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An effective Lagrangian for the light quark in the field of a static source is derived systematically using the
exact field correlator expansion. The lowest Gaussian term is bosonized using nonlocal colorless bosonic fields
and a general structure of an effective chiral Lagrangian is obtained containing all sets of fields. The new and
crucial result is that the condensation of the scalar isoscalar field which is the usual onset of chiral symmetry
breaking and is constant in space-time, assumes here the form of the confining string, and contributes to the
confining potential, while the remaining bosonic fields describe mesons Withﬁhquark structure and
pseudoscalars play the role of Nambu-Goldstone fields. Using a derivative expansion, the effective chiral
Lagrangian is deduced containing both confinement and chiral effects for heavy-light mesons. The pseudovec-
tor quark coupling constant is computed to be exactly unity in the local limit, in agreement with earlier large
N, arguments.
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I. INTRODUCTION of quark fields. It was shown if12] that specifically for
instanton vacuum all higher terms are of the same order,

It was understood long agfl] that chiral symmetry while only the lowest ternithe so-called 't Hooft Lagrang-
breaking in QCD is responsible for the low mass of pionsian) is taken in the standard instanton lore.
and therefore the low-energy limit of QCD can be adequately It is the purpose of the present paper to start a new and
described by the effective chiral Lagrangid@s. In this ap-  systematic approach to the derivation of QML and ECL from
proach, the Nambu-Goldstone particles are described by Ighe first principles—the QCD Lagrangian. In so doing, the
pal field Va}riables and the resulting effective chi'ral Lagrang-most important is to keep gauge invariance at every stage,
ian (ECL) is local. The most general and practically useful herefore we shall consider the simplest gauge-invariant sys-
form of the chiral Lagrangu_an was given 8] and contains  tem of a light guark in the field of a static antiquadener-
around ten phenomenological parametéiré to the fourth  gji74ti0n to only light quark systems will be done later

order inp), to be found from experiment. After averaging over gluon fields, one obtains EQL with

Naﬁw%ngesg:gctejr?;urlr:g %iscr,'gbénLghI;)W{ege,;ggoprggfej;es I;N '™ infinite number of terms, containing as kernels irreducible
u- S Sons, S tw Jor S- FISu0n field correlatordFC). Recent measurements for the

it does not take into account the quark structure .Of MESON3y alistic QCD vacuum have shown that FC create a hierar-
and consequently, e.g., the form factor computed in ECL can

display in the meson only mesonic degrees of freedom. chy, where the lowestGaussiaj correlator is dominating

Second, ECL completely disregards the phenomenon c;18,9] while the next(fouith ordej correlator contributes
confinement, which is also important at small energies, andround 1% to the statiQQ interaction(note that this situa-
hence degrees of freedom of vacuum gluons, creating corion is drastically different from that of instantonic vacuum,
fining string, are not taken into account. where higher correlators are equally |mpor)aWe assume

There have been attempts to cure the first defect; namelyfat a similar hierarchy should be present also in our problem
the model Lagrangians have been suggested which take inf & light-heavy quark, which allows us to study the resulting
account both quarks and mesd#s5]. In particular, the in- EQL term by term, paying most attention to the lowesd, 4
stanton model of the QCD vacuum has been used to deriviece. The next step is the bosonization procedure, i.e., an
the ECL and the quark-meson Lagrangi@ML) [6]. As a |dent|qal _ transformation introducing nonIocaI. cplorless
result, interesting interconnections of quark and chiral dePosonic fields having different Lorentz and flavor indices due

grees of freedom have been demonstrated in the example ¥t the use of Fierz transformation.

the nucleor(7]. A special attention deserves thg Germ, wherE bosoniza-
However, instantons are suppressed in the realistiion may be done introducing bosonic fields fijg combi-

vacuum of QCIO8,9], and moreover the internal consistency nation or else introducing baryonic fields for thg 8ombi-

of the instanton vacuum without confinement is seriouslynation, deserves special attention. As a result, one obtains

questioned10,11]. Moreover, instantonic vacuum lacks con- QML or quark-baryon Lagrangiaf@BL) in the most general

finement and therefore cannot cure the second defect of ECand rigorous form. These questions will be considered in a

and QML, therefore model ECL and QML obtained[®17]  separate publicatiof3].

disregard confinement fully. As the next step, one can use the stationary point analysis
Finally, the effective quark LagrangiaEQL) obtained to obtain nonlinear equations for effective bosonic fields.

after averaging over gluon degrees of freedom contains ifhis is done in a rigorous way and the resulting equations

principle an infinite number of terms with a growing number contain for the scalar-isoscalar part the same equation as was
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derived previously [14] in a gauge-invariant Dyson- where parallel transporters are defined as

Schwinger approach not using bosonization. The careful

study of that equation ifil4—16 has shown that it describes

in the light-heavy system both confinement and chiral sym- De(x,y)=P exp( igf A,dz,

metry breaking, which coexist. This fact means that confine- ey

ment in the language of effective meson fi_eld_s enters in_ th?ind the open conto@(x,y) connects points andy and can

form of a condensate of the scalar field inside the stringy, arbitrary otherwise.

while other fields describe subdominant features of ke To achieve this goal, one can use the so-called contour

dynamics. ) ) ) gaug€g 18,19 which is especially convenient in the case of a
The paper is organized as follows: In the next section, thgight quark moving in the field of a static antiquark. One has,

averaging over vacuum gluonic fields is done and EQL iSjor the contourz,(s,x) starting at pointx and ending atY
obtained. Special attention is devoted to the gauge invariance 2(0X),

and parallel transporters necessary to ensure it for nonlocal

gq combinations. In Sec. lll, the bosonization procedure is 1
done and Fierz transformation is introduced to obtain final Aﬂ(x)=J’ ds
QML with proper classification in Lorentz and flavor indices. 0

In Sec. IV, the resulting ECL is obtained and the station- M
ary point equations are derived and compared to that previ- EJ’ dl',,,(2)F,,(2). 4)
ously obtained in the Dyson-Schwinger approach. In Sec. V, Y
the derivative expansion of the nonlocal bosonized Lagrang-
ian is done and nonlocal forms of the lowest second- and
fourth-order terms in this expansion are obtained. Keeping; . . . .
only a pion field in addition to quarks, one derives in Sec. VI his axis to some point, which can be at-c, one has the
the effective Lagrangian which appears to have the expecte%o'caned mod|f|ed_ Fock-Schwinger gau2b], which was
form with the pseudovector quark-pion coupling constanteXtenSIVeIIy used if14] to get EQL. Here one has
ga. The latter is equal exactly to 1, in agreement with an

3

9Z,(S,X) 9Z,(s,X)
ds X,

Folz(s)]

In the particular case in which the contazjy(s,x) goes
long the shortegstraigh) way to thex, axis and then along

earlier largeN, argument in which a local approximation is _ in =
made. The concluding section is devoted to a discussion of Au(X:x4) 0 (W duFi,(U,X,) ®)
confinement and chiral properties of the resulting ECL in the
heavy-light meson case. and ay(u)=1, while foru=1,2,3,«,, is equal to
u.
Il. THE EFFECTIVE QUARK LAGRANGIAN a(U) = X_. =123,

Consider the QCD partition function in the Euclidean :

space-time, It is convenient to write all expressions in a gauge-
invariant way, using the properfyL9] that & given by Eq.
. . (3) is identically equal to unity when the contoG(x,y) lies
Z=f DADyD gt e SoAW+S Tw'(a+imraAud’x (1) on z,(s,x) or z,(s,y). Therefore, one can define gauge-
covariant operators referred to the poifit

where Sy(A)=7[[F3,(x)]%d"x, m is the current quark

M (x)= =
mass, and the quark operatby,,(x) has flavor index (f PP = e ()= DY X)¢(x),

=1,...)0), color indexa (a=1,...N.), and Lorenz
bispinor indexa (@=1,2,3,4). 0=y () P(x,Y),
The next step is to integrate ov®XA, with the weight
So(A). This is the gluon vacuum averaging which is denoted FELYV)(X):cD(Y,x)FW(x)QD(x,Y). ©6)

by (). Before doing this, however, one should choose the

gauge-invariant system and, using an appropriate gauge, €Xere the contou€(x,Y) in (Y,x) goes along(s,X) from
press A, through the field-strength operatdf,, which v o x, and in the opposite direction i (x,Y).

would finally appear in gauge-invariant combinations—field  kq, the field correlators referred to the same pdinone
correlators(FC) (see[17] for review and more discussiin  ¢an \rite @b,cd are fundamental color indices; Lorentz in-

namely, dices and 1N, terms are suppressed for simplicity reagons
9(F 0, (X)) P (X1, X2) F uu (X2) X ([FM00)Jal FM(Y) Jca)
><CI)C (X21X3)1 e ’F,u,nVn(Xn)q)Cn(Xn !Xl)>A 1) d5b
i == GTFFM(y)]), W)
=AM, () Ne
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G (FM0Tal FT (Y T FM(2) e Z:J DyDytel o im) il L (13)

Str(xz N
_9 <4 y +— °g3tr(xy2)
N¢(Nz—1) N.—-1

= 8pcOgedat where the EQL proportional t(A")) is denoted by ,

2
g
g°txyz  Neg’t(xzy) LB=7 f A% dy 92,00 W) 9,()

Ne(NE—1) NE—1

+ 5be5fc5ad

. (8

X9 (V)AL COAL () ¥, (14)

where  notation is  introduced, e.g., (Xy2
=(t[FM)FM(y)FM(2)]). g®

Derivation of Eqgs(7) and(8) is given in Appendix A. L= gf d*x d'y d*z" ¢y, () (%)

Let us first concentrate on the bilocal correlatdr. From
Egs. (4) and (5) it is clear that in the average value of X O (V)0 hge(Y) "rap(2) "t 0(2)
(A,(X)A,(y)) the arguments of[z(s,x)] and F[z(s,y)] y ,
are separated by the distarce T, whereT, is the gluonic X (AR )AL (VAR (2) Y870 (15

correlation length21], which was measured on the lattice . .
[22] and estimated analyticallj23] to be T,~0.2 fm (or An average of gluonic fields can be computed using Eg)s.

even smaller if data on glue lump mas§24] are useyl For ~ (7), @nd(8) as
such distances~T,, which satisfyr<|x—Y|, |y—Y]|, or

g 2/ A () ALY
for the gauged5), r<|x|, |y|, one has an estimate 95(AL (XA (¥))
(T FOOORM(y) = (I F (0D (x,y) F) B (y.X) ) =205 [y, (1) [ty (0)
+0O| —=,—=/, 9
X yz) © XD(U=v)(6,,61K= 6,0ku)- (16)

where the correlator on the right-hand side of E.is con-  The corresponding expression for the triple averégd is
nected by straight lines fromto y. A similar estimate holds given in Appendix A.

for the triple FC(8), and in what follows we shall use the  As was argued ihi26], the dominant contribution at large
straight-line form(9) which is independent of the position of distances from the static antiquark is given by the color-

the reference poinY. electric fields, therefore we shall write down explicitly
For that correlator, one can use the general representatidr{;%,_(el) for this case, i.e., taking=v=4 in Eqs.(14) and
found in[25], (16), while the general case, also for the generalized gauge

, (4), is given in Appendix B. As a result, one has
g
N P ()P XY)F p6(y) P Y.X)) " R
LEQL(eI):z_NC d™ [ d?Y g, (X) Phpp(X)

=D(X—Y)(8,p000~ 8usdy) +AL) . (10
o X9, (V) %Was (V) Vop YY), (D)
whereA) has the structure of a full derivative and therefore

does not contribute to confinement; its nonperturbatiNe)  whereJ(x,y) is

part is much smaller than that &f and we shall omit it.

The functionD(u) has a NP part which was measured in Nk Y B .
[22] and has the exponential form Jooy)= | du; | dviD(u=v), =123, (18
|ul Note that we have omitted everywhere for simplicity the up-
D(u)—D(O)ex;{ T (D per index(Y) in (M) (x), but it is implied, since otherwise

both Egs.(14) and(15) are not gauge-invariant.
Finally, the string tensiorr can be expressed through

D(u) (and higher correlatoysand at least for static quarks lll. BOSONIZATION OF EFFECTIVE QUARK
D(u) yields a dominanfup to a few percerit8,9]) contribu- LAGRANGIANS
tion to o,

We shall separate out white bilinears in Etj7) following

the standard procedure given for the genetd), in 14,27,
o:%fD(u)dzu. (12) P J genegd, in [14.27

VIS (Y) =", 00 W, (Y)
Having in mind all the above relations, one can now average - g
over gluonic fields in Eq(1) to obtain = 0 ()P a(X,Y) Do (Y,Y) e, (y) (19
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and introduce the isospin generatoﬁ’g:

it 1.
nzo itV =15;84; t@= ﬁl. (20)
Hence the bilinears in Eq17) can be written as
n?-1
WEOYWIy. ) =2 2 TR WYX,
(21
where we have defined
W0y ="Yaa (O (Y). (22

Now one can use the Fierz transformat{@8] (see Appen-
dix C for more details

5
Yeng =1 2 043000, 23
with
o(l)_ 6(2)6(2)= 7(4)7(4)_ y(')y(')
OO = (y*y) (y*y) = (¥*y)(¥*»),
0WOM = (o) (k) = (04 (T a) — (Tka) (Tka), (24)
OG)=i(y )i g, =TT

Introducing Egs(21) and(23) into Eq. (17), one obtains

Lol =~ [ atx [ atywecy)

XNy x)I(x,y), (25)
where we have defined
k) 1pp(n) 0Ok ~_1
YRy =3 y)0l, T=53. (20
o4

Bosonization is now done in a standard way using the iden-
tity (signs and indices of summation and integration are su

pressed

e VIV= J (det))2D y exd — xIx +iWIx+ixI¥]
(27)

PHYSICAL REVIEW D 65 094018

=J d4xJ d*y{ gl 0[(i9+im) z8(x—y)

+IMUD(X,Y)19p(y)

= x™O06y) 36y XMy, x)} (29

and the effective quark-mass operator is
MEP Oy =2 XMy OiFIyY). (30
In a similar way, one can bosonize the teluﬁg,_. However,

the computations are more lengthy and we shall present the
results in a separate publicatiph3].

IV. THE EFFECTIVE CHIRAL LAGRANGIAN
AND STATIONARY POINT ANALYSIS

L ECL

We are now in a position to integrate over quark fields in
Eqg. (28) and obtain the effective chiral Lagrangi
The result is

7= f D yet£d0) 31)

with

L0 [ ity (™xy)

X JI(x,¥) xR (y,x) + N trIn[(id+im) S(x—y)

+iM(x,y)]. (32
In Eqg. (32) we have taken into account thit is colorless,
and the sign tr refers to the summati¢integratior) over
Lorentz, flavor indices, and space-time coordinates.

As the next standard step, one finds the stationary point
equations to determine the ground-state values for the auxil-
iary bosonic fieldsy. Taking the functional derivative of
L), with respect toy(™¥, one obtains

—iN [ S(x,y) OMtMTI(x,y),
(33)

2x ™R (x,y)I(x,y) =

where we have defined as [ih4]

p_

S(x,y)=—[(ia+imI+iM]. ;. (34)
The set of(nonlineay Egs.(33) and(34) is the central result

of the present paper. In what follows, we shall study the
properties of the solutions and compare this result to the

and hence the partition function with the only Gaussian conpPreviously obtained equations [ia4], where another method

tribution L(® assumes the form

Z:f D¢/DIJI+DX eXpLQML (28)

where the effective quark-meson Lagrangian is

was used, namely a largé. approximation in the Dyson-
Schwinger equations for the heavy-light system with one
fixed flavor. In this case, one should take=1 andt(®
=1/,/2. Moreover, only the scalar paiince it is dominant

at large distances from the heavy soufté,26)) was con-
sidered, hence one can write instead of B3)
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M —Mo(x,y) = %X(X,Yﬁ(x,y) (35)
and Eq.(33) reduces to the equation
iMo(X,Y)=[7aS(X,¥) Yalk=1I(X,y), (36)

where we have used the relation

(Y45Y8)ay= Vo Sprar v, = & > 0l u(s0Y).
(37
Equation(36) is exactly the same as E(L5) in [14] where

the color-electric field component is retained, namely in the

full answer

iM O(le) :‘](X!y) ’)/,U,S(X!y) YM_JikykS(X!y) Yi (36,)

one keeps onlyy=4,k=1. As follows from the definition of

PHYSICAL REVIEW D 65 094018

and 5“(x—z) is smeared off at a distance of the order of
T4. To proceed, we disregard first in the s(&d) all terms
except for the scalar and pseudoscalar fields,

J(X,Y)

M(X,Y) = xs(X,y) 3% + X206 ysd(X,y) (45
f

with

X-0x,y)=x{"t".

The form(45) can be equivalently parametrized in a nonlin-
ear way as follows:

M(x,y)=Mg(x,y)U(x,y),

S Eq.(34), one has another equation to complete a full setyqy using the normalization property

(—i??—im)S(x,y)—if M(x,2)S(z,y)d*z

=5M(x—vy). (39

Let us look more closely at the scalar part of mass opera-

U=e><p(i 7’5&).
B(x.y)= o' (x,yt". (46)
r(tMtmMy=15,.,, nm=0,1,...n;—1, (47
one easily obtains
MMM ) =3(x2+x2)F(xy)=M2n; (49

tor, Mo(x,y), Egs.(35) and(36). The properties of the kernel ang hence the first term in E¢B2) can be written as

J(x,y) (18) have been thoroughly investigated [ib4—16,
and it was shown there that wherns close toy, thenJ(x,y)

is growing linearly at larggx|, e.g., when for simplicity

D(u) is taken in the Gaussian form
D(u)=D(0)e (W’ + Uty (39
then
I(x~y, x| =) =|x|2Tg\mD (0)e~ 4 ¥ ™4Tg  (40)

whereas

0'=%f D(u)d?u=27T;D(0). (41)
Moreover,S(x,y) [Eq. (34)] (where onlyM, is retainedl at
large distances displays the properties of the smeéfedc-
tion (see[14-14 for discussion and numerical estimates

745(x,Y) 74~ 33 (x=y), (42
and as a result the produd{x,y) v4S(x,y) v, behaves lin-
early in|x| at large|x|, in such a way that in Eq38) one has

f Mo(x,2)S(z,y)d*z— o|X|S(X,y). (43)
Thus for|x|>T, one has
Mo(x,2)=~ | x[8*M(x—2)[ 1+ O(T4/|X|)] (44)

(x2+ x2)3I(xy)=2nJ3"1(x,y)ME(x,y) (49)

and the total Lagrangia(82) is
LEL(Ms,d)=—2n{I(x,y)] "ME(x,Y)
+Netrlog[(id+im)1+iMU]. (50)
The stationary point equations assume the form

2
LE,

My andI(x,y)]1 *Mg(x,y)

— N, tr(Sid7s?)

=0 (51)
with
S(x,y)=—[id+im+iMsU],, (52)
SLE, e
R =N, tr(SMge' 5% y5). (53
sp(xy)

The solution with¢=0, Mg=MY) satisfies Eq(53) while
Eqg. (51) may be rewritten in the form

Ne -
IME(x,y) = Ztr SXx,y) = Ne(74Sya)sI(x.y), (54)
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where ("), means the scalar part of an operator, as defineshere the following notations are used:
in Eq. (37), and one can see that one recovers &%),
derived before if14] in a different formalism. D=iZ9+im+iM50, D0=i5+im+iMS. (56)

V. THE DERIVATIVE EXPANSION OF LEZC)L

Moreover,
In this section, the chiral Lagrangian will be written as a
series in powers of derivatives of the fidlt{x,y). A similar D'D=—2—3 (MU v +(m+Ma)2
procedure for the local case and in the absence of confine- MU )7, s
ment was systematically done [%,29,30, and more re- +mMg(0*+0), (57)

cently in[31]. For the case of instanton model it was done in
[7]. In all cases at some moment the local limit of the result- N 5 )
ing chiral Lagrangian is done, and confining properties of the DgDo=—d"+(m+Mg)~. (58)
kernelM4(x,y) are not taken into account. In what follows,

we keep bothp andM g nonlocal and the confining property To simplify, we setm=0 and rewrite Eq(55) as

(44) is exploited. It should be noted that nonlocality of the

field ¢ is a necessary consequence of its quark-antiquark N, .

structure and this structure is lost when the localization ap- ReL e m]=— 5trlog(1—Ged,M Uy, (59
proximation is done. Since the radius of the pion is around

0.6 fm, it is only for small momenta that the localization )

procedure is justified. We now turn to the second term on thi&/here we have defined

right-hand side of Eq(50) which contains a pionic field and

we make an expansion of its real part in powers of deriva- Go(X.y)=(—*+M3) . (60)
tives of the fieldU. Note that the imaginary part of the ef- '
fective chiral Lagrangian was studied[i5,7,30 and it starts
with the terms of the fifth power in the pionic field; it will
not be studied below. Defining the real part of the pionic
effective action Ré& .4 7], one has

In Eqg. (59), the sign “tr” implies the sum over Lorentz
and flavor indices and an integral over coordinates, having in
mind that every factor appearing in E&9) under the loga-
rithm sign should be considered as a matrix in the space-time

N DD coordinates. Expanding the logarithm in E§9) and keep-
ReLg 7]=— 7c|og det—, (55  ing only second- and fourth-order terms &QU+, one ob-
Do Do tains

ReLeg 7]= NCE RE[G(,(S’MU*GO(?MU + %GO&MU+G03VU GO§QU+GO&[3U(5M,,5Q3+ 8,800 0uabyp) 1+ -+, (61)

Heretr implies summing over flavor indices and integration over coordinatesUaﬂms(x,y)ei‘;5("’3’). We consider now the
first term on the right-hand side of E1) and write explicitly the coordinate part trf,

ReL @[ 7]=N,tr; Re( J d*X Go(x,y)d,U " (y,2)d*z Gy(z,u)d*u 9,U(u,x)|. (62)
In the limit whenM g(x,y) becomes local,

U(x,y)~3%(x—y)Mg(x)e' *0 =34 x—y)U(x),

one has

ReL 2 m]=N,tr; Re(fd4xd4yGo(x,y)aMU*(y)Go(y,x)&MU(x) . (63

One can see that E¢63) yields a nonlocal chiral Lagrang- Green’s function of a massive quark, with the constituent
ian, the nonlocality being given by the range of the quarkmassu created by chiral symmetry breaking~0.3 GeV.
Green’s functionGy(x,y). In the case of a model without Hence the range of nonlocality in this model case is large,
confinement, e.g., the instanton model or the Nambu—Jonand the derivative expansion in powers &, which is a
Lasinio (NJL) model, Gy(x,y) would represent the free standard systematic procedure [i5,7,30, is justified for
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small momentap=< . At this point, one should remember |n Eq. (66), i,(x),¢:(x) are quark wave functions of the
that in Egs(61)—(63) bothMg(x,y) andU(x,y) [and hence heavy-light states 2 and 1, respectively, which can be taken
S(x,y), Eq.(34)] are defined gauge invariantly with respect from the solutions of the corresponding Dirac equations,
to the contourY, which for simplicity was taken to be the,  found in [32,26. At this point, one can rewrite the matrix
axis. Therefore, the resulting string M,MS goes from the element of ALY between two stationary quark states
points (x,y) (coinciding whenT tends to zerpto the con- ¢, ¢, . Using the Dirac equations

tour Y. Physically it means that the effective Lagrang(&g)

describes the bosonic fiele.g., a pioh in the presence of [ap+ B(M+ a|X]) +Vcoul ¥n= €nthn, (77)
the heavy quark. It will enable us to define in the following . .

section matrix elements of heavy-light meson transitions Ul — ap+ B(M+ a|X]) + Veoul = €mtlm»

with emission of a pion. The case of an effective boson La- (72

grangian for light quarks and antiquarkise., without the _
heavy quark linpwill be considered in the second paper of one obtains
this series.

1 - -
(m|ALDIn)y= o —(m| - 2mysm+ Bys(em— €))7
VI. PIONIC TRANSITIONS IN HEAVY-LIGHT MESONS 2F,

In this section, the main emphasis will be on the pionic + ysBap|n). (73
part of the quark mass operator, which enters the quark-
meson Lagrangian as In the chiral limit, m=0, one can rewrite the last two terms
inside the brackets in Eq473) as
i 4 4, + \/ R R
AL—lf d*x d%y T OM(X,Y) ¢(y), (64) ow o i
Ys| Y o TIB 7| = Y5 Yudpum. (74)
where M (x,y) according to Eq(46) can be written in the
form One obtains from Eq.73) the form of the quark-pion inter-
A o action which one usually writes asee[33,34 and refer-
M(X,y)=Mg(x,y)e' 7560, (65  ences therein
In the Iimit of smallTy, one obtains foM 5(x,y) a localized ALCh= gztr(Eyﬂ'yst(/j),
expression
w=i(ud,u"—uta,u, 75)
Ms(x,y)=a|x|6M(x—y), [X>Tq (66) (U0 ) (

) ) ) oA whereu=+U and ga is the axial vector coupling of the
and the corresponding Lagrangian linearizedfinis (in the  (constituenk quark. It is easy to see that EG3) is the first
Minkowskian space-time term in the expansion of Eq75) in powers of the fieldr,

Ay A and it is gratifying that the parametgf is defined theoreti-

— A
AL(l):f w(X)a|X| ys WF Y(x)dt dx, (67) cally to be equal exactly to 1 in our local approximation,

which is in agreement with the large, argument in33].

whereF . is known[3] to beF =94 MeV. For the pionic

transition between heavy-light states, one should compute VIl. CONCLUDING REMARKS

the matrix elements We have performed a systematic bosonization procedure
(1) starting from the QCD Lagrangian and have derived the non-
(Ma(p2), m(K)[AL My (py)). (68) local chiral Lagrangian and its limiting local form for quarks

) ) ) interacting with a pionic field. By the method of construc-
Neglecting the recoil momentum of a heavy-light meson, ongjon, the resulting Lagrangian is applicable for quark-pion
effectlvely reduces the problem to the calculation of the majnieraction when the quark is coupled by the string to the
trix element, heavy antiquark. Therefore, our results can be immediately

_ applied to the pionic transitions in the heavy-light mesons.
— ¥ Mgl 3 The one-pion transitions have been studied using the form

W21:f ha(X) F 75 Jiwl(x)d X, (69 (75 in [34], and it was found from comparison to experi-

= 2w, (k)V

ment that the values afj around 0.7 are preferred. It makes

it reasonable to study the nonlocal version of the chiral La-
grangian(73), since nonlocality effectively decreases the re-

sulting matrix elements, possibly explaining the mismatch

_ (70) between our theoretical valgd=1 and the observed value
(2m)® of 0.7. In a similar way, one can obtain matrix elements for

and the decay probability is

Bk
W=27|W,|*S(E;—E,— o)
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double pion emission in heavy boson transitions, which areote that the product of threle’s may have another repre-
of special interest forB,D),(B,D*) semileptonic decays. sentation in theSU(3) group, since there one can use the
The case of purely light mesons can be treated in a similatotally antisymmetric tensog,y,..
way, but needs another string configuration to be taken into For example, one can write the following equality:
account. We plan to do in the subsequent paper of this series.

€aceBbdf= Oabl Scddet— OctOed) T Sad( Octeb™ Ochdet)
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APPENDIX A: VACUUM AVERAGES OF FIELD and findsP;,P, by multiplying both sides of Eq(A7) with
CORRELATORS the corresponding contribution af symbols. In this way,
one arrives at E(8) in the main text. If instead one uses Eq.
(A6) instead of one of the combinations, or separates Eq.
FOIX)=®(Y,X)F,,()®(x,Y) (A1)  (AB) out of Eq.(8), one arrives at the white (8, (3q) com-
binations.

For the field operator transported to the poifit

so that gauge transformation has the form

v v APPENDIX B: VACUUM AVERAGES OF ((A)")
FOIO0—=UT(NFRU(Y), (A2)

One can use the generalized contour gauge expression for
the vacuum average of any product can be expressed throug),(x),

Kronecker symbols, e.g., < oz )
G([FO 0Tl F V() Iea) = BaadocP(X,Y),  (A3) Au(X)= JdevﬁFw(Z)E JYdFMZ)Fw(Z) (B1)

whereab,cd are fundamental color indices a{x,y) can  to represent the average of the product of any number of
be easily connected to the color trace, i.e., to the FC, operatorsA,, as

(x1)
0249 A - [AL (X
P(xy)= ——gAU[FOOFM(y)]).  (Ad) (B ooy LA o)
NC X1 Xn
. =dryz--.fdryz
Similar rules apply to products of any number Bf"). fy parapn(21) y A oo Z0)

They can be deduced from the glot&U(N,) rules for the ) )
tensors averaged with the Haar measure, namely one can X([F3 o (Z0)]ags, - [F5 ) (Za)]ap)-
make a gauge transformation (B2)

[FY(0Tab— Q7 (V)ad FYL(01a(Y)gp  (A5) In the particular case of the modified Fock-Schwinger
and average oveD() with the usual Haar measure. In this gauge, one ha¥ =0, x—x;,
way one obtains relatio(8). At this point, it is interesting to dr,,,(2)=«a,(2)dz,5,,. (B3)

APPENDIX C: FIERZ TRANSFORMATIONS

In this appendix, the derivation is given of Fierz tranformations for combinationg, ahatrices met in the text above. It
is based on the clear presentation done in the 88k Note, however, that we are always working with the Euclidgan
matrices, therefore some details and coefficients obtained below are different28am

We start with the general expansion for any 4 matrix,

y=%§A) Cava, A=1,...16, (CY

ya=1, A=1,
Ya= 7Y, m=1234; A=2345,
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YY" VoV

A==, A=6,7,8,9,10,11, (C2

YA= V5Y., A=12,13,14,15,

YA= V5, A=16.

In Eqg. (C1), one can derive the general representation for any matfiggsG; , indeed from the relation
%% AA?’QO’{T(: OmkSils
changingm—m’, | —I’, and multiplying withF .,y G, one obtains
FmGit =342 Aa(FyaG)mi( Yaic- (C3

For Euclidean matricey, one easily obtaind,=—1 for A=12,13,14,15 and\ =1 otherwise. Takind-=G=y*, one
obtains

Ynkii = %; AV YAy mi(va)i={(D(D) +(¥H(¥H = (N (P +(0™)(0™) = (0¥ (6¥) = (") (") + (v° ¥

5
X(¥2 ) = (P (YY)~ (P ()} =1 kZl ollof. (C4)

The preceding relation coincides with E&3) and operator§(k) are given in Eq(24). Note that in the curly brackets in

Eq. (C4) each product ofy matrices, ¢y)(yvy), has the same order of indices asaﬁ'j?a-(p. In a similar way, one can
represent the combination of spatialmatrices,n=1,2,3, with no summation ovaer,

Yo = $ DD+ (DY) = (YN + (YN + () (07 )z o= (™) (0™ = (0" (™) = (YY) (YY) i

+(PYN YN = (Y)Y ik (C5)
Summing Eq(C5) overn and adding Eq(C4), one obtains
(Y ¥ ={(D(D) = 3(¥)(¥) = 3 (Y)Y ¥) = (¥) (V) ik - (Co)

Now in the case of a generalized contour gauge as in Appendix B, one has to make Fierz transformation of the combination
(?’#)mk(?’y)n:% ; AAY*yaY ) mi(va)ik - (C7)

Note that scalar and pseudoscalar combinations occur on the left-hand side(&f7Eqgnly for u=v.
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