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Improved analysis for the baryon masses to orderLQCD ÕmQ from QCD sum rules
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We use the QCD sum rule approach to calculate the masses of theLQ andSQ baryons toLQCD/mQ order
within the framework of heavy quark effective theory. We compare the direct approach and the covariant
approach to this problem. Two forms of current have been adopted in our calculation and their effects on the
results are discussed. Numerical results obtained in both the direct and covariant approaches are presented. The
splitting between spin 1/2 and 3/2 doublets derived from our calculation isSQ*

22SQ
2 .0.3560.03 GeV2,

which is in good agreement with experiment.
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I. INTRODUCTION

Important progress in the theoretical description of h
rons containing a heavy quark has been achieved with
development of the heavy quark effective theory~HQET!
@1–3#. Based on the spin-flavor symmetry of QCD, exac
valid in the infinitemQ limit, this framework provides a sys
tematic expansion of heavy hadron spectra and both
strong and weak transition amplitudes in terms of the lead
contribution, plus corrections decreasing as powers of 1/mQ .
HQET has been applied successfully to learn about the p
erties of mesons and baryons made of both heavy and
quarks.

The effective Lagrangian of the HQET, up to order 1/mQ ,
can be written as

Leff5h̄viv•Dhv1
1

2mQ
K1

1

2mQ
S1O~1/mQ

2 !, ~1!

where hv(x) is the heavy quark field in effective theor
Apart from the leading contribution, the Lagrangian dens
contains toO(1/mQ) accuracy two additional operatorsK
andS. K5h̄v( iD')2hv is the nonrelativistic kinetic energ
operator andS5 1

2 @as(mQ)/as(m)#3/b0h̄vsmngsG
mnhv is the

chromomagnetic interaction. Here (D')25DmDm2(v•D)2,
with Dm5]m2 igAm the covariant derivative, andb0511
2 2

3 nf is the first coefficient of theb function.
The matrix elements of the operatorsK andS in Eq. ~1!

play a most significant role in many phenomenological
plications such as the spectroscopy of heavy hadrons@4# and
the description of inclusive decay rates@5#. For the ground-
stateLQ andSQ baryons, one defines two hadronic para
etersl1 andl2 as

^B~v !uKuB~v !&5l1 ,

^B~v !uSuB~v !&5dMl2 , ~2!
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where dM is zero for LQ and 2 1
2 ,1 for SQ* ,SQ baryons,

respectively. The constantdM characterizes the spin-orbit in
teraction of the heavy quark and the gluon field. Therefo
the mass of heavy baryons up to order 1/mQ corrections can
be written in a compact form:

M5mQ1L̄2
1

2mQ
~l11dMl2!, ~3!

where the parameterL̄ is the energy of the light degrees o
freedom in the infinite mass limit. Thus the splitting of th
spin 1/2 and 3/2 doublets is

SQ*
22SQ

2 5
3

2
l2 . ~4!

The hadronic parametersl1 and l2 are nonperturbative
ones that should be either determined phenomenologic
from experimental data or estimated in some nonperturba
approach. A viable approach is the QCD sum rules@6# for-
mulated in the framework of HQET@7#. This method allows
us to relate hadronic observables to QCD parameters via
operator product expansion~OPE! of the correlator. In the
case of heavy mesons, these two matrix elements and
masses were calculated completely first by Ball and Bra
@8# and later by Neubert@9# taking a different approach. Th
masses of excited meson states were calculated up to 1mQ
order in@10#. For the case of heavy baryons, there are sev
attempts to calculate the baryonic matrix elements ofK and
S. Using HQET sum rules, Colangeloet al. have derived the
value ofl1 for LQ baryons@11#. Furthermore, the baryonic
parametersl1 andl2 for the ground-state baryons were ca
culated in@12# by evaluating the two-point correlation func
tions. The mass parameters of the lowest lying excited he
baryons have also been determined recently in@13#. In the
present work we shall calculate the baryonic parametersl1
andl2 for ground-stateLQ andSQ baryons using QCD sum
©2002 The American Physical Society36-1



p
a

lu
w

I
n

ec
re

is
m

to
b
ne

s

os
ri

-
s,

n

a

r

.
n-

-

con-
nd-

ero

DAO-WEI WANG, MING-QIU HUANG, AND CHENG-ZU LI PHYSICAL REVIEW D 65 094036
rules in the HQET. Following Ball and Braun@8# and Neu-
bert’s @9# work done for the meson, we adopt these two a
proaches, named the direct approach and covariant appro
to evaluate the three-point correlators and obtain the va
of baryonic parameters. It is of interest to compare the t
methods in the analysis.

The remainder of this paper is organized as follows.
Sec. II A we introduce the interpolating currents for baryo
and briefly present the two-point sum rules. The dir
Laplace sum rules analysis for the matrix elements is p
sented in Sec. II B. Another feasible approach~covariant ap-
proach! with this aim can be found in Sec. II C. Section III
devoted to numerical results and our conclusions. So
comments are also available in Sec. III.

II. DERIVATION OF THE SUM RULES FOR l1 AND l2

A. Heavy baryonic currents and two-point sum rules

The basic points in the application of QCD sum rules
problems involving heavy baryons are to choose a suita
interpolating current in terms of quark fields and to defi
the corresponding vacuum-to-baryon matrix element. As
well known, the form of interpolating currents for baryon
with given spin and parity is not unique@14–16#; the choice
of which one is just a question of predisposition. The m
generally used form of the heavy baryon current can be w
ten as@15#

j v5eabc~q1
TaCGtq2

b!G8hv
c , ~5!

in which C is the charge conjugation matrix,t is the flavor
matrix, which is antisymmetric forLQ baryons and symmet
ric for SQ

(* ) baryons,G and G8 are some gamma matrice
anda,b,c denote the color indices.G andG8 can be chosen
covariantly as

G5g5 , G851 ~6!

for the LQ baryon, and

G5gm , G85~gm1vm!g5 ~7!

for the SQ baryon, and

G5gn , G852gmn1
1

3
gmgn2

1

3
~gmvn2gnvm!1

2

3
vnvm

~8!

for SQ* baryon. Also the choice ofG is not unique. We can
insert a factorv” beforeG defined by Eqs.~6!–~8!. The cur-
rent given by Eqs.~6!–~8! is denoted asj 1

v and that withv”
insertion asj 2

v , which are two independent current represe
tations.

The baryonic coupling constants in HQET are defined
follows:
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^0u j vuL~v !&5FLu,

^0u j vuS~v !&5FSu,

^0u j vuS* ~v !&5
1

A3
FS* ua, ~9!

whereu is the spinor andua is the Rarita-Schwinger spino
in the HQET, respectively. The coupling constantsFS and
FS* are equivalent sinceSQ and SQ* belong to the doublet
with the same spin parity of the light degrees of freedom

The QCD sum rule determination of these coupling co
stants can be done by analyzing the two-point function

i E dxeik•x^0uT$ j v~x! j̄ v~0!%u0&5
11v”

2
Tr@tt1#P~v!,

~10!

where k is the residual momentum andv52v•k. It is
straightforward to obtain the two-point sum rule:

FL
2 e22L̄L /T5

3T6

25p4
d5~vc /T!1

T2

27p2 K as

p
G2L d1~vc /T!

1
1

6
^q̄q&2,

FS
2 e22L̄S /T5

9T6

25p4
d5~vc /T!2

T2

27p2 K as

p
G2L d1~vc /T!

1
1

2
^q̄q&2. ~11!

The functionsdn(vc /T) arise from the continuum subtrac
tion and are given by

dn~x!5
1

n! E0

x

dttne2t512e2x(
k50

n
xk

k!
. ~12!

The second term of the last equation is assigned to the
tinuum mode, which can be much larger than the grou
state contributions for the typical value of parameterT due to
the high dimensions of the spectral densities.

B. The direct approach

In order to evaluate the matrix elementsl1 and l2 we
consider the three-point correlation functions withK andS
inserted directly between two interpolating currents at z
recoil as below:

i 2E dxE dyeik•x2 ik8•y^0uT$ j v~x!K~0! j̄ v~y!%u0&

5
11v”

2
Tr@tt1#TK~v,v8!,
6-2
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i 2E dxE dyeik•x2 ik8•y^0uT$ j v~x!S~0! j̄ v~y!%u0&

5dM

11v”
2

Tr@tt1#TS~v,v8!, ~13!

where the coefficientsTK(v,v8) andTS(v,v8) are analytic
functions in the ‘‘off-shell energies’’v52v•k and v8
52v•k8 with discontinuities for positive values of thes
variables. Saturating the three-point functions with a co
plete set of baryon states, one can isolate the part of inte
the contribution of the lowest lying baryon states associa
with the heavy-light currents, as one having poles in both
variablesv andv8 at the valuev5v852L̄:

TK~v,v8!54
l1F2

~2L̄2v!~2L̄2v8!
1•••,

TS~v,v8!54
l2F2

~2L̄2v!~2L̄2v8!
1•••, ~14!

where the ellipses denote the contribution of higher re
nances. In the theoretical calculation of the correlator i
convenient to choose the residual momentak andk8 parallel
to v, such thatkm5(v/2)vm andkm8 5(v8/2)vm .

The leading contribution to the matrix element of kine
energy is of order 1, whereas that to the chromomagn
interaction is of orderas . Confining ourselves to taking into
account these leading contributions of perturbation and
operators with dimensionD<6 in the OPE, the relevant dia
grams in our calculation are shown in Fig. 1 and Fig. 2. T
calculation of the diagram~a! in Fig. 2 is the most tedious

FIG. 1. Nonvanishing diagrams for the kinetic energy:~a! per-
turbative contribution,~b!–~e! gluon condensate. The kinetic energ
operator is denoted by a white square, the interpolating baryon
rents by black circles. Heavy-quark propagators are drawn
double lines. Diagrams~b!–~e! are calculated in the Fock
Schwinger gauge. The lower right vertices of those diagrams ar
to the origin in coordinate space.
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one. It can be computed using Feynman parametrization
the integral representation of the propagators, which is
standard technique@18,19#. The factorization approximation
has been used to reduce the four-quark condensates to^q̄q&2

in the calculation.
On the theoretical side the correlatorsTK(v,v8) and

TS(v,v8) can be cast into the form of integrals of doub
spectral densities as

TK~v,v8!5E E ds

s2v

ds8

s82v8
rK~s,s8!,

TS~v,v8!5E E ds

s2v

ds8

s82v8
rS~s,s8!, ~15!

where the double spectral density functions are

rK
L,1~s,s8!52

33

24p47!
s7d~s2s8!

2
7

26p23!
K as

p
G2L s3d~s2s8!,

rK
S,1~s,s8!52

3211

24p47!
s7d~s2s8!

2
11

26p23!
K as

p
G2L s3d~s2s8!,

rK
L,2~s,s8!52

325

24p47!
s7d~s2s8!

1
1

26p23!
K as

p
G2L s3d~s2s8!,

rK
S,2~s,s8!52

32

p47!
s7d~s2s8!

2
19

26p23!
K as

p
G2L s3d~s2s8!,

r-
s

et

FIG. 2. Nonvanishing diagrams for the chromomagnetic int
action: ~a! perturbative contribution,~b! gluon-condensate,~c!
quark-condensate. The chromomagnetic interaction~velocity-
changing current! operator is denoted by a white square, the int
polating baryon currents by black circles.
6-3
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rS
S~s,s8!5

as

23p5 FQ~s2s8!E
0

s8
dx~s2x!~s82x!x3

1Q~s82s!E
0

s

dx~s2x!~s82x!x3G
2

1

48p2 K as

p
G2L s3d~s2s8!

1
4as

3p
^q̄q&2@sd~s8!1s8d~s!#. ~16!

The unitary normalization of the flavor matrix Tr@tt1#51
has been applied to get these densities. Here we use
numbers 1,2 to denote the results corresponding to the
ferent choices of currentsj 1

v and j 2
v . Those we do not dis-

criminate with numeric superscripts indicate that with
without v” insertion the results are identical. Following Re
@20–22#, we then introduce new variablesv15 1

2 (v1v8)
andv25v2v8, perform the integral overv2 , and employ
quark-hadron duality to equate the remaining integral o
v1 up to a ‘‘continuum threshold’’vc to the Borel transform
of the double-pole contribution in Eq.~14!. Then following
the standard procedure we resort to the Borel transforma

Bt
v ,Bt8

v8 to suppress the contributions of the excited sta
Considering the symmetries of the correlation functions i
natural to set the parameterst, t8 to be the same and equ
to 2T, whereT is the Borel parameter of the two-point fun
tions. We end up with the set of sum rules

24l1
L,1F2e22L̄L /T5

33T8

~2p!4
d7~vc /T!

1
7T4

26p2 K as

p
G2L d3~vc /T!,

24l1
L,2F2e22L̄L /T5

325T8

~2p!4
d7~vc /T!

2
T4

26p2 K as

p
G2L d3~vc /T!,

24l1
S,1F2e22L̄S /T5

3211T8

~2p!4
d7~vc /T!

1
11T4

26p2 K as

p
G2L d3~vc /T!,

24l1
S,2F2e22L̄S /T5

32T8

p4
d7~vc /T!

1
19T4

26p2 K as

p
G2L d3~vc /T!,
09403
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4l2F2e22L̄S /T5
12

p4

as

p
T8d7~vc /T!

2
T4

8p2 K as

p
G2L d3~vc /T!

1
32T2as

3p
^q̄q&2d1~vc /T!. ~17!

It is worth noting that the next-to-leading orderas correc-
tions have not been included in the sum rule calculatio
However, the baryonic parameter obtained from the Q
sum rules actually is a ratio of the three-point correlator
the two-point correlator results. While both of these corre
tors are subject to large perturbative QCD corrections, i
expected that their ratio is not much affected by these c
rections because of cancellation. On the other hand, we h
only calculated the diagonal sum rules by using the sa
type of interpolating current in the correlator. As to the no
diagonal sum rules, the only nonvanishing contributions
the OPE of the correlator are terms with odd numbers
dimensions; thus the perturbative term gives no contributi
The resulting sum rules are dominated by the quark-glu
condensates. It is expected that the nondiagonal sum r
will give no more information than diagonal ones. This h
been proved to be true in the analysis of Ref.@17#.

C. The covariant approach

In the previous subsection we have completed the tas
determining the matrix elements for both the operators
kinetic energy and chromomagnetic interaction by direct c
culation of three-point correlation functions. In fact, the
exists a field-theory analog of the virial theorem@23,24# in
consideration of the restrictions the equation of motion a
the heavy quark symmetry impose on baryons, which rela
the kinetic energy and chromointeraction to each other
ensures the intrinsic smallness of the kinetic energy exp
itly. In this subsection we shall follow Neubert’s procedu
@9# and take those restrictions into account to deduce a
result for the kinetic energy~the chromomagnetic interactio
is identical!.

The main idea of that procedure is that the coefficients
the covariant decomposition of the bilinear matrix elemen
the so-called invariant functions, can be related to the kin
energy and chromomagnetic interaction at zero recoil. F
lowing the discussion in@4,25# we have the general decom
position ~see the Appendix!

^Luh̄vsmnigsG
mnhv8uL8&5f1~v8,v !~vm8 vn2vmvn8!ūsmnu8

~18!

for the LQ baryon, in whichu is the spinor in HQET, and

^Suh̄vsmnigsG
mnhv8uS8&5fab

mn~v8,v !C̄asmnC8b

~19!

for the SQ baryon, wherefab
mn bears the decomposition
6-4
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fab
mn5f1~gmagnb2gmbgna!

1f2~gmbvnva82gnbvmva81gnavbvm8 2gmavbvn8!

1f3~gamvnvb2gnavmvb1gnbva8vm8 2gmbva8vn8!

1f4~vm8 vn2vn8vm!gab1f5~vm8 vn2vn8vm!va8vb , ~20!

in which we use the covariant representation of the doub
Cm5um1(1/A3)(vm1gm)u with restrictionsv”u5u, vmum
50, andgmum50. The normalization of these coefficients
zero recoil isf1(1)52 1

3 l1 for the LQ baryon and

6l252f1~1!,

6l15f0~1!5f1~1!22@f2~1!2f3~1!#23f4~1!
~21!

for theSQ baryon. The foregoing minus sign corresponds
the SQ baryon and plus sign to theSQ* baryon.

Let us now derive the Laplace sum rules for the invari
functionsf i(w). The analysis proceeds in complete analo
to that of the Isgur-Wise function. We shall only briefl
sketch the general procedure and refer for details to R
@20,21#. We consider, in the HQET, the three-point corre
tion function of the local operator appearing in Eq.~19! with
two interpolating currents for the ground-state heavy ba
ons:

i 2E dxdyeik•x2 ik8•y

3^0uT$ j v~x!,h̄vigsGGmnhv8~0!, j̄ v8~y!%u0&

5Fab
mn~v8,v,k8,k!Ga8

11v”
2

G
11v” 8

2
Ḡb8 , ~22!

wherek and k8 are the residual momenta. The Dirac stru
ture of the correlation function, as shown in the third line,
a consequence of the Feynman rules of the HQET.Fab

mn

obeys a decomposition analogous to Eq.~20!, with coeffi-
cient functionsF i(v,v8,w) that are analytic in the ‘‘residua
energy’’ v52v•k andv852v8•k8, with discontinuities for
positive values of these variables. These functions also
pend on the velocity transferw5v•v8.

The lowest lying states are the ground-state baryonsB(v)
and B8(v8) associated with the heavy-light currents. Th
lead to a double pole located atv5v852L̄. The residue of
this double pole is proportional to the invariant functio
f i(w). We find

F i
pole~v,v8,w!5

4scf i~w!F2

~v22L̄ !~v822L̄ !
, ~23!

wheresc is the structure constant, 1 forLQ ,2(21w)/9 for
SQ , and 1 forSQ* baryons. In the deep Euclidean region t
correlation function can be calculated perturbatively beca
of asymptotic freedom. Following the standard procedu
we write the theoretical expressions forF i as double disper-
sion integrals and perform a Borel transformation in the va
09403
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ablesv and v8, then set the associated Borel paramet
equal:t5t8[2T. Just as in the direct approach, we intr
duce new variablesv15 1

2 (v1v8) and v25v2v8, per-
form the integral overv2 , and get the Laplace sum rules
zero recoil:

8scF
2f1e22L̄S /T5

4

p4

as

p
T8d7~vc /T!

2
1

24p2 K as

p
G2L d3~vc /T!

1
32as

9p
^q̄q&2T2d1~vc /T!,

8scF
2f1e22L̄S /T58scF

22~f22f3!e22L̄S /T,

8scF
2f4e22L̄S /T5

2

p4

as

p
T8d7~vc /T!,

8scF
2f5e22L̄S /T52

1

p4

as

p
T8d7~vc /T! ~24!

for the SQ baryon, and

8F2f1e22L̄L /T52
2

p4

as

p
T8d7~vc /T! ~25!

for the LQ baryon. After some simple algebra we find

24l1F2e22L̄S /T5
9

p4

as

p
T8d7~vc /T!,

4l2F2e22L̄S /T5
12

p4

as

p
T8d7~vc /T!

2
T4

8p2 K as

p
G2L d3~vc /T!

1
32T2as

3p
^q̄q&2d1~vc /T! ~26!

for the SQ baryon, and

24l1F2e22L̄L /T52
3T8

p4

as

p
d7~vc /T! ~27!

for the LQ baryon. The minus sign of theLQ baryon result
may seem bizarre; in Sec. III we will return to dwell on th
point.

III. NUMERICAL RESULTS AND CONCLUSIONS

In order to get the numerical results, we divide our thre
point sum rules by two-point functions to obtainl1 andl2
as functions of the continuum thresholdvc and the Borel
6-5
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parameterT. This procedure can eliminate the systema
uncertainties and cancel the parameterL̄. As for the conden-
sates, we adopt the standard values

^q̄q&52~0.23 GeV!3,

K as

p
G2L 50.012 GeV4. ~28!

From two-point sum rules one knows that there exist sta
windows in the ranges 0.8,T,1.2 GeV andvc52.2–
2.7 GeV for LQ baryons, and 0.7,T,1.1 GeV andvc
52.6–3.3 GeV forSQ baryons. The stability window for
three-point functions starts almost from values of the Bo
parameter at 0.7 GeV and stretches almost toT→`. It is
known that stability at lager Borel parameters could not g
any valuable information, since in this region the sum rule
strongly affected by the continuum model. The usual cr
rion that both the higher order power corrections and
continuum contribution should not be very large restricts
working region considerably. In the case of the three-po
functions, the results are severely smeared by the contin

FIG. 3. Sum rules forLQ baryons:~a! for j 1
v , ~b! for j 2

v . The
dash-dotted, dashed, and solid curves correspond to the thre
vc52.4, 2.6, and 2.8 GeV, respectively. The working region isT
50.8–1.2 GeV.
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contributions for high dimension of spectral densities a
thus it is very difficult to ensure that the contribution of th
continuum mode is small. The working region of the thre
point functions should be determined by the stable region
the two-point functions. So it does not necessarily coinc
with the stable windows of the three-point functions@8#.
Thus we find that our working region for three-point fun
tions is T50.8–1.2 GeV for LQ baryons andT50.7–
1.1 GeV for SQ baryons. The results forl1 in the direct
approach with two different choices of currents are shown
Fig. 3 forLQ baryons and Fig. 4 forSQ baryons. Results for
the kinetic energy ofLQ and SQ baryons obtained by the
covariant approach are presented in Fig. 5. The forms of
chromomagnetic interaction obtained by both approaches
not differ from each other, so we plot that unique curve
one figure, Fig. 6. For theLQ baryon we obtain the residua
massL̄L50.860.1 GeV and

2l1
150.460.1 GeV2,

2l1
250.560.1 GeV2 ~29!

old

FIG. 4. Sum rules of the kinetic energy forSQ baryons:~a! for
j 1
v , ~b! for j 2

v . The dash-dotted, dashed, and solid curves co
spond to the thresholdvc52.9, 3.1, and 3.3 GeV, respectively. Th
working region isT50.7–1.1 GeV.
6-6
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in the direct approach, where the superscripts denote the
ferent choices of currents, and

2l1520.0860.02 GeV2 ~30!

in the covariant approach. For theSQ baryon the effective
mass we obtained isL̄S51.060.1 GeV and

2l1
150.760.2 GeV2,

2l1
251.060.2 GeV2 ~31!

in the direct approach, where the superscripts also de
different currents, and

2l150.1160.03 GeV2 ~32!

in the covariant approach. For the chromomagnetic inte
tion for S baryons the results read

l250.2360.02 GeV2. ~33!

FIG. 5. Covariant sum rules of the kinetic energy:~a! for LQ

baryons,~b! for SQ baryons. The dash-dotted, dashed, and so
curves correspond tovc52.4, 2.6, and 2.8 GeV forLQ baryons,
andvc52.9, 3.1, and 3.3 GeV forSQ baryons. The working region
is T50.8–1.2 GeV forLQ baryons andT50.7–1.1 GeV forSQ

baryons.
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Then we get the splitting of the spin 1/2 and spin 3/2 do
blets as

SQ*
22SQ

2 5
3

2
l250.3560.03 GeV2. ~34!

All errors quoted before are due to the variation of the Bo
parameterT and the continuum thresholdvc . When scaled
up to the bottom quark mass scale there will be a factor;0.8
approximately due to the renormalization group improv
ment.

As for the effects on the correlation function of the d
ferent choices of the interpolating currents we may as
some facts and inferences. From the preceding nume
results it is clear that the interpolating currents with thev”
insertion give a considerable larger result for the kinetic
ergy than those without the insertion. Nevertheless, the t
point sum rules do not differ with the different curren
@12,15#. From our calculation it is explicit that the sum rule
associated with chromointeraction insertion are identical
our covariant calculation we find that the invariant functio
do differ from each other generally, but interestingly th
coincide at zero recoil; thus the chromointeraction and
netic energy do not take different forms. Naively, we can t
that the disparity of the two forms of the kinetic energy o
tained in our direct calculation mainly comes from the L
renz structural differences of the two interpolating curren
It may be noted that the derivative operator acts differen
on the currents with or withoutv” insertion; thus with the
insertion it is easier for the continuum contamination to
into the correlation functions. Exclusion of the continuu
contribution is urgently needed it heavily smeared the res
of both the direct and covariant approaches. It is this c
tinuum contamination that makes the prediction of the
netic energy more intriguing. All previous theoretical calc
lations with the QCD sum rule approach or lattice calculat
give various results and can differ from each other by sev
times @11,12,8,9,22,26#. The current experimental data a
not enough to judge which one is right; what we can ge
some restrictions on the kinetic energy@27# or a rough esti-

d

FIG. 6. Sum rules for the chromomagnetic interaction. T
dash-dotted, dashed, and solid curves correspond tovc52.9, 3.1,
and 3.3 GeV. The working region isT50.7–1.1 GeV.
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mate of the kinetic energy extracted from experimental d
with some assumptions@28#. As demonstrated in Refs
@24,29# using the toy model of a harmonic oscillator, th
main origin of the discrepancy between the direct and co
riant approaches is the continuum smeared contribution
the direct approach the first excited contribution plays
important role. If we want to suppress this contribution,
go to such a large Borel parameter that the power correct
blow up. For acceptable Borel parameters, we get an ove
timated sum rule for the the kinetic energy. In the covari
approach~via the virial theorem! the situation is especially
bad. The excited contribution consists of two component
the diagonal transitions and off-diagonal ones—and each
is large, but they have opposite relative signs. For hig
excited states the sign-alternating terms are smeared to
after summation. However, the first two terms do not can
with each other and screen the ground-state contribut
Thus a lower estimated result will be obtained. The min
sign before the kinetic energy of theLQ baryon in the cova-
riant approach may be seen as a manifestation of this a
tion. Due to the unknown weight, we cannot annihilate tho
contributions by weighted averaging just as in quantum m
chanics. But we may safely take the results of the direct
covariant approaches as the lower bound and the hig
bound of the kinetic energy parameter, respectively. Th
following @30#, taking the mean value of the direct and c
variant approaches results in a rough estimate. The re
thus obtained is

2l̄1
1.0.1860.06 GeV2,

2l̄1
2.0.2460.06 GeV2 ~35!

for LQ baryons and

2l̄1
1.0.3960.12 GeV2,

2l̄1
2.0.5460.12 GeV2 ~36!

for SQ baryons. Taking all results obtained the mass of
ground state baryon is on hand. FrommLc

andmLb
@31#, we

determine the heavy quark massesmc.1.4160.16 GeV
and mb.4.7760.12 GeV. In the determination we hav
taken the average of the results obtained from two inter
lating currents to be the physical pole masses of the he
quarks because the difference of the corresponding m
does not exceed the error bar. These values give the fol
ing results:

mSc
.2.4760.20 GeV,

mS
c*
.2.5960.20 GeV,

mSb
.5.7960.13 GeV,

mS
b*
.5.8260.13 GeV, ~37!

with interpolating currentj v
1 and
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mSc
.2.5260.20 GeV,

mS
c*
.2.6460.20 GeV,

mSb
.5.8060.13 GeV,

mS
b*
.5.8360.13 GeV ~38!

with interpolating currentj v
2 . The spin average of the dou

blets is free of the chromointeraction contribution and th
free of the uncertainties involved in the calculation ofl2.
Averaging over the doublets we have the quantity

1

3
~MSQ

12MS
Q*
!5mQ1L̄S1

1

2mQ
l̄1 ,

which is more reliable. For thec quark case, it is 2.55
60.20 GeV with currentj v

1 and 2.6060.20 GeV with cur-
rent j v

2 . For the b quark case it is 5.8160.13 GeV with
current j v

1 and 5.8360.13 GeV with currentj v
2 . Experimen-

tally MSc
5245360.2 MeV @31#. There is experimental evi

dence forSc* at MS
c*
5251962 MeV @32#. If we take this

value for Sc* , we have1
3 (MSc

12MS
c*
)5249761.4 MeV,

which is in reasonable agreement with the theoretical pre
tion. For lack of experimental data the corresponding qu
tity for the bottom quark will be checked in the future. If w
take the preceding masses of the charmedS baryons the
splitting thus reduced is 0.33 GeV2 and our theoretical split-
ting is in good agreement with the experimental data.

As the kinetic energy of theLQ baryon can be related to
the spectrum via the kinetic energy of the meson1 as @33#

~mLb
2mLc

!2~m̄B2m̄D!

5@l1~Lb!2l1~B!#S 1

2mc
2

1

2mb
D1O~1/mQ

2 !, ~39!

where m̄B5 1
4 (mB13mB* ) and m̄D5 1

4 (mD13mD* ) denote
the spin-averaged meson masses, the difference betwee
kinetic energy of theB meson and that of theLb baryon can
be extracted as

l1~Lb!2l1~B!50.0160.02 GeV2, ~40!

which is consistent with the value obtained in Ref.@33#.
Resorting to the recent experimental data for the meso
kinetic energy parameter obtained in the inclusive semil
tonic B decays@34#, 2l150.2460.11 GeV2, one can thus
get the value of baryonic kinetic energy as

2l1~Lb!50.2360.13 GeV2, ~41!

1The relation betweenmp
2 in Ref. @33# and l1 in this paper is

mp
2 52l1.
6-8
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which is in reasonable agreement with our theoretical pre
tion given in Eq.~35!.

In conclusion, we have calculated the 1/mQ corrections to
the heavy baryon masses from the QCD sum rules within
framework of the HQET. Two approaches have been adop
in the evaluation of the three-point correlators. Our final
sults read

MSQ
5mQ1L̄S1

1

2mQ
~0.1660.12 GeV2!,

MS
Q*
5mQ1L̄S1

1

2mQ
~0.5160.12 GeV2! ~42!

for interpolating current withoutv” insertion and

MSQ
5mQ1L̄S1

1

2mQ
~0.3160.12 GeV2!,

MS
Q*
5mQ1L̄S1

1

2mQ
~0.6660.12 GeV2! ~43!

for interpolating current withv” insertion. The 1/mQ correc-
tions are small. We have taken the mean value of the di
and covariant approaches as the rough estimate of the ki
energy parameterl1. Our theoretical predictions are i
agreement with the recent experimental data. For a m
precise treatment of the kinetic energy, a more sophistica
technique to distinguish the smearing continuum contri
tion is in urgent need of development.
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APPENDIX: THE DECOMPOSITION OF THE BILINEAR
MATRIX ELEMENT

In this appendix, we present the decomposition of
bilinear matrix element. There exists a decomposition of
LQ baryon; we present it here merely for completeness
convention.

First, let us consider the bilinear matrix element over
LQ baryons

^Luh̄v~2 iDQ m!GmniD nhv8uL8&5cmn~v8,v !ūGmnu8.
~A1!

The coefficients obey the symmetric relationcmn(v8,v)
5cnm* (v,v8). It is convenient to write the coefficientc in a
sum of symmetric and antisymmetric partscmn5 1

2 @cmn
A

1cmn
S # which can be presented covariantly as

cmn
A 5c1

A~vm8 vn2vmvn8!,

cmn
S 5c1

Sgmn1c2
S~v1v8!m~v1v8!n

1c3
S~v2v8!m~v2v8!n . ~A2!
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The HQET equation of motion implies thatvn8cmn50 from
which we can obtain the relations between those coefficie

c1
S1~11y!c2

S1~12y!c3
S1yc1

A50,

~11y!c2
S1~y21!c3

S2c1
A50, ~A3!

with

h̄iDW mGh81h̄iD mGh85 i ]m~ h̄Gh8!. ~A4!

Bear in mind that we can get

^Luh̄vGmniD miD nhv8uL8&

5cmn~v8,v !ūGmnu81L̄~v82v !mjnūGmnu8, ~A5!

using the x dependence of the state in HQETuB(x)&
5e2 i L̄v•xuB(0)&. The jn are defined as

^Luh̄vGniD nhv8uL8&5jnūGnu8. ~A6!

Similarly, we can define the matrix elements for the ope
tors of kinetic energy and chromointeraction over bary
states with different velocities:

^Luh̄vsmniGmnhv8uL8&5f1~vm8 vn2vmvn8!ūsmnu8,
~A7!

^Luh̄v~ iD'!2Ghv8uL8&5f0ūGu8. ~A8!

Once defined, thec i can be expressed via twof i :

c1
A5f12L̄2j

y21

y11
,

c1
s5f01yf11L̄2j

y21

y11
,

c3
s5

~112y!f11f0

2~y21!
2

y

2~y11!
L̄2j,

c2
s5

c1
A2~y21!c3

S

11y
, ~A9!

the normalizations of f0 ,f1 are f0(1)5l1 ,f1(1)
52 1

3 f0(1), andthus we get the desired result.
Generalization can be made to higher spin states suc

SQ baryons. The procedure is almost the same. The o
difference lies in the decomposition of the matrix eleme
Hence we will give the forms of decomposition and the fin
desired relation; we will not dwell on the details. The cov
riant representation of the doublet isCm5um1(1/A3)(vm
1gm)u. The matrix element is

^Suh̄v~2 iDW m!GmniD nhv8uS8&

5cmn
ab~v8,v !C̄aGmnCb8 , ~A10!
6-9
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in which the coefficients obey the symmetric relati
cmn

ab(v,v8)5cnm
ba(v8,v). Adopting the same symmetric an

antisymmetric decomposition of the coefficients as that
the LQ baryon case, we have

cmn
ab,A5c1

A~gmagnb2gmbgna!1c2
A~gmbvnva82gnbvmva8

1gnavbvm8 2gmavbvn8!1c3
A~gamvnvb2gnavmvb

1gnbva8vm8 2gmbva8vn8!1c4
A~vm8 vn2vn8vm!gab

1c5
A~vm8 vn2vn8vm!va8vb ,

cmn
ab,S5c1

Sgabgmn1c2
S~gmagnb1gmbgna!1c3

S~gmbvnva8

1gnbvmva81gnavbvm8 1gmavbvn8!1c4
S~gamvnvb

1gnavmvb1gnbva8vm8 1gmbva8vn8!1c5
S~v8

2v !m~v82v !nva8vb1c6
S~v82v !m~v82v !ngab

1c7
S~v81v !m~v81v !nva8vb1c8

S~v81v !m~v8

1v !ngab1c9
Svbva8gmn . ~A11!

Introducing other universal parameters in the leading ord

^Suh̄vGniD nhv8uS8&5jn
ab~v,v8!C̄aGmnCb8 ,

^Suh̄vGn~2 iD n!hv8uS8&5 j̄n
ba~v8,v !C̄aGmnCb8

~A12!

as usual,jn
ab(v,v8) can be decomposed into the gene

form

jn
ab~v,v8!5j1~v1v8!ngab1j2~v82v !ngab

1j3~v1v8!nvbva81j4~v82v !nvbva8

1j5va8gbn1j6vbgan . ~A13!

The equation of motion implies thatv8njn
ab50 and

v8ncmn
ab50 from which we can derive the relations

wc3
A2c2

A1c3
S1c4

S50,

wc2
A2c1

A2c3
A1c2

S1wc3
S1c4

S50,

wc4
A1c1

S1~12w!c6
S1~11w!c8

S50,

c2
A1wc5

A1c3
s1~12w!c5

S1~11w!c7
S1c9

S50,

~11w!c8
S2c4

A2~12w!c6
S50,

c4
S1~w21!c5

S2c3
A2c5

A1~11w!c7
S50, ~A14!

and

~11w!j11~12w!j250,
09403
n
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~11w!j31~12w!j41j650. ~A15!

Taking the difference of the two terms in Eqs.~A12! and
using Eq.~A4! we can reach

j15
w21

w11

c1

2
L̄,

j35
w21

w11

c2

2
L̄2j6 ,

j25
c1

2
L̄,

j45
c2

2
L̄,

j55j6 , ~A16!

wherec1 ,c2 parametrize the matrix element

^Suh̄vGhv8uS8&5~c1gab1c2vbva8 !C̄aGC8b. ~A17!

The matrix elements for the kinetic energy and chromom
netic interaction are defined similarly to those for theLQ
baryon:

^Suh̄v~ iD'!2Ghv8uS8&5~f0gab1f̄0vbva8 !C̄aGC8b,
~A18!

^Suh̄vsmniGmnhv8uS8&5fmn
abC̄asmnCb8 , ~A19!

wherefmn
ab bear the same decomposition ascmn

ab . They have
simple relations between each other:

f15c1
A ,

f25c2
A2j6L̄,

f35c3
A2j6L̄,

f45c4
A22j1L̄,

f55c5
A22j3L̄,

f052c1
s1c2

s1~12w!c6
s1~11w!c8

s

12~12w!j2L̄,

f̄052c3
s1~12w!c5

s1~11w!c7
s12~12w!j4L̄,

~A20!

The normalization condition is thatf1(1)5Al2 , f0(1)
5Bl1 where A is 21/2,1/2 andB is 1,21 for SQ* ,SQ ,
respectively. At zero recoill1 can be expressed viaf0:

f0~1!5f1~1!22@f2~1!2f3~1!#23f4~1!. ~A21!
6-10
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