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We use the QCD sum rule approach to calculate the masses afdl@d>. 5 baryons toA gcp/mg order
within the framework of heavy quark effective theory. We compare the direct approach and the covariant
approach to this problem. Two forms of current have been adopted in our calculation and their effects on the
results are discussed. Numerical results obtained in both the direct and covariant approaches are presented. The
splitting between spin 1/2 and 3/2 doublets derived from our calculati(ﬁfé%—Ez:OBSi 0.03 GeV,
which is in good agreement with experiment.
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[. INTRODUCTION wheredy, is zero forAg and —3,1 for 35,2 q baryons,
respectively. The constadf, characterizes the spin-orbit in-
Important progress in the theoretical description of had+teraction of the heavy quark and the gluon field. Therefore,
rons containing a heavy quark has been achieved with ththe mass of heavy baryons up to ordemd/corrections can
development of the heavy quark effective thedHQET)  be written in a compact form:
[1-3]. Based on the spin-flavor symmetry of QCD, exactly
valid in the infinitemg limit, this framework provides a sys-
tematic expansion of heavy hadron spectra and both the
strong and weak transition amplitudes in terms of the leading
contribution, plus corrections decreasing as powersrfl/  where the parametek is the energy of the light degrees of

HQET has been applied successfully to learn about the progreedom in the infinite mass limit. Thus the splitting of the
erties of mesons and baryons made of both heavy and lighfpin 1/2 and 3/2 doublets is

— 1

quarks.
The effective Lagrangian of the HQET, up to ordemg/, 2 <2
can be written as 27275 e (4)
_ 1 1 . .
i, 2 The hadronic parameteps; and A, are nonperturbative
Ler=holv-Dhy+ 2 QIC+ ZmQS+ Oy, D ones that should be either determined phenomenologically

from experimental data or estimated in some nonperturbative
where h,(X) is the heavy quark field in effective theory. approach. A viable approach is the QCD sum riisfor-
Apart from the leading contribution, the Lagrangian densitymulated in the framework of HQE[I7]. This method allows
contains toO(1/mg) accuracy two additional operatotS  us to relate hadronic observables to QCD parameters via the
andS. K=h,(iD+)?h, is the nonrelativistic kinetic energy operator product expansidi©PE of the correlator. In the
operator anGB:%[as(mq)/as(/vt)]slﬁoﬁu%ygsG”th isthe ~ case of heavy mesons, these two matrix elements and thus
chromomagnetic interaction. Her®t)?=D ,D#—(v-D)2, ~ Masses were calculated completely first by Ball and Braun
with D,,=3,—igA, the covariant derivative, ano=11 [8] and later by Neubef©] taking a different approach. The
—2n, is the first coefficient of theg function. masses of excited meson states were calculated uprig 1/

The matrix elements of the operatdésandS in Eq. (1) order in[10]. For the case of heavy baryons, there are several

play a most significant role in many phenomenological ap2tempts to calculate the baryonic matrix element& aind
plications such as the spectroscopy of heavy hadihand - Using HQET sum rules, Colangeé al. have derived thg
the description of inclusive decay ratis. For the ground- Value of), for Aq baryons[11]. Furthermore, the baryonic
stateA and 3, baryons, one defines two hadronic param-Parameters., and, for the ground-state baryons were cal-

etersh, and\, as culated in[12] by evaluating the two-point correlation func-
tions. The mass parameters of the lowest lying excited heavy
(B(v)|K|B(v))=\1, baryons have also been determined recentlylil. In the
present work we shall calculate the baryonic paramexers
(B(v)|S|B(v))=dy\,, (2)  and\, for ground-state\ o and> g baryons using QCD sum
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rules in the HQET. Following Ball and Brau®] and Neu- (0]j°|A(v))=F,u,
bert's[9] work done for the meson, we adopt these two ap-
proaches, named the direct approach and covariant approach, (0j°|2(v)) =Fsu,

to evaluate the three-point correlators and obtain the values

of baryonic parameters. It is of interest to compare the two 1

methods in the anaIyS|s_,. _ _ (0j°|3* (v)) = —=FsU", (9)
The remainder of this paper is organized as follows. In \/§

Sec. Il A we introduce the interpolating currents for baryons

and briefly present the two-point sum rules. The directwhereu is the spinor andli, is the Rarita-Schwinger spinor

Laplace sum rules analysis for the matrix elements is prein the HQET, respectively. The coupling constafts and

sented in Sec. Il B. Another feasible approdcbvariant ap- F% are equivalent sinc& o and 26 belong to the doublet

proach with this aim can be found in Sec. Il C. Section Ill is with the same spin parity of the light degrees of freedom.

devoted to numerical results and our conclusions. Some The QCD sum rule determination of these coupling con-

comments are also available in Sec. Il stants can be done by analyzing the two-point function
) . ) — 1+4
Il. DERIVATION OF THE SUM RULES FOR X; AND A\, |f dxék'X<O|T{J”(x)1“(O)}|O>= TTr[ﬂ-*]H(w),
A. Heavy baryonic currents and two-point sum rules (10)

The basic points in the application of QCD sum rules to . ) .
problems involving heavy baryons are to choose a suitablé/heré k is the residual momentum an@=2v '_k- It is
interpolating current in terms of quark fields and to defineStraightforward to obtain the two-point sum rule:

the corresponding vacuum-to-baryon matrix element. As is

well known, the form of interpolating currents for baryons _, _,x ° 2 | ag
with given spin and parity is not uniqyd4—16; the choice A€ nlT= 554 d5(we/T)+ o7 2 <?Gz> 1(wc/T)
of which one is just a question of predisposition. The most
generally used form of the heavy baryon current can be writ- 11—,
ten as[15] +5{aa),
j'=€and A1 "CI ra)I'he, (5) ; ,
2 —onyr_ 9T 7 Jas ,

er 2= 5 455((()C/T)_ 7 o _G 51(wC/T)
in which C is the charge conjugation matrix,is the flavor 2> 20\ T
matrix, which is antisymmetric foA o baryons and symmet- 1 _
ric for 28) baryons,I' andI"" are some gamma matrices, + E(qq)? (11

anda,b,c denote the color indice$. andI'’ can be chosen

covariantly as . . .
y The functionsé,(w./T) arise from the continuum subtrac-

tion and are given by

I'=ys, I''=1 (6)
1 X ny—t —X g Xk
for the A4 baryon, and On(X)= mfo dtt"e"'=1-e 2 (12
T=y,, I'=(y,+v,)7s (7)  The second term of the last equation is assigned to the con-

tinuum mode, which can be much larger than the ground-
state contributions for the typical value of paramételue to
for the>q baryon, and the high dimensions of the spectral densities.

) 1 1 2 B. The direct approach
FZYV! r :_g/LV+§yﬂyV_§(7MUV_7VUM)+§UVUM .
In order to evaluate the matrix elements and \, we

(®) consider the three-point correlation functions withand S
inserted directly between two interpolating currents at zero
for £ baryon. Also the choice df is not unique. We can recoil as below:
insert a factowy beforel” defined by Eqs(6)—(8). The cur-

rent given by Eqs(6)—(8) is denoted agj and that withé iZI dxf dyék-xfik’-y<0|-|-{jv(x);g(o)j_v(y)}|o>
insertion ag 4, which are two independent current represen-
tations. J
The .baryomc coupling constants in HQET are defined as _ T Te(w,0'),
follows: 2
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ApDLL L

(a) (b) (c)

(a) (c) FIG. 2. Nonvanishing diagrams for the chromomagnetic inter-
action: (a) perturbative contribution,(b) gluon-condensate(c)

guark-condensate. The chromomagnetic interactimelocity-
changing currentoperator is denoted by a white square, the inter-
polating baryon currents by black circles.

one. It can be computed using Feynman parametrization and

the integral representation of the propagators, which is the
(@ () standard techniquEl8,19. The factorization approximation

FIG. 1. Nonvanishing diagrams for the kinetic energg): per- has been used to reduce the four-quark condensate}é

turbative contribution(b)—(e) gluon condensate. The kinetic energy in the calculation. . .

operator is denoted by a white square, the interpolating baryon cur- On the theoretical side the correlatofg(w, ") and

rents by black circles. Heavy-quark propagators are drawn ag_S(w ') can be cast into the form of integrals of double

double lines. Diagrams(b)—(e) are calculated in the Fock- SPectral densities as

Schwinger gauge. The lower right vertices of those diagrams are set

to the origin in coordinate space. , f f ds ds
w,w')= e

p(s:s'),

i2 f dx f dye K Y0 T{j*(x)S(0)]*(y)}|0)

ds ds
Ts((l),(l),):J' IES w,pS(S!S,)! (15)

!

(13
2 where the double spectral density functions are
where the coefficient$x(w,w') andTg(w,w’) are analytic
functions in the “off-shell energies’w=2v-k and o'
=2v-k’ with discontinuities for positive values of these
variables. Saturating the three-point functions with a com-
plete set of baryon states, one can isolate the part of interest, 7
the contribution of the lowest lying baryon states associated

3

Al " — 7 !
p(s,s") 247747!3 o(s—s")

< G2>s 5(s—s'),

6.2
with the heavy-light currents, as one having poles in both the 2 3!
variablesw andw’ at the valuew=w’'=2A: 5
3,1 AN 7 _ !
\JF? P88 == g s a(s=s)
Tk(w,0")=4— — +oe,
(2A—w)(2A—w") 11 [ as
6—2|<?GZ>S35(S—S'),
\, F2 2° 743!
T o 2h—w) 19 25
prAs,8")=— S 8(s—s)
where the ellipses denote the contribution of higher reso- 2%
nances. In the theoretical calculation of the correlator it is
convenient to choose the residual momengmdk’ parallel ;<a_6 >s35(s s'),
to v, such thak,=(w/2)v, andk,=(o'/2)v,, . 267231
The leading contribution to the matrix element of kinetic
energy is of order 1, whereas that to the chromomagnetic 2
interaction is of orderg. Confining ourselves to taking into p%’z(s,s’)= - s’8(s—s')
account these leading contributions of perturbation and the !
operators with dimensioD =<6 in the OPE, the relevant dia- 19
grams in our calculation are shown in Fig. 1 and Fig. 2. The _<_ > s38(s—s'),
calculation of the diagrana) in Fig. 2 is the most tedious 257231
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Sie ey 9s
pS(SIS )_ 23775

! — 12
O(s—s') | dx(s—x)(s' —x)x3 AN,F2e 25 T="2 2785 (¢ /T)
0 ot

+0(s'—9) fosdx(s—x)(s’ —x)x3

T4
- —<5GZ> 53w/ T)

8m?\ T
1 /as 32Ty —
- —G?)s%5(s—s’ *(qq)?
48772< T > ( ) T3 (qQ)“61(w/T). (17)
dag — - : :
n _S<qq>2[s5(sf)+3,5(s)]. (16) _ It is worth noting that the nex_t-to-leadlng ordeg correc-
3 tions have not been included in the sum rule calculations.

However, the baryonic parameter obtained from the QCD
The unitary normalization of the flavor matrix[Fr*]=1  sum rules actually is a ratio of the three-point correlator to
has been applied to get these densities. Here we use tlige two-point correlator results. While both of these correla-
numbers 1,2 to denote the results corresponding to the ditors are subject to large perturbative QCD corrections, it is
ferent choices of currents andj5. Those we do not dis- expected that their ratio is not much affected by these cor-
criminate with numeric superscripts indicate that with orrections because of cancellation. On the other hand, we have
without ¢ insertion the results are identical. Following Refs. only calculated the diagonal sum rules by using the same
[20-22, we then introduce new variables, =3(w+ ') type of interpolating current in the correlator. As to the non-
andw_=w— ', perform the integral oves_ , and employ  diagonal sum rules, the only nonvanishing contributions in
quark-hadron duality to equate the remaining integral ovethe OPE of the correlator are terms with odd numbers of
o up to a “continuum threshold@,, to the Borel transform  dimensions; thus the perturbative term gives no contribution.
of the double-pole contribution in Eq§14). Then following ~ The resulting sum rules are dominated by the quark-gluon
the standard procedure we resort to the Borel transformatiofondensates. It is expected that the nondiagonal sum rules

B“ B to suppress the contributions of the excited StatesWiII give no more information than di_agonal ones. This has
T bp been proved to be true in the analysis of Ré&f7].

Considering the symmetries of the correlation functions it is
natural to set the parameters 7' to be the same and equal _
to 2T, whereT is the Borel parameter of the two-point func- C. The covariant approach

tions. We end up with the set of sum rules In the previous subsection we have completed the task of
determining the matrix elements for both the operators of
kinetic energy and chromomagnetic interaction by direct cal-
2 07(wc/T) culation of three-point correlation functions. In fact, there
) exists a field-theory analog of the virial theorg¢@8,24] in

3T8

—A\MF2e 2A0 T
a

7T | a consideration of the restrictions the equation of motion and
+ 5 <—SGZ> S3(weIT), the heavy quark symmetry impose on baryons, which relates
22\ T the kinetic energy and chromointeraction to each other and
ensures the intrinsic smallness of the kinetic energy explic-
_ 32578 itly. In this subsection we shall follow Neubert's procedure
— AN} e M IT= S57(weIT) [9] and take those restrictions into account to deduce a new
1 4
(2m) result for the kinetic energfthe chromomagnetic interaction
T4 is identica).
— <i562> Sa(wcIT), The main idea of that procedure is that the coefficients of
2672 the covariant decomposition of the bilinear matrix elements,
the so-called invariant functions, can be related to the kinetic
_ 21178 energy and chromomagnetic interaction at zero recoil. Fol-
_4)\§l1|:29—2/\z Im— S57(wcIT) lowing the discussion ifi4,25] we have the general decom-
2m)* position (see the Appendix
11T | aq (AR, ,,igsG»h, |A") = ' N AP
_°n2 va-,u.vlgs U’| > ¢1(U 1v)(UMUV U,LLUV)UU u
+26772< wG >63(wc/T), (19)
- for the Ao baryon, in whichu is the spinor in HQET, and
— AN 2 T=—— 5w, /T) _ _
™ (2[h,0,,i9G*"h,|3") = ’;g(v’,v)\lf"o"”‘l”ﬁ
. (19
19T° | aq )
+ —G?) 85(w IT), N
2672\ for the X baryon, wherep,; bears the decomposition
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v ! i
M= 1090905~ 9up90a) ables w anfj o', then set _the ass_omated Borel parameters
equal: 7= 7'=2T. Just as in the direct approach, we intro-
+ h2(9upV 0 o~ 9up0 ¥ ot Gual gV, ~ Gual gv)) duce new variables, =i(w+w') andw_=w—o', per-
. . form the integral ovew_, and get the Laplace sum rules at
+¢3(gauvvvﬂ_gvavuvﬁ+gvﬁvavu_gﬂﬁvavy) zero recoil:

+¢)4(U;LUV_U,’,U#)ga’3+¢5(U;LUV_U;,U#)U;U'B, (20)

8s.F2 e 20T L Fsqas (0 Ty
in which we use the covariant representation of the doublets ¢ ! . ne

v,=u,+ (1/\/§)(vﬂ+ YU wifch rgstrictionswu= u, v,U,
=0, andy,u,=0. The normalization of these coefficients at 1 Jas_,
1 a2 —G°) 3(wc/T)

zero recoil is¢1(1)= — 3\, for the Ag baryon and T
FN2=2¢4(1),

A= do(1)=1(1) = 2[ ¢2(1) — h3(1)]—3¢4(1)
(21)

32w, —
+ 5 (A0 T 81w /T),

BscF 2102\ T=8F22( ¢y~ ha)e 22T,
for the X 5 baryon. The foregoing minus sign corresponds to
the 2o baryon and plus sign to thﬁ’é baryon. - a
X , , —2A5 IT_ s
Let us now derive the Laplace sum rules for the invariant 8scF2pae 2Mx/T= ; 71—857(%/-'—)1
functions¢;(w). The analysis proceeds in complete analogy
to that of the Isgur-Wise function. We shall only briefly
sketch the general procedure and refer for details to Refs. 830F2¢5e*2Xz‘ IT_ _ 1 %TS&((»C/T) (24)

[20,21]. We consider, in the HQET, the three-point correla- ;
tion function of the local operator appearing in Efj9) with
two interpolating currents for the ground-state heavy baryfor the X4 baryon, and
ons:
8F2p,e 20 /T= — 2 25185 (e T) (25)
in dxdyék-x—ik’-y 1 - 7 %e

. —. — for the A5 baryon. After some simple algebra we find
X (O] T{j*(x),h,igsl G#*h, (0),1*' (y)}0) Q DA bie &

y 140 1+47 _ 2 2hyT_ 2 Ys_g
=0l v K KT~ T =T, (22 MaFte T =g o Torlwd/T),
wherek andk’ are the residual momenta. The Dirac struc- — @
ture of the correlation function, as shown in the third line, is AN, F2e %Ay ’T=—4 ?Tsﬁy(wC/T)
a consequence of the Feynman rules of the HQ®&Ty m
obeys a decomposition analogous to E20), with coeffi- T |
cient functionsb;(w,w’,w) that are analytic in the “residual — —2<—SG2> S3(wc/T)
energy” w=2v-k andw’=2v"'-k’, with discontinuities for 8=\ T
positive values of these variables. These functions also de- 30720
pend on the velocity transfev=v-v’. +—3 *(q9)281(we/T) (26)
The lowest lying states are the ground-state bang(n9 7
andB’(v') associated with the heavy-light currents. They
= ) for the X baryon, and
lead to a double pole located @at=w’ =2A. The residue of Q bary
this double pole is proportional to the invariant functions _ 3T8 o
#i(w). We find —4NFPe P T= — — f S7(welT) (27)
a
4s.¢i(W)F? : :
q)ipole(w,wryw): S‘iﬁ'(w) —, (23 for the Aq baryon. The minus sign of th&, baryon result
(0=2M)(0'=2A) may seem bizarre; in Sec. Il we will return to dwell on this

oint.
wheres; is the structure constant, 1 forg,—(2+w)/9 for P

%, and 1 for3§ baryons. In the deep Euclidean region the
correlation function can be calculated perturbatively because
of asymptotic freedom. Following the standard procedure, In order to get the numerical results, we divide our three-
we write the theoretical expressions fbr as double disper- point sum rules by two-point functions to obtain andA\,
sion integrals and perform a Borel transformation in the vari-as functions of the continuum threshodgt and the Borel

IIl. NUMERICAL RESULTS AND CONCLUSIONS
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0_2".-..|...|...|...|...|... 0.2:...|...|...|...|...|...
0.7 08 0.9 1 1.1 1.2 13 0.6 0.7 0.8 0.9 1 11 1.2
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T(GeV)
1.6 |
08 | [
14 (b)
N/‘\
5
)
> <
& <
<<Iv—|
0.2 L I 1 1 I 1
0.6 0.7 0.8 0.9 1 11 1.2
T(GeV)
T(GeV) FIG. 4. Sum rules of the kinetic energy i, baryons:(a) for

FIG. 3. Sum rules for\o baryons:(a) for j4, (b) for j5. The i1, (b) for j5. The dash-dotted, dashed, and solid curves corre-
dash-dotted, dashed, and solid curves correspond to the threshoﬁgond to the threshold=2.9, 3.1, and 3.3 GeV, respectively. The

w.,=2.4, 2.6, and 2.8 GeV, respectively. The working regiofT is working region isT=0.7-1.1 GeV.

=0.8-1.2 GeV.
contributions for high dimension of spectral densities and

parameterT. This procedure can eliminate the systematicthus it is very difficult to ensure that the contribution of the
uncertainties and cancel the parameTerAs for the conden- continuum mode is small. The working region of the three-

sates, we adopt the standard values point functions should be determined by the stable region of
’ the two-point functions. So it does not necessarily coincide
(q9)=—(0.23 GeV?, with the stable windows of the three-point functioff.

Thus we find that our working region for three-point func-
as _, tions is T=0.8-1.2 GeV forAg baryons andT=0.7-
?G =0.012 GeV. (28) 1.1 GeV forXq baryons. The results fax, in the direct
approach with two different choices of currents are shown in
From two-point sum rules one knows that there exist stabléig. 3 for A baryons and Fig. 4 fok q baryons. Results for
windows in the ranges 08T<1.2 GeV andw.=2.2— the kinetic energy ofAo and X baryons obtained by the
2.7 GeV for Ag baryons, and 0ZT<1.1 GeV andw.  covariant approach are presented in Fig. 5. The forms of the
=2.6-3.3 GeV forzq baryons. The stability window for chromomagnetic interaction obtained by both approaches do
three-point functions starts almost from values of the Borehot differ from each other, so we plot that unique curve in
parameter at 0.7 GeV and stretches almosTtex. It is  one figure, Fig. 6. For thé  baryon we obtain the residual
known that stability at lager Borel parameters could not givemassA , =0.8+0.1 GeV and
any valuable information, since in this region the sum rule is
strongly affected by the continuum model. The usual crite-
rion that both the higher order power corrections and the —\1=0.4+0.1 GeV/,
continuum contribution should not be very large restricts the
working region considerably. In the case of the three-point )
functions, the results are severely smeared by the continuum —\1=05+0.1 GeV (29
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0.12 ¢ 03 |
0.11 ¢ 0275 |
0.1 0.25 |
o 009 ¢ :
: S 0225 |
5 0.08 | N% E
C 007 | g 02
< 006 | < oars |
0.05 | 0.15 |
0.04 :
» 0125 |
0.03 | :
E 0.1 L | 1 1 1 [l
0.02 06 07 08 09 1 11 12
T(GeV)

0.2 [ FIG. 6. Sum rules for the chromomagnetic interaction. The
0.18 E dash-dotted, dashed, and solid curves correspona.t02.9, 3.1,
0.16 ; and 3.3 GeV. The working region i5=0.7-1.1 GeV.

—~ 0.14 ¢ Then we get the splitting of the spin 1/2 and spin 3/2 dou-
%> 012 f blets as
G o1 f
< ] 3
< 008 ¢ 352-32=>1,=0.35:0.03 GeV. (34)
0.06 _-- 2
0.04 3 All errors quoted before are due to the variation of the Borel
0.02 parametefT and the continuum threshold,. When scaled
o' : : : ' : up to the bottom quark mass scale there will be a factfr8
0.6 0.7 0.8 0.9 1 1.1 1.2 ; i ati ; _
approximately due to the renormalization group improve
T(GeV) ment.

As for the effects on the correlation function of the dif-

baryons, (b) for 3 baryons. The dash-dotted, dashed, and soligferent choices of_ the interpolating currents we may assert

curves correspond ta,=2.4, 2.6, and 2.8 GeV foh baryons, some fz_ac?s and mference_s. From t_he preceding .numencal

andw=2.9, 3.1, and 3.3 GeV fa& o baryons. The working region results it is clear that the interpolating currents with the

is T=0.8-1.2 GeV forAq baryons andr =0.7-1.1 GeV fors, Insertion give a considerable larger result for the kinetic en-

baryons. ergy than those without the insertion. Nevertheless, the two-
point sum rules do not differ with the different currents

in the direct approach, where the superscripts denote the dif12,15. From our calculation it is explicit that the sum rules

FIG. 5. Covariant sum rules of the kinetic energsi for Aq

ferent choices of currents, and associated with chromointeraction insertion are identical. In
our covariant calculation we find that the invariant functions
—\;=—0.08-0.02 GeV (30) do differ from each other generally, but interestingly they

coincide at zero recoil; thus the chromointeraction and ki-
in the covariant approach. For th&, baryon the effective netic energy do not take different forms. Naively, we can tell
mass we obtained ids=1.0+0.1 GeV and thfat theT dlsparllty of the two'forms pf the kinetic energy ob-
tained in our direct calculation mainly comes from the Lo-
renz structural differences of the two interpolating currents.
It may be noted that the derivative operator acts differently
) on the currents with or without insertion; thus with the
—\{=1.0+0.2 GeV (3D insertion it is easier for the continuum contamination to go
into the correlation functions. Exclusion of the continuum
in the direct approach, where the superscripts also denoigontribution is urgently needed it heavily smeared the results

—\1=0.7£0.2 GeV,

different currents, and of both the direct and covariant approaches. It is this con-
tinuum contamination that makes the prediction of the ki-
—\1=0.11+0.03 GeV (32)  netic energy more intriguing. All previous theoretical calcu-

. _ o lations with the QCD sum rule approach or lattice calculation
in the covariant approach. For the chromomagnetic interacgive various results and can differ from each other by several

tion for X baryons the results read times [11,12,8,9,22,2p The current experimental data are
not enough to judge which one is right; what we can get is
A,=0.23+0.02 Ge\l. (33)  some restrictions on the kinetic enerd@r] or a rough esti-
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mate of the kinetic energy extracted from experimental data my =2.52+0.20 GeV,
with some assumption$28]. As demonstrated in Refs. ¢
[24,29 using the toy model of a harmonic oscillator, the

main origin of the discrepancy between the direct and cova-
riant approaches is the continuum smeared contribution. In

Myx~2.64+0.20 GeV,

the direct approach the first excited contribution plays an mgb:5.80t 0.13 GeV,

important role. If we want to suppress this contribution, we

go to such a large Borel parameter that the power corrections my+=5.83+0.13 GeV (39)
blow up. For acceptable Borel parameters, we get an overes- b

timated sum rule for the the kinetic energy. In the covariant ) ) )

approach(via the virial theoremthe situation is especially With interpolating currenf; . The spin average of the dou-
bad. The excited contribution consists of two components—Dblets is free of the chromointeraction contribution and thus
the diagonal transitions and off-diagonal ones—and each orféee of the uncertainties involved in the calculation of.

is large, but they have opposite relative signs. For highlyAveraging over the doublets we have the quantity

excited states the sign-alternating terms are smeared to zero
after summation. However, the first two terms do not cancel
with each other and screen the ground-state contribution.
Thus a lower estimated result will be obtained. The minus
sign before the kinetic energy of the, baryon in the cova-  which is more reliable. For the quark case, it is 2.55
riant approach may be seen as a manifestation of this asset-g 20 GeV with currenji and 2.60:0.20 GeV with cur-
tion. !Due_ to the unknown weight, we _cannot fanmhllate thosgent jﬁ. For theb quark case it is 5.8£0.13 GeV with
contributions by weighted averaging just as in quantum me- urrentjlf and 5.830.13 GeV with currentﬁ. Experimen-

chanics. But we may safely take the results of the direct an IV Ms = 245302 M - ; ;
) . = . eV[31]. There is experimental evi-
covariant approaches as the lower bound and the higher y Mx, [31] 'S expert Vi

bound of the kinetic energy parameter, respectively. Thendence forx¢ at My»=2519+2 MeV [32]. If we take this
following [30], taking the mean value of the direct and co-value forS* , we havei(Ms +2Msx)=2497+1.4 MeV,
c c

variant approaches results in a rough estimate. The resyffhich is in reasonable agreement with the theoretical predic-

1 — 1
§(M2Q+ 2M26)=mQ+A2+ m)\l,

thus obtained is tion. For lack of experimental data the corresponding quan-
— tity for the bottom quark will be checked in the future. If we
—\;=0.18+0.06 GeV, take the preceding masses of the charmedbaryons the
— splitting thus reduced is 0.33 Gé&¥nd our theoretical split-
—\1=0.24+0.06 GeV (35  ting is in good agreement with the experimental data.
As the kinetic energy of thé 5 baryon can be related to
for Aq baryons and the spectrum via the kinetic energy of the me'sas[33]

-
—A1=0.39+0.12 GeV, — =
! € (my,—my ) —(mg—mp)

—\2=0.54+0.12 Ge\ (36)

=DaAn) M) 5 5

+0(1mg), (39)
for 2 baryons. Taking all results obtained the mass of the

round state baryon is on hand. Fr andm, [31], we — —
J Y oM, Ao where mg=3(mg+3mj) and mp=3(mp+3my) denote

i = —+
determine the heavy quark masseg=1.41*0.16 Gev the spin-averaged meson masses, the difference between the

and my=4.77-0.12 GeV. In the determination we have kinetic enerav of the meson and that of tha. barvon can
taken the average of the results obtained from two interpo-e extractegyas b bary

lating currents to be the physical pole masses of the hea
quarks because the difference of the corresponding mass

does not exceed the error bar. These values give the follow- N1(Ap) ~\y(B)=0.01+0.02 GeV, (40
ing results: o ) ) ) ,
which is consistent with the value obtained in RE33].
ms =2.47+0.20 GeV, Resorting to the recent experimental data for the mesonic
¢ kinetic energy parameter obtained in the inclusive semilep-
Mex=259+0.20 GeV tonic B decays34], —\;=0.24+0.11 Ge\#, one can thus
R ' get the value of baryonic kinetic energy as
My, =579£0.13 GeV, ~M\1(Ap)=0.23£0.13 GeV, (41)
m2325.821 0.13 GeV, (37
The relation betweemf, in Ref. [33] and \; in this paper is
with interpolating currenti and wi==\y.
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which is in reasonable agreement with our theoretical predicThe HQET equation of motion implies thaf,,,=0 from

tion given in Eq.(35). which we can obtain the relations between those coefficients:
In conclusion, we have calculated theng/ corrections to
the heavy baryon masses from the QCD sum rules within the war (1+y)¢§+ (1-vy) 1p§+ y<//f= 0,
framework of the HQET. Two approaches have been adopted
in the evaluation of the three-point correlators. Our final re- (1+y) 5+ (y—1) 53— 4 =0, (A3)
sults read
with

— 1
Myg=Mo+ Ast 5 -(0.1650.12 GeVh), hiD,,'h’+hiD ,Th'=ia,(ATh"). (A4)
_ 1 Bear in mind that we can get
MEB:mQJr AE+W(O.5E 0.12 GeV) (42 B
Q (AIh,T#"ID ,iD h,/|A")

for interpolating current without insertion and :wlw(v’,v)al“””u’+K(v’—v)M§VUF“”u’, (A5)

MEQ:mQ"_XE"_ %(0.314:0.12 Ge\d), using_thex dependence of the state in HQEB(xX))
Mo =e '\v"X|B(0)). The ¢, are defined as

- 1 T TV ’ Ty,
Ms*=mg+As +=—(0.66-0.12 Ge\?) (43) (A[h,T7iD h, [A")=¢ul"u’. (AB)
o QTR omg

Similarly, we can define the matrix elements for the opera-

for interpolating current with insertion. The Ih, correc- o5 of kinetic energy and chromointeraction over baryon
tions are small. We have taken the mean value of the direciates with different velocities:

and covariant approaches as the rough estimate of the kinetic
energy parametei;. Our theoretical predictions are in (A|F(r iGAh, |A"Y=dy(v'v,—v v Uty

agreement with the recent experimental data. For a more voRY Y por TR '(A7)
precise treatment of the kinetic energy, a more sophisticated
technique to distinguish the smearing continuum contribu-

T o(inLl)2 IN— 4 T
tion is in urgent need of development. (Alh,(iDH)T'h, [A") = poul'u’. (A8)

Once defined, th@; can be expressed via twp, :
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APPENDIX: THE DECOMPOSITION OF THE BILINEAR S— hn+ +A2 _ ,
MATRIX ELEMENT iz dotyds §y+ 1
In this appendix, we present the decomposition of the (1+2y) by + o y
bilinear matrix element. There exists a decomposition of the 3= 2y—1) - 2y + 1)A2§,
Aq baryon; we present it here merely for completeness and y y
convention. A 1)us
First, let us consider the bilinear matrix element over the s_ yi-(y-1Dys (A9)
A baryons 2 1+y ’
(Alﬁv(—iﬁﬂ)F“”iDyhvrlA’)=z//w(v’,v)il““”u’. the normalizations of ¢g,¢1 are ¢o(1)=N1,¢1(1)

(A1) =—12¢o(1), andthus we get the desired result.
Generalization can be made to higher spin states such as
The coefficients obey the symmetric relatiah,,(v',v) 2 baryons. The procedure is almost the same. The only
=¢,,(v,v"). Itis convenient to write the coefficient in a  difference lies in the decomposition of the matrix element.
sum of symmetric and antisymmetric parﬁu:%[lﬂﬁv Hence we will give the forms of decomposition and the final

+ d;ﬁy] which can be presented covariantly as desired relation; we will not dwell on the details. The cova-
riant representation of the doublet ‘iE#:uM+(1/\/§) (v,
W=, —v,0)), +,)u. The matrix element is
e, = 050, U3+ (v +o), (2[h,(=iD,)T**D h,[3")
+Hh3v—v")u(v—0v"),. (A2) = yB(v’ o)W T, (A10)
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in which the coefficients obey the symmetric relation (1+W) €3+ (L—W) &4+ E=0. (A15)
(v v')=yP .(v',v). Adopting the same symmetric and
anusymmetnc decomposmon of the coefficients as that inTaking the difference of the two terms in Eq#12) and

the A baryon case, we have using Eq.(A4) we can reach
¢aBA wl(g,uagvﬁ g,uﬁgva)_’_lpZ(gp,ﬁv U gvﬁv,uvéy § :W_l &K
w1l 2
+gvavﬁvlu_g,uavﬁvv)+w?’(gaﬂvvvﬂ_gvavuvﬁ
o o ’ ’ w—1 Co—
+gvﬁvav,u,_g,uﬁvavv)+ ﬁ(vﬂvv_vvvﬂ)gaﬁ 53:W+1 E _56!
+1//é(v;Lv,,—v,',vM)U;vB,
Ci1—
@B,S_ Ea=5A,
¢ ¢1gaﬂguv+ lpZ(g;wngﬁ_’_ gﬂﬁgva) + ¢3(g;¢ﬁv U
+gvﬁv,uva_l_gvavﬁvﬂ—i_guavﬁvv)_*—¢4(gauvvvﬂ _2_
54_ 2A1
+gvav,u,vﬁ+gV,Bv(;U,:L_Fg;L,BU;U:/)_l—¢§(v,
5= e, (A16)

—0) (v =0),0 L0+ YRV~ V) (V' V), Gap
i z//§(v’+v)ﬂ(v’+v),,v;vﬁ+ zﬂg(v’-i-v)#(v’ wherec,,c, parametrize the matrix element
+0),Gapt Y50 50 49,00 (A11) (Sh,Thy |37 =(C19.5+ Cov u o) TV F. (A7)

The matrix elements for the kinetic energy and chromomag-
netic interaction are defined similarly to those for the
baryon:

Introducing other universal parameters in the leading order
([, LMD 0y |2y =3P (w0 )W I # W
(2[h,(iDY)’Thy/[2") = (doGap dovgo L) VT V"7,

(2[h,L"(=iD )h, |2y = (0" 0) W T H" P (A18)
(A12)
as usual,é*?(v,v') can be decomposed into the general <2|H,a iG**h,/|3")= ¢“B\If ot g, (A19)
form
Where¢>f§f bear the same decomposition @ﬁf. They have
§§B(v,v’)=§1(v+v’)vgaﬁ+ E(v'—v),ap simple relations between each other:
+5(0+07) 000 a0 —0) g0 h=yh.
+ §5U (,:kg,BV+ gﬁvﬁgav . (A13) _
bo=17— é6l\,
The equation of motion implies thav'*¢*#=0 and
v'"ysR=0 from which we can derive the relations b3=h— EGA,
Wis— o+ Y5+ =0, b= i —261A,
WY~ Yi = YA+ s+ Wyt yg=0, $s= s~ 2&3A,
Wi+ g5+ (1= w) g+ (1+w) gg=0, b= 205+ Y5+ (1- W) g+ (1+w) 3
Yo+ WE+ S+ (L—W) e+ (L+W) g5+ 3=0, +2(1-W) A,
(1+w)gg— ¢4 — (1—w)yg=0, Bo=205+ (1-W) Y3+ (L+W)y5+2(1-W) &A,

(A20)

The normalization condition is thap(1)=AN,, ¢o(1)
=B\, where A is —1/2,1/2 andB is 1,-1 for 3,3,
and respectively. At zero recoil; can be expressed Vviay:

(1+w)é;+(1-w)£=0, $o(1)=1(1) = 2[ (1) — h3(1)]=3¢b4(1). (A21)

Pat(W=1)gs—ya— s+ (1+W)Y3=0,  (A14)
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