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Two cutoff phase space slicing method
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The phase space slicing method of two cutoffs for next-to-leading-order Monte Carlo style QCD corrections
has been applied to many physics processes. The method is intuitive, simple to implement, and relies on a
minimum of process dependent information. Although results for specific applications exist in the literature,
there is not a full and detailed description of the method. Herein such a description is provided, along with
illustrative examples; details, which have not previously been published, are included so that the method may
be applied to additional hard scattering processes.
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I. INTRODUCTION

Perturbative quantum chromodynamic~QCD! calcula-
tions are essential in the effort to describe large momen
transfer hadronic scattering processes. At one time it
sufficient to work at lowest order for the hard scattering s
processes and utilize the leading-logarithm approximation
treat the higher order gluon radiation and quark-antiqu
pair production which give rise to the scale dependence
the parton distribution and fragmentation functions, and
the running of the strong couplingas . As the experimenta
systematic and statistical errors decreased, the need fo
creased precision for the theoretical calculations became
parent, leading to the widespread use of next-to-lead
order expressions for the hard scattering subprocesses
the remaining higher order terms being treated in the n
to-leading-logarithm approximation. Early calculations
this type were typically performed with a combination
analytic and numerical integration techniques. The ph
space integrations at the parton level were often perform
analytically, and the convolutions with the parton distributi
or fragmentation functions done numerically. This approa
is satisfactory for fully or singly inclusive cross sections, b
information is lost about quantities over which the integ
tions have been performed. Thus, if cuts are to be placed
two or more partons~or hadrons or jets!, the calculation must
be started anew. Furthermore, for some observables it is
ficult to calculate the appropriate Jacobian for the trans
mation from partonic to hadronic variables. For these reas
it was recognized that Monte Carlo techniques would be u
ful for such calculations. The Jacobians would be handled
the choice of histogramming variables and several obs
ables could be histogrammed simultaneously. Additionally
would be simple to define jets and to implement experim
tal cuts on the four-vectors of the produced partons.

In light of the above observations, a method for perfor
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ing next-to-leading-logarithm calculations using Mon
Carlo techniques was developed@1#. Two cutoff parameters
serve to separate the regions of phase space containin
soft and collinear singularities from the non-singular regio
nowadays this is referred to as the phase-space slicing t
nique.

The usefulness and generality of the method may be
preciated by considering the many physics processes
which it has been applied. The basic core of the method
first developed to study QCD corrections to dihadron p
duction @1#. It has subsequently been applied to direct
photoproduction@2#, hadronic photon–jet@3#, direct photon
@4#, W @5#, ZZ @6#, WW @7#, WZ @8#, two photon@9,10#, Zg
@11#, and W–Higgs boson@12,13# production, nonstandard
three vector boson couplings inWg @14#, WZ @15# andWW
@16# production, hadronic photon–heavy quark producti
@17,18#, jet photoproduction@19#, quantum electrodynamic
~QED! corrections to hadronicZ production@20#, QCD cor-
rections to slepton pair production@21#, electroweak correc-
tions toW production@22#, single-top-quark production@23#,
and dihadron production@24#.

Despite this usefulness, a full and detailed description
the method does not exist in the literature. Here we prov
such a description. Naturally, as the method was applied
the above physics processes, refinements were made
therefore take this opportunity to modernize and systema
the presentation relative to that given in@1#, and show details
that have not previously been published. Searches for sig
of new physics often rely on next-to-leading-order Mon
Carlo–based calculations. It is anticipated that the det
provided here will prove to be helpful for anyone wanting
apply the method to additional processes.

In the course of a next-to-leading-order calculation ult
violet singularities show up in loop integrals where the m
menta go to infinity. They are removed through the proc
of renormalization.~See, for example, Refs.@25,26# for a
discussion.! Soft ~infrared! divergences arise if the theor
includes a massless field like the photon in QED or the glu
in QCD. They are encountered in both loop and phase sp
integrals and are found in the low energy region where
©2002 The American Physical Society32-1
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B. W. HARRIS AND J. F. OWENS PHYSICAL REVIEW D65 094032
integration momenta go to zero. The soft singularities can
between the virtual and bremsstrahlung processes@27#. If the
massless field couples to another massless field, or to itse
collinear ~mass! singularity may occur in both loop an
phase space integrals. Final state mass singularities ca
when summed over degenerate~experimentally indistin-
guishable! final states according to the theorem of Kinoshi
Lee, and Nauenberg@27#. For tagged hadrons there is n
final state sum, and the associated mass singularities are
torized into fragmentation functions. Similarly, initial sta
singularities do not cancel because there is typically no s
over degenerate states; they are removed by factoriza
@28,29#.

The goal of the practitioner of next-to-leading-order c
culations is to organize the soft and collinear singularity c
cellations described above without loss of information
terms of observable quantities. The phase space sli
method provides a relatively simple and robust method to
this. Several other methods for handling the organization
the cancellations exist in the literature and have been use
study a wide variety of high energy processes, includ
some of those listed above. The phase space slicing me
of one cutoff first developed in@30,31# divides the phase
space according tosi j 5(pi1pj )

2.ys12 wherepi andpj la-
bel the momenta of partonsi and j, andy is a small dimen-
sionless parameter. Another variant for jets@32,33# and had-
rons and heavy quarks@34# partitions phase space accordin
to si j .smin wheresmin is a small dimensionful parameter.
is also possible to engineer the singularity cancellation us
plus distributions, commonly referred to as the subtract
method, which has been applied to jets@35–42# and heavy
quark final states@43–46#. The subtraction method taken to
gether with factorization formulas that interpolate betwe
the soft and collinear approximations to the matrix eleme
is known as the dipole method@47#. The dipole method was
originally developed for jet and light hadron cross sectio
where it has seen extensive application@48–56#. It has re-
cently been extended to handle massive fermions and pa
@57–59# and is finding many applications@23,60–62# in that
domain as well. A brief comparison of the slicing and su
traction methods is given in Appendix A. Properly impl
mented, all methods should give identical physics pred
tions.

This paper proceeds as follows. In Sec. II we give det
of the phase space slicing method with two cutoffs. We
amine the soft and collinear regions of phase space and
how to arrive at a finite cross section. In Sec. III the proc
of electron-positron annihilation into quarks is studied
massive, massless, and tagged final states. After that, th
amples of lepton pair production and single particle prod
tion in hadronic collisions are given. We conclude in Sec.
As mentioned above, Appendix A contains a brief compa
son with the subtraction method. Appendix B contains an
lar integrals useful in the soft analysis. A discussion of ter
that vanish like the ratio of the two cutoffs is given in Ap
pendix C. Appendix D explains how to improve numeric
convergence.
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II. THE METHOD

This section contains the main derivations for jet, fra
mentation, and heavy quark final states, as well as a dis
sion of initial state mass factorization. Before getting into t
many details, it will be helpful to outline the procedure firs
The typical calculation involves lowest order two-to-tw
subprocesses which have two-body final states and hig
order two-to-three subprocesses which lead to both two-
three-body final states. In addition, the one-loop virtual c
rections also contribute to the two-body final states.

We begin by decomposing the three-body phase sp
used to calculate the two-to-three contribution to the parto
cross section into two regions which we call soft, S, a
hard, H, by writing1

s5
1

2FE (
—

uM3u2dG3

5
1

2FE
S
(
—

uM3u2dG31
1

2FE
H
(
—

uM3u2dG3 , ~2.1!

whereF5l1/2(s,m1
2 ,m2

2) is the usual flux factor which de
pends on the partonic center-of-momentum energy squars

and the incident particle massesm1 andm2 , (uM3u2 is the
two-to-three body squared matrix element averag
~summed! over initial ~final! degrees of freedom, anddG3 is
the three-body phase space. The partitioning of phase s
into S and H depends on a parameterds in a manner to be
described below. Within S the double pole~eikonal! approxi-
mation to the matrix elements is made and then analytic
integrated over the unobserved degrees of freedom in
space-time dimensions. The result, depending on the ma
of the partons involved, may contain double and/or sin
poles inn24, and accompanying double and/or single log
rithms in the soft cutoffds . We always work in the approxi-
mation where the cutoffs are small, so terms of orderds may
be neglected. Just how small thet need to be will be stud
below.

Next, if there are collinear singularities present, the h
region is further decomposed into collinear C and no
collinear C̄regions as follows:

1

2FE
H
(
—

uM3u2dG35
1

2FE
HC

(
—

uM3u2dG3

1
1

2FE
HC̄

(
—

uM3u2dG3 . ~2.2!

This partitioning depends on a second cutoffdc . Within HC
the leading collinear pole approximation to the squared m
trix element is made. As explained below, exact colline

1Implicit in the cross section is a measurement function wh
serves to implement the jet algorithm and/or define the experim
tally visible portion of phase space~the cuts!. For the cancellation
of singularities to take place, the measurement function is requ
to be infrared safe@63#.
2-2
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TWO CUTOFF PHASE SPACE SLICING METHOD PHYSICAL REVIEW D65 094032
kinematics may be used to define the integration domain
HC whendc!ds . The integrations over the unobserved d
grees of freedom are performed analytically inn space-time
dimensions giving a factorized result where single poles
n24, and single logarithms in both cutoffsdc andds , mul-
tiply splitting functions and lower-order squared matrix e
ments. This is in the approximation where terms of orderdc
andds are neglected.

The cancellation of poles inn24 is based on the
Kinoshita-Lee-Nauenberg theorem@27# or mass factorization
@28,29# depending on the situation. For experimentally d
generate final states, the soft and final state hard collin
singularities cancel upon addition of the interference of
leading order diagrams with the renormalized one-loop
tual diagrams. The remaining initial state collinear singula
ties are factorized and absorbed into the parton distribu
functions. The result is finite inn54 dimensions, but de
pends logarithmically on the cutoffs. For tagged hadro
there is no final state sum, and the associated mass sing
ties are factorized into fragmentation functions.

The integration over the hard non-collinear HC¯portion of
the phase space is performed using standard Monte C
techniques. The result is finite by construction and the
pressions may be evaluated in four dimensions. At this st
the calculation yields a set of two-body weights which ha
explicit logarithmic dependence on the two cutoffs and
three-body weights for which a logarithmic dependence
the cutoffs develops as the Monte Carlo integration is p
formed. When all of the contributions are combined at
histogramming stage, the cutoff dependence cancels for
ably defined infrared-safe observables. In the following s
sections we look at each of these steps in detail.

A. Soft

In this subsection we describe the procedure for extrac
soft gluon singularities. When one of the gluons is soft,
phase space is greatly simplified and the eikonal~double
pole! approximation of the matrix element is valid@64–68#.
The cross section is simple enough to be analytically in
grated over the unobserved degrees of freedom inn space-
time dimensions. The required integrals are well kno
@45,69,70#. The result, depending on the masses of the p
tons involved, contains double and/or single poles inn24,
and accompanying double and/or single logarithms in
soft cutoffds . We work in the approximation where terms
orderds are neglected.

Generically, we begin by writing the two-to-three bod
contribution to the partonic cross section

s5
1

2FE (
—

uM3u2dG3 ~2.3!

as the sum of soft, S, and hard, H, terms

s5sS1sH , ~2.4!

where
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sS5
1

2FE
S
(
—

uM3u2dG3 , ~2.5!

and

sH5
1

2FE
H
(
—

uM3u2dG3 . ~2.6!

In this section we examinesS in detail. Further evaluation o
sH is deferred to the following subsections.

Let the particles in the scattering be labeled by their fo
momentap11p25p31p41p5 and define the Mandelstam
invariants si j 5(pi1pj )

2 and t i j 5(pi2pj )
2. Consider the

case when parton 5 is a soft gluon. The soft region S
defined in terms of the gluon energyE5 in the p11p2 rest

frame by 0<E5<dsAs12/2. The hard region H is the comple
ment: E5.dsAs12/2. The gluon energy can be calculate
from the other invariants in the problem as follows. St
with p11p22p55p31p4 which, after squaring both sides
yields (p11p2)222p5•(p11p2)5(p31p4)2. In the p1

1p2 rest frame p11p25As12(1,0,0,0), sos1222E5As12
5s34. Solving for the gluon energy gives

E55
s122s34

2As12

. ~2.7!

This expression forE5 and the definition of the soft region
are independent of the masses of the other particles in
reaction. Now that we have defined the boundaries of the
portion of phase space, we examine the approximations
can be made.

The three-body phase space inn dimensions is given by

dG35
dn21p3

2p3
0~2p!n21

dn21p4

2p4
0~2p!n21

dn21p5

2p5
0~2p!n21

3~2p!nd n~p11p22p32p42p5!. ~2.8!

The divergence in the integral of the matrix element ov
phase space will be at worst logarithmic. Therefore, up
corrections ofO(ds), we can setp5

m50 in the delta function
and regroup terms, yielding

dG3usoft5F dn21p3

2p3
0~2p!n21

dn21p4

2p4
0~2p!n21

~2p!n

3d n~p11p22p32p4!G dn21p5

2p5
0~2p!n21

. ~2.9!

This is simply

dG3usoft5dG2

dn21p5

2p5
0~2p!n21

, ~2.10!

where
2-3
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B. W. HARRIS AND J. F. OWENS PHYSICAL REVIEW D65 094032
dG25
dn21p3

2p3
0~2p!n21

dn21p4

2p4
0~2p!n21

~2p!n

3d n~p11p22p32p4! ~2.11!

is the two-body phase space of partons 3 and 4. Likewise
to corrections ofO(ds), we can parametrize the gluon
n-momentum in thep11p2 rest frame as

p55E5~1, . . . ,sinu1sinu2 ,sinu1cosu2 ,cosu1!,
~2.12!

where the ellipsis indicates then24 unspecified momentum
components, which may be trivially integrated over using

dn21p55dupW 5uupW 5un22dVn22

5dE5E5
n22sinn23u1du1sinn24u2 du2Vn24 .

~2.13!

The angular volume element

Vn245
2p (n23)/2

G@~n23!/2#
~2.14!

may be rewritten using

G@~n23!/2#5Ap22e
G~122e!

G~12e!
, ~2.15!

where we have setn5422e. The final result for the phas
space volume approximated in the soft region is

dG3usoft5dG2F S 4p

s12
D e G~12e!

G~122e!

1

2~2p!2GdS, ~2.16!

with

dS5
1

p S 4

s12
D 2eE

0

dsAs12/2
dE5E5

122esin122eu1du1

3sin22eu2du2 . ~2.17!

Once we have the corresponding soft approximation to
matrix element this integral can be performed, yielding
advertised singularity structure. But before proceeding,
pause to note that choosing 5 to be the soft gluon is
special. A similar analysis holds when parton 3 or 4 is
gluon. At this order in perturbation theory, only one glu
may be soft at a time.

Soft photon emission in QED is characterized by the f
torization of an eikonal current from the scattering amp
tude. The structure of multiple soft photon emission has b
studied by Grammer and Yennie@64#. In QCD the process is
different because gluons carry color charge and can there
radiate during the scattering. Fortunately, when QCD am
tudes are decomposed into color sub-amplitudes they e
the same factorization properties as QED amplitudes@65–
68#.
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Let parton 5 be the soft gluon and take it to have co
index a (51, . . . ,N221) and Lorentz indexm. The matrix
element factorizes as

M3
ausoft.gm r

e«m~p5!Jm
a ~p5!M2 . ~2.18!

The mass dimensions of the strong coupling have been
lated into the parameterm r which is identified with the
renormalization scale, leaving the dimensionless couplingg.
The soft gluon’s polarization vector, denoted by«m(p5), is
Lorentz contracted with the non-Abelian eikonal curre
given by

Jm
a ~p5!5(

f 51

4

T f
a

pf
m

pf•p5
, ~2.19!

which itself is color contracted with the color sub-amplitu
M2. The sum corresponds to the soft gluon being emit
from each external line in turn. TheSU(N) color charge
associated with the emitting partonf is denoted byT f .
Squaring and summing Eq.~2.18! over the soft gluon polar-
izations gives

uM3u2usoft.2g2m r
2e (

f , f 851

4
pf•pf 8

pf•p5pf 8•p5

M f f 8
0 , ~2.20!

where

M f f 8
0

5~T f
aM2!~T f 8

a M2!
†

5@Mc1 . . . bf . . . bf 8 . . . c4
#* Tbfdf

a Tbf 8df 8

a Mc1 . . . df . . . df 8 . . . c4

~2.21!

is the square of the color connected Born amplitude. If
emitting parton is a final state quark or initial state an
quark, the color charge is in the fundamental representa
(Ta) i j 5t i j

a ( i , j 51, . . . ,N). For a final state anti-quark o
initial state quark (Ta) i j 52t i j

a . If the emitting parton is a
gluon, the color charge is in the adjoint representat
(Ta)bc52 i f abc .

Substituting Eqs.~2.16! and ~2.20! into Eq. ~2.5! gives

dsS5F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3 (
f , f 851

4

ds f f 8
0 E 2pf•pf 8

pf•p5pf 8•p5

dS, ~2.22!

where

ds f f 8
0

5
1

2F(
—

M f f 8
0 dG2 . ~2.23!

The integration over the eikonal factors depends on
masses of the particles in the reaction. We leave the integ
to be performed on a case-by-case basis, although all
sible mass combinations may be worked out. Specific ap
cations of Eq.~2.22! are given below.
2-4
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TWO CUTOFF PHASE SPACE SLICING METHOD PHYSICAL REVIEW D65 094032
From a practical point of view, the presentation just ma
requires only the calculation of the eikonal factors and
color connected Born amplitudes inn5422e dimensions.
There is no need to evaluate the full two-to-three body m
trix element inn dimensions. Depending on the complexi
of the process, this may be a simplification. However, if t
full two-to-three body matrix element inn5422e dimen-
sions is at hand, settingp5

m50 everywhere in the numerato
and retaining only the leading singular terms asp5

m→0 will
reproduce Eq.~2.20! directly, this being known as the doub
pole approximation@1#.

B. Collinear

We now return to the further evaluation of the hard p
tion of the cross section which was separated out in S
II A. The phase space is greatly simplified in the limit whe
two of the partons are collinear. In the same limit, the lead
pole approximation of the matrix element is valid. The cro
section is simple enough to be analytically integrated o
the unobserved degrees of freedom inn space-time dimen-
sions. The result contains single poles inn24, and accom-
panying logarithms of the softds and collineardc cutoffs.
Terms of orderds anddc are neglected.

To this end we further decomposesH given in Eq.~2.6!
into a sum of hard-collinear HC and hard–non-collinear H¯
terms

sH5sHC1sHC̄ , ~2.24!

with

sHC5
1

2FE
HC

(
—

uM3u2dG3 , ~2.25!

and

sHC̄5
1

2FE
HC̄

(
—

uM3u2dG3 . ~2.26!

The HC regions of phase space are those where any inva
(si j or t i j ) becomes smaller in magnitude thandcs12, the
collinear condition, while at the same time all gluons rem
hard. The complementary HC¯ pieces are finite and may b
evaluated numerically in four dimensions using stand
Monte Carlo techniques@71#.

The piece containing the collinear singularities,sHC, is
treated according to whether the singularities are initial
final state in origin. For the former, factorization provides t
formalism for removing the singularities. In the latter ca
we distinguish between experimentally degenerate
tagged final states, and rely on either the Kinoshita-L
Nauenberg theorem or factorization to dispose of the sin
larities. We discuss the final state cases first, then retur
the initial state.
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1. Indistinguishable final states

Consider the case when there is a sum over experim
tally degenerate final states, such as a jet or total cross
tion. Let partons 4 and 5 be massless and collinear to e
other, 0<s45<dcs12. If we define p455p41p5, then for
fixed p5 we havedn21p455dn21p4. The three body phase
space Eq.~2.8! may be written as

dG3ucoll5F dn21p3

2p3
0~2p!n21

dn21p45

2p45
0 ~2p!n21

~2p!n

3d n~p11p22p32p45!G dn21p5

2p5
0~2p!n21

p45
0

p4
0

.

~2.27!

This is simply

dG3ucoll5dG2

dn21p5

2p5
0~2p!n21

p45
0

p4
0

, ~2.28!

wheredG2 is the two-body phase space of the particles 3 a
45. In the collinear limit (pt→0 with z fixed! we can write

p455~P,0,0,P!,

p4.S zP1
pt

2

2zP
,pW t ,zPD , ~2.29!

p5.S ~12z!P1
pt

2

2~12z!P
,2pW t ,~12z!PD .

Thenp41p55p451O(pt
2) and

s4552p4•p5.
pt

2

z~12z!
. ~2.30!

Now using dn22p5dppn23dVn23 and z(12z)ds455dpt
2

we find

dn21p5

2p5
0~2p!n21

p45
0

p4
0

5
~4p!e

16p2G~12e!
dzds45@s45z~12z!#2e.

~2.31!

The corresponding approximation to the matrix elemen
obtained by imposing collinear kinematics on the portion
the two-to-three matrix element proportional to the lead
collinear singularity. This is known as the leading pole
collinear approximation. As a consequence of the factori
tion theorems@28,29#, the squared matrix element facto
into the product of a splitting kernel and a leading ord
squared matrix element@1,35,37,43,72#.

As above, let partons 4 and 5 be collinear. The ma
element factorizes as
2-5
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(
—

uM3~112→31415!u2

.(
—

uM2~112→3148!u2

3P448~z,e!g2m r
2e 2

s45
, ~2.32!

where thePi j (z,e) are the unregulated (z,1) splitting func-
tions calculated inn5422e dimensions related to the usu
Altarelli-Parisi splitting kernels@72#. We label as 48 the par-
ton which splits into the 45 collinear pair. Generally, E
~2.32! contains an additional term that vanishes after integ
tion over the azimuthal angles inn dimensions@37,43#. Such
a term does not contribute to our result.

Substituting Eqs.~2.28!, ~2.31!, and~2.32! into Eq.~2.25!
gives

dsHC
112→314155ds0

112→3148F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3E
0

dcs12 ds45

s45
S s45

s12
D 2e

3E dz@z~12z!#2eP448~z,e!, ~2.33!

where we have used

1

G~12e!
5

G~12e!

G~122e!
1O~e2!. ~2.34!

The collinear condition (0<s45<dcs12) sets thes45 integra-
tion limits. The hard condition sets thez integration limits,
which depend additionally on the splitting function involve
and also on the mass of the parton recoiling against the
pair ~3 in this case!. This last dependence enters through
threshold condition, as discussed below.

First take parton 3 to be massless. Forq→qg splitting the

hard region is defined bydsAs12/2<E5<As12/2, assuming 4
labelsq and 5 labelsg. From Eq.~2.29! we haves345(p3
1p4)252p3•p4.(2p3•p45)z and s125(p31p45)

25s45
12p3•p45.2p3•p45 which together yields34.zs12. Using
Eq. ~2.7! the hard condition becomes

0<z<12ds . ~2.35!

For the g→gg splitting it is required that both gluons b
hard, i.e.,E4 andE5>dsAs12/2. z then satisfies the relatio
ds<z<12ds . For theg→qq̄ splitting there are no soft sin
gularities, so 0<z<1 may be taken. In all of these cases t
z integration limits are independent ofs45 by virtue of the
approximations4550 implicit in s12.2p3•p45 ~this point is
discussed further at the end of Sec. III B and in Appendix!.
The outermost integration overs45 may therefore be per
formed, giving the result
09403
.
-

5
e

dsHC
112→314155ds0

112→3148F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S 2
1

e D dc
2eE dzz2e~12z!2eP448~z,e!.

~2.36!

For z,1 the n-dimensional unregulated splitting function
may be written asPi j (z,e)5Pi j (z)1ePi j8 (z). Explicitly,

Pqq~z!5CF

11z2

12z
, ~2.37!

Pqq8 ~z!52CF~12z!, ~2.38!

Pgq~z!5CF

11~12z!2

z
, ~2.39!

Pgq8 ~z!52CFz, ~2.40!

Pgg~z!52NF z

12z
1

12z

z
1z~12z!G , ~2.41!

Pgg8 ~z!50, ~2.42!

Pqg~z!5
1

2
@z21~12z!2#, ~2.43!

Pqg8 ~z!52z~12z!, ~2.44!

whereN53 andCF5(N221)/2N54/3 for QCD. Expand-
ing the integrand in Eq.~2.36! to O(e) and integrating over
z yields the final state hard-collinear terms

dsHC
112→314155ds0

112→3148F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A1
48→45

e
1A0

48→45D , ~2.45!

where

A1
q→qg5CF~3/212 lnds!, ~2.46!

A0
q→qg5CF@7/22p2/32 ln2ds

2 ln dc~3/212 lnds!#, ~2.47!

A1
g→qq̄52nf /3, ~2.48!

A0
g→qq̄5nf /3~ ln dc25/3!, ~2.49!

A1
g→gg5N~11/612 lnds!, ~2.50!

A0
g→gg5N@67/182p2/32 ln2ds

2 ln dc~11/612 lnds!#, ~2.51!
2-6
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TWO CUTOFF PHASE SPACE SLICING METHOD PHYSICAL REVIEW D65 094032
wherenf denotes the number of active flavors.
When the mass of the parton recoiling against the 45 p

m3, is retained, the factorization of the phase space and
trix element is unaffected. Likewise, the collinear conditi
0<s45<dcs12 remains unchanged. It is only the boundries
the hard region that are modified. The full kinematic range
the invariants34 is m3

2<s34<s12. The threshold for produc
ing a particle of massm3 sets the lower limit. In terms ofs34

the hard region ism3
2<s34<(12ds)s12. This implies that

the hard condition Eq.~2.35! becomes 0<z<12ds /(1
2m3

2/s12). A similar analysis follows for theg→gg splitting
case whereinds /(12m3

2/s12)<z<12ds /(12m3
2/s12). We

therefore immediately see that Eqs.~2.46!–~2.51! are valid
with the replacementds→ds /(12m3

2/s12).

2. Tagged final states

Next, consider a process where a particular type of had
is identified in the final state. This necessitates the introd
tion of a fragmentation functionDh/c(z) which gives the
probability density for finding a hadronh that carries a frac-
tion z of the momentum of the parent partonc. Consider the
case where parton 4 fragments into a hadronh, for which the
lowest order cross section is

ds0
112→31h5ds0

112→314Dh/4~z!dz. ~2.52!

The hard collinear cross section expression in Eq.~2.36! be-
comes

dsHC
112→31h155ds0

112→3148F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S 2
1

e D dc
2e E dyy2e~12y!2e

3Dh/4~x!dxP448~y,e!

3d~xy2z!dz. ~2.53!

The delta function ensures that the hadronh carries a mo-
mentum fractionz of the parent parton’s momentum~parton
48 in this example!. Here there is a splitting 48→45 fol-
lowed by parton 4 fragmenting to hadronh. When all pos-
sible 2→3 subprocesses are considered, there will be sev
contributions of this same form, corresponding to a sum o
the parton 4. For example, if 48 is a gluon, there can beg
→gg followed by g→h or g→qq̄ followed by q→h or q̄
→h. Similarly, if 48 is a quarkq, there can beq→qg fol-
lowed byq→h or by g→h. Furthermore, the limits of inte
gration ony depend on the splitting function as in the ca
discussed in the previous subsection.

The collinear singularity, evidenced by the pole ine in
Eq. ~2.53!, must be factorized and absorbed into the b
fragmentation function. To do this, we introduce a scale
pendent parton fragmentation function
09403
ir,
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Dh/c~z,M f !5Dh/c~z!1S 2
1

e D F as

2p

G~12e!

G~122e! S 4pm r
2

M f
2 D eG

3E
z

1dy

y
Dh/c8~z/y!Pc8c

1
~y!. ~2.54!

In this expression there is an implied sum over the indexc8
corresponding to the sum over the different fragmentat
possibilities referred to above. The final state factorizat
scale has been denoted byM f . Notice, too, that the integra
tion over y extends fromz to 1. This form for the scale
dependent fragmentation function corresponds to the m
fied minimal subtraction (MS) convention. The regulated
(x<1) splitting functions@72# are given by

Pqq
1 ~x!5CFF 11x2

~12x!1
1

3

2
d~12x!G , ~2.55!

Pgq
1 ~x!5CFF11~12x!2

x G , ~2.56!

Pgg
1 ~x!52NF x

~12x!1
1

12x

x
1x~12x!G

1S 11

6
N2

1

3
nf D d~12x!, ~2.57!

Pqg
1 ~x!5

1

2
@x21~12x!2#. ~2.58!

Next, we rewrite the bare fragmentation function in E
~2.52! in terms of the scale dependent expression giv
above, yielding toO(as)

ds0
112→31h5ds0

112→314 H Dh/4~z,M f !1S 1

e D
3F as

2p

G~12e!

G~122e! S 4pm r
2

M f
2 D eG

3E
z

1dy

y
Dh/c8~z/y!Pc84

1
~y!J dz.

~2.59!

The second term is sometimes referred to as the mass fa
ization counterterm. Whends0 and dsHC are added to-
gether, there is a cancellation between the two singular
pressions. Note, however, that this cancellation is
complete since the limits of they integration in the two ex-
pressions differ.

After the cancellation, the resultingO(as) expression for
the fragmentation contribution is
2-7
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ds frag
112→31h5ds0

112→3148F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3H D̃h/48~z,M f !1FA1
sc~48→415!

e

1A0
sc~48→415!GDh/4~z,M f !J dz. ~2.60!

The soft collinear factorsAi
sc result from the mismatch in the

y integrations in the fragmentation and subtraction piec
mentioned above. They are given by

A0
sc5A1

sclnS s12

M f
2D , ~2.61!

A1
sc~q→qg!5CF~2 lndS13/2! ~2.62!

A1
sc~g→gg!52N ln ds1~11N22nf !/6. ~2.63!

The modified fragmentation functionD̃h/c(z,M f) is given by

D̃h/c~z,M f !5(
c8

E
z

12dsdc8cdy

y

3Dh/c8~z/y,M f !P̃c8c
frag, ~2.64!

where

P̃c8c
frag

5Pc8c~y!lnF y~12y!dcs12

M f
2 G2Pc8c

8 ~y!. ~2.65!

P(y) andP8(y) are then54 andO(e) pieces, respectively
of the unregulated splitting kernels given in Eqs.~2.37!–
~2.44!. The D̃ functions contain an explicit logarithm ofdc
as well as logarithmic dependences onds which are built up
by the integration ony when c85c. In Appendix D it is
shown how to make theds dependence explicit, thereby im
proving the convergence of the Monte Carlo integration.

Comparing with the previous subsection, we see t
when going to the fragmentation case, the hard collin
terms, Eqs.~2.46!–~2.51!, for the fragmenting parton are re
placed by a combination of theD̃ function and soft collinear
factorsAi

sc. Nevertheless, a careful comparison of the t
cases shows that the poles ine cancel and the final results fo
physics observables are independent of the cutoffs. This
be illustrated by several examples to follow.

3. Initial state

The treatment of the initial state collinear singularities
much the same as that for the previous case of final s
fragmentation. The collinear singularities are absorbed
the bare parton distribution functions leaving a finite rema
der which is written in terms of modified parton distributio
functions. In addition, there are accompanying soft collin
factors as in the fragmentation case. However, some of
details are different, so a brief summary of the derivation
09403
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given here. In order not to unnecessarily complicate the
cussion, only the details for one of the incoming partons w
be shown.

Consider a process which involves a parton on leg 2 co
ing from an incoming hadronB, so that in lowest order

ds0
11B→3145G2/B~x!dxdŝ0

112→314 , ~2.66!

whereG2/B(x)dx denotes the probability of getting parton
from hadronB with a momentum fraction betweenx and x
1dx. The caret is used here to label a purely partonic s
process. We are interested in the next-to-leading-order
rections coming from the various possible parton splittin
which can occur on leg 2. The hard collinear contribution E
~2.25! is calculated by applying the collinear approximatio
to the appropriate three-body matrix elements as follows

(
—

uM3~112→31415!u2

.(
—

uM2~1128→314!u2P282~z,e!g2m r
2e22

zt25
,

~2.67!

wherez denotes the fraction of parton 2’s momentum carr
by parton 28 with parton 5 taking a fraction (12z). Using
the approximationp22p5.zp2, the three-body phase spac
may be written as

dG3ucoll5F dn21p3

2p3
0~2p!n21

dn21p4

2p4
0~2p!n21

~2p!n

3d n~p11zp22p32p4!G dn21p5

2p5
0~2p!n21

.

~2.68!

The square bracketed portion is just two-body phase sp
evaluated at a squared parton-parton energy ofzs12. The p5
dependent part may be rewritten as

dn21p5

2p5
0~2p!n21

5
~4p!e

16p2G~12e!
dzdt25@2~12z!t25#

2e.

~2.69!

The allowed range fort25 is given by the collinear condition
0,2t25,dcs12. The t25 integration yields

E
0

dcs12
2dt25~2t25!

212e52
1

e
~dcs12!

2e. ~2.70!

Using these results, the three-body cross section in the
collinear region may be written as
2-8
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dsHC
11B→314155G2/B~y!dydŝ0

1128→314~zs12,t13,t14!

3F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S 2
1

e D dc
2eP282~z,e!dz~12z!2e

3d ~yz2x!dx. ~2.71!

Note that a factor of 1/z has been absorbed into the flu
factor for the two-body subprocess. The delta function
sures that the fraction of hadronB’s momentum carried by
parton 28 into the two-body subprocess isx in order to be
able to combine this result with the lowest order contrib
tion. The delta function may be used to perform they inte-
gration, but one point must first be made.s12 is related to the
square of the overall hadronic squared center-of-mass en
Sby s125yS. On the other hand, in the lowest order subp
cess the relation iss125xS. It is convenient to rewrite the
above expression using this latter definition fors12. There-
fore, after they integration, we obtain

dsHC
11B→314155G2/B~x/z!dŝ0

1128→314~s12,t13,t14!

3F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S 2
1

e D dc
2eP282~z,e!

dz

z F ~12z!

z G2e

dx.

~2.72!

Comparing with the corresponding result for final state fra
mentation, we see that a factor of@z(12z)#2e has been
changed to@(12z)/z#2e.

In order to factorize the collinear singularity into the pa
ton distribution function, we introduce a scale dependent p
ton distribution function using theMS convention:

Gb/B~x,m f !5Gb/B~x!1S 2
1

e D F as

2p

G~12e!

G~122e! S 4pm r
2

m f
2 D eG

3E
z

1dz

z
Pbb8~z!Gb8/B~x/z!. ~2.73!

Next, using this definition, we replaceG2/B(x) in the lowest
order expression~2.66! and combine the result with the har
collinear contribution~2.72!. The resultingO(as) expression
for the initial state collinear contribution is

dscoll
11B→314155dŝ0

1128→314F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3H G̃28/B~z,m f !1FA1
sc~2→2815!

e

1A0
sc~2→2815!GG2/B~z,m f !J dz.

~2.74!
09403
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Note that in this expression the soft collinear factors@given
in Eqs. ~2.61!–~2.63!# depend on the initial state factoriza
tion scalem f . The G̃ functions are given by

G̃c/B~x,m f !5(
c8

E
x

12dsdcc8dy

y
Gc8/B~x/y,m f !P̃cc8~y!

~2.75!

with

P̃i j ~y!5Pi j ~y!lnS dc

12y

y

s12

m f
2D 2Pi j8 ~y!. ~2.76!

The n54 andO(e) pieces of the unregulated splitting ke
nels, P(y) and P8(y), are given in Eqs.~2.37!–~2.44!. An
example of a hadron-hadron process will be given in the n
section.

As in the final state hadron case, theG̃ functions contain
an explicit logarithm ofdc as well as logarithmic depen
dences onds which are built up by the integration ony. In
Appendix D it is shown how to make theds dependence
explicit, thereby improving the convergence of the Mon
Carlo integration.

III. EXAMPLES

In this section we provide five illustrative examples a
plying the method developed in the previous section. T
results are shown to be in complete agreement with th
available in the literature. We begin by calculating the QC
corrections to electron-positron annihilation into a mass
quark pair. The quark mass serves to regulate any would
collinear singularities. There are only final state soft sing
larities and, hence, only the soft cutoff is required. Next,
QCD corrections to electron-positron annihilation into
massless quark pair are considered. In this case final s
soft and collinear singularities are encountered, necessita
the use of both soft and collinear cutoffs. The example
inclusive photon production in hadronic final states
electron-positron annihilation is then presented, illustrat
the use of fragmentation functions. Finally, we close the
amples section by showing how to calculate the QCD c
rections to lepton pair and single particle inclusive produ
tion in hadron-hadron collisions. Both examples conta
initial state soft and collinear singularities, necessitating
use of scale dependent parton distribution functions. Furt
more, the single particle inclusive cross section calculat
also requires the use of scale dependent fragmentation f
tions.

A. Electron-positron annihilation to massive quark pair

Electron-positron annihilation into a massive quark p
has a particularly simple singularity structure, that of s
singularities in the final state only. It will therefore be used
a first example of the method described in the section abo
2-9
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Working in the single photon exchange approximatio
the leading order Feynman diagram is shown in Fig. 1. N
glecting the electron mass and denoting the quark mass bm,
the leading order cross section

ds05
1

2s12
(
—

uM2u2dG2 , ~3.1!

calculated inn5422e dimensions is expressed in terms
the ~summed and averaged! matrix element squared

(
—

uM2u252Ne4Qq
2S t138

21t238
2

s12
2

1
2m2

s12
2e D , ~3.2!

and the two-body phase space

dG25
22e

16p S 4p

s12
D e

b122e
1

G~12e!
E

0

p

sin122eu du.

~3.3!

The center-of-mass scattering angle is denoted byu and b
5A124m2/s12. Qq is the quark charge in units ofe andN
53 is the number of colors. When masses are present,

FIG. 1. Leading order contribution to electron-positron anni
lation via photon exchange.
in
t

s
n

09403
,
-

is

often convenient to define primed Mandelstam invaria
which are the ones defined previously minus some comb
tion of squared masses. In this case,si j8 [si j 2m2 and t i j8
[t i j 2m2. Performing the integration overu we obtain the
well known e50 result,

s05
4pa2

3s12
Qq

2NS 11
2m2

s12
Db, ~3.4!

with a5e2/4p.
Because the quark mass regulates any would-be final s

collinear singularity, the appropriate decomposition of t
two-to-three contribution to the cross section is simply giv
by Eq. ~2.4!. For theO(as) QCD corrections we therefore
need the soft cross section~2.5!, the hard cross section~2.6!,
and the virtual corrections.

The real emission diagrams that giveuM3u2 are shown in
Fig. 2. If we define the~summed and averaged! squared ma-
trix element as

(
—

uM3u25
1

4
e4Qq

2g2
1

s12
2

NCFC, ~3.5!

then

- FIG. 2. Real emission contribution to electron-positron anni
lation.
C5tr@p” 2gmp” 1gn# $tr@~p” 31m!gm~p” 41p” 52m!gs~p” 42m!gs~2p” 42p” 51m!gn#/s458
212 tr@~p” 31m!

3gs~p” 31p” 51m!gm~p” 42m!gs~p” 41p” 52m!gn#/s358 s458 1tr@~p” 31m!gs~p” 31p” 51m!

3gm~2p” 41m!gn~p” 31p” 51m!gs#/s358
2%, ~3.6!
where the strong coupling is denoted byg and CF5(N2

21)/2N54/3. To obtain the hard contribution,sH , the
traces may be evaluated in four space-time dimensions.

There is a soft singularity when the energy of the gluon
Fig. 2 goes to zero. The corresponding soft contribution
the cross section,sS, is given by Eq.~2.22!. In this case, the
sum in Eq.~2.22! is taken over the final state quark leg
~labeled 3 and 4! and the color connected Born cross sectio
are related to the leading order cross section byds33

0 5

2ds34
0 5ds44

0 5CFds0. We find
o

s

dsS5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eGCF

3E F2
m2

~p3•p5!2
2

m2

~p4•p5!2

1
s22m2

p3•p5p4•p5
GdS. ~3.7!
2-10
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The poles need to be integrated over the soft phase s
according to Eq.~2.17! to extract the singularities in dimen
sional regularization. Define

I ~s358 !5E 1

s358
2

dS, ~3.8!

I ~s458 !5E 1

s458
2

dS, ~3.9!

I ~s358 s458 !5E 1

s358 s458
dS. ~3.10!

In terms of thep1p2 center-of-momentum scattering angleu,
p3 andp4 may be written as

p35
As12

2
~1,0, . . . ,0,b sinu,b cosu!,

~3.11!

p45
As12

2
~1,0, . . . ,0,2b sinu,2b cosu!.

Using these together with Eq.~2.12! we find

s358 52p3•p55As12E5~12b sinu sinu1cosu2

2b cosu cosu1!,
~3.12!

s458 52p4•p55As12E5~11b sinu sinu1cosu2

1b cosu cosu1!.

The gluon energy integrals in Eqs.~3.8!–~3.10! may be per-
formed trivially:

S 4

s12
D 2eE

0

dsAs12/2
dE5E5

122e 1

s12E5
2

5
1

s12
S 2

1

2e D ds
22e . ~3.13!

The remaining angular integrals are well know and are ta
lated in Appendix B. The complete results are

I ~s358 !5I ~s458 !5
1

2m2 S 2
1

2e
1 ln ds2

1

2b
ln

11b

12b D ,

~3.14!

I ~s358 s458 !5
1

s12b
S 2

1

2e
ln

11b

12b
2Li2

2b

11b

2
1

4
ln2

11b

12b
1 ln dsln

11b

12b D . ~3.15!

We may therefore write the final expression for the s
cross section as
09403
ce

-

t

dsS5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG S A1

s

e
1A0

sD ,

~3.16!

where

A1
s52CFS 12

11b2

2b
ln

11b

12b D ,

~3.17!

A0
s54CFF2 ln ds1

1

2b
ln

11b

12b
2

11b2

2b

3S Li2

2b

11b
1

1

4
ln2

11b

12b
2 ln dsln

11b

12b D G .
The virtual contribution is obtained from the one-loo

diagrams shown in Fig. 3. In the on-shell renormalizati
scheme diagrams~c! and ~d! cancel exactly. The vertex cor
rection needed in Fig. 3~a! is shown separately in Fig. 4
After performing the loop integrals the result for the vert
valid for q2.4m2 is

Gm5~2 ieQq!d i j ~g2CFCe!ū~p2!

3FA
~p11p2!m

2m
1BgmGu~p1!, ~3.18!

with

A5
b221

b
ln

12b

11b
, ~3.19!

FIG. 3. Loop and counterterm corrections to electron-posit
annihilation via photon exchange.

FIG. 4. The vertex correction.
2-11
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B5
1

e S 11
11b2

b
ln

11b

12b D13b ln
11b

12b

1
11b2

b S 2
1

2
ln2

12b

11b
12 ln

12b

11b
ln

2b

11b

12Li2
12b

11b
1

2p2

3 D , ~3.20!

and

Ce5
p22e

~2p!422e
G~11e!S m r

2

m2D e

. ~3.21!

The vertex counterterm,Z1, implicit in Fig. 3~b! is fixed in
the on-shell renormalization scheme by the condition that
renormalized vertex throughO(g2) evaluated at zero mo
mentum transfer equals the leading contribution@2 ieLm(q
50)52 iegm#. This results in

Z1512g2CFCeS 3

e
14D . ~3.22!

The interference of the leading order diagram with the o
loop renormalized diagrams yields

dsV5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG S A1

v

e
1A0

vD
1ds̃v, ~3.23!

with

A1
v522CFS 12

11b2

2b
ln

11b

12b D ,

~3.24!

A0
v5CFF22S 12

11b2

2b
ln

11b

12b D lnS s12

m2D
13b ln

11b

12b
241

11b2

b S 2
1

2
ln2

12b

11b

12 ln
12b

11b
ln

2b

11b
12Li2

12b

11b
1

2

3
p2D G ,

and

ds̃v5
8p2a2

s12
Qq

2S as

2p D F4NCF

b221

b
ln

12b

11b

3S m2

s12
2

t138 t148

s12
2 D GdG2 . ~3.25!

Observe that the sum of the soft and ultraviolet renormali
virtual terms is finite,A1

s1A1
v50, as required@27#. We are

therefore free to return to 4 dimensions with the finite
maindersA0

s1A0
v . The final result for theO(as) correction
09403
e

e

d

-

consists of two contributions to the cross section: a two-bo
term s (2) and a three-body terms (3) where

s (2)5E Fds0S as

2p D ~A0
s1A0

v!1ds̃vG ~3.26!

and

s (3)5sH5
1

2s12
E

H
(
—

uM3u2dG3 . ~3.27!

As a check, these results may be integrated to give a t
rate and compared against the known next-to-leading o
result @73# taken from@74#:

s tot
(1)5s0

as

4p
CF@~3228r2!Li2~ t !

1~1624r2!F3~ t !1~21r!A12rF4~ t !

1~822r2!ln~ t !ln~11t !1~21212r17r2/4!ln~ t !

1~319r/2!A12r#, ~3.28!

wheres0 is the leading order cross section for producing
pair of massless quarks given by

s05
4pa2

3s12
NQq

2 , ~3.29!

and we have also defined

t5
12A12r

11A12r
, ~3.30!

with r54m2/s12 and

F3~ t !5Li2~2t !1 ln~ t !ln~12t !,
~3.31!

F4~ t !56 ln~ t !28 ln~12t !24 ln~11t !.

The next-to-leading order corrections are shown in Fig. 5
As511 GeV andm5mb55 GeV. The two- and three-bod
contributions together with their sum are shown as a funct
of the soft cutoffds . The bottom enlargement shows the su
~open circles! relative to65% ~dotted lines! of the analyti-
cal result~solid line! given in Eq.~3.28!. The result quickly
converges to the known result.

It is satisfying that the fully inclusive rate from the slicin
method agrees with that from Ref.@74#. Having made this
necessary check, the results may be used to histogram a
variety of observables and to study various physics issu
We refrain from any such studies here, and instead pas
our second example.

B. Electron-positron annihilation to massless quark pair

The process to be studied in this section is similar to t
of the last section, but with one key difference: the qua
are considered massless from the beginning. Therefore
addition to the final state soft singularities there are fi
state collinear singularities. The leading order cross sect
2-12
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ds05
1

2s12
(
—

uM2u2dG2 ~3.32!

is expressed in terms of the~summed and averaged! matrix
element squared

(
—

uM2u252Ne4Qq
2S t13

2 1t23
2

s12
2

2e D ~3.33!

calculated from Fig. 1, and the two body phase space

dG25
22e

16p S 4p

s12
D e 1

G~12e!
E

0

p

sin122eu du. ~3.34!

In four space-time dimensions, integration over the ph
space produces the result shown previously in Eq.~3.29!.

For the QCD corrections we need the soft cross sec
~2.5!, the hard-collinear cross section~2.25!, the hard–non-
collinear cross section~2.26!, and the virtual contribution
The real emission diagrams are shown in Fig. 2 where
quark lines are to be interpreted as massless. The two
three body matrix element squareduM3u2 needed to evaluate
the hard–non-collinear cross section Eq.~2.26! follows di-
rectly from Eq.~3.5! of the previous example by settingm
50 and evaluating the traces in four space-time dimensio
The soft cross section Eq.~2.5! may also be obtained from
the results of the last example by settingm50 in Eq. ~3.7!
giving

dsS5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eGCF

3E S s

p3•p5p4•p5
DdS. ~3.35!

FIG. 5. The next-to-leading order contribution to the total cro
section for producing a massive quark pair in electron-positron
nihilation via single photon exchange. The two- and three-bo
contributions together with their sum are shown as a function of
soft cutoff ds . The bottom enlargement shows the sum~open
circles! relative to65% ~dotted lines! of the analytical result~solid
line! given in Eq.~3.28!.
09403
e

n

e
to-

s.

The pole needs to be integrated over the soft phase s
according to Eq.~2.17!. To this end, define

I ~s35s45!5E 1

s35s45
dS. ~3.36!

Using the massless (b51) form of Eq. ~3.12!, the energy
integral Eq.~3.13!, and the angular integrals given in Appe
dix B, the result is

I ~s35s45!5
1

2s12
S 1

e2
2

2

e
ln ds12 ln2dsD . ~3.37!

We may therefore write the final expression for the soft cr
section as

dsS5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A2
s

e2
1

A1
s

e
1A0

sD ~3.38!

with

A2
s52CF ,

A1
s524CFln ds , ~3.39!

A0
s54CFln2ds .

The final state hard collinear cross section was derived
Sec. II B 1. The relevant splitting isq→qg. From Eq.~2.45!
we have

dsHC
q→qg5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A1
q→qg

e
1A0

q→qgD , ~3.40!

with

A1
q→qg5CF~3/212 lnds!,

~3.41!
A0

q→qg5CF@7/22p2/32 ln2ds

2 ln dc~3/212 lnds!#.

The interference of the one-loop diagrams in Fig. 3 w
the leading order diagram yields the virtual contribution.
Fig. 3, diagrams~b! and~d! add to zero via the Ward identity
Diagram ~c! vanishes for massless quarks. This leaves d
gram~a!, comprised of the vertex shown in Fig. 4 evaluat
for massless quarks. The result for the vertex is

Gm5~2 ieQq!d i j ū~p2!gmu~p1!g~q2!, ~3.42!

with

s
n-
y
e

2-13
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g~q2!52
as

2p
CFS 4pm r

2

2q2 D e
G~12e!

G~122e!

3S 1

e2
1

3

2e
141

p2

6 D . ~3.43!

We may therefore write the final expression for the virtu
contribution to the cross section as

dsV5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A2
v

e2
1

A1
v

e
1A0

vD , ~3.44!

with

A2
v522CF ,

A1
v523CF , ~3.45!

A0
v522CF~42p2/3!.

The full two-body weight is given by the sumdsS

1dsV12dsHC
q→qg . The factor of two occurs since there a

two quark legs, either of which can emit a gluon. At th
point we have a finite result sinceA2

s1A2
v50 andA1

s1A1
v

12A1
q→qg50 as required@27#. The finite two-body weight is

given by

s (2)5E ds0S as

2p D ~A0
s1A0

v12A0
q→qg! ~3.46!

while the three-body contribution is given by

s (3)5sHC̄5
1

2s12
E

HC̄
(
—

uM3u2dG3 . ~3.47!

A necessary check may be made by integrating these
sults and comparing with the known analytic answer. T
contributions froms (2) ~negative! and s (3) ~positive! and
their sum are shown in Fig. 6 forAs5500 GeV as a func-
tion of the soft cutoff ds with the collinear cutoff dc
5ds/300. The known result may be found in@26#, for ex-
ample, and is given by

s tot
(1)5s0

as

4p
3CF , ~3.48!

where s0 is given in Eq.~3.29!. The bottom enlargemen
shows the sum~open circles! relative to65% ~dotted lines!
of the known result~solid line! given in Eq. ~3.48!. Very
good agreement is found belowds;231023.

Before proceeding further, it is instructive to exami
some issues related to the cutoff dependence of this t
nique. As shown in Fig. 6, the answer converges to
known result fords,1023 when dc5ds/300. We have im-
posed the requirementdc!ds which may be understood b
09403
l

e-
e

h-
e

examining the nature of the three-body phase space for
case. Neglecting both initial and final state masses, fo
momentum conservation yieldss125s341s351s45. The soft

region is defined byE5,dsAs12/2 which, taken with Eq.
~2.7!, can be recast ass45,dss122s35. This is shown as the
region S in the plot ofs45 versuss35 in Fig. 7. Two collinear
regions defined by the constraintss35 or s45,dcs12 are
shown as the regions labeled C in Fig. 7. There are two sm
regions labeled ‘‘m’’ which are properly included in the co
linear regions C. However, using a fixed upper limit of
2ds in calculating the hard collinear contributions@cf. Eq.
~2.35!# these regions are excluded. They are also not
cluded in the hard–non-collinear three-body integratio
With some effort, it is possible to analytically evaluate t
required integrals~2.33! over the m regions. The result~de-
rived in Appendix C! is that occurrences of lndcln ds in Eq.

FIG. 6. The next-to-leading order contribution to the total cro
section for producing a massless quark pair in electron-posi
annihilation via single photon exchange. The two-body~negative!
and three-body~positive! contributions together with their sum ar
shown as a function of the soft cutoffds with the collinear cutoff
dc5ds/300. The bottom enlargement shows the sum~open circles!
relative to65% ~dotted lines! of the analytical result~solid line!
given in Eq.~3.48!.

FIG. 7. Thes35-s45 plane for electron-positron annihilation t
massless quarks showing the delineation into soft S and colline
regions. The triangles marked ‘‘m’’ give vanishing contribution f
dc!ds .
2-14
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~2.47! are to be replaced by lndcln ds2Li2(dc /ds). From the
properties of the dilogarithm function we note that the c
rection term vanishes asdc /ds in the limit of smalldc . Ac-
cordingly, the contributions from the regions denoted by m
Fig. 7 may be made negligible by requiringdc!ds . Of
course, asdc andds become smaller the statistical errors
the sum of the two- and three-body weights increase. In p
tice, one must compromise between the errors induced
larger cutoffs and the statistical errors. For many calculati
it has been found that choosingdc to be 50–100 times
smaller thands is sufficient for answers accurate to a fe
percent. Acceptable ranges fords must be determined on
case by case basis, as illustrated by the examples shown
Furthermore, the sign of the deviations asds grows differs
from process to process.

C. Electron-positron annihilation to photons

In this section we consider an example fragmentation p
cess, inclusive photon production in hadronic final states
electron-positron annihilation, calculated to leading order
the electromagnetic couplinga. For pedagogical purpose
only the radiation of photons from the final state quark
antiquark will be included, i.e., initial state radiation will b
neglected. This process is different from the previous t
examples in that there are final state collinear singulari
only, and they are removed through the factorization pro
dure.

The diagram for the leading order non-perturbative c
tribution is shown in Fig. 8. The cross section from E
~2.52! is

ds0
e1e2→gX5(

q
dzDg/q~z!ds0

e1e2→qq̄. ~3.49!

To simplify notation it is helpful to write the Born-level tota
cross section fore1e2→qq̄ in terms of that fore1e2

→m1m2:

s0
e1e2→qq̄5NQq

2s0
e1e2→m1m2

. ~3.50!

We further denotes0
e1e2→gX by s, and s0

e1e2→m1m2
by

smm . Taking into accountDg/q(z)5Dg/q̄(z), and lettingf
denote the quark flavor, we arrive at the result for the lead
order non-perturbative contribution

FIG. 8. Leading order non-perturbative contribution to inclus
photon production via photon exchange.
09403
-

n

c-
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s
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g

1

smm

ds

dz
52N(

f 51

nf

Qf
2Dg/ f~z!. ~3.51!

Additionally, there are two- and three-body pieces th
make up the leading order perturbative contribution. T
Feynman diagrams are shown in Fig. 9. Because there
only final state collinear singularities present, the relev
decomposition of the two-to-three contribution to the cro
section is into collinear and non-collinear terms,s5sC
1s C̄ . The collinear termsC is handled as discussed in Se
II B 2. In this case there are no soft singularities so the s
collinear termsAsc are not present. The two-body piece fo
lows from Eq.~2.60!:

1

smm

ds (2)

dz
52N

a

2p (
f 51

nf

Qq
4D̃g/ f~z,M f ! ~3.52!

once the replacementas→a is made.D̃g/ f(z,M f) is as given
in Eq. ~2.64! and may be expanded usingDg/g(x)5d(1
2x)1O(a2) and Dg/ i(x)5O(a) for i 5g,q. The leading
term in a is therefore

D̃g/q~z,M f !5E
z

1dy

y
d~12z/y!P̃gq

frag~y!

5 P̃gq
frag~z!, ~3.53!

whereP̃frag is as given in Eq.~2.65! with

Pgq~z,e!5
11~12z!22ez2

z
. ~3.54!

The final result for the two-body piece of the leading ord
perturbative contribution is

1

smm

ds (2)

dz
52N

a

2p (
f 51

nf

Qf
4H 11~12z!2

z

3 lnF z~12z!dcs

M f
2 G1zJ . ~3.55!

The complementary non-collinear pieces C̄ follows from the
matrix element represented in Fig. 9:

FIG. 9. Leading order perturbative contribution to inclusi
photon production via photon exchange.
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s (3)5
1

2sEC̄
(
—

uM3u2dG3

5
4e6

3s2
N(

f 51

nf

Qf
4E

C̄
dG3S 2s34s

s35s45
1

s35

s45
1

s45

s35
D .

~3.56!

We could now study the cutoff dependence numerically a
the previous examples. However, the integration over ph
space may be performed analytically and rather straight
wardly so we take this route to demonstrating thedc inde-
pendence of the full result. To this end, consider, in the
tual photon rest frame, the three-body phase space

dG35
1

8

1

~2p!5

1

E3

d3p4

E4

d3p5

E5
d~As2E32E42E5!.

~3.57!

Let qm denote the virtual photon four-momentum. TakingpW 5

along thez axis and definingx452E4 /As, z52E5 /As we
may write the four-momenta as

q5As~1,0,0,0!, ~3.58!

p55z
As

2
~1,0,0,1!, ~3.59!

p45x4

As

2
~1,sinu,0,cosu!. ~3.60!

Momentum conservationqW 5pW 31pW 41pW 5 gives

p35S E3 ,2x4

As

2
sinu,0,2x4

As

2
cosu2z

As

2 D .

~3.61!

The mass-shell conditionp3
250 can be used to fixE3 as

E35
As

2
Ax4

21z212x4zcosu. ~3.62!

Writing d3p452p d cosu E4
2dE4 and d3p554pE5

2dE5, the
phase space delta function may be used to perform the cu
integral. The invariantss34, s35, ands45 may then be written
in terms ofx4 andz as

s355s~12x4!,

s455s~z1x421!, ~3.63!

s345s~12z!.

The three-body piece is now
09403
in
se
r-

-

s

1

smm

ds (3)

dz
5N

a

2p (
f 51

nf

Qf
4E

C̄
dx4F 2~12z!

~12x4!~z1x421!

1
12x4

z1x421
1

z1x421

12x4
G . ~3.64!

This is to be integrated over the non-collinear C¯ region de-
fined bys45.dcs ands35.dcs which is equivalent to 12z
1dc<x4<12dc . The integral may easily be performe
Dropping terms ofO(dc), the final result for the three-bod
piece of the leading order perturbative contribution is

1

smm

ds (3)

dz
52N

a

2p (
f 51

nf

Qf
4F11~12z!2

z
lnS z

dc
D2zG .

~3.65!

Adding the non-perturbative~3.51!, perturbative two-
body ~3.55!, and perturbative three-body~3.65! contributions
we obtain the well known result@75,76#

1

smm

ds

dz
52N(

f 51

nf

Qf
2H Dg/ f~z!1

a

2p
Qf

211~12z!2

z

3 lnF z2~12z!s

M f
2 G J , ~3.66!

which is independent ofdc .

D. Drell-Yan

Our next example is that of the QCD corrections to lept
pair production in hadron-hadron collisions which illustrat
the method for handling initial state collinear singulariti
developed in Sec. II B 3.

The leading order contribution mediated by a virtual ph
ton is shown in Fig. 10. The leading order partonic cro
section

dŝ05
1

2s12
(
—

uM2u2dG2 ~3.67!

is expressed in terms of the~summed and averaged! matrix
element squared calculated inn5422e dimensions

(
—

uM2u25e4Qf
2 2

N S t13
2 1t23

2

s2
2e D ~3.68!

FIG. 10. Leading order contribution to Drell-Yan production
a lepton pair via photon exchange.
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and the two-body phase space

dG25
22e

16p S 4p

s12
D e 1

G~12e!
E

0

p

sin122eu du. ~3.69!

For the QCD corrections there are five pieces to consi
the finite hard–non-collinear partonic cross section E
~2.26!, the mass factorized hard-collinear cross section
~2.74!, which consists of two pieces, the soft part of t
initial state factorization counterterms and the mass fac
ization residuals~the G̃ functions!, the soft cross section Eq
~2.22!, and the virtual corrections.

Shown in Fig. 11 are the real emission diagrams that g
uM3u2. Defining the~summed and averaged! matrix element
squared as

(
—

uM3u25
1

4
e4Qf

2g2
1

s34
2

CF

N
C, ~3.70!

we find

C5tr@p” 3gmp” 4gn# $2tr@p” 2gm~p” 12p” 5!gsp” 1gs~p” 1

2p” 5!gn#/t15
2 12 tr@p” 2gs~p” 22p” 5!gmp” 1gs~p” 1

2p” 5!gn#/t15t252tr@p” 2gs~p” 22p” 5!gmp” 1gn~p” 2

2p” 5!gs#/t25
2 %. ~3.71!

The hard–non-collinear partonic cross section is obtained
evaluating the traces in four space-time dimensions.

There is a soft singularity when the gluon’s energy goes
zero in the real emission diagrams. This contributes to
soft cross section presented in Eq.~2.22!. The sum runs over
the initial state quark lines~labeled by 1 and 2!. The color
connected Born cross sectionds12

0 52CFds0. We find

dsS5dŝ0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eGCF

3E S s

p1•p5p2•p5
DdS. ~3.72!

The integration of the pole over the soft phase space mea
~2.17! is written in terms of

I ~ t15t25!5E 1

t15t25
dS. ~3.73!

In the p1p2 center-of-momentum system we take

FIG. 11. Real emission contribution to Drell-Yan production
a lepton pair via photon exchange.
09403
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p15
As12

2
~1,0, . . . ,0,1!,

~3.74!

p25
As12

2
~1,0, . . . ,0,21!.

Using these together with Eq.~2.12! we find

t15522p1•p552As12E5~12cosu1!,
~3.75!

t25522p2•p552As12E5~11cosu1!.

Using the energy integral Eq.~3.13! and the angular integral
given in Appendix B, we find

I ~ t15t25!5
1

2s12
S 1

e2
2

2

e
ln ds12 ln2dsD . ~3.76!

We may therefore write the final expression for the soft cr
section as

dsS5dŝ0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A2
s

e2
1

A1
s

e
1A0

sD , ~3.77!

with

A2
s52CF ,

A1
s524CFln ds , ~3.78!

A0
s54CFln2ds .

Because the quarks are massless, there is a collinear
gularity when the gluon becomes collinear to either of t
initial state quark lines. This singularity is removed throu
the factorization program described in Sec. II B 3. The so
collinear pieces of the initial state factorization counterter
are given in Eq.~2.74! as

dscoll5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A1
sc

e
1A0

scD , ~3.79!

with

A1
sc5CF~2 lnds13/2!,

~3.80!

A0
sc5CF~2 lnds13/2!ln

s12

m f
2

.

The one-loop virtual diagrams are shown in Fig. 12. As
the case for electron-positron annihilation to a massl
quark pair, diagrams~b! and ~d! add to zero via the Ward
identity, and diagram~c! vanishes for massless quarks. Th
2-17
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leaves diagram~a! for which the vertex shown in Fig. 4 is
needed, for massless quarks. The result is given in
~3.42!. The final expression for the virtual cross section is

dsV5ds0F as

2p

G~12e!

G~122e!
S 4pm r

2

s12
D eG

3S A2
v

e2
1

A1
v

e
1A0

vD , ~3.81!

with

A2
v522CF ,

A1
v523CF , ~3.82!

A0
v522CF~42p2/3!.

At this point we pause to note that the two-body weight
finite: A2

s1A2
v50 andA1

s1A1
v12A1

sc50. The factor of two
occurs since there are two quark legs, either of which
emit a gluon.

In addition to theqq̄ initiated processes, there are alsoqg
initiated processes at this order of perturbation theory,
shown in Fig. 13. The singularities are initial state colline
only in origin and arise from thePqg splitting in diagram~b!.
They are removed by factorization. As thePqg(z) kernel is
finite for z51 there are no soft singularities. This implie
that theAsc terms in Eq.~2.74! are not present; only the finit
G̃ terms remain.

FIG. 12. Loop and counterterm corrections to Drell-Yan prod
tion of a lepton pair via photon exchange.

FIG. 13. Quark-gluon initiated contribution to Drell-Yan pro
duction of a lepton pair.
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The final finite two-body cross section is given by the su
of the residualG̃ terms from both theqq̄ and qg initiated
processes and the finite two body weights from theqq̄ pro-
cess,A0

s1A0
v12A0

sc. The result, summed over all parton fla
vors, is

s (2)5S as

2p D(
f
E dxAdxBdŝ0

3@Gf /A~xA ,m f !Gf̄ /B~xB ,m f !~A0
s1A0

v12A0
sc!

1Gf /A~xA ,m f !G̃f̄ /B~xB ,m f !

1G̃f /A~xA ,m f !Gf̄ /B~xB ,m f !1~xA↔xB!#. ~3.83!

The G̃ functions are given in Eq.~2.75!. The three-body
contribution is given by

s (3)5 (
i , j 5q,g

E dxAdxBGi /A~xA ,m f !

3Gj /B~xB ,m f !dŝ i j , ~3.84!

with the hard–non-collinear partonic cross section given

dŝ i j 5
1

2s12
E

HC̄
(
—

uM3
( i j )u2dG3 . ~3.85!

Physical predictions follow from the sums (2)1s (3) which
is cutoff independent for sufficiently small cutoffs. The r
sults may be integrated to obtain the total rate forQ2

.Qmin
2 and checked against the knownO(as) corrections

s5E
Qmin

2

S

dQ2E
Q2/S

1

dxAE
Q2/SxA

1

dxB

3H (
i j 5q,q̄

Gi /A~xA ,m f !Gj /B~xB ,m f !
dŝqq

dQ2

1 (
i 5q,q̄

@Gi /A~xA ,m f !Gg/B~xB ,m f !

1Gg/A~xA ,m f !Gi /B~xB ,m f !#
dŝqg

dQ2 J , ~3.86!

whereQ2 is the square of the lepton pair invariant mass a
S is the hadron-hadron center of mass energy squared, w
is related tos12, the parton-parton center of mass ener
squared, vias125xAxBS. Defining z5Q2/s12, the O(as)
hard scattering partonic subprocess cross sections are g
by @77#

-

2-18
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dŝqq

dQ2
5s0

as

2p
CFH 4~11z2!F ln~12z!

12z G
1

22
~11z2!

12z
ln z1S 2p2

3
28D d~12z!

1
3

2
Pqq

1 ~z!ln
Q2

m f
2J , ~3.87!

and

dŝqg

dQ2
5s0

as

2p

1

2 H 3

2
1z2

3

2
z2

12Pqg
1 ~z!F ln

~12z!2

z
211 ln

Q2

m f
2G J , ~3.88!

where

s05
4pa2Qq

2

3Ns12Q
2

. ~3.89!

Pqq
1 (z) and Pqg

1 (z) are the splitting kernels given in Eqs
~2.55! and ~2.58!.

We show numerical results for the cutoff~in!dependence
for proton-proton collisions atAS528.28 GeV withQmin
510 GeV. Hard scales are set to the lepton pair massm f
5m r5Q and the number of flavors taken to benf53.

Shown in Fig. 14 is the next-to-leading order quark-qua
contribution to the Drell-Yan cross section. The two- a
three-body contributions to the cross section~negative and
positive, respectively!, and their sum are shown as a functio
of the soft cutoffds . The collinear cutoffdc5ds/50. The

FIG. 14. The next-to-leading order quark-quark contribution
the Drell-Yan cross section. The two-body~negative! and three-
body~positive! contributions together with their sum are shown a
function of the soft cutoffds with the collinear cutoffdc5ds/50.
The bottom enlargement shows the sum~open circles! relative to
65% ~dotted lines! of the analytic result~solid line! given in Eq.
~3.87!.
09403
k

bottom portion of the figure shows the sum~open circles!
relative to65% ~dotted lines! of the analytic result~solid
line! given in Eq.~3.87!.

Finally, we show the next-to-leading order quark-glu
contribution to the Drell-Yan cross section in Fig. 15. T
two- and three-body contributions and their sum are sho
as a function of the collinear cutoffdc . The bottom enlarge-
ment shows the sum~open circles! relative to65% ~dotted
lines! of the analytic result~solid line! given in Eq.~3.88!.

In both cases, nice agreement is seen with the kno
analytic result, providing a cross check on the use of the
cutoff phase space slicing method.

E. Single particle inclusive cross section

Our final example is that of the single particle inclusi
cross section in hadron-hadron collisions. The input nee
for this calculation includes the squared matrix elements
the 2→3 subprocesses@78# and the results for theO(as

3)
one-loop contributions to the 2→2 subprocesses@37,78#. For
the purpose of this example, the notation of@37# will be
used, since much of the input needed can be found in
appendixes of that paper. The partons are labeled asA1B
→112 andA1B→11213 for the 2→2 and 2→3 sub-
processes, respectively. A flavor labelaA is used to denote
the flavor of partonA, and similarly for the other partons.

The lowest-order contribution to the inclusive cross s
tion for producing a hadronh in a collision of hadrons of
typesA andB can be written as

dsB5
1

2xAxBs (
aA ,aB ,a1 ,a2

GaA /A~xA!GaB /B~xB!

3Dh/a1
~z1!dxAdxBdz1

~4pas!
2

w~aA!w~aB!
c (4)~aW ,pW !dG2

~3.90!

where aW 5$aA ,aB ,a1 ,a2% and pW 5$pA
m ,pB

m ,p1
m ,p2

m% denote

FIG. 15. The next-to-leading order quark-gluon contribution
the Drell-Yan cross section. The two-body~negative! and three-
body~positive! contributions together with their sum are shown a
function of the collinear cutoffdc . The bottom enlargement show
the sum~open circles! relative to65% ~dotted lines! of the analytic
result ~solid line! given in Eq.~3.88!.
2-19
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the sets of flavor indices and parton four-vectors, resp
tively. The factors appearing in the spin/color averaging
given by

w~a!5H 2~12e!V, a5gluon,

2N, a5quark or antiquark,

with N53 andV5N221. The factordG2 is the differential
two-body phase space element from Eq.~2.11!. Equation
~3.90! gives the contribution where parton 1 fragments in
the hadronh. Care must be taken to explicitly include in th
sum overaW those terms corresponding to the case wh
parton 2 fragments intoh. For compactness, these terms w
not be explicitly written. The squared matrix elements for t
various subprocesses, denoted byc (4)(aW ,pW ), may be found
in Ref. @37#.

Next, consider the one-loop virtual corrections to the
→2 subprocesses. These take the form

dsv5
1

2xAxBs (
aA ,aB ,a1 ,a2

GaA /A~xA!GaB /B~xB!

3Dh/a1
~z1!dxAdxBdz1

3
~4pas!

2

w~aA!w~aB!
F as

2p S 4pmR
2

2pA•pB
D e G~12e!

G~122e!
G

3c (6)~aW ,pW !dG2 ~3.91!

where

c (6)~aW ,pW !5c (4)~aW ,pW !F2
1

e2 (
n

C~an!2
1

e (
n

g~an!G
1

1

2e (
m,n

mÞn

lnS pm•pn

pA•pB
Dcm,n

(4,c)~aW ,pW !

2
p2

6 (
n

c (4)~aW ,pW !1cNS
(6)~aW ,pW !1O~e!.

~3.92!

This expression forc (6) differs slightly from Eq.~35! in Ref.
@37# because we have chosen to extract a differente depen-
dent overall factor: a factor ofG(11e)G(12e)'1
1e2p2/6 has been absorbed into the above expression
c (6). Furthermore, the arbitrary scaleQES

2 used in Ref.@37#,
in order to match the conventions used elsewhere in
present work, has been chosen to be 2pA•pB . The expres-
sions for the functionscm,n

(4,c) andcNS
(6) may be found in Ap-

pendix B of Ref.@37#. The quantitiesC(an) and g(an) are
given by

C~a!5H N53, a5gluon,

CF5
4

3
, a5quark or antiquark,

and
09403
c-
e

e

e

or

e

g~a!5H ~11N22nf !/6, a5gluon,

3CF/2, a5quark or antiquark.

It will be convenient for subsequent expressions to adopt
following notation:

F5S 4pmR
2

2pA•pB
D e G~12e!

G~122e!
. ~3.93!

The one loop virtual contributions can now be written as

dsv5
1

2xAxBs (
aA ,aB ,a1 ,a2

GaA /A~xA!GaB /B~xB!

3Dh/a1
~z1!dxAdxBdz1

~4pas!
2

w~aA!w~aB!

3F as

2p S A2
v

e2
1

A1
v

e
1A0

vD dG2 ~3.94!

where

A2
v52(

n
C~an!c (4)~aW ,pW !, ~3.95!

A1
v52(

n
g~an!c (4)~aW ,pW !

1
1

2 (
m,n

mÞn

lnS pm•pn

pA•pB
Dcm,n

(4,c)~aW ,pW !, ~3.96!

A0
v52

p2

6 (
n

C~an!c (4)~aW ,pW !1cNS
(6)~aW ,pW !. ~3.97!

Next, the contributions from the 2→3 subprocesses in th
limit where one of the final state gluons becomes soft
needed. The contributions of the 2→3 subprocesses may b
written as

ds2→35
1

2xAxBs

~4pas!
3

w~aA!w~aB!
F

3 (
aA ,aB ,a1 ,a2 ,a3

GaA /A~xA!Ga/B/B~xB!

3Dh/a1
~z1!dxAdxBdz1

3C~aA ,aB ,a1 ,a2 ,a3 ,pA
m ,pB

m ,p1
m ,p2

m ,p3
m!dG3 .

~3.98!

The expressions for the 2→3 squared matrix elements ap
pearing in Eq.~3.98! may be found in Ref.@78#. As noted
earlier for the two-body contributions, one must include
the sum all possible parton to hadron fragmentations.
2-20
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Consider the case where the soft gluon is parton 3. In
limit, the functionC may be expanded as

C~aA ,aB ,a1 ,a2 ,a3 ,pA
m ,pB

m ,p1
m ,p2

m ,p3
m!

; (
m,n

m,n

da3 ,g

pm•pn

pm•p3pn•p3

3cm,n
(4,c)~aA ,aB ,a1 ,a2 ,pA

m ,pB
m ,p1

m ,p2
m!. ~3.99!

Next, one must integrate over the soft region of pha
space defined byE3,dsA2pA•pB/2. This is easily done
o
ion
di
u
in
. I

i
in

h
s

09403
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using the integrals given in Appendix B. The resulting s
contribution may be written as

dss5
1

2xAxBs (
aA ,aB ,a1 ,a2

GaA /A~xA!GaB /B~xB!

3Dh/a1
~z1!dxAdxBdz1

~4pas!
2

w~aA!w~aB!

3F as

2p S A2
s

e2
1

A1
s

e
1A0

sD dG2 ~3.100!

where
A2
s5(

n
C~an!c (4)~aW ,pW !, ~3.101!

A1
s522 lnds(

n
C~an!c (4)~aW ,pW !2

1

2 (
m,n

mÞn

lnS pm•pn

pA•pB
Dcm,n

(4,c)~aW ,pW !, ~3.102!

A0
s52 ln2ds(

n
C~an!c (4)~aW ,pW !1~cA,1

(4,c)1cB,2
(4,c)!F1

2
ln2S p1•p3

pA•pB
D1Li2S p2•p3

pA•pB
D12 lndslnS p1•p3

pA•pB
D G

1~cA,2
(4,c)1cB,1

(4,c)!F1

2
ln2S p2•p3

pA•pB
D1Li2S p1•p3

pA•pB
D12 lndslnS p2•p3

pA•pB
D G . ~3.103!
n

are
ns
After the collinear singularities associated with the tw
parton distribution functions and the fragmentation funct
have been factorized and absorbed into the correspon
bare functions, there will be soft-collinear terms left over d
to the mismatch between the integration limits of the coll
ear singularity terms and the factorization counterterms
addition, there can be collinear singularities associated w
the non-fragmenting parton in the final state, correspond
to gluon emission orqq̄ production. Collecting together bot
types of collinear terms, the result can be written as follow

dscoll5
1

2xAxBs (
aA ,aB ,a1 ,a2

GaA /A~xA!GaB /B~xB!

3Dh/a1
~z1!dxAdxBdz1

~4pas!
2

w~aA!w~aB!

3F as

2p S A1
coll

e
1A0

collDdG2 ~3.104!

where

A1
coll5(

n
@2 lndsC~an!1g~an!#, ~3.105!
ng
e
-
n
th
g

:

A0
coll5(

A,B
@2 lndsC~an!1g~an!# lnS 2pA•pB

m f
2 D

1@2 lndsC~a1!1g~a1!# lnS 2pA•pB

M f
2 D

1g8~a2!. ~3.106!

Here m f and M f are the initial and final state factorizatio
scales. The functiong8(a) is given in terms of the hard
collinear factors of Eqs.~2.46!–~2.51! as

g8~a!5H A0
q→qg, a5quark or antiquark,

A0
g→gg1A0

g→qq̄, a5gluon.
~3.107!

After the mass factorization has been performed, the b
parton distribution functions and fragmentation functio

have been replaced by scale dependentMS functions. In ad-
dition, there are finite remainders involving theG̃ and D̃
functions:
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ds̃5
1

2xAxBs (
aA ,aB ,a1 ,a2

~4pas!
2

w~aA!w~aB!

as

2p
dxAdxBdz1c (4)~aW ,pW !dG2 @G̃aA /A~xA ,m f

2!GaB /B~xB ,m f
2!Dh/a1

~z1 ,M f
2!

1GaA /A~xA ,m f
2!G̃aB /B~xB ,m f

2!Dh/a1
~z1 ,M f

2!1GaA /A~xA ,m f
2!GaB /B~xB ,m f

2!D̃h/a1
~z1 ,M f

2!#. ~3.108!
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At this point, all of the singular terms have been isolat
as poles ine or have been factorized and absorbed into
bare parton distribution and fragmentation functions. The
dependent pole terms all cancel among each other:

A2
v1A2

s50, ~3.109!

A1
v1A1

s1A1
coll50. ~3.110!

The finite two-body contribution is given by

ds2→25dsB1ds̃1
1

xAxBs (
aA ,aB ,a1 ,a2

~4pas!
2

w~aA!w~aB!

3GaA /A~xA ,m f
2!GaB /B~xB ,m f

2!Dh/a1
~z1 ,M f

2!

3
as

2p
@A0

v1A0
s1A0

coll#dxAdxBdz1dG2 . ~3.111!

The three-body contribution, now evaluated in four dime
sions, was given in Eq.~3.98! where now the soft and col
linear regions of phase space are excluded.

As in the previous examples, the structure of the fi
result is two finite contributions, both of which depend
the soft and collinear cutoffs—one explicitly and on
through the boundaries imposed on the three-body ph
space. However, when both contributions are added w
calculating an observable quantity, all dependence on
cutoffs cancels when sufficiently small values of the cuto
are used.

IV. DISCUSSION AND CONCLUSIONS

A technique for performing next-to-leading-logarithm ca
culations using Monte Carlo techniques was described in
tail. The method uses two cutoff parameters which serve
separate the regions of phase space containing the sof
collinear singularities from the non-singular regions. T
main derivations for experimentally degenerate, tagged,
heavy quark final states were given, as was a discussio
initial state factorization. We provided five illustrative e
amples applying the method.

The first example was that of the QCD corrections
electron-positron annihilation into a massive quark pair. T
quark mass serves to regulate any would-be final state
linear singularities. The final state soft singular region is
lineated using one cutoff. The second example was tha
QCD corrections to electron-positron annihilation into
massless quark pair. In this case final state soft and collin
singularities are encountered. Both soft and collinear cut
are therefore required. They should be chosen such thadc
!ds . The third example of inclusive photon production
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hadronic final states of electron-positron annihilation w
presented, illustrating the use of fragmentation functions.
nally, the QCD corrections to lepton pair and single parti
production in hadron-hadron collisions were given. The
examples include both initial and final state soft and collin
singularities. The use of scale dependent parton distribu
and fragmentation functions was explained.

The Monte Carlo results, integrated to give an inclus
cross section, were shown to be in complete agreement
those available in the literature. This is not the end of
utility of the method, but only the beginning. Given the fu
access to the parton four-vectors and corresponding weig
we are free to combine them in any way that is consist
with an infrared-safe measurement function, which may
clude a jet finding algorithm and experimental cuts.

The method has been applied to a wide range of h
scattering processes and it has been found to be both si
to implement and numerically robust.
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APPENDIX A: COMPARISON WITH OTHER METHODS

The essential difference between the phase space sl
and the subtraction methods may be gleaned from the
lowing simple example@37#. Consider an integral to be ca
culated:

I 5 lim
e→01

H E
0

1dx

x
xeF~x!2

1

e
F~0!J , ~A1!

whereF(x) is a known but complicated function related to
two-to-three body matrix element. The variablex represents
either the energy of an emitted gluon or the angle betw
two massless partons. In a traditional fully or single parti
inclusive calculation the integralI would be performed com-
pletely analytically.

In the subtraction method one simply adds and subtra
F(0) under the integral sign:
2-22
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I 5 lim
e→01

H E
0

1dx

x
xe@F~x!2F~0!1F~0!#2

1

e
F~0!J

5E
0

1dx

x
@F~x!2F~0!#, ~A2!

giving a finite and numerically calculable result. No appro
mations are made; however, in any numerical implemen
tion there will necessarily be a lower limit related to machi
precision below which the integral must be cut off. This
not a problem in practice.

In the phase space slicing method, the integration reg
is divided into two parts 0,x,d andd,x,1 with d!1. A
Maclaurin expansion ofF(x) yields

I 5 lim
e→01

H E
0

ddx

x
xeF~x!

1E
d

1dx

x
xeF~x!2

1

e
F~0!J

5E
d

1dx

x
F~x!1F~0!ln d1O~d!. ~A3!

Clearly, the parameterd must be chosen small enough so th
the term linear ind may be neglected. At the same time
must not be so small as to spoil the numerical converge
of the first term.

APPENDIX B: SOFT INTEGRALS

In evaluating the soft integrals we encounter angular
tegrals which may be written in the form

I n
(k,l )5E

0

p

du1sinn23u1E
0

p

du2sinn24u2

3
~a1b cosu1!2k

~A1B cosu11C sinu1cosu2! l
. ~B1!
e

e

09403
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A large collection of these appear in the appendix of@69#.
Others may be found in the appendix of@45# or else com-
puted as explained in@70#. Here we collect together the re
sults covering most of the cases encountered using the
cutoff slicing method. The first two are from@45# with A2

ÞB21C2:

I n
(0,1)5

p

AB21C2 H lnS A1AB21C2

A2AB21C2D 2~n24!

3FLi2S 2AB21C2

A1AB21C2D
1

1

4
ln2S A1AB21C2

A2AB21C2D G J , ~B2!

I n
(0,2)5

2p

A22B22C2 F12
1

2
~n24!

A

AB21C2

3 lnS A1AB21C2

A2AB21C2D G , ~B3!

where we dropO((n24)2) terms. The second two are from
@69# with b52a. If A25B21C2

I n
(1,1)52p

1

aA

1

n24 S A1B

2A D n/223

3F11
1

4
~n24!2Li 2S A2B

2A D G , ~B4!

whereas ifA2ÞB21C2
I n
(1,1)5

p

a~A1B! H 2

n24
1 lnF ~A1B!2

A22B22C2G1
1

2
~n24!F ln2S A2AB21C2

A1B D 2
1

2
ln2S A1AB21C2

A2AB21C2D
12Li2S 2

B1AB21C2

A2AB21C2D 22Li2S B2AB21C2

A1B D G J , ~B5!
the
again droppingO„(n24)2
… terms in the second of these. Th

dilogarithm function Li2(x) is defined in@79# and numerous
useful properties are summarized in@80#.

APPENDIX C: RECOVERING THE O„dc Õds… TERMS

In this appendix we integrate thePqq(z,e) splitting kernel
over the hard-collinear portion of phase space for the cas
 of

a 45 singularity as it pertains to the discussion given at
end of Sec. III B. Recall that this region is defined by

hard: ds

As12

2
<E5<

As12

2
,

collinear: 0<s45<dcs12. ~C1!
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From Eq. ~2.29! we have s345(p31p4)252p3•p4
.(2p3•p45)z ands125(p31p45)

2.s4512p3•p45 which to-
gether yield s34.z(s122s45). Using E55(s122s34)/2As12
the hard condition becomes

0<z<
12ds

12s45/s12
. ~C2!

The approximation made in Sec. II B 1 was to sets4550 in
the denominator, in light of the collinear condition. This r
sulted in a decoupling of thez and s45 integration limits in
Eq. ~2.36!. Relaxing thes4550 approximation gives rise to
termsO(dc /ds) as now described.

Keeping thes45 dependence, the required integral is

I 5E
0

dcs12 ds45

s45
S s45

s12
D 2e

3E
0

(12ds)/(12s45 /s12)

dz@z~12z!#2ePqq~z,e!. ~C3!

We may expandPqq(z,e) aboute50 and make a change o
variablesu5s45/s12, giving

I 5CFE
0

dc
u212eF~u!du, ~C4!

with

F~u!5E
0

(12ds)/(12u)

dzH 11z2

12z
2e~12z!

2e ln@z~12z!#
11z2

12z J . ~C5!

F(u) may be evaluated with the help of

E
0

a

dz
11z2

12z
52aS 11

a

2D22 ln~12a!, ~C6!

E
0

a

dz~12z!5aS 12
a

2D , ~C7!

E
0

a

dz
ln z

12z
5Li2~12a!2

p2

6
, ~C8!

E
0

a

dz
ln~12z!

12z
52

1

2
ln2~12a!, ~C9!

E
0

a

dz
z2ln z

12z
5aS 11

a

4D2aS 11
a

2D ln a

1Li2~12a!2
p2

6
, ~C10!
09403
E
0

a

dz
z2ln~12z!

12z
5

3

2
aS 11

a

6D1 ln~12a!

3F3

2
2aS 11

a

2D2
1

2
ln~12a!G .

~C11!

The resulting terms inF(u) may be integrated overu using

E
0

dc
du u212eS 12ds

12u D i

5S 2
1

e
1 ln dcD , i 50,1,2,

~C12!

E
0

dc
du u212elnS 12

12ds

12u D5S 2
1

e
1 ln dcD ln ds

2Li2~dc /ds! ~C13!

for the terms multiplied byO(e0) in Eq. ~C5!, and

E
0

dc
du u212eln2S 12

12ds

12u D52
1

e
ln2ds , ~C14!

E
0

dc
du u212eS 12ds

12u D i

lnS 12
12ds

12u D52
1

e
ln ds , i 51,2,

~C15!

E
0

dc
du u212eS 12ds

12u D i

lnS 12ds

12u D50, i 51,2,

~C16!

E
0

dc
du u212eLi2S 12

12ds

12u D50 ~C17!

for the terms multiplied byO(e1) in Eq. ~C5!. Terms con-
taining or leading to contributions ofO(dc) or O(ds) have
been dropped. Taking the coefficients of 1/e ande0 gives the
desired result:

A1
q→qg5CF~3/212 lnds!, ~C18!

A0
q→qg5CF@7/22p2/32 ln2ds12Li2~dc /ds!

2 ln dc~3/212 lnds!#. ~C19!

The second equation is identically Eq.~2.47! with the addi-
tion of the advertised Li2(dc /ds) term. A similar analysis
may be performed for thePgg splitting case with the same
result: lndcln ds→ln dcln ds2Li2(dc /ds).

APPENDIX D: IMPROVING CONVERGENCE OF TILDE
TERMS

We want to demonstrate how the numerical converge
of the D̃ and G̃ functions may be improved. To this en
consider the integral
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Fi5E
x

12dsdy

y
Gj~x/y,m!P̃i j ~y!, ~D1!

with

P̃i j ~y!5Pi j ~y!lnS dc

12y

y

s12

m f
2D 2Pi j8 ~y!. ~D2!

Here a logarithm ofds is being built up numerically. Con
.

09403
vergence will be improved if we rewrite the result in a for
where the logarithmic dependence onds is manifest. To do
so, use the fact that

lim
y→1

@~12y!Pi j ~y!#52Cid i j , ~D3!

with Cg5N andCq5CF . Now add and subtract the leadin
singular piece under the integral sign:
fore be
Fi5E
x

12ds dy

y FGj~x/y,m!Pi j ~y!lnS dc

12y

y

s12

m f
2D 2Gj~x/y,m!Pi j8 ~y!2Gj~x,m!

2Cid i j

12y
lnS dc

12y

y

s12

m f
2D

1Gj~x,m!
2Cid i j

12y
lnS dc

12y

y

s12

m f
2D G . ~D4!

Regrouping terms gives

Fi5E
x

12ds dy

y H FGj~x/y,m!Pi j ~y!2Gj~x,m!
2Cid i j

12y G lnS dc

12y

y

s12

m f
2D 2Gj~x/y,m!Pi j8 ~y!

1Gj~x,m!
2Cid i j

12y
lnS dc

12y

y

s12

m f
2D J . ~D5!

The last term may be evaluated with the help of

E
x

12ds dy

y~12y!
lnS a

12y

y D52
1

2
ln2S ads

12ds
D1

1

2
ln2Fa~12x!

x G . ~D6!

The final desired expression is

Fi5Cid i j Gj~x,m!F ln2S dc

s12

m f
2

12x

x D 2 ln2S dc

s12

m f
2

ds

12ds
D G1E

x

12ds dy

y H FGj~x/y,m!Pi j ~y!

2Gj~x,m!
2Cid i j

12y G lnS dc

12y

y

s12

m f
2D 2Gj~x/y,m!Pi j8 ~y!J . ~D7!

The lnds is now evident in the first term, and absent from the second integral term. Numerical convergence will there
greatly improved.
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