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Fermionic signature of the lattice monopoles
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We consider fermions in the field of static monopolelike configurations in Euclidean space-time. In all the
cases considered, there exists an infinite number of zero modes, labeled by a fréqueniog existence of
such modes is a manifestation of the instability of the vacuum in the presence of the monopoles and massless
fermions. In Minkowski space, the corresponding phenomenon is well known and is a cornerstone of the
theory of magnetic catalysis. Moreover, the well-known zero mode of Jackiw and Rebbi corresponds to the
limiting casew= 0. We provide arguments as to why the chiral condensate could be linked to the density of the
monopoles in the infrared cluster. A mechanism which can naturally explain the equivalence of the critical
temperatures for the deconfinement and chiral transitions is proposed. We discuss the possible implications for
the phenomenology of the lattice monopoles.
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[. INTRODUCTION in the monopole-dominated vacuum. We will comment on
this in the final section.
The condensation of monopoles is widely believed to be

the confinement mechanism. It is natural then to try to reduce Il. FERMIONIC MODES
chiral symmetry breaking to monopole physics as well. )
There are many numerical investigations of the possible con- A. Equations

nection between monopoles and chiral symmetry breaking, In this section, we rewrite the formalism of Jackiw and

see, e.g.[1]. On the theoretical side, the analysis proceedRebbi[8] in the Euclidean space-time. We will study solu-
usually along the lines of the Banks-Casher criterj@f tions of the Dirac equation,

which relates chiral symmetry breaking to the density of zero

Yo=

fermionic modes in a given bosonic background. In the case w(i W= 3 TaAZ)\IfZO, (1)
of the monopole-dominated vacuum, the elementary bosonic
configuration is usually assumed to be a monopoleyhere 72 are the isospinor Pauli matrices ang are the
antlmonopole_ pair. The reason is thgt in the _fleld of atour-dimensional4D) Euclidean Dirac matrices:
monopole-antimonopole pair, there exist normalizable zero
modes studied first in Ref3]. >

So far, the properties of the fermions on the lattice have 0 _1) > 0 o
been studied mostly in the quenched approximation. How- -1 0/ 7 —ie¢ 0/’
ever, detailed measurements with dynamical fermions are
?”".'mi”e”t’ see, e.g[d]. In ViPTW of .this, it is worth reexam- o, are the Pauli matrices, ands the 2<2 unit matrix.
ining, the probl_em of fermions In a U‘O”Opo'e'dom'”%ted Moreover, we will consider the static monopole gauge
vacuum. In particular, we feel that it is important to con3|derﬁe|ds defined as
in more detail fermions in the field of a single monopole, not
of a monopole-antimonopole pair. Indeed, if the QCD a a i
vacuum were dominated by magnetic dipoles, the standard o=n"0(r), Al=z"n"A(n), )
explanation of confinement would not work. We consider o
three monopolelike configurations which were introducedwheren'=x'/r andr?=x?. At large distances,
earlier. We demonstrate that in all three cases there exists an
infinite number of solutions to thel=4 Dirac equation O (0)=7%=0, IlimrA(r)=-1. 3
D,v.¥(i®)=0 in the Euclidean space-time labeled with an r—e
imaginary frequencyw. The solutions signal the instability
of the fermionic vacuum in the presence of magnetic monoThe caseb=0 andA= —1/r at all the distances corresponds
poles. The instability is well known in the language of to the pointlike Wu-Yang monopolg9]. Note that all the
Minkowski space and is the starting point of the theory ofexact monopole solutions of the pure Yang-Mills equations
monopole catalysif5—7]. are gauge copies of this monopole. We will consider also
The instability of the fermionic vacuum in the presence offields regular at originA(0)=0.
monopoles implies, in fact, the inconsistency of the We look for solutions of the Dirac equatiofl) of the
guenched approximation to study chiral symmetry breakingollowing form:
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i T K f*Fwg®=0, D*g*Fwf*=0, 9)
Vi(tx0)= —e "o (X 0),
V2w where
wherew andk are real, continuous, and discrete parameters, . 1
respectively. The solutions obey the normalization condition KE= ot FAMNF52(n),
3y Tt v (X w')= — ! , J 1
J dtf d>x¥ (1, 0) Vi (tX 0" )=0(w—o') bk D=L AN T=d(r). (10)
(4) or 2
and the three-dimensional component of the zero mode is We are mainly interested in the nonzero frequency case,
normalized as follows: w#0, so that the function$§~ and g~ are related to each
other:
| exeltioptio-s6.  ® R
f*==-D"g". (11)

The upper and lower components of the three-dimensional
spinor field are denoted as Four first-order equation®) are reduced then to two differ-
. ential equations of the second order:
X+(X))

. (6) K*D*g*—w?g*=0. (12)
X (X)

<P(>Z)=<
The solutions of these equations are discussed in the next

Following Ref.[8], we regard the fieldg;;, as matrices. The subsection.
spinor Pauli matrices act on this field as the matrix multipli-

cation, (@x~)io= 0ij X}, While the isospinor Pauli matrices B. Zero-mode solutions

CEuTYy, — 2 R s (o Ztrog . o .
act as follows: €x™)ia=TapXjs=(X"7)ia, Wherer' is The normalizable fermionic modes can be readily found

the transposed matrix, and'=e7e with e=i7% being the  in case of the pointliké’, Wu-Yang monopole:
totally antisymmetric tensor in two dimensions. In these no-

tations, the Dirac equatiofi) becomes |2 [1-sgr(w)(a,n)]e| ol
, Vi (re)="7— 0 g iot-lelr,
+ + -7 + I +
(—oM*—3AM*0?) = (O',c?)M*—EA?a'iM*O'a =0,
|| V2 0
(7) \I’R(I’,w)= L e—ia)t—|w‘r’
L+ . 4 4t |\ [1+sgnw)(o,n)]e
M*=x"e=g"-1+d, 0% 8 (13)

whereg™ andg, are unknown functions used to parametrizewhere w e (—o,+ ).

the matrix M=. We are looking for spherically symmetric Next, let us consider a nonvanishiAg component of the
swave solutions of the equationg®=g~(r) and g, gauge field19] ®=2u. The zero modes can again be found
=f*(r)n,, wheref* are scalar functions. Substituting this explicitly and the functional form of the solutions depends
ansatz into Eq(7), we get two sets of differential equations: on the value ofw:

e AN CADIE

W (r; = - —iot—(w+p)r
(ORS 1} 0 (14
Vo(riw) = Vpu— o L. |eietempr,
4mt | [1-(o,n)]e
— 0
\Ir(l)(r-w) = pto N e—iwt—(wﬁ—,u)r
RO 4mr | [I+(o.n)]e ’
—u<o<pu 0 (15
V(e = YO Lo erterlemer
4mt | [1=(o,n)]e
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Jo—n[[—(omle|
Y (riw) = :’mfu( 0 e iot=(o=p)r
w>u (16)
‘I’R(I"w) — V(,!)+,LL 0 —iot—(o+u)r
’ 4wt \ [1+(o,n)]e '

Both cases considered so far correspond to monopoles of zero size. A famous example of a monopole with a core of finite
size is provided by the 't Hooft—Polyakov monop®0], which involves also a Higgs field. In the case of QCD, the role of
the Higgs field is rather commonly ascribed to #hg component of the gauge field. In particular, such field configurations
were considered in Ref3] in connection with the monopole physics and chiral symmetry breaking.

For analytical studies, it is convenient to consider the so-called Bogomol'nyi [litiit where the field configuration is
known explicitly:

_ 2u 1 _ 2 1
A(r)_sinl"(z,u,r)_F’ (D_tanr(z,ur)_r' (17

The gauge field is regular at the origid(0)=®(0)=0. The mass paramete2defines the monopole size and, simulta-
neously, the value of the Higgs condensate at spatial infinity. This field configuration is known as the Bogomol'nyi-Prasad-
Sommerfield BPS dyon[12].

The solutions of Eqs(9), (10), and(17) are

= (1) N| V4u?+ w?sintf(2ur) +|w|cosh 2ur (Yl (2) cosh2ur) — Vau?+ w? sink?(2ur) (172
—(r)=—
9 r e cosh2ur) + VauZ+ w? sinté(2ur)
sinb(2ur)] =2
sinf2pr) 1= 18
2ur

where the subscript= 1,2 corresponds to two independent solutions of(Bg.The constanh is defined by the normalization
condition (5).
The asymptotics of our solution(48),

gr (Nec(ur)CY 11 0(u?r?), r—0,

gii(r)ocexp{%(—l)i(t1+|w|/,u)r +0(e 2, r—oo, (19

indicate that thé =1 solution is not normalizable at the smaliegion while the nonsingular=2 solution is normalizable. At
large distances, thg, solution is always growing exponentially and thus is not normalizable. However, the sajgtioan
be normalized providet|<1/2.

Thus we get the following normalizable solutions:

g7 (r)=0, g7(r)
N[ au+ o sinf(2ur) +| w|cosh Zmrw/zu

our  2pcosi2ur)— JAuZ+ w?sintt(2ur) |7

. 20
r V2u sinh(2ur) 2 cos2ur) + VAuZ+ w? sinki(2ur) (20

The functionsf = are defined by Eqg11) and(20):
ff(r)=0, f(r)= [VAu?+ w?sintf(2ur)—2u]g ™ (r). (21)

w sinh(2ur)

Note that at large distances we recover the relatiofr) = sgn(w)g~ (r), cf. Eq. (13).
Finally, combining Egs(20) and(21), we get the right-handed fermion zero mode:
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CN| 2ur 2pcosi2ur) = J4u®+ w? sinif(2ur) YA JauZ+ w? sintf(2ur) + | w|cosh 2ur o2
RO | sinh(2ur) 2,4 cosh2ur) + a2+ 2 SintP(2ur ) 2u
0
X Vau?+ w?sintf(2ur)—2u - - | |, (22)
1+ - (o,n) e
o sinh(2ur)
|
where the frequencw is restricted by the condition (22)]. Finally, the modes in the second case considéseé
Egs.(14)—(16), are of mixed nature.
O<u. (23 The difference in the number of the right- and left-handed
modes is controlled in fact by the chiral anomaly:
This solution coincidesup to a gauge transformatipmith
the fermion zero mode solution found in REL3]. , H*E?
The solutions(14)—(16), and (22) can be linked to the NR—N,_:f dtJ dr 322 (25

fermion zero modes in the Georgi-Glashow model coupled to
the fermiong 20]. This model has.been c;onsndered by ‘].":ICk'\’\'whereHa and E? are color magnetic and electric fields, re-
and Rebb[8], who found the static fermion zero mode in the : . o o
backaround of the 't Hooft—Polvakov monopole: spectively. The crucial point is that the produét® E?) in

9 y pole: the second and third examples considered in the previous

) 0 subsection does not disappear aI_ready on the classical level.
‘If=Nexp{f dr’[A(r’)—%(I)(r’)]] ( ) (24)  Note that to make use of E¢25) in our case, one should
0 € introduce a finite range of integration over the time coordi-
nate,— T<t<T, whereT is large.
where the constantN is determined from the three- Now, if we modify the gauge field configurations, the dif-
dimensional normalizability condition, Eq&) and (6). ferenceNg— N, changes smoothly as far as the change in the
The link between our zero modes and the Jackiw-Rebbiight-hand side of Eq(25) is smooth. The corresponding
solution (24) can easily be established. First, let us considemnalysis is trivial enough.
the Wu-Yang monopole case, E¢$4)—(16). Settingw=0, The situation is much more nontrivial in the case of the
we restrict ourselves to two solutioi$5). The linear com-  Wu-Yang pointlike monopole. Namely, let us introduce a
bination W+ W) coincides with the Jackiw-Rebbi mode cutoff at small distances so that~ —1/r only as far ag
(24), while ¥ —w(2) becomes its gauge copy. >r, while at short distances the potential vanish&g0)
The identification in the case of the 't Hooft—Polyakov =0. Then the zero modes found in the previous subsection
monopole, Eq.(22), is even more straightforward. Setting become nonrenormalizable. In other words, the zero modes
0w=0, we get disappear altogether. To see this, it is convenient to use the

following relation:
1 [ 2= . 0
T rsinr(Z,ur)anK’ur)' g

This expression coincides with the zero md@é) where the
fields A(r) and®(r) are given in Eq(17).

fd3x{(59i)2+[w2—%(Dz(r)]gi’z}
=4m(r’g=?)|;. (26)

where D=d/dr —A(r), and independence of the functions
g™ on the angular variables is assumed. Equatisi can be
The monopole field configurations which allow for exact readily obtained by multiplying Eq12) by the functiong™,
zero-mode solutions assume fixation of the gauge fiejét  integrating over the whole space, and integrating by parts.
all distances. In reality of course, one can hope to imitate th&quation(26) implies thatg~1/r even if Aj(0)=0. It fol-
lattice monopole fields only to some extent. In particular,lows then from Eq(11) that the functionf ~1/r? at smallr
there arise cutoffs both at large and small distances, and thand the zero-mode solution is not renormalizable.
next question is, what are the corresponding changes in the We will comment on the physical meaning of this discon-
structure of the zero modes? We address this question, on thiguity in the next section. Here we would like to notice only
qualitative level, in this subsection. First, let us notice thatthat the introduction of the lattice spaciag: 0 allows us to
although in all the cases considered we found an infiniténtroduce renormalizable solutions in any case. Moreover, to
number of fermionic zero modes, the status of these modes B sensitive to the monopole field in the infrared, we should
somewhat different. Namely, in the first cdsee Eqs(13)] restrict ourselves ta<<1/ry. Then the normalization integral
there is symmetry between the left- and right-handed modeswver the functiong13) is dominated byr ~1/w. Upon the
In the third case, there are right-handed modes dlsee Eq. modification of A; at small distances, there emerges a new

C. Perturbations on the potential

094020-4



FERMIONIC SIGNATURE OF THE LATTICE MONOPOLES PHYSICAL REVIEW B5 094020

contribution from the distances of ordar The new contri- wherer is the distance to the monopole center. The function
bution does not dominate provided that the productf was estimated in the leading order in R
(w-rg)(ro/a) is small.

1
[frol=5—. (27)
I1l. PHENOMENOLOGICAL APPLICATIONS: m

CONCLUSIONS . . . .
At least naively, one can think of this result as a manifesta-

The existence of an infinite number of the zero fermioniction of the Pauli principle: the decay of the vacuum is
modes indicates the instability of the fermionic vacuum instopped once the fermionic states which correspond to the
the presence of the monopolelike field configurations. Andfermions falling on the center are occupied. Since the final
indeed, the instability of the fermionic vacuum in the pres-field configuration(27) is static, it can be thought of as Eu-
ence of the monopoles or dyons is well known and is theclidean as well.
starting point of the theory of monopole catalyfs-7]. In So far we have not discussed the question of how much
particular, it is well known that the&swave interaction of the monopolelike configurations considered above resemble
massless fermions with Abelian monopoles is anomalous itthe lattice monopoles. In particular, an obvious reservation is
the sense that for some chiralities there exist only incominghat we used an approximation of a pointlike Abelian mono-
waves while for other chiralities there exist only outgoing pole. Such a bosonic field configuration would have an infi-
waves; see the discussion[it4]. nite action and could not be important in lattice simulations

In terms of this analogy, one can also easily understangfor review and further references, see, d.45]). However,
the drastic effect on the zero modes of the modification ofas the latest measurements strongly indi¢a6, the mono-
the Wu-Yang monopole field on short distances; see Segole size is much smaller than the distance between the
IIC. Indeed, if one applies the Dirac equation to study themonopoles. As a result, the pointlike monopoles might in
motion of a massless fermion in the field of the 't Hooft— fact be a valid approximation to interpret the results of the
Polyakov monopole, then the result is that the fermionlattice simulations.
changes its charge due to tiiéboson exchange on the core  Reversing the question, we can say that by studying the
of the monopole; see, e.d14]. As a result, the sign of the properties of the fermionic zero modes in the quenched ap-
magnetic moment is changed as well, and the fermion ofroximation, one can independently judge how close the lat-
opposite chirality is emitted as a particle of the same chiraltice monopoles are to one or another theoretical description.
ity with energy of order X/. In our language, the modifica- An advantage of this approach is that it is gauge-invariant.
tion of the potential at arbitrarily small distances leads to the The mechanism of the chiral symmetry breaking dis-
concentration of the wave function at these distances. As aussed in the paper may also allow us to predict the proper-
result, any weak interaction, like the interaction wi¥d ties of the chiral condensate in the confinement phase as well
bosons, becomes crucial. Moreover, the energy of the feras to provide a link between the chiral and deconfinement
mion is not conserved. Thus, the wave function becomephase transitions. An essential point in the Callan-Rubakov
sensitive only to the modifications of the monopole configu-analysis of the appearance of the chiral condensate near the
ration at short distances, which are very difficult to describestatic monopole lies in the fact that the Abelian monopole is
realistically for the lattice monopoles. Instead, we suggestedtatic. Obviously, the fermions need a finite time to be at-
(see Sec. Il Cto use the lattice regularization and choice oftracted to the monopole core by the interaction between the
o to remain sensitive to the monopole configuration at largermion spin and magnetic charge of the monopole. As a
distances. result, short-lived monopoles(i.e., the monopole-

The instability of the fermionic vacuum revealed throughantimonopole pairs collapsing in a short tineannot be re-
the existence of an infinite number of zero modes impliesponsible for the chiral symmetry generation. The analogue
that the results of the numerical simulations in the quenchedf the short-living monopoles in the Euclidean space-time is
approximation and those with dynamical fermions differ sub-small-sized monopole loops which are indeed observed in
stantially. While studying the solutions of the Dirac equationthe lattice simulationg18]. However, besides these short
is sufficient to establish the instability of the perturbative monopole trajectories, a large monopole cluster is present in
vacuum, it is much more difficult to find the true fermionic the confinement phase of the theory. The Minkowskian coun-
vacuum in the presence of monopoles. To this end, one has terparts of these lattice monopoles should serve as agents of
consider the full field theory. This allows us to include thethe chiral symmetry breaking according to our considerations
effect of the anomaly which arises at the quantum level. Thabove.

simplification is that because of tf®@wave nature of the This picture naturally links the confinement and chiral
fermions, the corresponding theory is effectively two-phase transitions. Namely, chiral condensates must be non-
dimensional5,6]. zero in the presence of the large monopole cluster, i.e., in the
The outcome of the calculatioi5,6] is that a fermionic  confinement phase. In the high-temperature, deconfinement
condensate is formed around the monopoles: phase, the large monopole cluster is abgési, and, as a

result, the chiral symmetry breaking ceases to exist.
Naively, one may suggest that the chiral condensate is
f(r,1), proportional to the density of the largest monopole cluster,
Agr? pir. at least at zero temperatures,

(P(r)p(r))=
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<J¢>:C oI (28) lian gauge(see Ref[17] for a review—in a non-Abelian
e gauge theory. The advantage of such a search for the mono-
since both quantities have the same dimension (fhass poles is that it does not depend on the Abelian gauge explic-

However, at nonzero temperatures the dependence should ib.
more general: Qualitatively, since the quenched approximation is in fact

o not adequate to describe the fermionic vacuum, the backre-
(Y)=F(pRr,T), (290  action of the fermions on the gluon fields can be unexpect-
edly strong. In particular, extra monopole-antimonopole at-
where the functior- obeys the propert? (0,T) =0. Sugges-  traction is generated. Further analytical studies of the effect
tion (28) may be checked in future lattice simulations atare now in progress.

various lattice couplings. _ o The chiral condensate seems to be linked with the density
In conclusion, let us summarize the findings of the presengf the monopoles in the largest monopole cluster. The pro-
paper. posed mechanism is very attractive since it can naturally ex-

In the quenched approximation, one usually relies on thejain the equivalence of the critical temperatures for the de-
Banks-Casher relatiof?] to study the relevance of various confinement and chiral transitions.
bosonic field configurations to the chiral symmetry breaking.
However, we see that in the quenched approximation, the
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