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Quark-hadron duality in a relativistic, confining model
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Quark-hadron duality is an interesting and potentially very useful phenomenon, as it relates the properly
averaged hadronic data to a perturbative QCD result in some kinematic regimes. While duality is well estab-
lished experimentally, our current theoretical understanding is still incomplete. We employ a simple model to
qualitatively reproduce all the features of the Bloom-Gilman duality as seen in electron scattering. In particular,
we address the role of relativity, give an explicit analytic proof of the equality of the hadronic and partonic
scaling curves, and show how the transition from coherent to incoherent scattering takes place.
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I. INTRODUCTION

Quark-hadron duality has been well established exp
mentally @1# for over 30 years, but our theoretical unde
standing of the phenomenon is quite limited so far. In
past year, there has been renewed interest in duality, bot
the experimental@2,3# and theoretical sides@4–8#. Duality is
a major point in the planned 12 GeV upgrade of the Conti
ous Electron Beam Accelerator Facility~CEBAF! at Jeffer-
son Lab @9#. Duality between partons and hadrons is a
employed in QCD sum rules@10#.

In a recent publication@4#, we presented results obtaine
in a confining, relativistic model which qualitatively repro
duced the features seen in Bloom-Gilman duality. In@4#, we
only discussed a reaction where all particles involved
electrons, photons, and quarks—were treated as scalar
this paper, we present the model for physical electrons
photons, and only treat the quarks as scalars. We describ
model and its properties in more detail, and discuss the C
lomb sum rule, the transition from coherent to incoher
scattering, and duality in the form factors. We also put s
cial emphasis on the role of relativity. A relativistic treatme
was one of four basic conditions imposed in@4# to obtain
duality, and here we show the consequences of relaxing
condition, and compare nonrelativistic and relativistic calc
lations. One main point of this paper is the explicit derivati
of the scaling curve for scattering from quarks confined
their initial and final states and a comparison of this scal
curve to that obtained in a parton model calculation.

For the convenience of the reader, we define the con
of duality in the following and briefly discuss a few bas
implications. In the literature, there exist many slightly var
ing ‘‘definitions’’ and usages of the term duality, and th
phenomenon manifests itself experimentally in many diff
ent processes. We begin with a definition that covers all th
cases. First, we need to make an obvious observation:
hadronic process can be correctly described in terms
quarks and gluons. In other words, quantum chromodyn
ics ~QCD! is the correct theory for strong interactions. Wh
this statement is obvious, it has little practical value, as
0556-2821/2002/65~9!/094038~18!/$20.00 65 0940
i-

e
on

-

o

In
d

the
u-
t
-

t

is
-

g

pt

-
se
ny
of

-

n

most cases we cannot perform a full QCD calculation. F
example, in order to calculate a resonance excitation fo
factor, one would need to include very many quarks a
gluons, and they would all couple strongly. We will refer
the above statement that any hadronic process can be
scribed by a full QCD calculation as ‘‘degrees of freedo
duality.’’

There exists a more practical and less obvious version
the first statement: in certain kinematic regions, the aver
of hadronic observables is described by a perturbative Q
~PQCD! result. This is the statement of duality, and we a
going to explain the details in the following.

With the PQCD result, we indicate the result for the u
derlying quark process—for inclusive inelastic electron sc
tering from a proton, it is free electron-quark scattering;
semileptonic decays, e.g.,B̄→Xcl n̄ l , it is the underlying
quark decay rate, in this case obtained from the procesb

→cl n̄ l @11#; for e1e2→hadrons, it is the underlyinge1e2

→qq̄ process. Now, it is clear that we expect perturbat
QCD to describe nature in a certain kinematic regime, i
for very largeQ2. In this regime, as a result of the fact th
full QCD is approximated by perturbative QCD, the sta
ment of duality turns into the statement of the ‘‘degrees
freedom duality.’’ So we have identified one kinematic r
gime in which even the nonobvious version of duality mu
hold.

We also can identify a kinematic regime for which duali
cannot hold: forQ2→0. While the underlying reason for th
breakdown of duality at low four-momentum transfers is t
nonperturbative, strong interaction of the hadrons, one
see the breakdown of duality most easily by considering
transition from incoherent to coherent scattering. For dua
to hold for the nucleon structure functions in this case,
would need the following: the elastic proton and neutr
form factors, which take the value of the nucleon charge
Q2→0, would have to be reproduced by electron scatter
off the correspondingu and d quarks. Now, for the proton
this can work, as the squares of the charges of twou quarks
and oned quark add up to 1. However, for the neutron, t
©2002 The American Physical Society38-1
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squared quark charges cannot add up to 0, so it is clear
duality in inclusive inelastic electron scattering from a ne
tron must fail forQ2→0. In addition, we know from gauge
invariance that forQ2→0, at fixed energy transfern, the
function nW2(n,Q2) must approach 0. It is clear that th
scaling functionF2(x) does not show that behavior, whic
gives us an additional reason to expect the breakdown
duality at lowQ2.

So now we know that duality has to hold in one kinema
regime and that it has to break down in another kinem
regime. Obviously, a very interesting question is what h
pens in between these regimes, i.e., how exactly does du
break down, how far does it hold in the regime where it
nontrivial, i.e., for moderate values ofQ2, and how accu-
rately does it hold where it holds.

II. MODEL

Here, we present a model for the study of quark-had
duality that uses only a few basic assumptions. Namely,
assume that it is necessary to include confinement and
tivity in our model, that it is sufficient to base our mod
solely on valence quarks, and that these quarks can be tre
as scalars. A model with these features will not give a re
istic description of any data, but it should allow us to obta
duality and study the critical questions of when and h
accurately duality holds.

Although it is our aim to study duality in electron scatte
ing from the nucleon, i.e., from a three-quark-system, a
first step we simplify the problem at hand by substituting t
quarks by an antiquark, as the representation 3^ 3 in SU~3!

contains the representation 3.̄ This means we have a two
body problem now, and we have to solve the Bethe-Salp
equation. In the special case of the mass of the antiquarkM,
going to infinity, the problem further simplifies to a one-bo
problem. In the case of scalar quarks considered here
obtain a Klein-Gordon equation. In contrast to@4# where we
assumed that all particles involved—electrons, photons,
quarks—are scalars, here we treat only the valence quark
scalars. Note that the experiment which our model resem
most would be electron scattering from aB meson. Still, we
expect to gain valuable insights from considering this c
and would like to stress that none of the assumptions
made here prevent us from extending our model to desc
more realistic circumstances.

We have chosen to implement confinement by usin
linear potential, which leads to a relativistic harmonic osc
lator solution. This has the advantage that analytic soluti
can be readily obtained and that a comparison with the n
relativistic case is easily feasible.

We have to solve the Klein-Gordon equation with a sca
potential:

S ]2

]t2
2¹W 21m21V2D F~x!50, ~1!

with the usual ansatzF6(x)5F(rW)exp(7iEt) and the con-
fining potential
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V2~rW !5b2r 2, ~2!

whereb is the relativistic string tension and has dimensi
@b#5@mass2#. The superscript of the wave function denot
positive and negative energy solutions to the Klein-Gord
equation. The mass of the quark is denoted bym and we use
m50.33 GeV throughout this paper.

The Klein-Gordon equation in this form can be eas
rearranged to have the form of a Schro¨dinger equation to
give

S 2
¹W 2

2m
1

1

2

b2

m
r 2DF~rW !5

E22m2

2m
F~rW !, ~3!

where the similarity to the Schro¨dinger equation for a non
relativistic harmonic oscillator potential becomes appare
The solutions to this equation are easily obtained by mak
the substitutionsk̃[b2/m and Ẽ[(E22m2)/2m and using
the well-known solutions of the nonrelativistic case.

The energy eigenvalues for the Klein-Gordon equation
E56EN where

EN5A2b2S N1
3

2D1m2. ~4!

N is the principal oscillator quantum number andb[b1/2.
The corresponding wave functions are the usual nonrela
istic oscillator wave functions. For the present application
is convenient to express the oscillator wave function in C
tesian form as

FN~rW !5fnx
~x!fny

~y!fnz
~z!, ~5!

where

fnx
~x!5

Ab

A2nxnx!Ap
Hnx

~bx!expS 2
1

2
b2x2D , ~6!

with similar expressions fory andz coordinates. TheHn are
the Hermite polynomials. Unless noted otherwise, we
b50.4 GeV, which was chosen to give reasonable val
for the mass splitting and charge radius.

It should be noted that the negative energy solutions
just that since we are using a one-body wave equation
not a field theory. Therefore, these are an artifact of
model, but are necessary to provide a complete set of r
tivistic states.

As we choose to retain the nonrelativistic wave functio
we differ from the usual relativistic normalization: using th
Klein-Gordon normalization condition for these wave fun
tions gives

i E d3r $FN
6* ~x!]0FN

6~x!2@]0FN
6* ~x!#FN

6~x!%562EN .

~7!

This leads to the factor 1/4E0EN in the response function
and to the energy factor in the current operator defined
8-2
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QUARK-HADRON DUALITY IN A RELATIVISTIC , . . . PHYSICAL REVIEW D 65 094038
low. Of course, we could have used explicitly relativis
normalized wave functions, which would have led to a d
ferent expression for the form factor, given below in E
~13!.

The basic difference between the relativistic and nonre
tivistic oscillator equations is the difference in the ener
spectrum: while the nonrelativistic solutions are equa
spaced, asEN

nonrel}N, the relativistic spectrum goes asEN

}AN for large N so the density of states increases with
creasingN. We note in passing that with this relativistic spe
trum our simple model gives rise to linear Regge trajecto
@12# as seen in nature.

In the following, we will consider electron scattering fro
a meson with an infinitely heavy antiquark. In contrast to o
previous publication@4#, where we treated all particles a
scalars, the electrons in this paper are spin-1/2 fermions,
the virtual photons have spin 1. Unless otherwise noted,
assume in this paper that only the light quark carries a cha
and that the photon therefore couples only to the light qua
not to the heavy antiquark.

For a photon coupling to the quark in the positive ene
harmonic oscillator ground state and transferring the fo
momentumq5(n,qW ), we have the following current matrix
element:

j m~q!5
i

A4E0EN
E d4x exp~2 iq•x!

3$FNf
* ~x!]mF0~x!2@]mFNf

* ~x!#F0~x!%, ~8!

whereNf can designate either a positive or negative ene
state. Using this definition of the current along with Eq.~1!,
it can be easily shown that the current is conserved,qm j m

50.
The calculation of the double-differential cross section

straightforward and leads to the Rosenbluth equation

ds

dEfdV f
5sMott@vLRL~qW ,n!1v tRT~qW ,n!#, ~9!

where sMott is the Mott cross section,vL and vT are the
usual leptonic coefficients,

vL5
Q4

qW 4
, vT5

1

2

Q2

qW 2
1tan2

qe

2
,

Q2[2q25qW 22n2, and the longitudinal and transverse r
sponse functions are

RL~qW ,n!5 (
N50

`
1

4E0EN
uF0N~qW !u2@~E01EN!2d~n1E02EN!

2~E02EN!2d~n1E01EN!# ~10!
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RT~qW ,n!58
b4

qW 2 (
N50

`
1

4E0EN
NuF0N~qW !u2@d~n1E02EN!

2d~n1E01EN!#. ~11!

In these expressions,F0,N stands for the excitation form fac
tor

F0,N~qW 2!5E d3rW exp~ iqW •rW !FNf
* ~rW !F0~rW !

5E d3pW CNf
* ~pW !C0~pW 2qW !, ~12!

whereC indicates a momentum space wave function. Ma
ing use of the recurrence relations of the Hermite polyno
als, we find an explicit expression forF0,N :

F0,N~qW 2!5
1

AN!
i NS uqW u

A2b
D N

expS 2
qW 2

4b2D . ~13!

Note that some care is necessary in writing the express
for the responses to properly include the negative ene
states. The relative sign between the positive and nega
energy contributions is associated with the negative norm
the negative energy states.

These expressions for the response functions have b
derived assuming that the quark is excited from the grou
state into a resonance state,N, and remains there withou
decaying. This is just the first step on the way to mes
production in this picture. Thed function in the energies is
an artifact of this assumption.

Note that because we assume scalar quarks, there i
magnetization current present. The only contribution to
transverse part of the cross section comes from the con
tion current. As a result, the transverse response falls fa
than the longitudinal response with increasing moment
transfer, as will be shown explicitly below. This is in contra
to the case of spin-1/2 quarks where the magnetization
rent dominates. In turn, it causes the transverse respons
dominate at large momentum transfer, giving rise to
Callan-Gross equation@13# in the scaling region.

The inclusive, inelastic electron scattering cross sect
can be reexpressed in terms of two structure functionsW1
andW2, which depend only onn andQ2:

ds

dEfdV f
5sMottS W2~n,Q2!12W1~n,Q2!tan2

qe

2 D .

~14!

where
8-3
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SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW D65 094038
W1~n,Q2!5
1

2
RT~AQ21n2,n!

W2~n,Q2!5
Q4

~Q21n2!2
RL~AQ21n2,n!

1
Q2

2~Q21n2!
RT~AQ21n2,n!. ~15!

III. COULOMB SUM RULE

For the moment, we will consider a wider class of mod
for hadrons made up from confined quarks: namely, the m
general case of models where all quarks carry an elec
charge. It is interesting to consider an apparent contradic
between a model such as the one discussed here an
parton model. In our model, since all states are bound sta
all of the transition form factors are coherent in that they
the result of scattering from the total charge. The par
model, however, assumes that the cross sections are
posed of incoherent scattering from the individual const
ents, resulting in cross sections proportional to the sum
squares of individual charges. One method of examining
transition from coherent to incoherent scattering is the C
lomb sum rule@14#. Consider the longitudinal response fun
tion

RL~qW ,n!5(
f

^c0ur†~qW !uc f&^c f ur~qW !uc0&

3d~n1E02Ef !, ~16!

where the sum represents a generalized sum over all
states, bound or free, andr(qW ) is the Fourier transform of the
charge operator. Now define the longitudinal sum as

S~qW !5E
2`

`

dnRL~qW ,n!. ~17!

Using the above definition of the longitudinal response a
the completeness of the final states, this becomes

S~qW !5E
2`

`

dn(
f

^c0ur†~qW !uc f&^,c f ur~qW !uc0&

3d~n1E02Ef !

5(
f

^c0ur†~qW !uc f&^c f ur~qW !uc0&

5^c0ur†~qW !r~qW !uc0&. ~18!

This is a general result. To see how this relates to the p
lem of the transition between coherent and incoherent s
tering, consider the simple case of a nonrelativistic system
two constituents with chargese1 ande2. In this case,
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S~qW !5E d3rc0
†~rW !~e1e2 iqW •rW11e2e2 iqW •rW2!

3~e1eiqW •rW11e2eiqW •rW2!c0~rW !

5E d3rc0
†~rW !~e1

21e2
21e1e2e2 iqW •(rW12rW2)

1e1e2eiqW •(rW12rW2)!c0~rW !

5e1
21e2

212e1e2F~qW !, ~19!

where rW5rW12rW2 is the relative coordinate of the two pa
ticles and

F~qW !5RE d3rc0
†~rW !eiqW •rWc0~rW ! ~20!

is the real part of the Fourier transform of the ground-st
probability density.

In order to understand the physical significance of
quantity determining the rate of falloff of the mixed ter
containing the product ofe1 ande2, it is necessary to write
down the most general form of the charge form factor
two quarks with chargese1 ,e2 and massesm1 ,m2 (M
5m11m2). Here, we have dropped thed function obtained
from integrating over the c.m. motion in the second step

F0,Nf
~qW !5E d3rWCNf

* ~rW !~e1eiqW •rW11e2eiqW •rW2!C0~rW !

→E d3rWCNf
* ~rW !~e1eiqW •rW~m2 /M !

1e2e2 iqW •rW~m1 /M !!C0~rW !. ~21!

From this expression one sees that in the most general c
F(qW ) cannot be interpreted in terms of the ground-st
charge form factor. However, in the special case ofm1
5m2,

F0,0~qW !5~e11e2!E d3rWeiqW •rW/2uC0~rW !u25~e11e2! f 0,0~qW !.

~22!

In this case@15#,

F~qW !5 f 0,0~2qW !. ~23!

A special case of our general result~19! was discussed in@5#,
where the case of two scalar, equal mass quarks in a no
ativistic harmonic oscillator potential was considered.

In the model we present in this paper, all of the charge
carried by one of the constituents: that is,e151 ande250.
Since there is only a single charge, there is no differe
between coherent and incoherent scattering, so we ex
that

S~qW !51. ~24!

This then provides a useful test of the model.
8-4
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QUARK-HADRON DUALITY IN A RELATIVISTIC , . . . PHYSICAL REVIEW D 65 094038
Using Eq.~10!,

S~qW !5E
2`

`

dn (
N50

`
1

4E0EN
uF0N~qW !u2@~E01EN!2d~n1E0

2EN!2~E02EN!2d~n1E01EN!#

5 (
N50

`
~E01EN!22~E02EN!2

4E0EN
uF0N~qW !u2

5 (
N50

`

uF0N~qW !u2. ~25!

Using Eq. ~13! it is straightforward to demonstrate th
S(qW )51 in this case so the Coulomb sum rule is satisfi
Indeed, this will be true regardless of the form of the confi
ing potential, as long as one considers a complete se
solutions. Note that for this model it is necessary that
integral in Eq.~17! be over both positive and negative ener
transfers for the sum rule to be satisfied.

In electron scattering, only the spacelike region is acc
sible and the negative energy states are an artifact of the
of the Klein-Gordon equation as a wave equation. It is u
ful, therefore, to examine the contributions to the Coulo
sum from spacelike, timelike, and negative energy sta
When referring to the spacelike and timelike contributio
only positive energy states are included. The different c
tributions are shown in Fig. 1. AtuqW u50, only the elastic
form factor can contribute and therefore must saturate
sum rule. As the momentum transfer increases the ela
form factor falls off, resulting in a decrease in the spacel
contribution. It decreases until the momentum transfer
creases to a point where the first excited state enters
spacelike region. The spacelike contribution then satur
the sum rule again. This process continues as new form
tors become accessible in the spacelike region. The resu
a sawtoothed behavior of the spacelike contribution. Beca
the density of states for this oscillator model increases w
increasing energy, the magnitude of the ‘‘teeth’’ becom

FIG. 1. Positive energy spacelike, timelike, and negative ene
contributions to the Coulomb sum rule from our model.
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smaller with increasing momentum transfer until the spa
like contribution is essentially smooth. Note that the spa
like contribution oversaturates the sum rule around mom
tum transfers of 0.5 GeV and above. Since the jaggednes
the spacelike region is associated with the migration of c
tributions from the timelike region, it is not surprising to se
that the complement of this behavior does indeed show u
the timelike contribution. As the momentum transfer i
creases, the size of the timelike contribution becomes sm
The negative energy contribution is smooth and compens
for the oversaturation of the spacelike contribution. This
clearly an artifact of using a one-body wave equation w
negative energy contributions.

It should be pointed out here that the small size of
timelike contributions is an essential consequence of usin
relativistic wave equation. This can be seen by considerin
similar situation where the nonrelativistic oscillator model
used to describe the system. The spacelike and timelike
tributions of such a model are shown in Fig. 2. The Sch¨-
dinger equation of course has only positive energy solutio
Here the sawtoothed behavior in the spacelike contributi
is similar to the relativistic case with the important differen
that due to the linear character of the nonrelativistic spectr
~see Fig. 13! the contributions from states entering the spa
like region is not rapid enough to compensate for the fall
in the form factors. Therefore, with increasing momentu
transfer, the size of the spacelike contribution approac
zero with all of the strength appearing in the timelike regio

Duality in the sum of the form factors in the spacelik
region is related to the Coulomb sum rule. While the conc
of duality in the form factors is not clearly related to a
observable~in contrast to duality in the structure functions!,
it still has received attention in the literature@5#. We describe
it within our model in Appendix A.

This model can be easily extended to the case where
quarks are charged by examining the behavior of the tw
body Gross equation in the limit where the mass of one
the particles becomes infinite@16#. The contribution of the
infinite mass particle to the structure function is simple a
straightforward. As a result of its infinite mass, this partic
remains stationary for any finite momentum transfer, and

y FIG. 2. Spacelike and timelike contributions to the Coulom
sum rule for a nonrelativistic oscillator.
8-5
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pointlike. This particle therefore contributes only to elas
scattering and has a constant form factor. The structure fu
tion can then be written as

RL~qW ,n!5ue1F00~qW !1e2u21e1
2 (

N51

`
1

4E0EN

3uF0N~qW !u2@~E01EN!2d~n1E02EN!

2~E02EN!2d~n1E01EN!#. ~26!

The Coulomb sum can be easily calculated to be

S~qW !5e1
2 (

N50

`

uF0N~qW !u21e2
212e1e2RF00~qW !

5e1
21e2

212e1e2RF00~qW !. ~27!

So in this case,

F~qW !5RF00~qW !5F00~qW !. ~28!

After examining how the apparent contradiction between
herent and incoherent scattering is resolved in a more gen
framework, we now proceed to investigate duality in o
model. The first condition for duality is that one obtains sc
ing in the structure function calculated solely with res
nances and that the scaling curve thus obtained agrees
the scaling curve obtained in the parton model.

IV. PARTON MODEL

The usual assumption of the parton model is that at la
momentum transfers the final state quarks can be treate
though they were free. Examination of the structure fu
tions for largeQ2 and fixed Bjorkenx leads to identification
of the scaling functions.

For our simple model, the response functions for exc
tion of a bound~off-mass-shell! quark to a plane-wave fina
state can be calculated analytically as

RL~qW ,n!5
~2E01n!2

4p1/2bE0uqW u
FexpS 2

y2

b2D
2expS 2

~y12uqW u!2

b2 D G @u~n1E02m!

2u~2n2E02m!# ~29!

and

RT~qW ,n!5
b

2p1/2E0uqW u2
F S 2~y1uqW u!2

b2

uqW u
D expS 2

y2

b2D
2S 2~y1uqW u!1

b2

uqW u
D expS 2

~y12uqW u!2

b2 D G
3@u~n1E02m!2u~2n2E02m!#, ~30!
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wherey5A(n1E0)22m22uqW u.
For our model it is not possible to define the scaling va

able in terms of the target mass since it is infinite. For t
reason we define a new Bjorken variable

uB j5
M

m
xB j5

Q2

2mn
, ~31!

which covers the interval 2`,uB j,`. Using n
5Q2/2muB j and taking the limitQ2→`, the structure func-
tions become

RL~Q2,uB j!→
Q2

8p1/2bmE0uB j

expS 2
~E02muB j!

2

b2 D
3FuS Q2

2muB j
D2uS 2

Q2

2muB j
D G ~32!

and

RT~Q2,uB j!→
2bmuB j

p1/2E0Q2
expS 2

~E02muB j!
2

b2 D
3FuS Q2

2muB j
D2uS 2

Q2

2muB j
D G . ~33!

Since in this limit

unu
Q4

qW 4
→ 8m3uuB ju3

Q2
and unu

Q2

2qW 2
→muuB ju, ~34!

the structure functions have the limits

W1~uB j ,Q
2!→F1~uB j!50 ~35!

and

unuW2~n,Q2!→F2~uB j!5
m2uB j

2

p1/2bE0

expS 2
~E02muB j!

2

b2 D .

~36!

Note that the choice ofunu in defining W2 is necessary to
provide a properly normalized scaling function as will b
seen below.

Although we have used the Bjorken scaling variable
obtain these results, this will be true for all such variab
since all acceptable scaling variables must reduce to
8-6
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Bjorken scaling variable asQ2→`. Therefore, a more gen
eral expression forF2 for any scaling variable and any initia
state can be written as

F2~u!5
m2u2

4p2E0
E

uE02muu

`

dp pN~p!, ~37!

whereN(p) is the ground-state momentum distribution no
malized such that

1

2p2E0

`

dpp2N~p!51. ~38!

After obtaining the scaling curve in the parton model, i.
the scaling curve for a quark initially bound and then fre
we proceed to find an expression for the scaling curve in
model, where the quark makes the transition from the gro
stated to an excited bound state.

V. CONTINUUM LIMIT

An interesting feature of our relativistic oscillator mod
is that the scaling behavior of the model can be determi
analytically by making a continuum approximation. The ju
tification for this is that at increasing momentum transfer
contributions to the response functions are dominated
higher-energy states. Since the density of states incre
with increasing energy, it is reasonable that a continuum
proximation should provide a good description of the av
aged response for large momentum transfers.

Using Eqs.~10! and ~13! we can write

RL~qW ,n!5 (
N50

`

DN
1

4E0EN

1

N! S qW 2

2b2D N

expS 2
qW 2

2b2D
3@~EN1E0!2d~EN2E02n!

2~E02EN!2d~EN1E01n!#, ~39!

whereDN51. It is convenient to write

EN5ApN
2 1E0

2, ~40!

where

pN
2 52b2N. ~41!

From this it can be determined that, for a variation inN,

DN5
pNDpN

b2
~42!

and
09403
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DEN5
pNDpN

EN
. ~43!

The longitudinal response function can then be rewritten

RL~qW ,n!5
1

4b2E0
(
N50

`
DEn

GS 11
EN

2 2E0
2

2b2 D
3S qW 2

2b2D (EN
2

2E0
2)/2b2

expS 2
qW 2

2b2D
3@~EN1E0!2d~EN2E02n!

2~E02EN!2d~EN1E01n!#. ~44!

This sum can now be approximated by the integral

RL~qW ,n!5
1

4b2E0
E

E0

` dE

GS 11
E22E0

2

2b2 D S
qW 2

2b2D (E22E0
2)/2b2

3expS 2
qW 2

2b2D @~E1E0!2d~E2E02n!

2~E2E0!2d~E1E01n!#, ~45!

which can be trivially evaluated to give

RL~qW ,n!5
~n12E0!2@u~n!2u~22E02n!#

4b2E0GS 11
~n1E0!22E0

2

2b2 D
3S qW 2

2b2D @~n1E0!22E0
2
#/2b2

expS 2
qW 2

2b2D .

~46!

Similarly, the transverse response becomes

RT~qW ,n!5
~n212E0n!@u~n!2u~22E02n!#

E0qW 2GS 11
~n1E0!22E0

2

2b2 D
3S qW 2

2b2D [ ~n1E0)22E0
2]/2b2

expS 2
qW 2

2b2D .

~47!

In the scaling limit the argument of theG function be-
comes large, so Stirling’s formula can be used to write
longitudinal response function as
8-7
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RL~AQ21n2,n!5
~n12E0!2

4p1/2bE0

expFn212E0n

2b2
lnS Q21n2

n212E0n
D 2

Q21n2

2b2
1

n212E0n

2b2 G
An212E0n

@u~n!2u~22E02n!#. ~48!
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n5
Q2

2muB j
~49!

and taking the limitQ2→`, the structure functions becom

RL~Q2,uB j!→
Q2

8p1/2bmE0uB j

expS 2
~E02muB j!

2

b2 D
3FuS Q2

2muB j
D2uS 2

Q2

2muB j
D G . ~50!

Similarly,

RT~Q2,uB j!→
2bmuB j

p1/2E0Q2
expS 2

~E02muB j!
2

b2 D
3FuS Q2

2muB j
D2uS 2

Q2

2muB j
D G . ~51!

Since Eqs.~50! and ~51! are identical to Eqs.~32! and ~33!,
the model scales to the parton model result. So even tho
our model describes a bound quark being excited to re
nance states, we do obtain a scaling curve in the Bjor
limit. This as well as the results presented in@17–19,6#
shows that scaling does not necessarily imply scattering
free constituents, a belief which is encountered widely.

Others@17–19# have studied the transition from groun
state to excited bound states and found scaling in sim
09403
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models. However, duality is satisfied only when~i! the tran-
sition from ground state to excited bound states scales,~ii !
the transition from ground state to a plane-wave final st
scales,and ~iii ! both scaling curves coincide. In this sectio
and the preceding section, we have shown that duality ho
explicitly in our model. The numerical approach towards t
scaling curve is shown in Fig. 3.

Note that as we explicitly made use of Stirling’s formu
in the derivation of the scaling function in the continuu
limit, it is clear that for the lower-lying resonances, whic
correspond to lowerN values, we will never quite see scalin
in the subasymptotic regime. This is of no practical r
evance, as these resonances are pushed out to very high
ues ofu for largerQ2, and the structure functions practical
vanish in this region. This is completely analogous to the f
that for electron scattering from a proton, one always pic
up the elastic scattering atxB j51, independent ofQ2—even
though the elastic form factor will have fallen off to negl
gible values at high enoughQ2.

VI. APPROACH TO SCALING IN THE STRUCTURE
FUNCTIONS

After establishing analytically that one of the necess
conditions for duality is satisfied—namely, scaling to t
scaling curve obtained from a free quark in the fin
state—we proceed to investigate the approach to scaling
merically.

We would like to remind the reader that our results sho
not be compared to the available nucleon data—our mo
idth equal

FIG. 3. The high-energy scaling behavior ofS2cq as a function ofu for various values ofQ2. In the left panel, we have usedG

5100 MeV to give the impression of real resonances even though this large value distorts the scaling curve somewhat. For any w
to or smaller than this, the distortion is rather innocuous, and forG→0, the structure function approaches the scaling function~solid line! in
Eq. ~36!, as shown in the right-hand panel. The structure functions in the left panel are shown forQ25100 GeV2.
8-8
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QUARK-HADRON DUALITY IN A RELATIVISTIC , . . . PHYSICAL REVIEW D 65 094038
calculations describe a process that might resemble elec
scattering from aB meson, which has never been measur
In general, when we consider scattering from a meson tar
scaling will set in later than for a baryon target: momentu
sharing for higher momenta between fewer constituent
easier, which leads to a slower falloff of the individual for
factors and to a later onset of scaling. In our situation, wh
the system is not allowed to decay, we have a somew
extreme case.

To see duality clearly both experimentally and theore
cally, one needs to go beyond the Bjorken scaling varia
xB j and the scaling functionS2B j5nW2 that goes with it.
This is because in deriving Bjorken’s variable and scal
function, one not only assumesQ2 to be larger than any mas
scale in the problem, but also that highQ2 ~PQCD! dynam-
ics controls the interactions. However, duality has its onse
the region of low to moderateQ2, and there masses an
violations of asymptotic freedom do play a role. Bloom a
Gilman used a new,ad hoc scaling variablev8 @1# in an
attempt to deal with this fact. In most contemporary d
analyses, the Nachtmann variable@20,21# is used together
with S2B j . Nachtmann’s variable contains the target mass
a scale, but neglects quark masses. For our model, the
stituent quark mass~assumed to arise as a result of spon
neous chiral symmetry breaking! is vital at low energy, and a
scaling variable that does not make any assumptions a
the size of the quark and target masses compared toQ2 is
desirable. Such a variable was derived more than 20 y
ago by Barbieriet al. @22# to take into account the masses
heavy quarks; we use it here given that after spontane
chiral symmetry breaking the nearly massless light qua
have become massive constituent quarks, calling itxcq :

xcq

55
1

2M
~An21Q22n!S 11A11

4m2

Q2 D for n.0,

2
1

2M
~An21Q21n!S 11A11

4m2

Q2 D for n,0,

~52!

where the definition for negative energy is chosen such th
satisfies the kinematic constraints in this region and rep
duces the behavior ofxB j for largeQ2. The scaling function
associated with this variable is given by

S2cq[uqW uW25An21Q2W2 . ~53!

This scaling function and variable were derived for sca
quarks which are free, but have a momentum distributi
The derivation of a new scaling variable and function
bound quarks will be published elsewhere. Numerically, t
scaling variable does not differ very much from the one
Eq. ~52!. Of course all versions of the scaling variable mu
converge toxB j and all versions of the scaling function mu
converge towardsSB j for large enoughQ2. One can also
easily verify that in the limitm→0 one obtains from Eq
09403
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~52! the Nachtmann scaling variable. In the following, w
use the variablexcq and the scaling functionS2cq .

We are now ready to look at scaling and duality in o
model. Since the target has massM→`, it is convenient to
rescale the scaling variablexcq by a factorM /m:

u[
M

m
xcq . ~54!

The variable u takes values from 0 to a maxima
Q2-dependent value, which can go to infinity. The hig
energy scaling behavior of the appropriately rescaled st
ture functionScq is illustrated in Fig. 3. The structure func
tion has been evaluated using the phenomenologic
reasonable parametersm50.33 GeV andb50.4 GeV. To
display it in a visually meaningful manner, the energ
dependentd function has been smoothed out by introduci
an unphysical Breit-Wigner shape with an arbitrary but sm
width G, chosen for purposes of illustration:

d~EN2E02n!→ G

2p

f

~EN2E02n!21~G/2!2
, ~55!

where the factor

f 5pY Fp2 1arctan
2~EN2E0!

G G
ensures that the integral over thed function is identical to
that over the Breit-Wigner shape. As for the all scalar ca
discussed in@4#, the smearing out of thed function in energy
with the Breit-Wigner shape leads to a slight widening of t
curve and flattening of the peak height. However, wh
choosing a smaller value for the Breit-Wigner width, the
effects disappear, as seen in the right panel of Fig. 3.

Not unexpectedly, the scaling curve we find here, wh
using photons and electrons with their appropriate spins,
fers from the one in the all scalar case both in its final sh
and the approach to scaling. Now, we have two terms
longitudinal and transverse response functions—contribu
to the structure functionW2 and therefore to the scalin
curve. More importantly, the terms themselves are differ
and more complicated in the case considered here. The
gitudinal part of the structure function contains an additio
factor (E01EN)2, which was not present in the all scala
case. As shown in Sec. V, the transverse response van
like 1/Q2 in the limit Q2→`, while the longitudinal re-
sponse grows likeQ2. This leads to a vanishing ofW1 and to
a Q2-independent value foruqW uW2, even though, from Eqs
~15!,~50!,~51!, it is clear that at lowerQ2 the transverse con
tribution to W2 will not vanish immediately, therefore mak
ing the approach to scaling slower. The effect is rather s
nificant, though, as the contributions of the convecti
current are very small. They delay scaling slightly for t
low-u part of the curve. The effect would be more importa
for contributions of similar size within a certain kinemat
range. In our case, the main effect of the transverse co
bution is to slightly broaden the curve. For smallerQ2, this
effect is more pronounced for low values of the scaling va
8-9
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SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW D65 094038
ableu, as the higheru correspond to lower-lying resonance
which have only tiny contributions from the transverse pa

As already mentioned above, for a proton target,
dominant contribution to the transverse response and ov
is the magnetization current, which does not contribute
our scalar ‘‘quarks.’’ Note that both the transverse and lo
gitudinal contributions toW2 are positive definite. If a domi-
nant contribution in the transverse response is presen
should lead to a different scaling behavior in the struct
function W1 than in nW2. For nW2, the longitudinal term
with different Q2 behavior will most likely slow the ap-
proach to scaling down, as it is going to be of compara
size to the magnetization current contribution at lowQ2.
This is a completely general observation, and one would
pect to see faster scaling inF1 once the data are available
The same conclusion was reached on a different basis in@5#.

The shape of the scaling curve is also different than
the all scalar case. The peak is higher, the curve extend
larger values of the scaling variable, and foru→0, the scal-
ing function actually vanishes now, as expected from a
lence quark distribution, even though we do not find a
havior }Au as seen for proton targets. However, we can
expect to reproduce the correct distribution function
quarks in our simple model with scalar ‘‘quarks.’’

From the explicit expression for the scaling curve, it
clear that it depends both on the binding strengthb of the
harmonic oscillator and on the quark mass. It peaks
upeak5(E01AE0

21b2)/2m, slightly above the value
upeak

scalar5E0 /m which we found for the all scalar case. N
ively, for a target of massM made up of noninteracting
quarks of massmq , one expects a spike atxB j5mq /M . In
our case, the role of the mass of the quarkmq is played by
the ground-state energyE0, which appears everywhere~e.g.,
in flux factors, normalization! where one would have th
mass in the free particle case. As our variable is rescaled
the factorM /m, we expectupeak'E0 /m. It is interesting to
note that this value receives a slight binding correction d
to the conserved current employed here. We note that
weaker binding, the peak gets narrower and its posit
slides towardsu'1. As expected, in the limit of a free pa
ticle, b→0, we do obtain a spike of infinite height atu51
@in this limit, the scaling function becomesd(u)/(mE0)#.

VII. MOMENTS AND FURTHER SUM RULES

Now, we will discuss global duality, where the term gl
bal implies that we consider an average and integral o
many resonances, which is compared with the correspon
integral over the scaling curve.

Local duality implies that we compare the contribution
one single resonance or just a few resonances with the
ing result, i.e., with the free quark result. This will be di
cussed in Sec. VIII. The concept of local duality is taken
its extreme when one focuses not just on one single re
nance, but on one point only of the contribution of the sin
resonance, as was done first by Bloom and Gilman@1#, when
they compared the peak value of a single resonance with
value of the scaling curve. This version of duality has be
investigated in Ref.@23#. As this ratio would depend strongl
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on the Breit-Wigner width we use to smooth out thed func-
tions, it is not appropriate to consider it in this paper.

Global duality was first quantified by Bloom and Gilma
@1# in the form of finite energy sum rules, where the integ
over the scaling curve was compared to the integral over
resonance contribution. The integration range in both ca
comprises the region of the scaling variablev8 or n, respec-
tively, which corresponds to the resonance region, define
having an invariant massW,2 GeV:

2MN

Q2 E
0

nm
dnnW2~n,Q2!5E

1

11Wm
2 /Q2

dv8nW2~v8!,

~56!

whereWm'2 GeV andnm5(Wm
2 2MN

2 1Q2)/2MN . Here,
MN denotes the mass of the nucleon target. The agreem
between the left- and right-hand sides of this equation
better than 10%; for the larger values ofQ2, starting around
Q2'2 GeV2, the agreement is quite impressive: 2% or b
ter.

While it certainly would be desirable to calculate th
same finite energy sum rule in our model, there is a pract
problem and a philosophical problem. First, in our model,
deal with an infinitely heavy system, so that, in principle, t
invariant massW of the final state is always infinity. Even i
we could define a reasonable substitute for the invariant m
of the final state, picking an integration limit is a problem
principle: for our model, the scaling curve consists solely
resonance contributions, even though they cannot be
solved and form a smooth curve. So any distinction betw
‘‘resonance region’’ and ‘‘continuum’’ or ‘‘multiparticle final
states’’ is artificial. The conventional definition of ‘‘reso
nance region’’ as the region whereW,2 GeV means the
region where the resonances are prominent and domin
However, it does not mean that forW.2 GeV there are no
resonances present, and it also does not mean that foW
,2 GeV, i.e., in the resonance region, there are no nonre
nant contributions at all. Experimentally, there is backgrou
for W,2 GeV, and there are resonances forW.2 GeV,
e.g., severalN* andD resonances. Also, from a theoretic
point of view, it is obvious that resonances which decay
creation of a quark-antiquark pair in the final state must
accompanied by a corresponding nonresonant produc
mechanism, where pair creation takes place in the initial s
and the photon interacts with the preformed meson.

Since the distinction between a ‘‘resonance region’’ an
‘‘continuum region’’ has its problems, we utilize the mo
ments of the scaling functionScq , where the integration
range comprises the whole interval of the scaling variab
The physical information contained in the finite energy su
rule and the momentsMn is the same. The moments of
scaling functionS(Q2,x) with a scaling variablex are de-
fined as

Mn~Q2!5E
0

xmax
dx xn22S2~Q2,x!. ~57!

Here, in contrast to@24#, we do not include the unphysica
region ]xmax,1] in the integration interval. It is obvious tha
8-10
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QUARK-HADRON DUALITY IN A RELATIVISTIC , . . . PHYSICAL REVIEW D 65 094038
higher moments, i.e.,n54,6, . . . , tend to emphasize th
resonance region; as for fixedQ2, the resonances are foun
at largex. The values of the moments decrease with incre
ing n. In our case, we change tou-type scaling variables@see
Eq. ~54!# so that

Mn
u-based~Q2!5E

0

umax
du un22S2~Q2,u!, ~58!

whereumax corresponds to the maximum value ofu which is
kinematically accessible at a givenQ2. By changing fromx
to u scaling variables, we change the upper integration li
from a value equal to or lower than 1 to a value considera
larger than 1 forQ2.1 –2 GeV2. This means that ou
higher moments will emphasize the low-lying resonan
even more than the conventional,x-based moments. Also, th
higher moments will be larger than the moments with sm
n.

Evaluating the moments of the structure function~53! ex-
plicitly one has

Mn~Q2!5S r

2mD n21

(
N50

`

~AnN
2 1Q22nN!n21

3
E0

EN
uF0N~AnN

2 1Q2!u2

3FQ4

qN
4 ~E01EN!214Na

Q2

qN
4 G , ~59!

with r[11A114m2/Q2, and nN5EN2E0 and qN

5AQ21nN
2 .

The elastic contribution is given by

Mn
elastic~Q2!5S r

2mD n21

uQun21 expS 2
Q2

2b2D . ~60!

Note that for vanishing four-momentum transferQ2, all mo-
ments take the value 1, independent ofn.

In Fig. 4, we show the moments forn52,4,6,8, which

FIG. 4. The lowest momentsMn as a function ofQ2.
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were obtained by integrating over the positive energy sta
only. One can see clearly that all moments flatten out, e
though they did not quite reach their asymptotic value at
highestQ2 value shown. The lowest momentMn , is within
9% of its asymptotic value atQ255 GeV2 and within 2%
of its asymptotic value atQ2520 GeV2. As expected, the
higher moments, which by construction get more contrib
tions from the lower-lying resonances, need higherQ2 values
in order to reach their asymptotic values. ForM6, we find
that it has reached 64% of its asymptotic value atQ2

55 GeV2 and 88% of its asymptotic value atQ2

520 GeV2. From these numbers, we can see that e
though scaling does not set in forQ2,50 GeV2, the
asymptotic values at least of the lower moments are reac
much earlier. This reflects the fact thatScq(u,Q2) ap-
proaches the scaling curve by shifting towards higheru, not
by approaching it from below or above.

Since the continuum approximation provides a relativ
simple analytic expression for the structure functions, it
possible to use this to study certain properties of the m
ments. First, however, it is necessary to determine the va
ity of this approximation for the calculation of moment
Figure 5 shows calculations of the first three mome
M0 , M1, andM2. In each panel the solid line represents t
exact calculation according to Eq.~59!. The dash-dotted
curve is a calculation of the continuum approximation w
both longitudinal and transverse contributions, while t
dashed curve includes only the longitudinal contributio
Note that the continuum approximation works very w
down to a couple of GeV2. Note also that while the inclusion
of the transverse contribution slows convergence to
asymptotic value forM0 it improves convergence for th
higher moments.

The continuum approximation can then be used to ob
an expansion of the moments in powers of 1/Q2 reminiscent
of the operator product expansion~OPE! series:

Mn
2k~Q2!5(

i 50

k cn
2i

Q2i
. ~61!

Note that we do not have any gluons in our model and, th
no radiative corrections. The expansion coefficientscn

2i cor-
respond to the nonperturbative matrix elements of high
twist operators in the OPE. Since this is an asymptotic ser
the expansion will fail at lowQ2 with the point at which the
series diverges being dependent upon the order of the se
The expansion coefficients for the five lowest moments
shown in Table I. Contributions to the coefficients fro
transverse and longitudinal responses are shown along
the total. The obvious feature of these coefficients is t
they are not in general small, nor do they show any obvio
convergence. The reason for this can be seen from Fig
Here the exact result is shown as a solid line and is compa
to the expansion with from one to four terms for bothM0
and M4. Since the moments all have a finite value atQ2

50, the function cannot be analytic in 1/Q2. Any expansion
in this variable to a finite number of terms will at some po
diverge, either above or below the correct result. Using
8-11
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SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW D65 094038
FIG. 5. The first three moments,M0 , M1, andM2. The solid
line shows the exact result calculated according to Eq.~59!. The
dash-dotted lines show the moment calculated in the continu
approximation; the dotted curves show the purely longitudinal c
tribution to the moment in the continuum approximation. Inclusi
of the transverse contributions improves convergence of the
ments to their asymptotic values.
09403
additional term to extend the approximation to lowerQ2

must require that the coefficient of this term be of oppos
sign to the preceding term, leading to an alternating ser
Higher moments have the curvature toward the finite re
occurring at increasing values ofQ2. This requires that the
size of the coefficients for the higher terms in the series m
also be increasing. This shows that the global duality
served in our model is the result of a delicate cancellat
between many ‘‘higher twist’’ terms. However, while it i
fascinating to speculate if duality in nature is realized
small higher-order expansion coefficients or by cance
tions, our model is too simple to allow us to draw any co
clusions about this. In fact, results presented in@25# indicate
that the expansion coefficients have the same sign. One
hope that the building of more realistic models will allow u
to gain a better insight into this question in the future.

The relation asymptotic behavior of the moments to s
rules can also be addressed in this model. Consider the
ments ofF2(u):

Mn[E
2`

`

du un22F2~u!, ~62!

m
-

o-

FIG. 6. Comparison of moments to the expansion of the c
tinuum approximation in 1/Q2.
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TABLE I. Leading coefficients of the expansion of the moments in 1/Q2.

cn
0 cn

2 cn
4 cn

6

M0 L 0.42859 0.20760 20.26022 0.13530
T 0.00000 0.13715 20.19201 0.19056

total 0.42859 0.34475 20.45223 0.32586
M1 L 1.00037 20.32052 0.95887 22.83879

T 0.00000 0.32012 20.95870 2.83881
total 1.00037 20.00039 0.00017 0.00002

M2 L 2.64117 22.37461 5.53199 214.8231
T 0.00000 0.84518 23.22720 10.6710

total 2.64117 21.52944 2.30479 24.1521
M3 L 7.6117 211.1960 26.8417 271.9074

T 0.0000 2.4357 211.2072 40.7982
total 7.6117 28.7603 15.6345 231.1092

M4 L 23.5214 247.6636 122.363 2336.920
T 0.0000 7.5268 240.233 159.245

total 23.5214 240.1368 82.130 2177.675
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where the integral starts at2` to include contributions from
negative energy states as in the Coulomb sum rule. Using
~37! this becomes

Mn5
m2

4p2E0
E

2`

`

du unE
uE02muu

`

dp p N~p!

5
m2

4p2E0
E

0

`

dp p N~p!E
(E02p)/m

(E01p)/m

du un

5
m2

4p2E0
E

0

`

dp p N~p!
1

n11

3F S E01p

m D n11

2S E02p

m D n11G . ~63!

The two lowest moments

M05
m

2p2E0
E

0

`

dp p2 N~p!5
m

E0
50.43002 ~64!

and

M15
1

2p2E0

`

dp p2 N~p!51 ~65!

are proportional to the normalization integral of the mome
tum distribution. Comparing these to the corresponding v
ues ofc0

0 andc1
0 in Table I shows that the contributions from

negative energy states are small. Note also that for a spin
constituent the expression corresponding to Eq.~37! has a
leading factor ofu rather thanu2 as in this case. So the sum
rules would be associated withM1 andM2 as expected.
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VIII. LOW- Q2 REGION

After studying the scaling behavior of our model at hig
Q2 and the moments over a range of four-momentum tra
fers, we now discuss the behavior at lowQ2. In this region,
resonances are dominant for a wide range in the scaling v
able.

Before discussing the numerical results, a remark on
kinematics is in order. For a fixed resonance in inclus
electron scattering from the nucleon, its position in terms
Bjorken’s scaling variable is given byxres5Q2/(Wres

2

2MN
2 1Q2). This means that for higherQ2, the resonance

position moves towards higher values ofxB j , and for very
large Q2, xB j→1. In our case, the maximal value of th
scaling variableu is larger than 1, and for very largeQ2, the
resonances move out to very large values ofu, where their
contribution is extremely small.

If local duality holds, we expect the resonance curve
oscillate around the scaling curve and to average to it, o
Q2 is large enough. In Bloom-Gilman duality, the finite e
ergy sum rule gets within 5% forQ2>1.75 GeV2. For lower
Q2, the resonances approach the scaling curve from be
In our case, we have the onset of scaling for larger value
Q2 than observed in nature. This is not unexpected, as
consider an infinitely heavy meson as target and assume
this meson is made up of scalar quarks. For this reason,
cross section for photon exchange for largeQ2 is dominated
by the longitudinal part, and the transverse part, compris
solely the convection current, is very small. In nature,
spin-1/2 quarks, we have the magnetization current, whic
the dominant component of the cross section and wh
therefore determines the scaling behavior. So we cannot
pect our model calculation to show the same behavior
experimental data for the same values of the four-momen
transfer.

In discussing local duality and resonances, the smooth
method used becomes important. The visual appearanc
‘‘resonances’’ depends on the chosen smoothing metho
8-13
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SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW D65 094038
bumpy structure is seen only when a Breit-Wigner shap
inserted for the energyd function. It also depends on th
width chosen in the Breit-Wigner smoothing method. Fo
smaller width, the resonances are visible for higherQ2. De-
pending on the width of the Breit-Wigner, e.g., forG
5100 MeV, we do not see any resonances forQ2

55 GeV2, even though this value ofQ2 is below the scaling
region. In this paper, the working definition of local duali
which we use is ‘‘resonance curves oscillating around
scaling curve.’’ At some point, when considering more re
istic models, it may be useful and necessary to introduc
sharper, more quantitative definition. However, at this sta
we are interested more in qualitative results and do not
tend to quantify how well exactly local duality works for ou
simple model.

In Fig. 7, we show our results for the scaling functio
S2cq(u,Q2) for various low values ofQ2. Thed function in
the energy has been smoothed out using the Breit-Wig
method, with a width ofG5100 MeV. For visual purposes
we have assigned a small width to the elastic peak, too.
can see clearly from the figure that the resonances move
towards higheru with increasingQ2, as dictated by kinemat
ics. While the elastic peak is rather prominent forQ2

50.5 GeV2 and Q251.0 GeV2, it becomes negligible for
Q2>2.0 GeV2. This is the phenomenon we have observ
already when studying the moments: the elastic contribu
there vanishes rapidly with increasingQ2.

As already observed while studying the moments in
previous section, the approach to scaling when using a
tual photon is slower than for the all-scalar case discusse
@4#. It is clear that one needs to reach fairly large values
Q2 before the ‘‘resonance curve’’ averages with good ac
racy to the scaling function. Indeed, with our choice of Bre
Wigner width, this happens only when the bumps have
ready disappeared, i.e., forQ2>5 GeV2.

In order to illustrate this point, we have included Fig.
where we used a value ofG550 MeV to smooth out the
energyd function. The curves are more jagged than for t
larger width, and theQ255 GeV2 curve still shows plenty
of resonance structure.

FIG. 7. The lowQ2 behavior ofS2cq(u,Q2) as a function ofu
for various values ofQ2. The solid curve showsQ250.5 GeV2,
the short-dashed curve showsQ251 GeV2, the long-dashed curve
showsQ252 GeV2, and the dotted curve showsQ2550 GeV2.
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Overall, we find that the onset of local duality is definite
slower than for the all-scalar case, which is what one expe
due to the additional structure in the more realistic case
cussed in this paper.

IX. SUMMARY AND OUTLOOK

We have presented a simple, quantum-mechanical m
which allows us to obtain the qualitative features of Bloo
Gilman duality. The model assumptions we made are v
basic: we assumed relativistic, confined valence sc
quarks, and treated the hadrons in the infinitely narrow re
nance approximation. To simplify the situation further, w
did not consider a three quark ‘‘nucleon’’ target, but a targ
composed of an infinitely heavy antiquark and a light qua
In contrast to @4# where all particles involved in the
reaction—electrons, photons, and quarks—were consid
to be scalar, we only use scalar quarks in this paper. T
makes the present model more realistic—in particular,
were able to use a conserved current here. However, the
still much work to be done in modeling. The goal of o
model calculations is to gain qualitative insight into duali
its applicability, and accuracy in various kinematic region
not to quantitatively describe any data. In the future, we p
to describe more realistic situations in our model. Note t
our assumptions are very basic and general, so that we
be able to extend our model in a straightforward manner

There are several conditions that must be satisfied in o
to see duality. In this paper, we put a special emphasis
three of these conditions: we demonstrated how the tra
tion from coherent scattering at lowQ2 to incoherent scat-
tering at highQ2 takes place, we highlighted the role o
relativity by considering the contributions to the Coulom
sum rule in a relativistic framework and a nonrelativis
framework, and we gave an analytic proof for the equality
the scaling curve in our model and the parton model res

Quark-hadron duality is not only very interesting in itse
it also opens the door to very useful applications: dua

FIG. 8. The lowQ2 behavior ofScq(u,Q2) as a function ofu for
various values ofQ2. The Breit-Wigner width chosen to smooth ou
the energyd functions isG550 MeV. The solid curve showsQ2

50.5 GeV2, the short-dashed curve showsQ251 GeV2, the long-
dashed curve showsQ252 GeV2, the dotted curve showsQ2

55 GeV2, and the dash-dotted curve showsQ2550 GeV2.
8-14
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QUARK-HADRON DUALITY IN A RELATIVISTIC , . . . PHYSICAL REVIEW D 65 094038
relates the resonance region data to data from the dee
elastic region. If duality is understood well enough and if t
correct procedures for the averaging of the resonance
and the attendant errors are established, we may exploit
ality to gather information in previously unreachable r
gimes. The investigation of polarized structure functions
the high-Bjorken-x region, xB j→1, is a major part of the
experimental program at Jefferson Lab@26,9#. Even without
knowing details about the correct averaging procedures,
clear from the experimental results and our investigation
duality that the conventional, sharp distinction between
‘‘resonance region,’’ corresponding to an invariant massW
,2 GeV, and the ‘‘deep inelastic region’’ whereW
.2 GeV, is entirely artificial.

While quark-hadron duality has been investigated
theorists before, modeling duality is an important new step
our way to a thorough understanding of this phenomenon
the literature, one often finds the phrase that duality has b
explained in terms of QCD by DeRujula, Georgi, a
Politzer @24#. What was stated in their paper is that at mo
erateQ2, the higher-twist corrections to the lower momen
of the structure function are small. The higher-twist corre
tions arise due to initial and final state interactions of
quarks and gluons. Hence, the average value of the struc
function at moderateQ2 is not very different from its value
in the scaling region. While all this is true, the statemen
merely a rephrasing of the experimentally observed fact
the resonance curve averages to the scaling curve in term
the language of the OPE. However, the operator product
pansion does not explain why a certain correction is sma
why there are cancellations—the expansion coefficie
which determine this behavior are not predicted in the O
The ultimate answer to this question might come from
numerical solution of QCD on the lattice, but an understa
ing of the physical mechanism that leads to the small val
of the expansion coefficient in the framework of a mode
highly desirable. Also, the OPE will break down for very lo
Q2. Duality was experimentally observed@2# to hold for Q2

as low as 0.5 GeV2—a region where the validity of the OP
is questionable. In our analysis of the moments and th
expansion coefficients, it became clear that a rigid appl
tion of the OPE at very lowQ2 will inevitably lead to large,
alternating expansion coefficients.

The constant resonance to background ratio aspect of
ality was addressed in several papers by Carlson and Mu
padhyay@23#. They used counting rules to find theQ2 de-
pendence of the form factors of the resonances in the B
frame and compared them to the behavior of the sca
curve for largexB j and to the behavior of the background
the same region. From these considerations, they could
plain the constant ratio, provided theQ2-independent coeffi-
cients of the helicity amplitudes were not anomalously sm
as in the case of theD resonance, for which the ratio van
ishes. Still, there is no explanation why the coefficient
small in one case and not in others, and there exist sev
models with contradictory predictions.

The preceding observations clearly show the need
modeling. Even though one may obtain expansion coe
cients from calculations on the lattice, an understanding
09403
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the underlying physical mechanisms will most likely b
gained only by considering models like ours. One great
vantage of a purely analytical model like the one presen
here is that explicit derivations of key quantities like th
scaling function are feasible. The proof that the scaling fu
tion obtained for the transition from a bound quark to
excited bound quark is the same as the scaling function
the transition from a bound quark to a free quark was giv
here for a linear potential, which is the relativistic analog
of a harmonic oscillator. It is desirable to extend the inves
gation to other types of potential and to find a proof th
applies to a general class of potentials. In a recent publ
tion @6#, numerical methods were applied to study the
sponses of a massless quark, and a disagreement bet
results with and without final state interactions was observ
This is in contrast to our findings, and it is important
understand the reasons for these differences.

The experimental data at very lowQ2 still average to one
single curve, independent of theirQ2 @2#. However, this is
not duality in the sense defined in this paper because
curve differs from the scaling curve. To investigate this
teresting observation, one must go beyond the model
sented here, which contains valence quarks only, and th
fore must produce a valencelike shape. However, introduc
sea quarks and modeling the decay of the excited resonan
along with the corresponding nonresonant product
mechanisms from sea quark pairs, might shed consider
light on this issue.

ACKNOWLEDGMENTS

The authors thank F. Close, R. Ent, R. J. Furnstahl,
Isgur, C. Keppel, S. Liuti, I. Niculescu, and W. Melnitchou
for stimulating discussions. We thank E. Braaten and R
Furnstahl for useful comments on the manuscript. The
thors would like to acknowledge the contribution of our la
colleague Nathan Isgur to this work by providing the initi
motivation. This work was in part supported by funds pr
vided by the U.S. Department of Energy~DOE! under coop-
erative research agreement No. DE-AC05-84ER40150.

APPENDIX A: DUALITY IN THE EXCITATION FORM
FACTORS

In this appendix, we proceed to study duality in the ex
tation form factorF0,N(qW 2). While this duality is not directly
related to an observable like the structure functions or
sponse functions, it exhibits duality very clearly. Duality
the form factors has recently received some attention in@5#.

The duality prediction is that it should not matter if w
describe the process in question in a perturbative QCD
ture, involving only a free quark, or in a hadronic pictu
with resonances. The form factor for a hypothetical fr
quark is just 1, as it does not have any structure. In
hadronic picture, we have inclusive electron scattering wh
we can excite all resonances—as the final hadronic sta
not observed, we have to sum over the resonances inco
ently. So we have to compare(NuF0,N(qW 2)u2 to 1. Figure 9
shows single form factors for the lowest resonances, the e
8-15
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SABINE JESCHONNEK AND J. W. VAN ORDEN PHYSICAL REVIEW D65 094038
tic peak and inelastic excitations up toN55. All form fac-
tors look qualitatively similar, except for theN50 elastic
form factor, which starts at 1 foruqW u50. In general, the form
factors increase in width and decrease in height with incre
ing N.

Using our previous expression for the form factor, E
~13!, we find, for the sum up to a certain valueNmax,

(
N50

Nmax

uF0N~qW !u25expS 2
qW 2

2b2D (
N50

Nmax 1

N! S qW 2

2b2D N

, ~A1!

and it is obvious that

(
N50

Nmax

uF0N~qW !u251 if Nmax→`, ~A2!

as mentioned when discussing the Coulomb sum rule. H
ever, we are limited in the maximal value ofNmax not by
technical problems, but by a physical constraint: we are c
sidering electron scattering, i.e., spacelike kinematics,
therefore we must satisfy the condition

Q2.0⇔uqW u.n5EN2E0 , ~A3!

FIG. 10. The sum over the excitation form factors squared,
b50.2 GeV ~solid line!, b50.4 GeV ~dashed line!, and b
50.6 GeV~dash-dotted line!.

FIG. 9. The excitation form factor squared,uF0N(qW )u2, for the
lowest excitations,N50 –5, andb50.4 GeV.
09403
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d

so that for fixed three-momentum transferuqW u, we find a limit
on the value ofN. The form factor sums are shown in Fig. 1
for various values of the oscillator parameterb. Larger val-
ues ofb indicate a stronger binding.

The spiky character of the curves stems from the fact t
the form factors for theNth state are only allowed to con
tribute to the sum ifuqW u.nN , wherenNªEN2E0. There-
fore, the sum jumps up whenever another threshold
crossed. This effect can be observed best for the stron
binding,b50.6 GeV, as the gaps between the energy lev
are largest in this case. With increasing value of the thr
momentum transfer, more and more resonance states ca
excited and contribute to the sum: the spikes subside and
average value of the sum gets fairly close to 1. The curve
the weakest binding,b50.2 GeV, becomes almost smoo
and takes on a value of 0.9994; i.e., duality is violated
less than 0.06%. Forb50.4 GeV, the sum reaches 0.995,
duality is violated only by 0.5%. Even for the strongest bin
ing, b50.6 GeV, the duality prediction is satisfied withi

r

FIG. 11. The sum over the excitation form factors squa

uF0,N(qW 2)u2 for b50.4 GeV. The solid line shows the sum over a
allowedN, the dash-dotted line shows the sum fromN510 to 40,
the dotted line shows the sum fromN510 to 30, and the dashe
line shows the sum fromN520 to 40.

FIG. 12. The sum over the excitation form factors squared
the nonrelativistic case, forb50.2 GeV ~solid line!, b
50.4 GeV ~dashed line!, and b50.6 GeV ~dash-dotted line!.
Note that the scale differs from the scale in Fig. 10.
8-16
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FIG. 13. The first eleven energy transfersn for the relativistic case withb50.4 GeV~left panel! and for the non-relativistic case with

b50.25 GeV~right panel!. The diagonal line in both panels indicates the photopoint, i.e.uqW u5n. All energy transfers below this line ar
allowed in the space-like region.
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1%. Here, we see a typical feature of duality: the need
many resonances to contribute in order to reproduce the
havior of a free quark. At lowuqW u, where only a few reso-
nances can contribute, the deviations from 1 are larger.
fact that duality is satisfied best for weak binding is what
expect: a quark that is bound very lightly and then receive
hard momentum transfer behaves essentially as if it w
free. If the binding gets stronger, the situation gets m
nonperturbative, and duality does not work as well.

The duality as seen in the form factors is reminiscent
duality in the decay rates of the semileptonic decay of he
quarks@11,27#. There, in the limit of infinite masses of theb
and c quarks, the loss of strength in the elastic channe
compensated for by the increase in the inelastic decay c
nels. Once one considers heavy, but not infinitely hea
quark masses, one obtains a jagged structure, with peaks
ting close to the free quark limit, quite similar to what w
observe when considering the Coulomb sum rule and
excitation form factors.

Let us consider the number of resonances needed in m
detail, so that we can draw further conclusions on the kind
duality we are observing here. In the calculations presen
in Fig. 10, we summed up to the highest allowedN,Nmax,
which is quite large in general. In Fig. 11, we present the
curve, and three curves where we summed over a lim
number of resonances only: namely, fromN510 to 40~dash-
dotted line!, N510 to 30 ~dotted line! and N520 to 40
~dashed line!. One can see that for a small interval in thre
momentum transfer ofqW 52.6–3.0 GeV, it is sufficient to
include only resonances fromN510 to 40 in order to repro-
duce the full, unrestricted curve. One also sees from the
ted line that for lower three-momentum transfer, the inc
sion of just the 20 resonances fromN510 to 30 suffices to
get close to the full curveqW 52.6 GeV, while the same num
ber of resonances does not suffice to approximate the
curve at a slightly higher value ofuqW u ~see the dashed line!.

So while it is clear that the ‘‘degrees of freedom dualit
holds very nicely over the whole kinematic range, we s
that duality—the truncated version—does not hold as w
we do need a certain number of resonances to obtain du
09403
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in a limited kinematic interval, and this number increas
when we increase the three-momentum transfer.

APPENDIX B: THE ROLE OF RELATIVITY

We have stressed the importance of relativity before, a
while it is quite obvious that one needs to include it for Ge
momentum transfers to light quarks, it is instructive to s
how relativity works for the form factors. In order to illus
trate this point, we show the sum of the excitation for
factors squared calculated for the nonrelativistic harmo
oscillator potential in Fig. 12. As mentioned in Sec. II, th
wave functions, and therefore the form factors, are the sa
The difference lies in the energy spectrum.

Obviously, duality in the nonrelativistic case does n
work at all: the curves start out at 1, as the elastic form fac
for uqW u50 is 1, but then fall off immediately. Whenever
new threshold opens, the additional contribution is not su
cient to compensate the falloff of the other form factors: th
do not contribute at their maximum value, but only with th
‘‘high- uqW u ’’ side of the peak, where the form factor drop
quickly; see Fig. 9. In the nonrelativistic case, the spac
between the energy levels is wider than in the relativis
case, where the levels shrink together. This means that
siderably fewer resonances are allowed to contribute at
same, fixeduqW u, and therefore the resulting sum is muc
smaller and duality is violated. To clarify this point, we sho
a comparison of energy levels in Fig. 13.

In the left panel, we show the energy transfersn for the
first 11 energy levels~elastic and the first ten resonances! of
a relativistic harmonic oscillator withb50.4 GeV. The di-
agonal line marks the photopointuqW u5n. This means that for
a givenuqW u, all the energy transfers below that line are in t
spacelike region and therefore allowed. E.g., in the relativ
tic case foruqW u51 GeV, nine resonances~counting the elas-
tic! can be excited. The right panel of Fig. 13 shows t
energy transfersn for the energy levels of a nonrelativisti
harmonic oscillator withb50.25 GeV. We chose theb for
the nonrelativistic oscillator in order to reproduce the ene
8-17
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splitting between the ground state and the first excited s
of the relativistic case. One clearly sees that fewer re
nances can contribute here, e.g., only six compared to nin
the relativistic case atuqW u51 GeV. The discrepancy grow
larger for higheruqW u, as the relativistic energy levels mov
closer together, while the nonrelativistic ones are equ
spaced.

In conclusion, we have seen that the relativistic desc
tion is necessary to ensure a correct treatment of the p
D

,

en

d-
n

l.

l.
-

rt

09403
te
o-
in

ly

-
se

space. Only with a proper relativistic phase space do we
duality in the excitation form factors. This was already cle
from our discussion of the Coulomb sum rule in the ma
body of the paper.

Mathematically, degrees of freedom duality in the exci
tion form factor means that one can expand a plane w
~free quark! in a set of Hermite polynomials~bound quark!,
provided one uses a sufficiently large number of basis sta
Any other set of orthonormal polynomials would also wor
h
n-
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