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Fermionic signature of the lattice monopoles
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We consider fermions in the field of static monopolelike configurations in Euclidean space-time. In all the
cases considered, there exists an infinite number of zero modes, labeled by a frequencyiv. The existence of
such modes is a manifestation of the instability of the vacuum in the presence of the monopoles and massless
fermions. In Minkowski space, the corresponding phenomenon is well known and is a cornerstone of the
theory of magnetic catalysis. Moreover, the well-known zero mode of Jackiw and Rebbi corresponds to the
limiting casev50. We provide arguments as to why the chiral condensate could be linked to the density of the
monopoles in the infrared cluster. A mechanism which can naturally explain the equivalence of the critical
temperatures for the deconfinement and chiral transitions is proposed. We discuss the possible implications for
the phenomenology of the lattice monopoles.
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I. INTRODUCTION

The condensation of monopoles is widely believed to
the confinement mechanism. It is natural then to try to red
chiral symmetry breaking to monopole physics as w
There are many numerical investigations of the possible c
nection between monopoles and chiral symmetry break
see, e.g.,@1#. On the theoretical side, the analysis procee
usually along the lines of the Banks-Casher criterion@2#,
which relates chiral symmetry breaking to the density of z
fermionic modes in a given bosonic background. In the c
of the monopole-dominated vacuum, the elementary bos
configuration is usually assumed to be a monopo
antimonopole pair. The reason is that in the field of
monopole-antimonopole pair, there exist normalizable z
modes studied first in Ref.@3#.

So far, the properties of the fermions on the lattice ha
been studied mostly in the quenched approximation. Ho
ever, detailed measurements with dynamical fermions
imminent, see, e.g.,@4#. In view of this, it is worth reexam-
ining, the problem of fermions in a monopole-dominat
vacuum. In particular, we feel that it is important to consid
in more detail fermions in the field of a single monopole, n
of a monopole-antimonopole pair. Indeed, if the QC
vacuum were dominated by magnetic dipoles, the stand
explanation of confinement would not work. We consid
three monopolelike configurations which were introduc
earlier. We demonstrate that in all three cases there exis
infinite number of solutions to thed54 Dirac equation
Dmgmc( iv)50 in the Euclidean space-time labeled with
imaginary frequencyiv. The solutions signal the instabilit
of the fermionic vacuum in the presence of magnetic mo
poles. The instability is well known in the language
Minkowski space and is the starting point of the theory
monopole catalysis@5–7#.

The instability of the fermionic vacuum in the presence
monopoles implies, in fact, the inconsistency of t
quenched approximation to study chiral symmetry break
0556-2821/2002/65~9!/094020~7!/$20.00 65 0940
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in the monopole-dominated vacuum. We will comment
this in the final section.

II. FERMIONIC MODES

A. Equations

In this section, we rewrite the formalism of Jackiw an
Rebbi @8# in the Euclidean space-time. We will study sol
tions of the Dirac equation,

gm~ i ]m2 1
2 taAm

a !C50, ~1!

where ta are the isospinor Pauli matrices andgm are the
four-dimensional~4D! Euclidean Dirac matrices:

g05S 0 21

21 0 D , gW 5S 0 isW

2 isW 0
D ,

sa are the Pauli matrices, and1 is the 232 unit matrix.
Moreover, we will consider the static monopole gau

fields defined as

A0
a5naF~r !, Ai

a5«aiknkA~r !, ~2!

whereni5xi /r and r 25xi
2 . At large distances,

F~`!5h>0, lim
r→`

rA~r !521. ~3!

The caseF[0 andA521/r at all the distances correspond
to the pointlike Wu-Yang monopole@9#. Note that all the
exact monopole solutions of the pure Yang-Mills equatio
are gauge copies of this monopole. We will consider a
fields regular at origin,A(0)50.

We look for solutions of the Dirac equation~1! of the
following form:
©2002 The American Physical Society20-1
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Ck~ t,xW ;v!5
1

A2p
e2 ivtwk~xW ;v!,

wherev andk are real, continuous, and discrete paramet
respectively. The solutions obey the normalization condit

E dtE d3xCk
†~ t,xW ;v!Ck8~ t,xW ;v8!5d~v2v8!dk,k8 ,

~4!

and the three-dimensional component of the zero mod
normalized as follows:

E d3xwk
†~ t,xW ;v!wk8~ t,xW ;v!5dk,k8 . ~5!

The upper and lower components of the three-dimensio
spinor field are denoted as

w~xW !5S x1~xW !

x2~xW !
D . ~6!

Following Ref.@8#, we regard the fieldsx ia
6 as matrices. The

spinor Pauli matrices act on this field as the matrix multip
cation, (sW x6) ia5sW i j x j a

6 , while the isospinor Pauli matrice

act as follows: (tWx6) ia5tWabx j b
6 [(x6tW tr) ia , where tW tr is

the transposed matrix, andtW tr5«tW« with «5 i t2 being the
totally antisymmetric tensor in two dimensions. In these n
tations, the Dirac equation~1! becomes

~2vM 62 1
2 A0

aM 6sa!6F ~sW ,]W !M 62
i

2
Ai

as iM
6saG50,

~7!

M 65x6«5g6
•11ga

6
•sa, ~8!

whereg6 andga
6 are unknown functions used to parametri

the matrix M 6. We are looking for spherically symmetri
s-wave solutions of the equations,g65g6(r ) and ga

6

5 f 6(r )na , where f 6 are scalar functions. Substituting th
ansatz into Eq.~7!, we get two sets of differential equation
09402
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K6 f 67vg650, D6g67v f 650, ~9!

where

K65
]

]r
1

2

r
1A~r !7

1

2
F~r !,

D65
]

]r
2A~r !7

1

2
F~r !. ~10!

We are mainly interested in the nonzero frequency ca
vÞ0, so that the functionsf 6 and g6 are related to each
other:

f 656
1

v
D6g6. ~11!

Four first-order equations~9! are reduced then to two differ
ential equations of the second order:

K6D6g62v2g650. ~12!

The solutions of these equations are discussed in the
subsection.

B. Zero-mode solutions

The normalizable fermionic modes can be readily fou
in case of the pointlikeZ2 Wu-Yang monopole:

CL~r ;v!5
uvu1/2

4pr S @12sgn~v!~sW ,nW !#«

0
D e2 ivt2uvur ,

CR~r ;v!5
uvu1/2

4pr S 0

@11sgn~v!~sW ,nW !#«
D e2 ivt2uvur ,

~13!

wherevP(2`,1`).
Next, let us consider a nonvanishingA0 component of the

gauge field@19# F[2m. The zero modes can again be foun
explicitly and the functional form of the solutions depen
on the value ofv:
v<2m

CL~r ;v! 5
A2m2v

4pr S @11~sW ,nW !#«

0 D e2 ivt2(v1m)r ,

CR~r ;v! 5
Am2v

4pr S 0

@12~sW ,nW !#«
D e2 ivt2(v2m)r ,

~14!

2m,v,m

CR
(1)~r ;v! 5

Am1v

4pr S 0

@11~sW ,nW !#«D e2 ivt2(v1m)r ,

CR
(2)~r ;v! 5

Am2v

4pr S 0

@12~sW ,nW !#«
D e2 ivt2(m2v)r ,

~15!
0-2
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v.m

CL~r ;v! 5
Av2m

4pr S @12~sW ,nW !#«

0 D e2 ivt2(v2m)r ,

CR~r ;v! 5
Av1m

4pr S 0

@11~sW ,nW !#«
D e2 ivt2(v1m)r .

~16!

Both cases considered so far correspond to monopoles of zero size. A famous example of a monopole with a core
size is provided by the ’t Hooft–Polyakov monopole@10#, which involves also a Higgs field. In the case of QCD, the role
the Higgs field is rather commonly ascribed to theA0 component of the gauge field. In particular, such field configurati
were considered in Ref.@3# in connection with the monopole physics and chiral symmetry breaking.

For analytical studies, it is convenient to consider the so-called Bogomol’nyi limit@11# where the field configuration is
known explicitly:

A~r !5
2m

sinh~2mr !
2

1

r
, F5

2m

tanh~2mr !
2

1

r
. ~17!

The gauge field is regular at the origin,A(0)5F(0)50. The mass parameter 2m defines the monopole size and, simult
neously, the value of the Higgs condensate at spatial infinity. This field configuration is known as the Bogomol’nyi-P
Sommerfield~BPS! dyon @12#.

The solutions of Eqs.~9!, ~10!, and~17! are

gi
6~r !5

N

r FA4m21v2 sinh2~2mr !1uvucosh 2mr

A2m
G (21)i uvu/(2m)Fcosh~2mr !2A4m21v2 sinh2~2mr !

cosh~2mr !1A4m21v2 sinh2~2mr !
G (21)i /2

3Fsinh~2mr !

2mr G61/2

, ~18!

where the subscripti 51,2 corresponds to two independent solutions of Eq.~9!. The constantN is defined by the normalization
condition ~5!.

The asymptotics of our solutions~18!,

gi
6~r !}~mr !(21)i211O~m2r 2!, r→0,

gi
6~r !}expH 1

2
~21! i~611uvu/m!r J 1O~e22mr !, r→`, ~19!

indicate that thei 51 solution is not normalizable at the small-r region while the nonsingulari 52 solution is normalizable. At
large distances, theg2

1 solution is always growing exponentially and thus is not normalizable. However, the solutiong2
2 can

be normalized provideduvu<1/2.
Thus we get the following normalizable solutions:

g1~r !50, g2~r !

5
N

r FA4m21v2 sinh2~2mr !1uvucosh 2mr

A2m
G uvu/2mF 2mr

sinh~2mr !

2m cosh~2mr !2A4m21v2 sinh2~2mr !

2m cosh~2mr !1A4m21v2 sinh2~2mr !
G 1/2

. ~20!

The functionsf 6 are defined by Eqs.~11! and ~20!:

f 1~r !50, f 2~r !5
1

v sinh~2mr !
@A4m21v2 sinh2~2mr !22m#g2~r !. ~21!

Note that at large distances we recover the relationf 2(r )5sgn(v)g2(r ), cf. Eq. ~13!.
Finally, combining Eqs.~20! and ~21!, we get the right-handed fermion zero mode:
094020-3
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CR5
N

r F 2mr

sinh~2mr !

2m cosh~2mr !2A4m21v2 sinh2~2mr !

2m cosh~2mr !1A4m21v2 sinh2~2mr !
G 1/2FA4m21v2 sinh2~2mr !1uvucosh 2mr

A2m
G uvu/2m

3S 0

F 11
A4m21v2 sinh2~2mr !22m

v sinh~2mr !
~sW ,nW !G«D , ~22!
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where the frequencyv is restricted by the condition

v<m. ~23!

This solution coincides~up to a gauge transformation! with
the fermion zero mode solution found in Ref.@13#.

The solutions~14!–~16!, and ~22! can be linked to the
fermion zero modes in the Georgi-Glashow model coupled
the fermions@20#. This model has been considered by Jack
and Rebbi@8#, who found the static fermion zero mode in th
background of the ’t Hooft–Polyakov monopole:

C5N expH E
0

r

dr8@A~r 8!2 1
2 F~r 8!#J •S 0

«
D , ~24!

where the constantN is determined from the three
dimensional normalizability condition, Eqs.~5! and ~6!.

The link between our zero modes and the Jackiw-Re
solution ~24! can easily be established. First, let us consi
the Wu-Yang monopole case, Eqs.~14!–~16!. Settingv50,
we restrict ourselves to two solutions~15!. The linear com-
binationCR

(1)1CR
(2) coincides with the Jackiw-Rebbi mod

~24!, while CR
(1)2CR

(2) becomes its gauge copy.
The identification in the case of the ’t Hooft–Polyako

monopole, Eq.~22!, is even more straightforward. Settin
v50, we get

C5
1

m
A 2p

r sinh~2mr !
tanh~mr !•S 0

«
D .

This expression coincides with the zero mode~24! where the
fields A(r ) andF(r ) are given in Eq.~17!.

C. Perturbations on the potential

The monopole field configurations which allow for exa
zero-mode solutions assume fixation of the gauge fieldAm at
all distances. In reality of course, one can hope to imitate
lattice monopole fields only to some extent. In particul
there arise cutoffs both at large and small distances, and
next question is, what are the corresponding changes in
structure of the zero modes? We address this question, o
qualitative level, in this subsection. First, let us notice th
although in all the cases considered we found an infin
number of fermionic zero modes, the status of these mod
somewhat different. Namely, in the first case@see Eqs.~13!#
there is symmetry between the left- and right-handed mo
In the third case, there are right-handed modes alone@see Eq.
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~22!#. Finally, the modes in the second case considered@see
Eqs.~14!–~16!, are of mixed nature.

The difference in the number of the right- and left-hand
modes is controlled in fact by the chiral anomaly:

NR2NL5E dtE d3r
Ha

•Ea

32p2
, ~25!

whereHa andEa are color magnetic and electric fields, r
spectively. The crucial point is that the product (Ha

•Ea) in
the second and third examples considered in the prev
subsection does not disappear already on the classical l
Note that to make use of Eq.~25! in our case, one should
introduce a finite range of integration over the time coor
nate,2T,t,T, whereT is large.

Now, if we modify the gauge field configurations, the d
ferenceNR2NL changes smoothly as far as the change in
right-hand side of Eq.~25! is smooth. The correspondin
analysis is trivial enough.

The situation is much more nontrivial in the case of t
Wu-Yang pointlike monopole. Namely, let us introduce
cutoff at small distances so thatAi;21/r only as far asr
.r 0 while at short distances the potential vanishes,Ai(0)
50. Then the zero modes found in the previous subsec
become nonrenormalizable. In other words, the zero mo
disappear altogether. To see this, it is convenient to use
following relation:

E d3x$~D̃g6!21@v22 1
4 F2~r !#g6,2%

54p~r 2g6,2!u0
` . ~26!

where D̃5]/]r 2A(r ), and independence of the function
g6 on the angular variables is assumed. Equation~26! can be
readily obtained by multiplying Eq.~12! by the functionsg6,
integrating over the whole space, and integrating by pa
Equation~26! implies thatg;1/r even if Ai(0)50. It fol-
lows then from Eq.~11! that the functionf ;1/r 2 at smallr
and the zero-mode solution is not renormalizable.

We will comment on the physical meaning of this disco
tinuity in the next section. Here we would like to notice on
that the introduction of the lattice spacingaÞ0 allows us to
introduce renormalizable solutions in any case. Moreover
be sensitive to the monopole field in the infrared, we sho
restrict ourselves tov!1/r 0. Then the normalization integra
over the functions~13! is dominated byr;1/v. Upon the
modification ofAi at small distances, there emerges a n
0-4
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contribution from the distances of ordera. The new contri-
bution does not dominate provided that the prod
(v•r 0)(r 0 /a) is small.

III. PHENOMENOLOGICAL APPLICATIONS:
CONCLUSIONS

The existence of an infinite number of the zero fermio
modes indicates the instability of the fermionic vacuum
the presence of the monopolelike field configurations. A
indeed, the instability of the fermionic vacuum in the pre
ence of the monopoles or dyons is well known and is
starting point of the theory of monopole catalysis@5–7#. In
particular, it is well known that theS-wave interaction of
massless fermions with Abelian monopoles is anomalou
the sense that for some chiralities there exist only incom
waves while for other chiralities there exist only outgoi
waves; see the discussion in@14#.

In terms of this analogy, one can also easily underst
the drastic effect on the zero modes of the modification
the Wu-Yang monopole field on short distances; see S
II C. Indeed, if one applies the Dirac equation to study
motion of a massless fermion in the field of the ’t Hoof
Polyakov monopole, then the result is that the ferm
changes its charge due to theW-boson exchange on the co
of the monopole; see, e.g.,@14#. As a result, the sign of the
magnetic moment is changed as well, and the fermion
opposite chirality is emitted as a particle of the same chi
ity with energy of order 1/r 0. In our language, the modifica
tion of the potential at arbitrarily small distances leads to
concentration of the wave function at these distances. A
result, any weak interaction, like the interaction withW
bosons, becomes crucial. Moreover, the energy of the
mion is not conserved. Thus, the wave function becom
sensitive only to the modifications of the monopole config
ration at short distances, which are very difficult to descr
realistically for the lattice monopoles. Instead, we sugges
~see Sec. II C! to use the lattice regularization and choice
v to remain sensitive to the monopole configuration at la
distances.

The instability of the fermionic vacuum revealed throu
the existence of an infinite number of zero modes imp
that the results of the numerical simulations in the quenc
approximation and those with dynamical fermions differ su
stantially. While studying the solutions of the Dirac equati
is sufficient to establish the instability of the perturbati
vacuum, it is much more difficult to find the true fermion
vacuum in the presence of monopoles. To this end, one ha
consider the full field theory. This allows us to include t
effect of the anomaly which arises at the quantum level. T
simplification is that because of theS-wave nature of the
fermions, the corresponding theory is effectively tw
dimensional@5,6#.

The outcome of the calculations@5,6# is that a fermionic
condensate is formed around the monopoles:

^c̄~r !c~r !&5
1

4pr 2
f ~r ,t !,
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wherer is the distance to the monopole center. The funct
f was estimated in the leading order in Ref.@5#:

u f ~r ,t !u5
1

2pr
. ~27!

At least naively, one can think of this result as a manifes
tion of the Pauli principle: the decay of the vacuum
stopped once the fermionic states which correspond to
fermions falling on the center are occupied. Since the fi
field configuration~27! is static, it can be thought of as Eu
clidean as well.

So far we have not discussed the question of how m
the monopolelike configurations considered above resem
the lattice monopoles. In particular, an obvious reservatio
that we used an approximation of a pointlike Abelian mon
pole. Such a bosonic field configuration would have an in
nite action and could not be important in lattice simulatio
~for review and further references, see, e.g.,@15#!. However,
as the latest measurements strongly indicate@16#, the mono-
pole size is much smaller than the distance between
monopoles. As a result, the pointlike monopoles might
fact be a valid approximation to interpret the results of t
lattice simulations.

Reversing the question, we can say that by studying
properties of the fermionic zero modes in the quenched
proximation, one can independently judge how close the
tice monopoles are to one or another theoretical descript
An advantage of this approach is that it is gauge-invarian

The mechanism of the chiral symmetry breaking d
cussed in the paper may also allow us to predict the pro
ties of the chiral condensate in the confinement phase as
as to provide a link between the chiral and deconfinem
phase transitions. An essential point in the Callan-Ruba
analysis of the appearance of the chiral condensate nea
static monopole lies in the fact that the Abelian monopole
static. Obviously, the fermions need a finite time to be
tracted to the monopole core by the interaction between
fermion spin and magnetic charge of the monopole. A
result, short-lived monopoles ~i.e., the monopole-
antimonopole pairs collapsing in a short time! cannot be re-
sponsible for the chiral symmetry generation. The analo
of the short-living monopoles in the Euclidean space-time
small-sized monopole loops which are indeed observed
the lattice simulations@18#. However, besides these sho
monopole trajectories, a large monopole cluster is presen
the confinement phase of the theory. The Minkowskian co
terparts of these lattice monopoles should serve as agen
the chiral symmetry breaking according to our considerati
above.

This picture naturally links the confinement and chir
phase transitions. Namely, chiral condensates must be
zero in the presence of the large monopole cluster, i.e., in
confinement phase. In the high-temperature, deconfinem
phase, the large monopole cluster is absent@18#, and, as a
result, the chiral symmetry breaking ceases to exist.

Naively, one may suggest that the chiral condensate
proportional to the density of the largest monopole clus
r IR , at least at zero temperatures,
0-5
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^c̄c&5Crr IR , ~28!

since both quantities have the same dimension (mas3).
However, at nonzero temperatures the dependence shou
more general:

^c̄c&5F~r IR ,T!, ~29!

where the functionF obeys the propertyF(0,T)50. Sugges-
tion ~28! may be checked in future lattice simulations
various lattice couplings.

In conclusion, let us summarize the findings of the pres
paper.

In the quenched approximation, one usually relies on
Banks-Casher relation@2# to study the relevance of variou
bosonic field configurations to the chiral symmetry breaki
However, we see that in the quenched approximation,
evaluation of the chiral condensate is inconsistent in
presence of the monopolelike configurations because of
instability of the fermionic vacuum. This inconsistency
another manifestation of the monopole catalysis phen
enon@5–7#.

It would be very interesting to search numerically for s
lutions of the Dirac equations~in the given gluon field back-
ground! corresponding to the fermionic zero modes w
imaginary frequencies, as discussed above. If such solut
exist, it would demonstrate independently the relevance
the monopolelike configurations—usually defined in an Ab
J.
,
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lian gauge~see Ref.@17# for a review!—in a non-Abelian
gauge theory. The advantage of such a search for the m
poles is that it does not depend on the Abelian gauge exp
itly.

Qualitatively, since the quenched approximation is in fa
not adequate to describe the fermionic vacuum, the bac
action of the fermions on the gluon fields can be unexpe
edly strong. In particular, extra monopole-antimonopole
traction is generated. Further analytical studies of the ef
are now in progress.

The chiral condensate seems to be linked with the den
of the monopoles in the largest monopole cluster. The p
posed mechanism is very attractive since it can naturally
plain the equivalence of the critical temperatures for the
confinement and chiral transitions.
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@19# In fact, one should impose the conditionF(0)50. Otherwise,
the field A0 is not defined at the origin. We assume that t
transition from F52m to F50 occurs at very small dis
tances.

@20# We do not describe this model and refer the reader to Ref.@8#
09402
for details. The essential point is that the Dirac equation
static zero modes has the same form both in the 4D QCD a
3D in the Georgi-Glashow model coupled to fermions~with
identification of the zero component of the gauge field in t
former case with the adjoint scalar field in the latter!.
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