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Quark-hadron duality in a relativistic, confining model
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Quark-hadron duality is an interesting and potentially very useful phenomenon, as it relates the properly
averaged hadronic data to a perturbative QCD result in some kinematic regimes. While duality is well estab-
lished experimentally, our current theoretical understanding is still incomplete. We employ a simple model to
qualitatively reproduce all the features of the Bloom-Gilman duality as seen in electron scattering. In particular,
we address the role of relativity, give an explicit analytic proof of the equality of the hadronic and partonic
scaling curves, and show how the transition from coherent to incoherent scattering takes place.
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[. INTRODUCTION most cases we cannot perform a full QCD calculation. For
example, in order to calculate a resonance excitation form
Quark-hadron duality has been well established experifactor, one would need to include very many quarks and
mentally [1] for over 30 years, but our theoretical under- gluons, and they would all couple strongly. We will refer to
standing of the phenomenon is quite limited so far. In thethe above statement that any hadronic process can be de-
past year, there has been renewed interest in duality, both aitribed by a full QCD calculation as “degrees of freedom
the experimentdl2,3] and theoretical sidgl—8]. Duality is  duality.”
a major point in the planned 12 GeV upgrade of the Continu- There exists a more practical and less obvious version of
ous Electron Beam Accelerator Facili(CEBAF) at Jeffer-  the first statement: in certain kinematic regions, the average
son Lab[9]. Duality between partons and hadrons is alsoof hadronic observables is described by a perturbative QCD
employed in QCD sum rule< 0]. (PQCD result. This is the statement of duality, and we are
In a recent publicatiofi4], we presented results obtained going to explain the details in the following.
in a confining, relativistic. model whi_ch qualitat_ively repro-  \ith the PQCD result, we indicate the result for the un-
duced the features seen in Bloom-Gilman dualityl4h we  gerlying quark process—for inclusive inelastic electron scat-

only discussed a reaction where all particles involved—eying from a proton, it is free electron-quark scattering; for
electrons, photons, and quarks—were treated as scalars. In .

this paper, we present the model for physical electrons anaemneptonlc decays, e_.gl3—>xcl v, IUIS the underlying
photons, and only treat the quarks as scalars. We describe tﬁgarhdecay rate, in this case o-bt.auned from thg probess
model and its properties in more detail, and discuss the Cou=>€! ¥ [11]; for e"e” —hadrons, it is the underlying“e™
lomb sum rule, the transition from coherent to incoherent—qq process. Now, it is clear that we expect perturbative
scattering, and duality in the form factors. We also put speQCD to describe nature in a certain kinematic regime, i.e.,
cial emphasis on the role of relativity. A relativistic treatmentfor very largeQ?. In this regime, as a result of the fact that
was one of four basic conditions imposed|[#] to obtain  full QCD is approximated by perturbative QCD, the state-
duality, and here we show the consequences of relaxing thisment of duality turns into the statement of the “degrees of
condition, and compare nonrelativistic and relativistic calcu-freedom duality.” So we have identified one kinematic re-
lations. One main point of this paper is the explicit derivationgime in which even the nonobvious version of duality must
of the scaling curve for scattering from quarks confined inhold.
their initial and final states and a comparison of this scaling We also can identify a kinematic regime for which duality
curve to that obtained in a parton model calculation. cannot hold: forQ?— 0. While the underlying reason for the
For the convenience of the reader, we define the concefitreakdown of duality at low four-momentum transfers is the
of duality in the following and briefly discuss a few basic nonperturbative, strong interaction of the hadrons, one can
implications. In the literature, there exist many slightly vary- see the breakdown of duality most easily by considering the
ing “definitions” and usages of the term duality, and the transition from incoherent to coherent scattering. For duality
phenomenon manifests itself experimentally in many differ-to hold for the nucleon structure functions in this case, we
ent processes. We begin with a definition that covers all theseould need the following: the elastic proton and neutron
cases. First, we need to make an obvious observation: arfprm factors, which take the value of the nucleon charge for
hadronic process can be correctly described in terms o?—0, would have to be reproduced by electron scattering
quarks and gluons. In other words, quantum chromodynameff the correspondingi and d quarks. Now, for the proton
ics (QCD) is the correct theory for strong interactions. While this can work, as the squares of the charges of uvgoarks
this statement is obvious, it has little practical value, as inand oned quark add up to 1. However, for the neutron, the
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squared quark charges cannot add up to 0, so it is clear that V2(r)=b2r2, )

duality in inclusive inelastic electron scattering from a neu-

tron must fail forQ?>—0. In addition, we know from gauge whereb is the relativistic string tension and has dimension

invariance that forQ?—0, at fixed energy transfer, the  [b]=[masg]. The superscript of the wave function denotes

function »W,(»,Q? must approach 0. It is clear that the positive and negative energy solutions to the Klein-Gordon

scaling functionF,(x) does not show that behavior, which equation. The mass of the quark is denotedrbgnd we use

gives us an additional reason to expect the breakdown ah=0.33 GeV throughout this paper.

duality at lowQ?. The Klein-Gordon equation in this form can be easily
So now we know that duality has to hold in one kinematicrearranged to have the form of a Sofirger equation to

regime and that it has to break down in another kinematigjive

regime. Obviously, a very interesting question is what hap-

pens in between these regimes, i.e., how exactly does duality V2 b2 E2—m?

break down, how far does it hold in the regime where it is (— )q)(f)= o P, ()]

nontrivial, i.e., for moderate values @?2, and how accu-

rately does it hold where it holds. where the similarity to the Schdinger equation for a non-
relativistic harmonic oscillator potential becomes apparent.
Il. MODEL The solutions to this equation are easily obtained by making

H . del for the study of «hadroit® substitutionsc=b?/m and E=(E?—m?)/2m and using
eére, we present a model for the study of quark-hadrony, o \ye|l-known solutions of the nonrelativistic case.

duality that uses only a few ba§|c assumptl_ons. Namely, we The energy eigenvalues for the Klein-Gordon equation are
assume that it is necessary to include confinement and rela-

&= +E, where
tivity in our model, that it is sufficient to base our model N

solely on valence quarks, and that these quarks can be treated 3
as scalars. A model with these features will not give a real- En= \/2,82 N+ > +m2, (4
istic description of any data, but it should allow us to obtain

duality and study the critical questions of when and how

accurately duality holds. The corresponding wave functions are the usual nonrelativ-

Although it is our aim to study duality in electron scatter- . .. . . T
. . istic oscillator wave functions. For the present application, it
ing from the nucleon, i.e., from a three-quark-system, as &

first step we simplify the problem at hand by substituting twoftzsc’\iggvfeol::ﬁnatlsto express the oscillator wave function in Car-
quarks by an antiquark, as the representatierB3n SU(3)

contains the representation his means we have a two- o\
body problem now, and we have to solve the Bethe-Salpeter PN = En, (X) b0, (¥) bn,(2), ®
equation. In the special case of the mass of the antiqiyrk,
going to infinity, the problem further simplifies to a one-body
problem. In the case of scalar quarks considered here, we \//‘3
obtain a Klein-Gordon equation. In contrast[tj where we b (X)= ———
assumed that all particles involved—electrons, photons, and X V2™n |\/;
guarks—are scalars, here we treat only the valence quarks as X
scalars. Note that the experiment which our model resembl&gith similar expressions foy andz coordinates. Thél, are

most would be electron scattering fronBameson. Still, we  the Hermite polynomials. Unless noted otherwise, we use

expect to gain valuable insights from considering this casg—0.4 GeV, which was chosen to give reasonable values
and would like to stress that none of the assumptions We,, ihe mass splitting and charge radius.

made here prevent us from extending our model to describe | should be noted that the negative energy solutions are
more realistic circumstances. _ _ just that since we are using a one-body wave equation and
We have chosen to implement confinement by using &t a field theory. Therefore, these are an artifact of the

linear potential, which leads to a relativistic harmonic oscil-\,qdel but are necessary to provide a complete set of rela-
lator solution. This has the advantage that analytic solutiongyjistic states.

can be readily obtained and that a comparison with the non-  aq e choose to retain the nonrelativistic wave functions,

relativistic case is easily feasible. _ _ we differ from the usual relativistic normalization: using the
We have to solve the Klein-Gordon equation with a scalalk jein-Gordon normalization condition for these wave func-

N is the principal oscillator quantum number ape=b*/?.

where

1
HnX(BX)eXp( - EﬂZXZ) NG

potential: tions gives
02 = . -+ -+ -+ -+
(E—v%mavz ®(x)=0, ) f dr{D* ()PP (x) ~ [ PP ()RR (X0} =+ 2Ey.
(7)
with the usual ansatﬁ)i(x)=CI>(F)exp(1iEt) and the con- This leads to the factor 1EyEy in the response functions
fining potential and to the energy factor in the current operator defined be-
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low. Of course, we could have used explicitly relativistic and
normalized wave functions, which would have led to a dif-

ferent expression for the form factor, given below in Eq. 4 =

(13. SN 1 =P _

The basic difference between the relativistic and nonrela- RT(q'V)_S(jZ NZO 4E,E\ N[Fon(a)[*L8(v+Eo~En)
tivistic oscillator equations is the difference in the energy
spectrum: while the nonrelativistic solutions are equally —8(v+Eg+EyN)]. (12)

spaced, a&Ef°""®"xN, the relativistic spectrum goes &,
«/N for large N so the density of states increases with in-
creasing\. We note in passing that with this relativistic spec-
trum our simple model gives rise to linear Regge trajectorie§Or
[12] as seen in nature.
In the following, we will consider electron scattering from R R . . R
a meson with an infinitely heavy antiquark. In contrast to our Fon(0?) = f d°r expliq- N®R, () Po(r)
previous publicatior4], where we treated all particles as
scalars, the electrons in this paper are spin-1/2 fermions, and 32w 2 - -
the virtual photons have spin 1. Unless otherwise noted, we :f d*p¥R,(P)¥o(p—a), (12
assume in this paper that only the light quark carries a charge
and that the photon therefore couples only to the light quark,
not to the heavy antiquark. whereW indicates a momentum space wave function. Mak-
For a photon Coup”ng to the quark in the positive energying use of the recurrence relations of the Hermite pOlynomi—
harmonic oscillator ground state and transferring the fourals, we find an explicit expression féio :

momentumz(v,ﬁ), we have the following current matrix
g \" q’
—| exp ———|. 13
ﬁﬁ) p( 432) 9

element:
Fon(G2)= —=i"
ON \/m
Note that some care is necessary in writing the expressions
for the responses to properly include the negative energy
states. The relative sign between the positive and negative
energy contributions is associated with the negative norm of

whereN; can designate either a positive or negative energyne negative energy states.

In these expressionk, stands for the excitation form fac-

i
. - 4 s .
j*“(q) AEE. fd xexp(—iq-X)

X{ DR, (X) 9 @o(x) ~[*PT () [Po(X)}, (8)

state. Using this definition of the current along with Eg), These expressions for the response functions have been
it can be easily shown that the current is consenegg/ derived assuming that the quark is excited from the ground
=0. state into a resonance stafé, and remains there without
The calculation of the double-differential cross section isdecaying. This is just the first step on the way to meson
straightforward and leads to the Rosenbluth equation production in this picture. Thé function in the energies is

an artifact of this assumption.
q Note that because we assume scalar quarks, there is no
o - - magnetization current present. The only contribution to the
dE(dQ; = Iwor VLRL(G,7) FuiRr(Q,v)], ©  transverse part of the cross section comes from the convec-
tion current. As a result, the transverse response falls faster
than the longitudinal response with increasing momentum
transfer, as will be shown explicitly below. This is in contrast
to the case of spin-1/2 quarks where the magnetization cur-
rent dominates. In turn, it causes the transverse response to

where oot IS the Mott cross sectiony, and vt are the
usual leptonic coefficients,

4 2 dominate at large momentum transfer, giving rise to the
Q 1Q Je . . . ;
V== U1y Tz+tar?7, Callan-Gross equatiofiL3] in the scaling region.
q q The inclusive, inelastic electron scattering cross section

can be reexpressed in terms of two structure functidis

> - - i 2'
2= —qg?=q%-+?, and the longitudinal and transverse re- 2ndW5, which depend only o and Q*™:
sponse functions are

do 2 2 Je
i o 1 ) m:UMott Wa(v,Q%) +2Wy(v,Q )tanz7 .
RUGv)= 2 7E E-IFon( @[ (Eo+En)?a(v+Eo—En) (14
—(Eo—En)?8(v+Eo+Ey)] (10 where
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Wl(V’QZ):;RT( Q%+ 7%, v) S(d)Zj d3r (1) (ee 10 114 g0 1012
Q* X (8409114 6,617 12) (1)
Wy(r,Q%) = —————R (VQZ+ 17, )
2(,Q%) (Q2+ 17)2 L(NQ + 15, v) =fd3rwg(r)(eiJre§+e1eze"q'(r1"2’
Q* iq-(r1—ry) e
t e QT Y. a9 + 0,69 1772) ()

=e?+e5+2e,8,7(q), (19

lll. COULOMB SUM RULE wherer=r,—r, is the relative coordinate of the two par-

For the moment, we will consider a wider class of modelsficles and
for hadrons made up from confined quarks: namely, the more
general case of models where all quarks carry an electric ]:(a):g{f d3rz//g(F)e‘5'F¢0(F) (20)
charge. It is interesting to consider an apparent contradiction
between a model such as the one discussed here and the

: IS the real part of the Fourier transform of the ground-state
parton model. In our model, since all states are bound states o )
robability density.

all of the transition form factors are coherent in that they ar In order to understand the physical significance of the

the result of scattering from the total charge. The parton uantity determining the rate of falloff of the mixed term

model, however, assumes that the cross sections are Co%ontainin the product of. ande.. it is necessary to write
posed of incoherent scattering from the individual constitu- 9 P ! 2 y
Eown the most general form of the charge form factor for

ents, resulting in cross sections proportional to the sum o .
wo quarks with charge®;,e, and massesn;,m, (M

squares of individual charges. One method of examining the . :
transition from coherent to incoherent scattering is the Cou-_ m, +my). Here, we have dropped thfunction obtained

lomb sum rulg 14]. Consider the longitudinal response func- from integrating over the ¢.m. motion in the second step:
tion - -
Fon,(0)= J a3, (1) (1€ "1+ e,e! "2) Wi(r)

RL(d,v) =2 (ol p" (@) (il ()] o) L
f —>J d3r\lf§,f(r)(e1e'q‘r<m2”\")
X 8(v+Eo—Ejy), (16) . N
+ e e 0T (Mm/Myp (), (21)
where the sum represents a generalized sum over all final ) ) )
N . From this expression one sees that in the most general case,
states, bound or free, apdq) is the Fourier transform of the > i )
charge operator. Now define the longitudinal sum as 7(q) cannot be interpreted in terms of the ground-state
charge form factor. However, in the special case nof
:mz,

s@)= [~ duR (G, a7 N
Fod @)= (et ex) | 0% ()P~ (ey+enfod ).

Using the above definition of the longitudinal response and (22

the completeness of the final states, this becomes .
In this casg 15],

s@)= [~ S wolo @l <lo(@l v F(A)=fool20). @3
A special case of our general res(il®) was discussed ifb],
X 6(v+Eo—Ey) where the case of two scalar, equal mass quarks in a nonrel-
ativistic harmonic oscillator potential was considered.
= (olpT (@) o) (el p(Q) | ) In the model we present in this paper, all of the charge is
T

carried by one of the constituents: thatég=1 ande,=0.
Since there is only a single charge, there is no difference

_ TG
=(olp"(A)p(a)tho)- (18) between coherent and incoherent scattering, so we expect
that
This is a general result. To see how this relates to the prob-
lem of the transition between coherent and incoherent scat- S(a): 1. (24)
tering, consider the simple case of a nonrelativistic system of
two constituents with chargesy ande,. In this case, This then provides a useful test of the model.
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FIG. 1. Positive energy spacelike, timelike, and negative energy FIG. 2. Spacelike and timelike contributions to the Coulomb
contributions to the Coulomb sum rule from our model. sum rule for a nonrelativistic oscillator.

. smaller with increasing momentum transfer until the space-
Using Eq.(10), like contribution is essentially smooth. Note that the space-

like contribution oversaturates the sum rule around momen-
- % - 1 - o 5 tum transfers of 0.5 GeV and above. Since the jaggedness in
S(q)= ﬁmd”éo m“:ON(q)' [(Eo+En)“8(v+Eo the spacelike region is associated with the migration of con-
tributions from the timelike region, it is not surprising to see
—En)— (Eg—EN)28(v+Eg+Ey)] that the complement of this behavior does indeed show up in
" the timelike contribution. As the momentum transfer in-
_ « (EotEn)?—(Eq—Ep)? N creases, the size of the timelike contribution becomes small.
= 4E4Ep [Fon(a)l The negative energy contribution is smooth and compensates
for the oversaturation of the spacelike contribution. This is
- . clearly an artifact of using a one-body wave equation with
:szo [Fon(a)|*. (25 negative energy contributions.
It should be pointed out here that the small size of the
. L . timelike contributions is an essential consequence of using a
Using E‘?- (1_3) it is straightforward to demongtrate .th.at relativistic wave equation. This can be seenqby considering a
S(g)=1 in this case so the Coulomb sum rule is satisfiedgjmjlar situation where the nonrelativistic oscillator model is
Indeed, this will be true regardless of the form of the confin-;,se( to describe the system. The spacelike and timelike con-
ing potential, as long as one considers a complete set Gfipytions of such a model are shown in Fig. 2. The $ehro
solutions. Note that for this model it is necessary that thejinger equation of course has only positive energy solutions.
integral in Eq.(17) be over both positive and negative energy Here the sawtoothed behavior in the spacelike contributions
transfers for the sum rule to be satisfied. o is similar to the relativistic case with the important difference
In electron scattering, only the spacelike region is accestat due to the linear character of the nonrelativistic spectrum
sible and the negative energy states are an artifact of the Uggee Fig. 13the contributions from states entering the space-
of the Klein-Gordon equation as a wave equation. It is Useike region is not rapid enough to compensate for the falloff
ful, therefore, to examine the contributions to the Coulombjn, the form factors. Therefore, with increasing momentum
sum from spacelike, timelike, and negative energy state§ransfer, the size of the spacelike contribution approaches
When referring to the spacelike and timelike contributions,zerg with all of the strength appearing in the timelike region.
only positive energy states are intiluded. The different con- Duality in the sum of the form factors in the spacelike
tributions are shown in Fig. 1. Afg|=0, only the elastic region is related to the Coulomb sum rule. While the concept
form factor can contribute and therefore must saturate thef duality in the form factors is not clearly related to an
sum rule. As the momentum transfer increases the elastisbservablgin contrast to duality in the structure functions
form factor falls off, resulting in a decrease in the spacelikeit still has received attention in the literati®]. We describe
contribution. It decreases until the momentum transfer init within our model in Appendix A.
creases to a point where the first excited state enters the This model can be easily extended to the case where both
spacelike region. The spacelike contribution then saturateguarks are charged by examining the behavior of the two-
the sum rule again. This process continues as new form fadody Gross equation in the limit where the mass of one of
tors become accessible in the spacelike region. The result ihe particles becomes infinifd 6]. The contribution of the
a sawtoothed behavior of the spacelike contribution. Becausafinite mass particle to the structure function is simple and
the density of states for this oscillator model increases witlstraightforward. As a result of its infinite mass, this particle
increasing energy, the magnitude of the “teeth” becomesemains stationary for any finite momentum transfer, and it is
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pointlike. This particle therefore contributes only to elasticwherey=\[(v+Eg)?—m?—|q|.
scattering and has a constant form factor. The structure func- For our model it is not possible to define the scaling vari-

tion can then be written as

0

1
N=1 4EqEN

RL(G,v)=|e;F o) + €52+ e

X|Fon(@)|?[(Eg+En)28(v+Eg—Ey)
—(Eo—EN)28(v+Eo+EN)]. (26)

The Coulomb sum can be easily calculated to be

able in terms of the target mass since it is infinite. For this
reason we define a new Bjorken variable

M Q?
Usi= X8I~ 5myp” (32)
which covers the interval —o<ugj<w. Using v

=Q?/2m Ug; and taking the limitQ2— o, the structure func-

tions become

s<a>=e§Nzo |Fon(a)|?+ €3+ 2e,6,%F ()
= el +e5+2e;e,RF (). 27) C TR g 2emEgug, B2

. . 2 2
So in this case, x[e( Q )_0( Q )

2mug; 2mug;

(32)
F(Q)=RFoo(q) =Foo(Q). (28)

After examining how the apparent contradiction between coand
herent and incoherent scattering is resolved in a more general
framework, we now proceed to investigate duality in our
model. The first condition for duality is that one obtains scal-

ing in the structure function calculated solely with reso-
nances and that the scaling curve thus obtained agrees with
the scaling curve obtained in the parton model.

28Mmug; (Eq—mug;)?
RT(QZ,UBj)HWlIZEOSJZEX;{— 0 ,32 Bl )

2 2
o) - 2|
2mug; 2mug;

(33

IV. PARTON MODEL

The usual assumption of the parton model is that at larg&ince in this limit
momentum transfers the final state quarks can be treated as
though they were free. Examination of the structure func-
tions for largeQ? and fixed Bjorkerx leads to identification Q4
of the scaling functions. || =,
For our simple model, the response functions for excita-
tion of a bound(off-mass-she)l quark to a plane-wave final

2

8m?|ug;|®
8ol v 11 g, (@8
2

Q2

state can be calculated analytically as
- (2Ep+ v)?

y2
R
47 2BE|q B2

3112
—exp( —%H[G(MEO—W

—6(—v—Eo—m)] (29
and
N . B yz)
R y = > = 2 - = - =
+(q,v) PP (y+lal) H eer( 7
B p( <y+2|ci|>2”
—| 2(y+|a)+ = |exp — ——
al |ql B

X[O(v+Eg—m)—O(—v—Eo—m)],  (30)

the structure functions have the limits
W;(ugj,Q%)—F1(ugj)=0 (39

and

m?u3. (Eo—Mug))?
|v|W2(V,Q2)—>F2(UBj):ﬂ_1TIBBEJOEXF(_ & 52 = )
(36)

Note that the choice ofv| in defining W, is necessary to
provide a properly normalized scaling function as will be
seen below.

Although we have used the Bjorken scaling variable to
obtain these results, this will be true for all such variables
since all acceptable scaling variables must reduce to the
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Bjorken scaling variable a®—«. Therefore, a more gen- PNAPN
eral expression foF , for any scaling variable and any initial AByv="Fp— (43
state can be written as N

The longitudinal response function can then be rewritten as

m?u? (=
Fo(u)= f d , 3 "
2(U) 2776, ey mu P PN(p) (37) ) 1 AE,
RU(Qv)=—— > o
. o 4B°Eq N=0 En—Eb
whereN(p) is the ground-state momentum distribution nor- {1+ 5
malized such that 2B
q (EN~EQ)/26 R
1 (= X| — exp — —
—zf dpp’N(p)=1. (38) 2p 2B
2m<Jo

X[(En+Eo)?8(Exy—Eg—v)
After obtaining the scaling curve in the parton model, i.e., — (En—Ex)28(En+ Ent 44
the scaling curve for a quark initially bound and then free, (Bo~En)"d(En+Eotv)]. “44
we proceed to find an expression for the scaling curve in ou
model, where the quark makes the transition from the groun
stated to an excited bound state.

his sum can now be approximated by the integral

V. CONTINUUM LIMIT R.(Q,v)=

B dE G2 ) (E2-E2)28?

1
42EfE EZ_ZF
BE e [ EP-ED| 28

An interesting feature of our relativistic oscillator model
is that the scaling behavior of the model can be determined
analytically by making a continuum approximation. The jus- [{ )

X ex

tification for this is that at increasing momentum transfer the

contributions to the response functions are dominated by

higher-energy states. Since the density of states increases

with increasing energy, it is reasonable that a continuum ap-

proximation should provide a good description of the aver-

aged response for large momentum transfers. which can be trivially evaluated to give
Using Eqgs.(10) and(13) we can write

S |[[(E+Eo)?8(E—Eq— )

—(E—E)?8(E+Ey+v)], (45)

- (v+2Eo)’[6(v)— 6(—2Eo— v)]

- N R (q,v)=
- % 1 q2 " q° Ha) 4g2e.T| 1 (v+Eg)?—Ej
6 Mg ] o o e T
X[(En+Eq)28(EN—Ep—v) G2 [(v+Eq)2—E§)/282 2
X| — Xp ——=].
—(Eo—En)?8(Ent+Eot w)], (39 (2,82> F{ 2,82>
whereAN=1. It is convenient to write (46)
Similarly, the transverse response becomes
= \Jp3+EZ (40)
(V2 +2Eqv)[0(v)— 6(—2Eq—v)]
where Rr(g,v)= 7 —2
- (v+Eo)“—Eg
E0q2F 1+T
p2=28°N. (41) B
[(v+Eq)?—Eg)/2p? az
From this it can be determined that, for a variatiorNin X| — expl — —) )
ZBZ 2,82
A 47
AN=PNCPy (42
B In the scaling limit the argument of thE function be-
comes large, so Stirling’s formula can be used to write the
and longitudinal response function as
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2+ 2Eqv Q2+ 12 Q2%+ V2+ 2+ 2Eqv
ex -
(v+2Eg)? 232 V24 2Eqv 232 282
R.(VQ?+ 12, v)= [6(v)— 6(—2Eo—v)]. (49
- 47Y28E, 2+ 2Eqy °
|
Using models. However, duality is satisfied only whépthe tran-
) sition from ground state to excited bound states scdiBs,
Q (49) the transition from ground state to a plane-wave final state

scalesand (iii ) both scaling curves coincide. In this section
and the preceding section, we have shown that duality holds
and taking the limitQ?— o, the structure functions become explicitly in our model. The numerical approach towards the
scaling curve is shown in Fig. 3.

V:
2mqu

) Q2 (Eo—mqu)z Note that as we explicitly made use of Stirling’s formula
R.(Q ’UB]‘)*}—SWUZ,BmEOU “exp — g in the derivation of the scaling function in the continuum
Bi limit, it is clear that for the lower-lying resonances, which
Q? Q? correspond to loweN values, we will never quite see scaling
x| 8 omu -0 — om . (50 in the subasymptotic regime. This is of no practical rel-
Bj Ugj .
evance, as these resonances are pushed out to very high val-
Similarly, ues_ofu' for !arger_QZ, anq t_he structure functions practically
vanish in this region. This is completely analogous to the fact
28Mug; (Eg—MUg;)? that for electron scattering from a proton, one always picks
Ry(Q?ug))— — 12 - 5 ' up the elastic scattering ag;=1, independent oQ*—even
T E0Q B though the elastic form factor will have fallen off to negli-

gible values at high enoug?.

(51)

2 2
|| 2 |
2mug; 2mug;
. . . VI. APPROACH TO SCALING IN THE STRUCTURE
Since Eqgs(50) and(51) are identical to Eqs(32) and (33), FUNCTIONS

the model scales to the parton model result. So even though
our model describes a bound quark being excited to reso- After establishing analytically that one of the necessary
nance states, we do obtain a scaling curve in the Bjorkewonditions for duality is satisfied—namely, scaling to the
limit. This as well as the results presented [iti7—19,§  scaling curve obtained from a free quark in the final
shows that scaling does not necessarily imply scattering offtate—we proceed to investigate the approach to scaling nu-
free constituents, a belief which is encountered widely. merically.

Others[17-19 have studied the transition from ground  We would like to remind the reader that our results should
state to excited bound states and found scaling in similanot be compared to the available nucleon data—our model

T T T 1.6

2 =100 GeV, 2 —_— scalin% function —_— '
2250 GeV' 2 o I = 100 MeV -
1.4r 2=15 GeV2 -_—- — 1.4 Z 10 MeV - - _
= e
5 GeV
1.2F 1.2+

S ZCq(u’ QZ)
S ZCq(u: Qz)

0.6 0.6
0.4 0.4r
0.2F 0.2F
0= 0
0 0
u u

FIG. 3. The high-energy scaling behavior 8f., as a function ofu for various values ofQ2. In the left panel, we have usdd
=100 MeV to give the impression of real resonances even though this large value distorts the scaling curve somewhat. For any width equal
to or smaller than this, the distortion is rather innocuous, andl'fer0, the structure function approaches the scaling fundgoiid line) in
Eq. (36), as shown in the right-hand panel. The structure functions in the left panel are sho®@A=fdi00 Ge\?.
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calculations describe a process that might resemble electrdf2) the Nachtmann scaling variable. In the following, we
scattering from @ meson, which has never been measureduse the variable.q and the scaling functio, .

In general, when we consider scattering from a meson target, We are now ready to look at scaling and duality in our
scaling will set in later than for a baryon target: momentummodel. Since the target has mdds—«, it is convenient to
sharing for higher momenta between fewer constituents isescale the scaling variabig by a factorM/m:
easier, which leads to a slower falloff of the individual form

factors and to a later onset of scaling. In our situation, where M

the system is not allowed to decay, we have a somewhat U= Xea-

extreme case.

To see duality clearly both experimentally and theoreti-The variable u takes values from 0 to a maximal,
cally, one needs to go beyond the Bjorken scaling variabl€*-dependent value, which can go to infinity. The high-
xg; and the scaling functio,g;= W, that goes with it. ~energy scaling behavior of the appropriately rescaled struc-
This is because in deriving Bjorken’s variable and scalingture functionS. is illustrated in Fig. 3. The structure func-
function, one not only assumé¥ to be larger than any mass tion has been evaluated using the phenomenologically
scale in the problem, but also that higif (PQCD dynam-  reasonable parametens=0.33 GeV and3=0.4 GeV. To
ics controls the interactions. However, duality has its onset iflisplay it in a visually meaningful manner, the energy-
the region of low to moderat®?, and there masses and dependen® function has been smoothed out by introducing
violations of asymptotic freedom do play a role. Bloom andan unphysical Breit-Wigner shape with an arbitrary but small
Gilman used a newad hocscaling variablew’ [1] in an  Width I', chosen for purposes of illustration:
attempt to deal with this fact. In most contemporary data
analyses, the Nachtmann varialj0,21] is used together r f

_ S ; S(En—Eg—v)— =— , (59
with S,j. Nachtmann’s variable contains the target mass as 27 (Ey—Ep—v)2+(T'/2)?
a scale, but neglects quark masses. For our model, the con-
stituent quark mas&@ssumed to arise as a result of sponta-where the factor
neous chiral symmetry breaking vital at low energy, and a

(59

scaling variable that does not make any assumptions about (o 7+ arcta 2(En—Eo)
the size of the quark and target masses compare@?tis & 2 r

desirable. Such a variable was derived more than 20 years

ago by Barbieret al.[22] to take into account the masses of ensures that the integral over tléefunction is identical to
heavy quarks; we use it here given that after spontaneou$at over the Breit-Wigner shape. As for the all scalar case
chiral symmetry breaking the nearly massless light quarksliscussed ii4], the smearing out of thé function in energy

have become massive constituent quarks, callingjt with the Breit-Wigner shape leads to a slight widening of the
curve and flattening of the peak height. However, when
Xcq choosing a smaller value for the Breit-Wigner width, these

effects disappear, as seen in the right panel of Fig. 3.
4m? Not unexpectedly, the scaling curve we find here, when
1+ — using photons and electrons with their appropriate spins, dif-
Q fers from the one in the all scalar case both in its final shape
am? and the approach to scaling. Now, we have two terms the
t\1+t— for v<<0, longitudinal and transverse response functions—contributing
Q to the structure functionV, and therefore to the scaling
(520  curve. More importantly, the terms themselves are different
and more complicated in the case considered here. The lon-
where the definition for negative energy is chosen such that gitudinal part of the structure function contains an additional
satisfies the kinematic constraints in this region and reprofactor (Ey+ Ey)2, which was not present in the all scalar
duces the behavior ofg; for large Q2. The scaling function case. As shown in Sec. V, the transverse response vanishes

S (@)

1+ + ) for v>0,
1

2+ Q%+ v)

2™

associated with this variable is given by like 1/Q? in the limit Q?>—o, while the longitudinal re-
sponse grows lik€?. This leads to a vanishing &/, and to
Soeq=aIWo= 12+ Q?W,. (53)  a Q?independent value fdm|W,, even though, from Egs.

(15),(50),(51), it is clear that at lowef? the transverse con-
This scaling function and variable were derived for scalartribution to W, will not vanish immediately, therefore mak-
qguarks which are free, but have a momentum distributioning the approach to scaling slower. The effect is rather sig-
The derivation of a new scaling variable and function fornificant, though, as the contributions of the convection
bound quarks will be published elsewhere. Numerically, thiscurrent are very small. They delay scaling slightly for the
scaling variable does not differ very much from the one inlow-u part of the curve. The effect would be more important
Eqg. (52). Of course all versions of the scaling variable mustfor contributions of similar size within a certain kinematic
converge tog; and all versions of the scaling function must range. In our case, the main effect of the transverse contri-
converge towardsSg; for large enoughQ?. One can also bution is to slightly broaden the curve. For smal@f, this
easily verify that in the limitm—O0 one obtains from Eq. effect is more pronounced for low values of the scaling vari-
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ableu, as the higheu correspond to lower-lying resonances, on the Breit-Wigner width we use to smooth out théunc-
which have only tiny contributions from the transverse parttions, it is not appropriate to consider it in this paper.

As already mentioned above, for a proton target, the Global duality was first quantified by Bloom and Gilman
dominant contribution to the transverse response and overdll] in the form of finite energy sum rules, where the integral
is the magnetization current, which does not contribute foover the scaling curve was compared to the integral over the
our scalar “quarks.” Note that both the transverse and lontesonance contribution. The integration range in both cases
gitudinal contributions t&, are positive definite. If a domi- comprises the region of the scaling variablé or v, respec-
nant contribution in the transverse response is present, fively, which corresponds to the resonance region, defined as
should lead to a different scaling behavior in the structuréhaving an invariant masg/<2 GeV:
function W, than in »W,. For vW,, the longitudinal term
with different Q? behavior will most likely slow the ap- 2My (¥m 5 1+W2Q% ,
proach to scaling down, as it is going to be of comparable FL dvrWa(r,Q%) = L do’vWa(w"),
size to the magnetization current contribution at |Q%. (56
This is a completely general observation, and one would ex-
pect to see faster scaling fy once the data are available. whereW,,~2 GeV andv,=(W2—M2+Q?)/2My. Here,

The same conclusion was reached on a different basilin - M\ denotes the mass of the nucleon target. The agreement

The shape of the scaling curve is also different than foetween the left- and right-hand sides of this equation is
the all scalar case. The peak is higher, the curve extends tsetter than 10%; for the larger values@f, starting around
larger values of the scaling variable, and tor-0, the scal- Q%~2 Ge\?, the agreement is quite impressive: 2% or bet-
ing function actually vanishes now, as expected from a vater.
lence quark distribution, even though we do not find a be- While it certainly would be desirable to calculate the
havior «\Ju as seen for proton targets. However, we cannosame finite energy sum rule in our model, there is a practical
expect to reproduce the correct distribution function forproblem and a philosophical problem. First, in our model, we
quarks in our simple model with scalar “quarks.” deal with an infinitely heavy system, so that, in principle, the

From the explicit expression for the scaling curve, it isinvariant massw of the final state is always infinity. Even if
clear that it depends both on the binding strengtlof the  we could define a reasonable substitute for the invariant mass
harmonic oscillator and on the quark mass. It peaks abf the final state, picking an integration limit is a problem in
Upeak=(Eo+ \/E02+ B?)/2m, slightly above the value principle: for our model, the scaling curve consists solely of
ysScalar_ Eo/m which we found for the all scalar case. Na- resonance contributions, even though they cannot be re-

k = A
ivﬁ;, for a target of mas# made up of noninteracting solved and form a smooth curve. So any distinction between

quarks of massn,, one expects a spike &g;=m,/M. In “resonapce rggiqn" and “continuu_m” or “myl;iparticle final
our case, the role of the mass of the qua‘r&( is p|ayed by states” is artificial. The conventional definition of “reso-
the ground-state enerdy,, which appears everywhefe.g., nance region” as the region whel/<2 GeV means the

in flux factors, normalizationwhere one would have the region where the resonances are prominent and dominant.
mass in the free particle case. As our variable is rescaled withiowever, it does not mean that fa¢>2 GeV there are no
the factorM/m, we expecupea~Eo/m. It is interesting to ~ résonances present, and it also does not mean that/for
note that this value receives a slight binding correction due<2 GeV, i.e., in the resonance region, there are no nonreso-
to the conserved current employed here. We note that fopant contributions at all. Experimentally, there is background
weaker binding, the peak gets narrower and its positiofor W<2 GeV, and there are resonances W2 GeV,
slides towardsi~1. As expected, in the limit of a free par- €.9., severaN* andA resonances. Also, from a theoretical
ticle, B—0, we do obtain a spike of infinite height at=1 point of view, it is obvious that resonances which decay by

[in this limit, the scaling function becomeXu)/(mE)]. creation of a quark-antiquark pair in the final state must be
accompanied by a corresponding nonresonant production

mechanism, where pair creation takes place in the initial state
and the photon interacts with the preformed meson.

Now, we will discuss global duality, where the term glo-  Since the distinction between a “resonance region” and a
bal implies that we consider an average and integral ovefcontinuum region” has its problems, we utilize the mo-
many resonances, which is compared with the correspondingents of the scaling functio&,,, where the integration
integral over the scaling curve. range comprises the whole interval of the scaling variable.

Local duality implies that we compare the contribution of The physical information contained in the finite energy sum
one single resonance or just a few resonances with the scalle and the momentM,, is the same. The moments of a
ing result, i.e., with the free quark result. This will be dis- scaling functionS(Q?,x) with a scaling variablex are de-
cussed in Sec. VIII. The concept of local duality is taken tofined as
its extreme when one focuses not just on one single reso-
nance, but on one point only of the contribution of the single
resonance, as was done first by Bloom and Gilfrignwhen
they compared the peak value of a single resonance with the
value of the scaling curve. This version of duality has beerHere, in contrast t¢24], we do not include the unphysical
investigated in Ref.23]. As this ratio would depend strongly region Xnax1] in the integration interval. It is obvious that

VIl. MOMENTS AND FURTHER SUM RULES

Mn(Q2)= fox"’”dx X'728,(Q2,). (57)
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1014 T T T were obtained by integrating over the positive energy states
only. One can see clearly that all moments flatten out, even
16+ i though they did not quite reach their asymptotic value at the
highestQ? value shown. The lowest momekt,,, is within
——————————— 9% of its asymptotic value @?=5 Ge\? and within 2%
& 10t2 . of its asymptotic value a@?>=20 Ge\f. As expected, the
9’; higher moments, which by construction get more contribu-
§ 10+ K ] tions from the lower-lying resonances, need higBéwvalues
§ in order to reach their asymptotic values. Rdg, we find
=D — that it has reached 64% of its asymptotic value G#t
1010 n=4=-e- =5 Ge\V? and 88% of its asymptotic value aQ?
n=6—-— =20 Ge\?. From these numbers, we can see that even
10-1 . =t though scaling does not set in fd@><50 Ge\?, the
0 5 10 15 20 asymptotic values at least of the lower moments are reached
Q? (GeV?) much earlier. Thi_s reflects the _ff_;lct thé‘cq(u,Q_z) ap-
proaches the scaling curve by shifting towards highemot
FIG. 4. The lowest momentsl,, as a function ofQ?. by approaching it from below or above.
Since the continuum approximation provides a relatively
higher moments, i.e.n=4,6,...,tend to emphasize the simple analytic expression for the structure functions, it is

resonance region; as for fixe@?, the resonances are found possible to use this to study certain properties of the mo-
at largex. The values of the moments decrease with increasments. First, however, it is necessary to determine the valid-
ing n. In our case, we change tetype scaling variablelsee ity of this approximation for the calculation of moments.
Eq. (54)] so that Figure 5 shows calculations of the first three moments
Mo, My, andM,. In each panel the solid line represents the
exact calculation according to Eq59). The dash-dotted
curve is a calculation of the continuum approximation with
both longitudinal and transverse contributions, while the
whereu,,,x corresponds to the maximum valuewivhich is  dashed curve includes only the longitudinal contribution.
kinematically accessible at a givé&)f. By changing fromx  Note that the continuum approximation works very well
to u scaling variables, we change the upper integration limitdown to a couple of Ge¥ Note also that while the inclusion
from a value equal to or lower than 1 to a value considerablyf the transverse contribution slows convergence to the
larger than 1 forQ?>1-2 Ge\f. This means that our asymptotic value forM, it improves convergence for the
higher moments will emphasize the low-lying resonancesigher moments.
even more than the conventionglbased moments. Also, the ~ The continuum approximation can then be used to obtain
higher moments will be larger than the moments with smallan expansion of the moments in powers a4 teminiscent
n. of the operator product expansi¢@PE series:

Evaluating the moments of the structure funct{é8) ex-
plicitly one has

MUDa5e4 02) = fo“"‘a*du F25,(Q%u),  (59)

(9]
S

k
MEQ)=2 = (61)

n-1 %
Mn(Q?) = <2m) NE_:() (Vo +Q%=wy)" !
- Note that we do not have any gluons in our model and, thus,

Eo Fon \/TQZ)I 5 no radiative corrections. The_expansi_on coefficimﬁscor—
oNUVPN respond to the nonperturbative matrix elements of higher-
twist operators in the OPE. Since this is an asymptotic series,

rO|:

Q4 5 Q? the expansion will fail at lowQ? with the point at which the
X| = (Eo+En) +4N01q— (59 series diverges being dependent upon the order of the series.
N N

The expansion coefficients for the five lowest moments are
. 7 shown in Table |. Contributions to the coefficients from
Wlt\?ﬁlf 1+4m7Q% and w=Ex—Eo and an  yoncyerse and longitudinal responses are shown along with

N the total. The obvious feature of these coefficients is that
they are not in general small, nor do they show any obvious
ne1 ) convergence. The reason for this can be seen from Fig. 6.
Mﬁlastic(Qz) _ (L) |Q|n—1 exp( _ Q_) . (60) Here the exact_ resul_t is shown as a solid line and is compared

2m 2 to the expansion with from one to four terms for badih,
and M,. Since the moments all have a finite valueGQt
Note that for vanishing four-momentum trans@#, all mo- =0, the function cannot be analytic inQ?. Any expansion

ments take the value 1, independentof in this variable to a finite number of terms will at some point

In Fig. 4, we show the moments for=2,4,6,8, which  diverge, either above or below the correct result. Using an

The elastic contribution is given by

094038-11



SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW B35 094038
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FIG. 6. Comparison of moments to the expansion of the con-
tinuum approximation in 1.
— M; . . .
,,,,,,,, M. LT additional term to extend the approximation to low@f
MZ' L must require that the coefficient of this term be of opposite
T M sign to the preceding term, leading to an alternating series.
Higher moments have the curvature toward the finite result
occurring at increasing values @?. This requires that the
1.0 size of the coefficients for the higher terms in the series must
also be increasing. This shows that the global duality ob-
| served in our model is the result of a delicate cancellation
05 between many “higher twist” terms. However, while it is
fascinating to speculate if duality in nature is realized by
0.0 . : ‘ ‘ small higher-order expansion coefficients or by cancella-
0 10 20 % 40 tions, our model is too simple to allow us to draw any con-
Q" (GeV®) clusions about this. In fact, results presente@2f] indicate

that the expansion coefficients have the same sign. One may
hope that the building of more realistic models will allow us
to gain a better insight into this question in the future.

FIG. 5. The first three moment8),, M;, andM,. The solid The relation asymptotic behavior of the moments to sum
line shows the exact result calculated according to (5§). The  rules can also be addressed in this model. Consider the mo-
dash-dotted lines show the moment calculated in the continuunmnents ofF,(u):
approximation; the dotted curves show the purely longitudinal con-
tribution to the moment in the continuum approximation. Inclusion "
of the transyerse contri_butions improves convergence of the mo- M, f du un—ze(u), (62)
ments to their asymptotic values. —
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TABLE I. Leading coefficients of the expansion of the moments @21/

¢ ci Cy cn
Mo L 0.42859 0.20760 —0.26022 0.13530
T 0.00000 0.13715 —0.19201 0.19056
total 0.42859 0.34475 —0.45223 0.32586
M, L 1.00037 —0.32052 0.95887 —2.83879
T 0.00000 0.32012 —0.95870 2.83881
total 1.00037 —0.00039 0.00017 0.00002
M, L 2.64117 —2.37461 5.53199 —14.8231
T 0.00000 0.84518 —3.22720 10.6710
total 2.64117 —1.52944 2.30479 —4.1521
M3 L 7.6117 —11.1960 26.8417 —71.9074
T 0.0000 2.4357 —11.2072 40.7982
total 7.6117 —8.7603 15.6345 —31.1092
M, L 23.5214 —47.6636 122.363 —336.920
T 0.0000 7.5268 —40.233 159.245
total 23.5214 —40.1368 82.130 —177.675

where the integral starts ate to include contributions from
negative energy states as in the Coulomb sum rule. Using Eq.

(37) this becomes

m2 o0 o0
M= f du u”f d
n 4772E0 » _— p p Np)

(E0+p)/m
f ppNp) f(

Eq— p)/m

2E0

ZEJ |0|DN(|o)nJrl

E.+ n+1 E.— n+1
X[ ot P _( 0 p) . 63)
m m
The two lowest moments
My= f pZN(p)— —043002 (64)
27°E
and
1 0
M1=—2f dp p?N(p)=1 (65)
2m<Jo

VIll. LOW- Q? REGION

After studying the scaling behavior of our model at high
Q? and the moments over a range of four-momentum trans-
fers, we now discuss the behavior at I@%. In this region,
resonances are dominant for a wide range in the scaling vari-
able.

Before discussing the numerical results, a remark on the
kinematics is in order. For a fixed resonance in inclusive
electron scattering from the nucleon, its position in terms of
Bjorkens scaling variable is given by .s= Qzl(Wres
—MZ+Q?). This means that for highe®?, the resonance
posmon moves towards higher values>qf;, and for very
large Q2 xB]—>1 In our case, the maximal value of the
scaling variableu is larger than 1, and for very larg@?, the
resonances move out to very large valuesiofvhere their
contribution is extremely small.

If local duality holds, we expect the resonance curve to
oscillate around the scaling curve and to average to it, once
Q? is large enough. In Bloom-Gilman duality, the finite en-
ergy sum rule gets within 5% f@?=1.75 Ge\f. For lower
Q?, the resonances approach the scaling curve from below.
In our case, we have the onset of scaling for larger values of
Q? than observed in nature. This is not unexpected, as we
consider an infinitely heavy meson as target and assume that
this meson is made up of scalar quarks. For this reason, our
cross section for photon exchange for laf@#is dominated
by the longitudinal part, and the transverse part, comprising
solely the convection current, is very small. In nature, for
spin-1/2 quarks, we have the magnetization current, which is
the dominant component of the cross section and which

are proportional to the normalization integral of the momen-therefore determines the scaling behavior. So we cannot ex-
tum distribution. Comparing these to the corresponding valpect our model calculation to show the same behavior as
ues ofcg andc} in Table | shows that the contributions from experimental data for the same values of the four-momentum
negative energy states are small. Note also that for a spin-1t2ansfer.

constituent the expression corresponding to 83) has a

In discussing local duality and resonances, the smoothing

leading factor ofu rather tharu? as in this case. So the sum method used becomes important. The visual appearance of

rules would be associated wit¥l; and M, as expected.

“resonances” depends on the chosen smoothing method: a
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FIG. 7. The lowQ? behavior 0fS,.4(u,Q?) as a function ol FIG. 8. The lowQ? behavior ofS.,(u,Q?) as a function ofi for
for various values ofQ?. The solid curve show§?=0.5 Ge\?, various values 0Q2. The Breit-Wigner width chosen to smooth out
the short-dashed curve sho@$=1 Ge\?, the long-dashed curve the energys functions isT'=50 MeV. The solid curve show®?
showsQ?=2 Ge\?, and the dotted curve shov@=50 Ge\’. =0.5 GeV, the short-dashed curve sho@é=1 Ge\?, the long-

) o _dashed curve show®?=2 Ge\?, the dotted curve show§?

bumpy structure is seen only when a Breit-Wigner shape is. g Ge\?, and the dash-dotted curve sho@3=50 Ge\2.
inserted for the energy function. It also depends on the
width chosen in the Breit-Wigner smoothing method. For @  oyerall, we find that the onset of local duality is definitely
smaller width, the resonances are visible for higQér De-  gjower than for the all-scalar case, which is what one expects

pending on the width of the Breit-Wigner, e.g., fdf  gye to the additional structure in the more realistic case dis-
=100 MeV, we do not see any resonances fF  cussed in this paper.

=5 Ge\?, even though this value @? is below the scaling
region. In this paper, the working definition of local duality
which we use is “resonance curves oscillating around the
scaling curve.” At some point, when considering more real- \We have presented a simple, quantum-mechanical model
istic models, it may be useful and necessary to introduce @hich allows us to obtain the qualitative features of Bloom-
sharper, more quantitative definition. However, at this stageGiiman duality. The model assumptions we made are very
we are interested more in qualitative results and do not inbasic: we assumed relativistic, confined valence scalar
tend to quantify how well exactly local duality works for our quarks, and treated the hadrons in the infinitely narrow reso-
simple model. nance approximation. To simplify the situation further, we
In Fig. 7, we show our results for the scaling function did not consider a three quark “nucleon” target, but a target
Scq(u,Q?) for various low values oQ?. The § function in  composed of an infinitely heavy antiquark and a light quark.
the energy has been smoothed out using the Breit-Wigneah contrast to[4] where all particles involved in the
method, with a width of’=100 MeV. For visual purposes, reaction—electrons, photons, and quarks—were considered
we have assigned a small width to the elastic peak, too. Ong@ be scalar, we only use scalar quarks in this paper. This
can see clearly from the figure that the resonances move ouiakes the present model more realistic—in particular, we
towards higheu with increasingQ?, as dictated by kinemat- were able to use a conserved current here. However, there is
ics. While the elastic peak is rather prominent fQF still much work to be done in modeling. The goal of our
=0.5 GeV¥ andQ?=1.0 GeV?, it becomes negligible for model calculations is to gain qualitative insight into duality,
Q?=2.0 Ge\. This is the phenomenon we have observedts applicability, and accuracy in various kinematic regions,
already when studying the moments: the elastic contributiomot to quantitatively describe any data. In the future, we plan
there vanishes rapidly with increasiqy. to describe more realistic situations in our model. Note that
As already observed while studying the moments in theour assumptions are very basic and general, so that we will
previous section, the approach to scaling when using a virbe able to extend our model in a straightforward manner.
tual photon is slower than for the all-scalar case discussed in There are several conditions that must be satisfied in order
[4]. It is clear that one needs to reach fairly large values oto see duality. In this paper, we put a special emphasis on
Q? before the “resonance curve” averages with good accuthree of these conditions: we demonstrated how the transi-
racy to the scaling function. Indeed, with our choice of Breit-tion from coherent scattering at lo®? to incoherent scat-
Wigner width, this happens only when the bumps have altering at highQ? takes place, we highlighted the role of
ready disappeared, i.e., fQ@°=5 Ge\~. relativity by considering the contributions to the Coulomb
In order to illustrate this point, we have included Fig. 8, sum rule in a relativistic framework and a nonrelativistic
where we used a value df=50 MeV to smooth out the framework, and we gave an analytic proof for the equality of
energyd function. The curves are more jagged than for thethe scaling curve in our model and the parton model result.
larger width, and th€?=5 Ge\? curve still shows plenty Quark-hadron duality is not only very interesting in itself;
of resonance structure. it also opens the door to very useful applications: duality

IX. SUMMARY AND OUTLOOK

094038-14



QUARK-HADRON DUALITY IN A RELATIVISTIC , . .. PHYSICAL REVIEW D 65 094038

relates the resonance region data to data from the deep ithe underlying physical mechanisms will most likely be
elastic region. If duality is understood well enough and if thegained only by considering models like ours. One great ad-
correct procedures for the averaging of the resonance dawantage of a purely analytical model like the one presented
and the attendant errors are established, we may exploit diiere is that explicit derivations of key quantities like the
ality to gather information in previously unreachable re-scaling function are feasible. The proof that the scaling func-
gimes. The investigation of polarized structure functions intion obtained for the transition from a bound quark to an
the high-Bjorkenx region, xg;—1, is a major part of the excited bound quark is the same as the scaling function for
experimental program at Jefferson Lig6,9]. Even without the transition from a bound quark to a free quark was given
knowing details about the correct averaging procedures] it iere for a linear potential, which is the relativistic analogue
clear from the experimental results and our investigation oPpf a harmonic oscillator. It is desirable to extend the investi-
duality that the conventional, sharp distinction between th@ation to other types of potential and to find a proof that
“resonance region,” corresponding to an invariant miés applies to a general class of potentials. In a recent publica-
<2 GeV, and the “deep inelastic region” whergvy  tion [6], numerical methods were applied to study the re-
>2 GeV, is entirely artificial. sponses of a massless quark, and a disagreement between

While quark-hadron duality has been investigated byresults with and without final state interactions was observed.
theorists before, modeling duality is an important new step inlhis is in contrast to our findings, and it is important to
our way to a thorough understanding of this phenomenon. Itinderstand the reasons for these differences.
the literature, one often finds the phrase that duality has been The experimental data at very lo@” still average to one
explained in terms of QCD by DeRujula, Georgi, andsingle curve, independent of the@® [2]. However, this is
Politzer[24]. What was stated in their paper is that at mod-not duality in the sense defined in this paper because this
erateQ?, the higher-twist corrections to the lower momentscurve differs from the scaling curve. To investigate this in-
of the structure function are small. The higher-twist correc-teresting observation, one must go beyond the model pre-
tions arise due to initial and final state interactions of thesented here, which contains valence quarks only, and there-
quarks and gluons. Hence, the average value of the structuf@re must produce a valencelike shape. However, introducing
function at moderat€? is not very different from its value sea quarks and modeling the decay of the excited resonances,
in the scaling region. While all this is true, the statement isalong with the corresponding nonresonant production
merely a rephrasing of the experimentally observed fact thaihechanisms from sea quark pairs, might shed considerable
the resonance curve averages to the scaling curve in terms tight on this issue.
the language of the OPE. However, the operator product ex-
pansion does not explain why a certain correction is small or ACKNOWLEDGMENTS
why there are cancellations—the expansion coefficients
which determine this behavior are not predicted in the OPE, The authors thank F. Close, R. Ent, R. J. Furnstahl, N.
The ultimate answer to this question might come from alSgur. C. Keppel, S. Liuti, I. Niculescu, and W. Melnitchouk
numerical solution of QCD on the lattice, but an understandfor stimulating discussions. We thank E. Braaten and R. J.
ing of the physical mechanism that leads to the small value§urnstahl for useful comments on the manuscript. The au-
of the expansion coefficient in the framework of a model isthors would like to acknowledge the contribution of our late
highly desirable. Also, the OPE will break down for very low colleague Nathan Isgur to this work by providing the initial
Q2. Duality was experimentally observé2] to hold for Q2 motivation. This work was in part supported by funds pro-
as low as 0.5 Ge¥—a region where the validity of the OPE Vided by the U.S. Department of EnergyOE) under coop-
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expansion coefficients, it became clear that a rigid applica-
tion of the OPE at very lov? will inevitably lead to large, ~APPENDIX A: DUALITY IN THE EXCITATION FORM
alternating expansion coefficients. FACTORS

The constant resonance to background ratio aspect of du- _ . L .
ality was addressed in several papers by Carlson and Mukho- I this appendix, we proceed to study duality in the exci-
padhyay[23]. They used counting rules to find ti@? de-  tation form factorFo,N(qz). While this duality is not directly
pendence of the form factors of the resonances in the Bref€lated to an observable like the structure functions or re-
frame and compared them to the behavior of the scalingPponse functions, it exhibits duality very clearly. Duality in
curve for largexg; and to the behavior of the background in the form factors has recently received some attentidibjn
the same region. From these considerations, they could ex- The duality prediction is that it should not matter if we
plain the constant ratio, provided ti@g-independent coeffi- describe the process in question in a perturbative QCD pic-
cients of the helicity amplitudes were not anomalously smallfure, involving only a free quark, or in a hadronic picture
as in the case of thA resonance, for which the ratio van- With resonances. The form factor for a hypothetical free
ishes. Still, there is no explanation why the coefficient isquark is just 1, as it does not have any structure. In the
small in one case and not in others, and there exist severBdronic picture, we have inclusive electron scattering where
models with contradictory predictions. we can excite all resonances—as the final hadronic state is

The preceding observations clearly show the need foROt observed, we have to sum over the resonances incoher-
modeling. Even though one may obtain expansion coeffiently. So we have to compa@N|I:(),,\,(ciz)|2 to 1. Figure 9
cients from calculations on the lattice, an understanding oshows single form factors for the lowest resonances, the elas-
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FIG. 9. The excitation form factor squareld,oy(q)|?, for the

lowest excitationsN=0-5, and=0.4 GeV. FIG. 11. The sum over the excitation form factors squared

. . . o |Fon(a?)|? for B=0.4 GeV. The solid line shows the sum over all
tic peak and inelastic excitations up ko=5. All form fac-  3jjowedN, the dash-dotted line shows the sum frode 10 to 40,

tors look qualitatively similar, except for thd=0 elastic  the dotted line shows the sum frol=10 to 30, and the dashed

form factor, which starts at 1 fdg|=0. In general, the form  line shows the sum frorhi=20 to 40.
factors increase in width and decrease in height with increas-

ing N. . . so that for fixed three-momentum transfef, we find a limit
Using our previous expression for the form factor, Eq.on the value oN. The form factor sums are shown in Fig. 10

(13), we find, for the sum up to a certain valt,,y, for various values of the oscillator paramefrLarger val-
N ues of 8 indicate a stronger binding.
q? The spiky character of the curves stems from the fact that
2732 . (A1) the form factors for theNth state are only allowed to con-
tribute to the sum ifiq|> vy, where vy:=Ex—E,. There-
and it is obvious that fore, the sum jumps up whenever another threshold is
crossed. This effect can be observed best for the strongest
. _ binding,3=0.6 GeV, as the gaps between the energy levels
> [Fon(@[?=1 if Npay—ce, (A2)  are largest in this case. With increasing value of the three-
N=0 momentum transfer, more and more resonance states can be
. . . excited and contribute to the sum: the spikes subside and the
as mentioned when discussing the Coulomb sum rule. How= .
- . . average value of the sum gets fairly close to 1. The curve for
ever, we are limited in the maximal value bf,,, not by o
. . .ma the weakest binding3=0.2 GeV, becomes almost smooth
technical problems, but by a physical constraint: we are con- - LT
S ; . . . X nd takes on a value of 0.9994; i.e., duality is violated by
sidering electron scattering, i.e., spacelike kinematics, an

Nmax aZ Nmax 1
NEO|FON<q>|2—exp(— )E

Nmax

' o ess than 0.06%. Fg#=0.4 GeV, the sum reaches 0.995, so
therefore we must satisfy the condition duality is violated only by 0.5%. Even for the strongest bind-
) - ing, B=0.6 GeV, the duality prediction is satisfied within
Q?>0«|q|>v=Ey—E,, (A3)
1 —
e NN A TR ]
o 0.98llRNERN vy .
> [ 1
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FIG. 12. The sum over the excitation form factors squared for
FIG. 10. The sum over the excitation form factors squared, forthe nonrelativistic case, for=0.2 GeV (solid line, g

B=0.2 GeV (solid line, B=0.4 GeV (dashed ling and B =0.4 GeV (dashed ling and 8=0.6 GeV (dash-dotted ling
=0.6 GeV(dash-dotted ling Note that the scale differs from the scale in Fig. 10.
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FIG. 13. The first eleven energy transfersor the relativistic case witl8=0.4 GeV (left pane) and for the non-relativistic case with

B=0.25 GeV/(right pane). The diagonal line in both panels indicates the photopoint| d].|e; v. All energy transfers below this line are
allowed in the space-like region.

1%. Here, we see a typical feature of duality: the need foin a limited kinematic interval, and this number increases
many resonances to contribute in order to reproduce the bevhen we increase the three-momentum transfer.

havior of a free quark. At lowq|, where only a few reso-
nances can contribute, the deviations from 1 are larger. The
fact that duality is satisfied best for weak binding is what we APPENDIX B: THE ROLE OF RELATIVITY

expect: a quark that is bound very lightly and then receives a \yg phaye stressed the importance of relativity before, and

hard momentum transfer behaves essentially as if it wergie jt is quite obvious that one needs to include it for GeV

free. If the *?i”dmg gets stronger, the situation gets Morg,omentum transfers to light quarks, it is instructive to see
nonperturbative, and duality does not work as well. {]
r

. . . o ow relativity works for the form factors. In order to illus-
The duality as seen in the form factors is reminiscent o

o ‘ ; ate this point, we show the sum of the excitation form
duality in the decay rates of the semileptonic decay of heavy,qors squared calculated for the nonrelativistic harmonic
quarks[11,27]. There, in the limit of infinite masses of the

_oscillator potential in Fig. 12. As mentioned in Sec. I, the

and ¢ quarks, the loss O,f strength in th? elast.ic channel 'Svave functions, and therefore the form factors, are the same.
compensated for by the increase in the inelastic decay chaRyq gifference lies in the energy spectrum.

nels. Once one considers heavy, but not infinitely heavy, —opyiously, duality in the nonrelativistic case does not
quark masses, one obtains a jagged structure, with peaks 9gfari at all: the curves start out at 1, as the elastic form factor

ting close to the free quark limit, quite similar to what we S . .
observe when considering the Coulomb sum rule and thg)r g =0 is 1, but then fall Qf.f |mmed|at_ely._Whenever a
new threshold opens, the additional contribution is not suffi-

excitation form factors. )
Let us consider the number of resonances needed in moﬁéem to compensate the falloff of the other form factors: they

detail, so that we can draw further conclusions on the kind 0“9 not E(?’ntflbute at their maximum value, but only with the
duality we are observing here. In the calculations presentedhigh-|q|” side of the peak, where the form factor drops
in Fig. 10, we summed up to the highest allowdN,,y. quickly; see Fig. 9. In the nonrelativistic case, the spacing
which is quite large in general. In Fig. 11, we present the fullbeétween the energy levels is wider than in the relativistic
curve, and three curves where we summed over a limite§ase, where the levels shrink together. This means that con-
number of resonances only: namely, frdbe 10 to 40(dash- siderably fewer resonances are allowed to contribute at the
dotted line, N=10 to 30 (dotted line@ and N=20 to 40 same, fixed|q|, and therefore the resulting sum is much
(dashed ling One can see that for a small interval in three-smaller and duality is violated. To clarify this point, we show

momentum transfer ofj=2.6-3.0 GeV, it is sufficient to @ comparison of energy levels in Fig. 13.

include only resonances froh= 10 to 40 in order to repro- !N the left panel, we show the energy transferéor the
duce the full, unrestricted curve. One also sees from the dofirst 11 energy levelgelastic and the first ten resonance$
ted line that for lower three-momentum transfer, the inclu-2 relativistic harmonic oscillator witjg=0.4 GeV. The di-
sion of just the 20 resonances frdw+= 10 to 30 suffices to  agonal line marks the photopoift| = v. This means that for

get close to the full curvg=2.6 GeV, while the same num- a given|q|, all the energy transfers below that line are in the
ber of resonances does not suffice to approximate the fupacelike region and therefore allowed. E.g., in the relativis-

curve at a slightly higher value ¢ﬁ| (see the dashed line tic case f0d§| =1 GeV, nine resonancésounting the elas-
So while it is clear that the “degrees of freedom duality” tic) can be excited. The right panel of Fig. 13 shows the

holds very nicely over the whole kinematic range, we seeenergy transfers for the energy levels of a nonrelativistic

that duality—the truncated version—does not hold as wellharmonic oscillator with3=0.25 GeV. We chose thg for

we do need a certain number of resonances to obtain dualithe nonrelativistic oscillator in order to reproduce the energy
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splitting between the ground state and the first excited statepace. Only with a proper relativistic phase space do we see
of the relativistic case. One clearly sees that fewer resoeuality in the excitation form factors. This was already clear
nances can contribute here, e.g., only six compared to nine ifiom our discussion of the Coulomb sum rule in the main
the relativistic case df|=1 GeV. The discrepancy grows body of the paper.
larger for higher|q|, as the relativistic energy levels move  Mathematically, degrees of freedom duality in the excita-
closer together, while the nonrelativistic ones are equallyion form factor means that one can expand a plane wave
spaced. (free quark in a set of Hermite polynomialéound quark

In conclusion, we have seen that the relativistic descripprovided one uses a sufficiently large number of basis states.
tion is necessary to ensure a correct treatment of the phageny other set of orthonormal polynomials would also work.
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