov
in the infrared,D21(k);(k2)(11aD) is more singular atk
50 than the tree-level term;k2 becauseaD,0. We now let
the external momentumk have an asymptotically sma
value, so the loop integration is dominated by asymptotica
small values of the integration variablep ~provided the re-
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sulting integral converges!. We take the asymptotic infrare
limit of Eq. ~6.1! with external projectors and obtain

@Das~k2!#21Pmn
tr ~k!

5Ng2~2p!2dPml
tr ~k!E ddp plGas@~k1p!2#

3Gas~p2!pkPkn
tr ~k!. ~6.11!

We take the trace on Lorentz indices and obtain

@Das~k2!#215Ng2~2p!2d@~d21!k2#21

3E ddp@p2k22~p•k!2#

3Gas@~k1p!2#Gas~p2!. ~6.12!

Like the ghost equation~6.8!, this equation is invariant unde
renormalization because of the identityZg

2Z3Z̃3
251, and we

may again take all quantities to be renormalized with s
pression of the indexr. We substitute the power laws~6.10!
into this equation. By using the power-counting argume
that was used for the ghost propagator, we again obtain
relation of the infrared critical exponentsaD12aG52(4
2d)/2. This integral converges in the ultraviolet ford22
,4(11aG), or aG.(d22)/4.

The gluon and ghost SD equations now read

~cDcG
2 !215I D~aG!5I G~aG!, ~6.13!

where

I D~aG![N~2p!2d~d21!21~k2!2~21aD!

3E ddp@p2k22~p•k!2#

3@~k1p!2#2~11aG!@~p!2#2~11aG!, ~6.14!

I G~aG![N~2p!2d~p2!2~11aG!

3E ddk@p2k22~p•k!2#~k2!2~21aD!

3$~k2!2~11aG!2@~k1p!2#2~11aG!%,

~6.15!

and it is understood thataD[22aG2(42d)/2. The critical
exponentaG is determined by the equality~6.13!. The inte-
grals I D(aG) and I G(aG) are evaluated in the Appendix
without angular approximation, in arbitrary Euclidean d
mensiond.

VII. DETERMINATION OF INFRARED CRITICAL
EXPONENTS

To determine the critical exponentaG , we substitute the
formulas for I D(aG) and I G(aG), given in the Appendix,
into the equationI D(aG)5I G(aG) and obtain, fora[aG ,
9-8
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f d~a![
~d21!p

sin~pa!

G~112a!

G~22a1d/2!G~11a1d/2!

3
G~d22a!

G~2a1d/2!G~112a2d/2!

51. ~7.1!

We take the dimensiond of space-time in the interval 2<d
<4. The integralsI D(a) and I D(a) are both convergent in
the ultraviolet only fora in the interval 0,(d22)/4,a
,1, so the equation which determinesa holds only in this
interval. However, whereasI D(a) is manifestly positive
throughout this interval, the expression forI G(a) is negative
for a.d/4, because 1/G(22a1d/2) changes sign ata
5d/4, so we look for a solution only in the reduced interv

0<~d22!/4<a<d/4<1. ~7.2!

The identity,G(22a1d/2)G(112a2d/2)5p/sin@p(22a
1d/2)#, gives

f d~a![
~d21!sin@p~22a1d/2!#

sin~pa!

3
G~112a!

G~11a1d/2!

G~d22a!

G~2a1d/2!

51. ~7.3!

For the case of physical interest,d54, the allowed inter-
val is 1/2<a<1, and the functionf 4(a) contains the factor
sin@p(22a12)#/sin(pa)5sin@p(22a)#/sin(pa) which is of
the indeterminate form 0/0 ata51. To control this~and a
similar indeterminacy ford52 ata50!, we first considerd
in the range 2,d,4, and then take the limitd→4 ~and d
→2!. For d in this range, one sees that the functionf d(a) is
positive and finite, f d(a).0, for a in the interior of the
allowed interval (d22)/4,a,d/4, but vanishes atbothend
points f d@(d22)/4#5 f d(d/4)50 because of the facto
sin@p(22a1d/2)#. It follows that the equationf d(a)51 has
an evennumber of solutions~if any!8 for 2,d,4. We now
setd54 and obtain

f 4~a![
23 sin~2pa!

sin~pa!

G~112a!G~422a!

G~31a!G~22a!
51.

~7.4!

We use

G~112a!G~422a!

5~322a!~222a!~122a!2ap/sin~2pa!,
~7.5!

8From numerical plots it appears that for 2,d,4 there are al-
ways two distinct real roots in the range (d22)/4,a,d/4, except
possibly neard'2.662 where there may be a double root neara
'0.33095.
09403
l

G~31a!G~22a!5~21a!~11a!a~12ga!p/sin~pa!,

and obtain

f 4~a!512
~322a!~2a21!

~21a!~11a!
51, ~7.6!

where we have used@sin(2pa)/ sin(pa)#@sin(pa)/ sin(2pa)#
51, which is valid only for 1/2,a,1. This yields a qua-
dratic equation with rootsa5@936A(1201)#/98'@93
634.66#/98. Only one root a'0.5953 lies in the interval
1/2,a,1. On the other hand, we have just seen that fo
,d,4, there is anevennumber of roots. The resolution i
that for d542e there are two roots, and the second root
given bya512O(e), so in the limitd→4, there is a sec-
ond root ata51.

We conclude that the infrared critical exponentsa5aG
and aD522aD2(42d)/2 are given, ind54 dimensions,
by two possible sets of values

aG51, aD522,

aG5@932A~1201!#/98'0.5953, ~7.7!

aD52@932A~1201!#/49'21.1906.

In the same way one finds ford52,

aG50, aD521,
~7.8!

aG51/5, aD527/5.

For d53, one obtains the equation,

f 3~a!5
32a~12a!@12cot2~pa!#

~312a!~112a!
51

with roots in the interval 1/4<a<3/4, given by

aG51/2, aD523/2
~7.9!

aG'0.3976, aD'21.2952.

We expect that in each case one of the roots is spurious,
arises because Eq.~7.3! does not express the full content o
the theory.

We note that in each case one solution correspond
aG5(d22)/250, 1/2, and 1, ford52, 3, and 4, which
givesG(k);1/(k2)d/2. This may be too infrared singular t
be acceptable. But ford52, the other solution, withaG
51/5, is even more infrared singular, which suggests that
d52 the first solution may be preferred namely,aD521
andaG50, which may make the cased52 pathological in
the Landau gauge. This case is exactly solvable in the a
gauge because the nonlinear term in thed52 Yang-Mills
field is absent in this gauge, and gives an area law at
classical level. There can, of course, be no physical gluon
d5111 dimensions even in the free theory which may th
9-9
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be considered confining. Clearly the cased52 in the Landau
gauge requires a more detailed investigation that we do
attempt here.

VIII. DISCUSSION AND CONCLUSION

We have seen that because the Faddeev-Popov w
PFP(A) contains nodal surfaces, the SD equations co
sponding to the Faddeev-Popov method are ambiguous,
in practice one does not know how to select an exact
globally correct solution. Gribov’s proposal, to cut off th
Faddeev-Popov integral at the first nodal surface, produc
positive probability distribution, but it is not exact because
overcounts some gauge orbits, although it may give a us
approximation.

By contrast the method of stochastic quantization
passes the Gribov problem of selecting a single represe
tive in each gauge orbit. Instead the diffusion equation inA
space, Eq. ~3.6!, contains an additional ‘‘drift force’’
a21Dm]•A that is a harmless generator of a gauge trans
mation. The corresponding DS equation that defines the n
perturbative Landau gauge was obtained by solving the l
a→0 of this equation by the Born-Oppenheimer metho
The limiting probability distributionQ(Atr) was shown to
vanish outside the Gribov horizon. It is determined by a d
fusion equation that contains the novel termK2 , Eq. ~4.9!,
that corrects the Faddeev-Popov distribution cutoff at
Gribov horizon for overcounting inside the Gribov horizo

@We may mention here an alternative approach. The L
dau gauge is the singular limita→0 of more regular gauges
and contains a nonlocal effective drift forceKgt eff , Eq. ~4.9!.
For this reason it may be preferable to calculate with ga
parametera finite, so the drift force,Km52dSYM /dAm
1a21Dmm•A, remains local, and there is no horizon outsi
of which the probability distribution vanishes exactly. In th
case the SD equation~5.5! for the effective actionG gets
replaced by

E d4x
dG~A!

dAm
FdG~A!

dAm
1KmS A1D~A!

d

dAD G50.

~8.1!

The gluon propagator is given byD215R, where R
52(d/dA)K@A1D(A)(d/dA)#uA50 , as in Eq.~5.7!. One
would hope to solve the SD equations for the full propa
tors in this approach, and not just their infrared asympto
limit. An advantage of this approach is that the solution fo
finite value of the gauge parametera could be directly com-
pared with the numerical lattice data of@7# and @8# that is
taken with stochastic gauge fixing and gauge parametea
50.1. To control ultraviolet divergences, it will be necessa
to develop Ward-type identities appropriate to this sche
They were not needed in the present calculation becaus
ultraviolet divergences appeared in the infrared limit. Su
identities in the BRST form are available in the fiv
dimensional scheme that is based on the time-dependen
fusion equation@22,23,24#, and alternatively one may at
tempt to solve the SD equations of the five-dimensio
scheme nonperturbatively.#
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In the second part of the article, where we calculated
infrared critical exponents, we have, however, ignored
new termK2 in order to compare with other authors, an
because it is not without interest to calculate the infra
critical exponents nonperturbatively in the Faddeev-Pop
theory with a cutoff at the Gribov horizon.

It is noteworthy that all our values for the critical expo
nents in d52, 3, and 4 dimensions agree with the exa
results for a probability distribution that is cutoff at the Gr
bov horizon namely, the vanishing@17# of the gluon propa-
gatorD(k)→0 ask→0, and the enhancement@26,27,28# of
the ghost propagator@k2G(k)#21→0 ~except for the first
solution in d52 which is marginal, withaG50 and aD

521!. The vanishing ofD(k) at k50 is counterintuitive,
and has no other explanation than the proximity of the G
bov horizon in infrared directions. This suppresses the in
red componentsA(k) of the gluon field, and thus of the
gluon propagatorD(k)5^uA(k)u2&. Since our calculation in-
volves a truncation of the SD equations which is an unc
trolled approximation, the stability of our results should
tested by estimating corrections. As for the future, an imm
diate challenge is to include the effect of the new termK2 ,
Eq. ~4.9!, that was not evaluated in the present calculati
One must also introduce quarks.

We wish to compare our values of the infrared asympto
dimensions with those reported by@13,14#, and@15#. But first
we must verify whether they also selected the solution of
SD equations of Faddeev-Popov theory that vanishes out
the Gribov horizon. Note that to obtain a particular soluti
it is sufficient to require any one of its properties, provid
that this requirement selects a unique solution. Indee
unique solution was obtained in@13# by requiring that both
the gluon and ghost propagatorsD(k) andG(k) be positive.
These properties by no means follow from the Fadde
Popov weight~2.1! that oscillates in sign, whereas restrictio
to the Gribov region does imply the positivity of bothG(k)
and D(k). So in fact the restriction to the Gribov region
also implemented in this way in@13#. Likewise the assump-
tions made in@14# and @15# to obtain a solution of the SD
equations are equivalent to the horizon condition, Eq.~6.4!,
that we imposed in Sec. VI.

It is reassuring that the values given in Eq.~7.7! for
d54 agree qualitatively with the values reported
@13#, namely aG5@612A(1897)#/19'0.92 and aD5
22aG'21.84, in the sense that the gluon propaga
D(k);1/(k2)11aD vanishes atk50, and the ghost propaga
tor G(k);1/(k2)11aG is enhanced. This may be an indic
tion that these qualitative features of the solution are
merely an artifact of the approximations made. For the t
treatments of the SD equations are quite different. Indee
@13#, the gauge condition is treated off-shell, by imposing t
Slavnov-Taylor identities to determine longitudinal parts
vertices, and by using the method of@25# to adjust the gluon
propagator. On the other hand, we have treated the ga
condition on shell, so only transverse quantities occur. Th
is a similar qualitative agreement ford54 with the values
reported in @14#, aG5@772A(2281)#/38'0.769479, and
aG522aG , where an angular approximation was mad
9-10
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The approximations made in@15# appear to be similar to
ours, although the method of solution is quite different. T
value reported there ford54, aG51 andaD522, agrees
with our first solution.9

We also wish to compare our results with numeric
Monte Carlo studies of propagators in Landau gauge.
merical gauge fixing to the Landau gauge is achieved
minimizing, with respect to gauge transformations, the latt
analog of FA(g)5*ddxugAu2, which indubitably produces
configurations that lie inside the Gribov horizon. This gau
fixing, like stochastic gauge fixing, has a Euclidean wei
that is everywhere positive, without overcounting. Howev
it is not in the class of Faddeev-Popov gauges for which
determinent alternates in sign, so a comparison with ana
calculations by the Faddeev-Popov method does not ha
completely clear interpretation.

The infrared behavior of the lattice propagators is ve
sensitive to finite-volume effects, and control of the volum
dependence at fixedb52N/g0

2 is required. In particular
D(k) does not and should not vanish atk50 at any finite
lattice volume, but only when extrapolated to infinite vo
ume. We have not attempted here to fit the data of@7# and@8#
without an estimate of the finite-volume correction and
effect of the finite gauge parameter, but this is a promis
avenue for future comparison of numerical and analytic
sults. However, we do note that it was reported in@7#, with
stochastic gauge fixing at gauge parametera50.1 ~with Lan-
dau gauge ata50!, that a fit to the Gribov formula,D(k)
5Zk2@(k2)21M4#21, ~strong infrared suppression! can ex-
plain the gross feature of the data. Recent studies in
Landau gauge at finite lattice volume indicate a suppres
of the gluon propagator in the infrared@30#, and are not
incompatible with an enhancement of the ghost propag
@31#. The infrared behavior of the lattice gluon propaga
D(k) has been studied in SU~2! gauge theory in the Landa
gauge ind53 Euclidean dimensions@32#. It was found that
D(k) has a maximum atk'350 MeV ~normalized to the
physical value of the string tension! that is practicallyb in-
dependent, and thatD(k) decreases ask decreases below thi
value. This decrease is interpreted as resulting from the p
imity of the Gribov horizon in infrared directions. A simila
behavior is expected for the three-dimensionally transve
part of the gluon propagator in the Coulomb gauge, in fo
Euclidean dimensions. This has been observed, and an
trapolation to infinite lattice volume at fixedb was in fact
found, notably, to be consistent with thevanishingof D(k) at
k50 @33# and @34#. We emphasize that this behavior is n
seen at finite lattice volume but only in the extrapolation
infinite lattice volume, at fixedb. For this reason it is impor-
tant to extend the lattice calculations in Landau, Coulom
and stochastic gauges to larger volumes, and to extrapola
infinite lattice volume before attempting a fit to continuu
formulas.

9After the completion of this article, L. von Smekal kindly in
formed me that the first value,aG5@932A(1201)#/98 in d54 di-
mensions, was also obtained by C. Lerche@29#.
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So what have we learned about propagators and the
finement problem in QCD? We may summarize results qu
tatively by the statement that in the infrared region in no
perturbative Landau gauge there is strong suppression
vanishing of the would-be physical gluon propagator, a
strong enhancement of unphysical propagators.10 This is true
both for the analytic solutions of the Schwinger-Dyson eq
tions obtained in@13,16,15,29#, and here, and for the numer
cal lattice data just discussed, with similar numerical data
Coulomb gauge. We expect that these qualitative featu
will stand the test of time. They provide a simple intuitiv
picture of confinement in which the suppressed mass
physical gluon disappears from the physical spectrum w
the enhanced unphysical components provide a long-ra
color-confining force.~This long-range force should als
confine quarks, but that has not been addressed here! As
discussed previously@35# both features may be understoo
as the result of the restriction to the Gribov region, whi
results from the identification of gauge-equivalent configu
tions. The infrared suppression of the transverse glu
propagator results from the proximity of the Gribov horizo
in infrared directions, while the enhancement of the unphy
cal components is an entropy effect that results from h
population in the neighborhood of the Gribov horizon, whe
the inverse Faddeev-Popov operator is enhanced.
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APPENDIX: EVALUATION OF INTEGRALS

To evaluate the gluon self-energyI D(aG), Eq. ~6.14!, we
write

1/@~p2k!2#11aG5G21~11aG!E
0

`

dx xaG

3exp@2x~p2k!2#, ~A1!

and similarly for 1/@(p)2#11aG. This gives

I D~aG![N@~d21!~k2!~21aD!G2~11aG!#21

3E
0

`

dxE
0

`

dy~xy!aGJ, ~A2!

where

10The ‘‘unphysical propagator’’ that is infrared enhanced may
either the ghost propagator in the nonperturbative Landau-ga
Faddeev-Popov theory, or the 44-component of the gluon prop
tor in Coulomb gauge. The ghost propagator coincides, appr
mately, with the remnant of the longitudinal gluon propagator t
survives the Landau-gauge limit in stochastic quantization.
9-11
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J[~2p!2dE ddp@p2k22~p•k!2#

3exp@2x~p2k!22yp2#

5~d21!k2@2~4p!d/2~x1y!11d/2#21

3exp@2~x1y!21xyk2#. ~A3!

We introduce the identity 15*dgd(x1y2g) and change
variable according tox5gx8 and y5gy8. This gives, after
dropping primes,

I D~aG!5N~k2!2~11aD!

3@2~4p!d/2G2~11aG!#21K, ~A4!

K[E
0

`

dxE
0

`

dyE
0

`

dg d~x1y21!~xy!aG

3g2aG2d/2 exp@2gxyk2#

5~k2!22aG211d/2

3
G~2aG112d/2!G2~2aG1d/2!

G~d22aG!
. ~A5!

This gives

I D~aG!5
N

2~4p!d/2

3
G~2aG112d/2!G2~2aG1d/2!

G2~11aG!G~d22aG!
, ~A6!

where we usedaD522aG2(42d)/2.
To evaluate the ghost self-energy,I G(aG), Eq. ~6.15!, we

use the identities

1

@~k!2#21aD
5

1

G~21aD!
E

0

`

dx xaD11

3exp~2xk2!, ~A7!

1

@~k!2#11aG
2

1

@~k2p!2#11aG

5
1

G~11aG!
E

0

`

dy yaG11@~k2p!22k2#

3E
0

1

dzexp$2y@z~k2p!21~12z!k2#%,

~A8!

which allow us to cancel the leading power ofk explicitly.
This gives
09403
I G~aG!5
N

~p2!11aGG~21aD!G~11aG!

3E
0

`

dxE
0

`

dyE
0

1

dz xaD11yaG11L, ~A9!

where

L[~2p!2dE ddk@p2k22~p•k!2#~p222p•k!

3exp$2@x1y~12z!#k22yz~k2p!2%, ~A10!

L5
~p2!2~d21!

2~4p!d/2

x1y22yz

~x1y!21d/2

3expS 2
yz@x1y~12z!#p2

x1y D . ~A11!

This gives

I G~aG!5
N~d21!~p2!12aG

2~4p!d/2G~21aD!G~11aG!
J,

~A12!

J[E
0

`

dxE
0

`

dyE
0

1

dz xaD11yaG11
x1y22yz

~x1y!21d/2

3expS 2
yz@x1y~12z!#p2

x1y D . ~A13!

We again introduce the identity 15*dgd(x1y2g) and
change variables according tox5gx8 and y5gy8. This
gives, after dropping primes,

J5E
0

`

dgE
0

`

dxE
0

`

dyE
0

1

dzd~x1y21!

3xaD11yaG11~122yz!

3g2aG exp$2yz@x1y~12z!#gp2%, ~A14!

J5~p2!aG21G~12aG!

3E
0

1

dyE
0

1

dz yaG11~12y!aD11~122yz!

3@yz~12yz!#aG21, ~A15!

where we again usedaD522aG2(42d)/2. We change the
variable of integration tou5yz(12yz), with du5y(1
22yz)dz, and obtain
9-12
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J5~p2!aG21aG
21G~12aG!

3E
0

1

dy y2aG~12y!2aG211d/2

5
~p2!aG21G~12aG!

aG

3
G~112aG!G~2aG1d/2!

G~aG111d/2!
, ~A16!

where we have again usedaD522aG2(42d)/2. This
-

a,

T.

ett

09403
gives

I G~aG!5
N~d21!

2~4p!d/2

p

sin~paG!

3
G~2aG11!G~2aG1d/2!

G2~aG11!G~22aG1d/2!G~aG111d/2!
,

~A17!

where we have usedG(aG)G(12aG)5p/sin(paG). This
integral is positive foraG,d/4.
n
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