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Chiral Lagrangian with confinement from the QCD Lagrangian
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An effective Lagrangian for the light quark in the field of a static source is derived systematically using the
exact field correlator expansion. The lowest Gaussian term is bosonized using nonlocal colorless bosonic fields
and a general structure of an effective chiral Lagrangian is obtained containing all sets of fields. The new and
crucial result is that the condensation of the scalar isoscalar field which is the usual onset of chiral symmetry
breaking and is constant in space-time, assumes here the form of the confining string, and contributes to the

confining potential, while the remaining bosonic fields describe mesons with theqq̄ quark structure and
pseudoscalars play the role of Nambu-Goldstone fields. Using a derivative expansion, the effective chiral
Lagrangian is deduced containing both confinement and chiral effects for heavy-light mesons. The pseudovec-
tor quark coupling constant is computed to be exactly unity in the local limit, in agreement with earlier large
Nc arguments.
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I. INTRODUCTION

It was understood long ago@1# that chiral symmetry
breaking in QCD is responsible for the low mass of pio
and therefore the low-energy limit of QCD can be adequa
described by the effective chiral Lagrangians@2#. In this ap-
proach, the Nambu-Goldstone particles are described by
cal field variables and the resulting effective chiral Lagran
ian ~ECL! is local. The most general and practically use
form of the chiral Lagrangian was given in@3# and contains
around ten phenomenological parameters~14 to the fourth
order inp), to be found from experiment.

Being successful in describing low-energy processes w
Nambu-Goldstone mesons, ECL has two major defects. F
it does not take into account the quark structure of meso
and consequently, e.g., the form factor computed in ECL
display in the meson only mesonic degrees of freedom.

Second, ECL completely disregards the phenomenon
confinement, which is also important at small energies,
hence degrees of freedom of vacuum gluons, creating c
fining string, are not taken into account.

There have been attempts to cure the first defect; nam
the model Lagrangians have been suggested which take
account both quarks and mesons@4,5#. In particular, the in-
stanton model of the QCD vacuum has been used to de
the ECL and the quark-meson Lagrangian~QML! @6#. As a
result, interesting interconnections of quark and chiral
grees of freedom have been demonstrated in the examp
the nucleon@7#.

However, instantons are suppressed in the reali
vacuum of QCD@8,9#, and moreover the internal consisten
of the instanton vacuum without confinement is seriou
questioned@10,11#. Moreover, instantonic vacuum lacks co
finement and therefore cannot cure the second defect of
and QML, therefore model ECL and QML obtained in@6,7#
disregard confinement fully.

Finally, the effective quark Lagrangian~EQL! obtained
after averaging over gluon degrees of freedom contain
principle an infinite number of terms with a growing numb
0556-2821/2002/65~9!/094018~10!/$20.00 65 0940
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of quark fields. It was shown in@12# that specifically for
instanton vacuum all higher terms are of the same or
while only the lowest term~the so-called ’t Hooft Lagrang-
ian! is taken in the standard instanton lore.

It is the purpose of the present paper to start a new
systematic approach to the derivation of QML and ECL fro
the first principles—the QCD Lagrangian. In so doing, t
most important is to keep gauge invariance at every sta
therefore we shall consider the simplest gauge-invariant
tem of a light guark in the field of a static antiquark~gener-
alization to only light quark systems will be done later!.

After averaging over gluon fields, one obtains EQL wi
an infinite number of terms, containing as kernels irreduci
gluon field correlators~FC!. Recent measurements for th
realistic QCD vacuum have shown that FC create a hie
chy, where the lowest~Gaussian! correlator is dominating
@8,9# while the next ~fourth order! correlator contributes
around 1% to the staticQQ̄ interaction~note that this situa-
tion is drastically different from that of instantonic vacuum
where higher correlators are equally important!. We assume
that a similar hierarchy should be present also in our prob
of a light-heavy quark, which allows us to study the resulti
EQL term by term, paying most attention to the lowest,q
piece. The next step is the bosonization procedure, i.e.
identical transformation introducing nonlocal colorle
bosonic fields having different Lorentz and flavor indices d
to the use of Fierz transformation.

A special attention deserves the 6q term, where bosoniza
tion may be done introducing bosonic fields forq̄q combi-
nation or else introducing baryonic fields for the 3q combi-
nation, deserves special attention. As a result, one obt
QML or quark-baryon Lagrangian~QBL! in the most genera
and rigorous form. These questions will be considered i
separate publication@13#.

As the next step, one can use the stationary point anal
to obtain nonlinear equations for effective bosonic field
This is done in a rigorous way and the resulting equatio
contain for the scalar-isoscalar part the same equation as
©2002 The American Physical Society18-1
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YU. A. SIMONOV PHYSICAL REVIEW D 65 094018
derived previously @14# in a gauge-invariant Dyson
Schwinger approach not using bosonization. The car
study of that equation in@14–16# has shown that it describe
in the light-heavy system both confinement and chiral sy
metry breaking, which coexist. This fact means that confi
ment in the language of effective meson fields enters in
form of a condensate of the scalar field inside the stri
while other fields describe subdominant features of theqQ̄
dynamics.

The paper is organized as follows: In the next section,
averaging over vacuum gluonic fields is done and EQL
obtained. Special attention is devoted to the gauge invaria
and parallel transporters necessary to ensure it for nonl
qq̄ combinations. In Sec. III, the bosonization procedure
done and Fierz transformation is introduced to obtain fi
QML with proper classification in Lorentz and flavor indice

In Sec. IV, the resulting ECL is obtained and the statio
ary point equations are derived and compared to that pr
ously obtained in the Dyson-Schwinger approach. In Sec
the derivative expansion of the nonlocal bosonized Lagra
ian is done and nonlocal forms of the lowest second-
fourth-order terms in this expansion are obtained. Keep
only a pion field in addition to quarks, one derives in Sec.
the effective Lagrangian which appears to have the expe
form with the pseudovector quark-pion coupling const
gA

q . The latter is equal exactly to 1, in agreement with
earlier largeNc argument in which a local approximation
made. The concluding section is devoted to a discussio
confinement and chiral properties of the resulting ECL in
heavy-light meson case.

II. THE EFFECTIVE QUARK LAGRANGIAN

Consider the QCD partition function in the Euclidea
space-time,

Z5E DADcDc1e2S0(A)1* fc1( i ]̂1 im1gÂ) fcd4x, ~1!

where S0(A)5 1
4 *@Fmn

a (x)#2d4x, m is the current quark
mass, and the quark operatorfcaa(x) has flavor indexf ( f
51, . . . ,nf), color index a (a51, . . . ,Nc), and Lorenz
bispinor indexa (a51,2,3,4).

The next step is to integrate overDAm with the weight
S0(A). This is the gluon vacuum averaging which is deno
by ^&A . Before doing this, however, one should choose
gauge-invariant system and, using an appropriate gauge
press Am through the field-strength operatorFmn which
would finally appear in gauge-invariant combinations—fie
correlators~FC! ~see@17# for review and more discussion!,
namely,

gn^Fm1n1
~x1!FC1

~x1 ,x2!Fm2n2
~x2!

3FC2
~x2 ,x3!, . . . ,Fmnnn

~xn!FCn
~xn ,x1!&A

[D (n), ~2!
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where parallel transporters are defined as

FC~x,y!5P expS igE
C(x,y)

AmdzmD ~3!

and the open contourC(x,y) connects pointsx andy and can
be arbitrary otherwise.

To achieve this goal, one can use the so-called con
gauge@18,19# which is especially convenient in the case o
light quark moving in the field of a static antiquark. One ha
for the contourzm(s,x) starting at pointx and ending atY
5z(0,x),

Am~x!5E
0

1

ds
]zn~s,x!

]s

]zr~s,x!

]xm
Fnr@z~s!#

[E
Y

x

dGmnr~z!Fnr~z!. ~4!

In the particular case in which the contourzm(s,x) goes
along the shortest~straight! way to thex4 axis and then along
this axis to some pointY, which can be at2`, one has the
so-called modified Fock-Schwinger gauge@20#, which was
extensivelly used in@14# to get EQL. Here one has

Am~x,x4!5E
0

xi
am~u!duiFim~u,x4! ~5!

anda4(u)[1, while for m51,2,3,am is equal to

a~u!5
ui

xi
, i 51,2,3.

It is convenient to write all expressions in a gaug
invariant way, using the property@19# that FC given by Eq.
~3! is identically equal to unity when the contourC(x,y) lies
on zm(s,x) or zm(s,y). Therefore, one can define gaug
covariant operators referred to the pointY,

c (Y)~x!5FC(x,Y)c~x![F~Y,x!c~x!,

c1(Y)~x!5c1~x!F~x,Y!,

Fmn
(Y)~x!5F~Y,x!Fmn~x!F~x,Y!. ~6!

Here the contourC(x,Y) in f(Y,x) goes alongz(s,X) from
Y to x, and in the opposite direction inF(x,Y).

For the field correlators referred to the same pointY, one
can write (ab,cd are fundamental color indices; Lorentz in
dices and 1/Nc terms are suppressed for simplicity reason!

g2^@F (Y)~x!#ab@F (Y)~y!#cd&

5
daddbc

Nc
2

g2^tr@F (Y)~x!F (Y)~y!#&, ~7!
8-2
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g3^@F (Y)~x!#ab@FY~y!#cd@F (Y)~z!#e f&

5dbcddeda fF2
g3 tr^xzy&

Nc~Nc
421!

1
Nc

Nc
421

g3 tr^xyz&G
1dbed f cdadF2

g3 tr^xyz&

Nc~Nc
421!

1
Ncg

3 tr^xzy&

Nc
421

G , ~8!

where notation is introduced, e.g., tr^xyz&
[^tr@F (Y)(x)F (Y)(y)F (Y)(z)#&.

Derivation of Eqs.~7! and ~8! is given in Appendix A.
Let us first concentrate on the bilocal correlator~7!. From

Eqs. ~4! and ~5! it is clear that in the average value o
^Am(x)An(y)& the arguments ofF@z(s,x)# and F@z(s,y)#
are separated by the distancer;Tg , whereTg is the gluonic
correlation length@21#, which was measured on the lattic
@22# and estimated analytically@23# to be Tg;0.2 fm ~or
even smaller if data on glue lump masses@24# are used!. For
such distancesr;Tg , which satisfyr !ux2Yu, uy2Yu, or
for the gauge~5!, r !uxu, uyu, one has an estimate

^tr F (Y)~x!F (Y)~y!&5^tr@F~x!F~x,y!F~y!F~y,x!#&

1OS r 2

x2
,
r 2

y2D , ~9!

where the correlator on the right-hand side of Eq.~9! is con-
nected by straight lines fromx to y. A similar estimate holds
for the triple FC~8!, and in what follows we shall use th
straight-line form~9! which is independent of the position o
the reference pointY.

For that correlator, one can use the general representa
found in @25#,

g2

Nc
^tr Fmn~x!F~x,y!Frs~y!F~y,x!&

5D~x2y!~dmrdns2dmsdnr!1Dmn,rs
(1) , ~10!

whereD (1) has the structure of a full derivative and therefo
does not contribute to confinement; its nonperturbative~NP!
part is much smaller than that ofD and we shall omit it.

The functionD(u) has a NP part which was measured
@22# and has the exponential form

D~u!5D~0!expS 2
uuu
Tg

D . ~11!

Finally, the string tensions can be expressed throug
D(u) ~and higher correlators! and at least for static quark
D(u) yields a dominant~up to a few percent@8,9#! contribu-
tion to s,

s5 1
2 E D~u!d2u. ~12!

Having in mind all the above relations, one can now aver
over gluonic fields in Eq.~1! to obtain
09401
ion

e

Z5E Dc Dc1e* fc1( i ]̂1 im) fcd4xeLEQL
(2)

1LEQL
(3)

1•••, ~13!

where the EQL proportional tô̂ An&& is denoted byLEQL
(n) ,

LEQL
(2) 5

g2

2 E d4x d4yfcaa
1 ~x! fcbb~x!gccg

1 ~y!

3gcd«~y!^Aab
(m)~x!Acd

(n)~y!&gab
(m)gg«

(n) , ~14!

LEQL
(3) 5

g3

3!E d4x d4y d4zfcaa
1 ~x! fcbb~x!

3gccg
1 ~y!gcd«~y!hcer

1 ~z!hc f s~z!

3^Aab
(m)~x!Acd

(n)~y!Ae f
(l)~z!&gab

(m)gg«
(n)grs

(l) . ~15!

An average of gluonic fields can be computed using Eqs.~5!,
~7!, and~8! as

g2^Aab
(m)~x!Acd

(n)~y!&

5
dbcdad

Nc
E

0

x

duiam~u!E
0

y

dvkan~v !

3D~u2v !~dmnd ik2d indkm!. ~16!

The corresponding expression for the triple average^A3& is
given in Appendix A.

As was argued in@26#, the dominant contribution at larg
distances from the static antiquark is given by the col
electric fields, therefore we shall write down explicit
LEQL

(2) (el) for this case, i.e., takingm5n54 in Eqs.~14! and
~16!, while the general case, also for the generalized ga
~4!, is given in Appendix B. As a result, one has

LEQL
(2) ~el!5

1

2Nc
E d4xE d4yfcaa

1 ~x! fcbb~x!

3gcbg
1 ~y!gca«~y!gab

(4)gg«
(4)J~x,y!, ~17!

whereJ(x,y) is

J~x,y!5E
0

x

duiE
0

y

dv iD~u2v !, i 51,2,3. ~18!

Note that we have omitted everywhere for simplicity the u
per index~Y! in c (Y)(x), but it is implied, since otherwise
both Eqs.~14! and ~15! are not gauge-invariant.

III. BOSONIZATION OF EFFECTIVE QUARK
LAGRANGIANS

We shall separate out white bilinears in Eq.~17! following
the standard procedure given for the generalLEQL

(n) in @14,27#,

Ca«
f g ~x,y![ fcaa

1 ~x!gca«~y!

5 fca8a
1

~x!Fa8a~x,Y!Fac~Y,y!gcc«~y! ~19!
8-3
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and introduce the isospin generatorst f g
(n) :

(
n50

nf
2
21

t f g
(n)t i j

(n)5 1
2 d f jdgi ; t (0)5

1

A2nf

1̂. ~20!

Hence the bilinears in Eq.~17! can be written as

Ca«
f g ~x,y!Cgb

g f ~y,x!52 (
n50

nf
2
21

Ca«
(n)~x,y!Cgb

(n)~y,x!,

~21!

where we have defined

Ca«
(n)~x,y![ fcaa

1 ~x!t f g
(n)gca«~y!. ~22!

Now one can use the Fierz transformation@28# ~see Appen-
dix C for more details!,

gab
(4)ga8b8

(4)
5 1

4 (
k51

5

Ōab8
(k) Ōa8b

(k) ~23!

with

Ōab
(1)5dab , Ō(2)Ō(2)5g (4)g (4)2g ( i )g ( i ),

Ō(3)Ō(3)5~g5g (4)!~g5g (4)!2~g5g ( i )!~g5g ( i )!,

(̄4)Ō(4)5~s ik!~s ik!2~s4k!~s4k!2~sk4!~sk4!, ~24!

Ōab
(5)5 i ~g (5)!ab ; smn5

gmgn2gngm

2i
.

Introducing Eqs.~21! and ~23! into Eq. ~17!, one obtains

LEQL
(2) ~el!52E d4xE d4y C (n,k)~x,y!

3C (n.k)~y,x!J̃~x,y!, ~25!

where we have defined

C (n,k)~x,y!5 1
2 Ca«

(n)~x,y!Ō«a
(k) , J̃[

1

Nc
J. ~26!

Bosonization is now done in a standard way using the id
tity ~signs and indices of summation and integration are s
pressed!

e2C J̃C5E ~detJ̃!1/2Dx exp@2x J̃x1 iC J̃x1 ix J̃C#

~27!

and hence the partition function with the only Gaussian c
tribution L (2) assumes the form

Z5E Dc Dc1Dx expLQML ~28!

where the effective quark-meson Lagrangian is
09401
-
p-

-

LQML
(2) 5E d4xE d4y$ fcaa

1 ~x!@~ i ]̂1 im!abd~x2y!

1 iM ab
( f g)~x,y!#gcab~y!

2x (n,k)~x,y!J̃~x,y!x (n,k)~y,x!% ~29!

and the effective quark-mass operator is

Mab
( f g)~x,y!5(

n,k
x (n,k)~x,y!Ōab

(k)t f g
(n)J̃~x,y!. ~30!

In a similar way, one can bosonize the termLEQL
(3) . However,

the computations are more lengthy and we shall present
results in a separate publication@13#.

IV. THE EFFECTIVE CHIRAL LAGRANGIAN L ECL

AND STATIONARY POINT ANALYSIS

We are now in a position to integrate over quark fields
Eq. ~28! and obtain the effective chiral LagrangianLECL

(2) .
The result is

Z5E DxeLECL
(2) (x) ~31!

with

LECL
(2) ~x!52E d4x d4y(

n,k
x (n,k)~x,y!

3 J̃~x,y!x (n,k)~y,x!1Nc tr ln@~ i ]̂1 im!d~x2y!

1 iM ~x,y!#. ~32!

In Eq. ~32! we have taken into account thatM is colorless,
and the sign tr refers to the summation~integration! over
Lorentz, flavor indices, and space-time coordinates.

As the next standard step, one finds the stationary p
equations to determine the ground-state values for the au
iary bosonic fieldsx. Taking the functional derivative o
LECL

(2) with respect tox (n,k), one obtains

2x (n,k)~x,y!J̃~x,y!52 iNc tr@S~x,y!Ō(k)t (n)# J̃~x,y!,
~33!

where we have defined as in@14#

S~x,y!52@~ i ]̂1 im!1̂1 iM̂ #x,y
21 . ~34!

The set of~nonlinear! Eqs.~33! and~34! is the central result
of the present paper. In what follows, we shall study t
properties of the solutions and compare this result to
previously obtained equations in@14#, where another method
was used, namely a largeNc approximation in the Dyson-
Schwinger equations for the heavy-light system with o
fixed flavor. In this case, one should takenf51 and t (0)

51/A2. Moreover, only the scalar part~since it is dominant
at large distances from the heavy source@14,26#! was con-
sidered, hence one can write instead of Eq.~30!
8-4
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M→M0~x,y!5
1

A2
x~x,y!J̃~x,y! ~35!

and Eq.~33! reduces to the equation

iM 0~x,y!5@g4S~x,y!g4#k51J~x,y!, ~36!

where we have used the relation

~g4Sg4!ag5gab8
(4) Sb8a8ga8g

(4)
5 1

4 (
k

Oag
(k) tr~SO(k)!.

~37!

Equation~36! is exactly the same as Eq.~15! in @14# where
the color-electric field component is retained, namely in
full answer

iM 0~x,y!5J~x,y!gmS~x,y!gm2JikgkS~x,y!g i ~368!

one keeps onlym54, k51. As follows from the definition of
S, Eq. ~34!, one has another equation to complete a full s

~2 i ]̂2 im!S~x,y!2 i E M ~x,z!S~z,y!d4z

5d (4)~x2y!. ~38!

Let us look more closely at the scalar part of mass ope
tor, M0(x,y), Eqs.~35! and~36!. The properties of the kerne
J(x,y) ~18! have been thoroughly investigated in@14–16#,
and it was shown there that whenx is close toy, thenJ(x,y)
is growing linearly at largeuxu, e.g., when for simplicity
D(u) is taken in the Gaussian form

D~u!5D~0!e2(u21u4
2)/4Tg

2
, ~39!

then

J~x;y,uxu→`!5uxu2TgApD~0!e2(x42y4)2/4Tg
2

~40!

whereas

s5 1
2 E D~u!d2u52pTg

2D~0!. ~41!

Moreover,S(x,y) @Eq. ~34!# ~where onlyM0 is retained! at
large distances displays the properties of the smearedd func-
tion ~see@14–16# for discussion and numerical estimates!,

g4S~x,y!g4;d̃ (3)~x2y!, ~42!

and as a result the productJ(x,y)g4S(x,y)g4 behaves lin-
early in uxu at largeuxu, in such a way that in Eq.~38! one has

E M0~x,z!S~z,y!d4z→suxuS~x,y!. ~43!

Thus for uxu@Tg one has

M0~x,z!'suxud̃ (4)~x2z!@11O~Tg /uxu!# ~44!
09401
e
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a-

and d̃ (4)(x2z) is smeared off at a distance of the order
Tg . To proceed, we disregard first in the sum~30! all terms
except for the scalar and pseudoscalar fields,

M ~x,y!5xS~x,y!
J̃~x,y!

A2nf

1x̂p~x,y!ig5J̃~x,y! ~45!

with

x̂p~x,y!5xp
( f )t f .

The form~45! can be equivalently parametrized in a nonli
ear way as follows:

M̂ ~x,y!5MS~x,y!Û~x,y!,

Û5exp~ ig5f̂ !,

f̂~x,y!5f f~x,y!t f . ~46!

Now using the normalization property

tr~ t (n)t (m)!5 1
2 dnm , n,m50,1, . . . ,nf21, ~47!

one easily obtains

1
4 tr~M̂ M̂ 1!5 1

2 ~xs
21xp

2 !J̃2~x,y!5MS
2nf ~48!

and hence the first term in Eq.~32! can be written as

~xs
21xp

2 !J̃~x,y!52nf J̃
21~x,y!MS

2~x,y! ~49!

and the total Lagrangian~32! is

LECL
(2) ~MS ,f̂ !522nf@ J̃~x,y!#21MS

2~x,y!

1Nc tr log@~ i ]̂1 im!1̂1 iM SÛ#. ~50!

The stationary point equations assume the form

dLECL
(2)

dMS~x,y!
524nf@ J̃~x,y!#21MS~x,y!

2Nc tr~Sieig5f̂!

50 ~51!

with

S~x,y!52@ i ]̂1 im1 iM SÛ#x,y
21 , ~52!

dLECL
(2)

df̂~x,y!
5Nc tr~SMSeig5f̂g5!. ~53!

The solution withf̂50, MS5MS
(0) satisfies Eq.~53! while

Eq. ~51! may be rewritten in the form

iM S
(0)~x,y!5

Nc

4
tr SJ̃~x,y!5Nc~g4Sg4!scJ̃~x,y!, ~54!
8-5
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YU. A. SIMONOV PHYSICAL REVIEW D 65 094018
where (G)sc means the scalar part of an operator, as defi
in Eq. ~37!, and one can see that one recovers Eq.~36!,
derived before in@14# in a different formalism.

V. THE DERIVATIVE EXPANSION OF L ECL
„2…

In this section, the chiral Lagrangian will be written as
series in powers of derivatives of the fieldÛ(x,y). A similar
procedure for the local case and in the absence of con
ment was systematically done in@5,29,30#, and more re-
cently in @31#. For the case of instanton model it was done
@7#. In all cases at some moment the local limit of the resu
ing chiral Lagrangian is done, and confining properties of
kernelMS(x,y) are not taken into account. In what follow
we keep bothf̂ andMS nonlocal and the confining propert
~44! is exploited. It should be noted that nonlocality of th
field f̂ is a necessary consequence of its quark-antiqu
structure and this structure is lost when the localization
proximation is done. Since the radius of the pion is arou
0.6 fm, it is only for small momenta that the localizatio
procedure is justified. We now turn to the second term on
right-hand side of Eq.~50! which contains a pionic field and
we make an expansion of its real part in powers of deri
tives of the fieldU. Note that the imaginary part of the e
fective chiral Lagrangian was studied in@5,7,30# and it starts
with the terms of the fifth power in the pionic field; it wil
not be studied below. Defining the real part of the pion
effective action ReLeff@p#, one has

ReLeff@p#52
Nc

2
log det

D1D

D0
1D0

, ~55!
-
r

t
n
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where the following notations are used:

D5 i ]̂1 im1 iM SÛ, D05 i ]̂1 im1 iM S . ~56!

Moreover,

D1D52]22]m~MSÛ1!gm1~m1MS!2

1mMS~Û11Û !, ~57!

D0
1D052]21~m1MS!2. ~58!

To simplify, we setm50 and rewrite Eq.~55! as

ReLeff@p#52
Nc

2
tr log~12G0]mMSÛ1gm!, ~59!

where we have defined

G0~x,y!5~2]21MS
2!x,y

21 . ~60!

In Eq. ~59!, the sign ‘‘tr’’ implies the sum over Lorentz
and flavor indices and an integral over coordinates, havin
mind that every factor appearing in Eq.~59! under the loga-
rithm sign should be considered as a matrix in the space-t
coordinates. Expanding the logarithm in Eq.~59! and keep-
ing only second- and fourth-order terms in]mÛ1, one ob-
tains
ReLeff@p#5Nc tr Re@G0]mU1G0]mU1 1
2 G0]mU1G0]nUG0]aU1G0]bU~dmndab1dmbdna2dmadnb!#1•••. ~61!

Heretr implies summing over flavor indices and integration over coordinates, andU5MS(x,y)ei f̂(x,y). We consider now the
first term on the right-hand side of Eq.~61! and write explicitly the coordinate part oftr,

ReLeff
(2)@p#5Nc trf ReS E d4x G0~x,y!]mU1~y,z!d4z G0~z,u!d4u ]mU~u,x! D . ~62!

In the limit whenMS(x,y) becomes local,

U~x,y!'d̃4~x2y!MS~x!eI f̂(x)5 d̃4~x2y!U~x!,

one has

ReLeff
2 @p#5Nc trf ReS E d4xd4yG0~x,y!]mU1~y!G0~y,x!]mU~x! D . ~63!
nt

ge,
One can see that Eq.~63! yields a nonlocal chiral Lagrang
ian, the nonlocality being given by the range of the qua
Green’s functionG0(x,y). In the case of a model withou
confinement, e.g., the instanton model or the Nambu–Jo
Lasinio ~NJL! model, G0(x,y) would represent the free
k

a-

Green’s function of a massive quark, with the constitue
massm created by chiral symmetry breaking,m'0.3 GeV.
Hence the range of nonlocality in this model case is lar
and the derivative expansion in powers of]U, which is a
standard systematic procedure in@5,7,30#, is justified for
8-6
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small momentap<m. At this point, one should remembe
that in Eqs.~61!–~63! both MS(x,y) andU(x,y) @and hence
S(x,y), Eq. ~34!# are defined gauge invariantly with respe
to the contourY, which for simplicity was taken to be thex4

axis. Therefore, the resulting string inM̂ ,MS goes from the
points (x,y) ~coinciding whenTg tends to zero! to the con-
tour Y. Physically it means that the effective Lagrangian~62!
describes the bosonic field~e.g., a pion! in the presence o
the heavy quark. It will enable us to define in the followin
section matrix elements of heavy-light meson transitio
with emission of a pion. The case of an effective boson
grangian for light quarks and antiquarks~i.e., without the
heavy quark line! will be considered in the second paper
this series.

VI. PIONIC TRANSITIONS IN HEAVY-LIGHT MESONS

In this section, the main emphasis will be on the pion
part of the quark mass operator, which enters the qu
meson Lagrangian as

DL5 i E d4x d4y c1~x!M̂ ~x,y!c~y!, ~64!

where M̂ (x,y) according to Eq.~46! can be written in the
form

M̂ ~x,y!5MS~x,y!eig5f̂(x,y). ~65!

In the limit of smallTg , one obtains forMS(x,y) a localized
expression

MS~x,y!'suxud (4)~x2y!, uxu@Tg ~66!

and the corresponding Lagrangian linearized inf̂ is ~in the
Minkowskian space-time!

DL (1)5E c̄~x!suxug5

pAlA

Fp
c~x!dt d3x, ~67!

whereFp is known @3# to beFp594 MeV. For the pionic
transition between heavy-light states, one should comp
the matrix elements

^M2~p2!,p~k!uDL (1)uM1~p1!&. ~68!

Neglecting the recoil momentum of a heavy-light meson, o
effectively reduces the problem to the calculation of the m
trix element,

W215E c̄2~x!
suxu

Fp

g5

lAeikx

A2vp~k!V
c1~x!d3x, ~69!

and the decay probability is

w52puW21u2d~E12E22v!
Vd3k

~2p!3
. ~70!
09401
s
-

k-

te

e
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In Eq. ~66!, c̄2(x),c1(x) are quark wave functions of th
heavy-light states 2 and 1, respectively, which can be ta
from the solutions of the corresponding Dirac equatio
found in @32,26#. At this point, one can rewrite the matri
element of DL (1) between two stationary quark state
cm ,cn . Using the Dirac equations

@ap1b~m1suxu!1VCoul#cn5encn , ~71!

c̄m@2ap1b~m1suxu!1VCoul#5emc̄m ,
~72!

one obtains

^muDL (1)un&5
1

2Fp
^mu22mg5p̂1bg5~em2en!p̂

1g5bapp̂un&. ~73!

In the chiral limit,m50, one can rewrite the last two term
inside the brackets in Eq.~73! as

g5S g
]p̂

]x
1 ib

]p̂

]t
D 5g5gm]mp̂. ~74!

One obtains from Eq.~73! the form of the quark-pion inter-
action which one usually writes as~see @33,34# and refer-
ences therein!

DLch5gA
q tr~ c̄gmg5vmc!,

v5 i ~u]mu12u1]mu!, ~75!

where u5AÛ and gA
q is the axial vector coupling of the

~constituent! quark. It is easy to see that Eq.~73! is the first
term in the expansion of Eq.~75! in powers of the fieldp̂,
and it is gratifying that the parametergA

q is defined theoreti-
cally to be equal exactly to 1 in our local approximatio
which is in agreement with the largeNc argument in@33#.

VII. CONCLUDING REMARKS

We have performed a systematic bosonization proced
starting from the QCD Lagrangian and have derived the n
local chiral Lagrangian and its limiting local form for quark
interacting with a pionic field. By the method of constru
tion, the resulting Lagrangian is applicable for quark-pi
interaction when the quark is coupled by the string to
heavy antiquark. Therefore, our results can be immedia
applied to the pionic transitions in the heavy-light meso
The one-pion transitions have been studied using the f
~75! in @34#, and it was found from comparison to exper
ment that the values ofgA

q around 0.7 are preferred. It make
it reasonable to study the nonlocal version of the chiral L
grangian~73!, since nonlocality effectively decreases the r
sulting matrix elements, possibly explaining the misma
between our theoretical valuegA

q51 and the observed valu
of 0.7. In a similar way, one can obtain matrix elements
8-7
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double pion emission in heavy boson transitions, which
of special interest for (B,D),(B,D*) semileptonic decays
The case of purely light mesons can be treated in a sim
way, but needs another string configuration to be taken
account. We plan to do in the subsequent paper of this se
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APPENDIX A: VACUUM AVERAGES OF FIELD
CORRELATORS

For the field operator transported to the pointY,

Fmn
(Y)~x!5F~Y,x!Fmn~x!F~x,Y! ~A1!

so that gauge transformation has the form

Fmn
(Y)~x!→U1~Y!Fmn

(Y)~x!U~Y!, ~A2!

the vacuum average of any product can be expressed thr
Kronecker symbols, e.g.,

g2^@F (Y)~x!#ab@F (Y)~y!#cd&5daddbcP~x,y!, ~A3!

whereab,cd are fundamental color indices andP(x,y) can
be easily connected to the color trace, i.e., to the FC,

P~x,y!5
daddbc

Nc
2

g2^tr@F (Y)~x!F (Y)~y!#&. ~A4!

Similar rules apply to products of any number ofF (Y).
They can be deduced from the globalSU(Nc) rules for the
tensors averaged with the Haar measure, namely one
make a gauge transformation

@Fmn
Y ~x!#ab→V1~Y!ac@Fmn

Y ~x!#cdV~Y!db ~A5!

and average overDV with the usual Haar measure. In th
way one obtains relation~8!. At this point, it is interesting to
09401
e

ar
to
s.

r
s-
-
s

gh
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note that the product of threeF ’s may have another repre
sentation in theSU(3) group, since there one can use t
totally antisymmetric tensoreabc .

For example, one can write the following equality:

eaceebd f5dab~dcdde f2dc fded!1dad~dc fdeb2dcbde f!

1da f~dcbded2dcddeb!. ~A6!

Therefore, one can use two forms of writing for the produ
In the first case, one writes

^@F (Y)~x!#ab@F (Y)~y!#cd@F (Y)~z!#e f&

5P1~x,y,z!dbcddeda f1P2~x,y,z!dbcd f cdad ~A7!

and findsP1 ,P2 by multiplying both sides of Eq.~A7! with
the corresponding contribution ofd symbols. In this way,
one arrives at Eq.~8! in the main text. If instead one uses E
~A6! instead of one of the combinations, or separates
~A6! out of Eq.~8!, one arrives at the white (3q),(3q̄) com-
binations.

APPENDIX B: VACUUM AVERAGES OF Š„A…

n
‹

One can use the generalized contour gauge expressio
Am(x),

Am~x!5E
Y

x

dzn

]zr

]xm
Fnr~z![E

Y

x

dGmnr~z!Fnr~z! ~B1!

to represent the average of the product of any numbe
operatorsAm as

^~Am1

(x1)
!a1b1

•••@Amn
~xn!#anbn

&

5E
Y

x1
dGm1n1r1

~z1!•••E
Y

xn
dGmnnnrn

~zn!

3^@Fn1r1

(Y) ~z1!#a1b1
•••@Fnnrn

(Y) ~zn!#anbn
&.

~B2!

In the particular case of the modified Fock-Schwing
gauge, one hasY50, xi→xi ,

dGmnr~z!5am~z!dzndrm . ~B3!
It
APPENDIX C: FIERZ TRANSFORMATIONS

In this appendix, the derivation is given of Fierz tranformations for combinations ofgm matrices met in the text above.
is based on the clear presentation done in the book@29#. Note, however, that we are always working with the Euclideang
matrices, therefore some details and coefficients obtained below are different from@28#.

We start with the general expansion for any 434 matrix,

g5 1
4 (

A
CAgA , A51, . . .,16, ~C1!

gA51, A51,

gA5gm , m51,2,3,4; A52,3,4,5,
8-8
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gA5smn5
gmgn2gngm

2i
, A56,7,8,9,10,11, ~C2!

gA5g5gm , A512,13,14,15,

gA5g5 , A516.

In Eq. ~C1!, one can derive the general representation for any matricesFmk,Gil , indeed from the relation

1
4 (

A
DAgml

A g ik
A 5dmkd i l ,

changingm→m8, l→ l 8, and multiplying withFmm8Gl 8 l one obtains

FmkGil 5
1
4 D(

A
DA~FgAG!ml~gA! ik . ~C3!

For Euclidean matricesgA one easily obtainsDa521 for A512,13,14,15 andDA51 otherwise. TakingF5G5g4, one
obtains

gmk
4 g i l

4 5 1
4 (

A
DA~g4gAg4!ml~gA! ik5 1

4 $~1!~1!1~g4!~g4!2~g i !~g i !1~s ik!~s ik!2~s4k!~s4k!2~sk4!~sk4!1~g5g4!

3~g5g4!2~g5g i !~g5g i !2~g5!~g5!%5 1
4 (

k51

5

Ōml
(k)Ōik

(k) . ~C4!

The preceding relation coincides with Eq.~23! and operatorsŌ(k) are given in Eq.~24!. Note that in the curly brackets in
Eq. ~C4! each product ofg matrices, (gg)(gg), has the same order of indices as inŌml

(k)Ōik
(k) . In a similar way, one can

represent the combination of spatialg matrices,n51,2,3, with no summation overn,

gmk
n g i l

n 5 1
4 $~1!~1!1~g4!~g4!2~gm!~gm!1~gn!~gn!1~smn!~smn!nÞmn2~snn!~snn!2~snn!~snn!2~g5gm!~g5gm!mÞn

1~g5gn!~g5gn!2~g5!~g5!%ml,ik . ~C5!

Summing Eq.~C5! over n and adding Eq.~C4!, one obtains

~gm!mk~gm! i l 5$~1!~1!2 1
2 ~gm!~gm!2 1

2 ~g5gm!~g5gm!2~g5!~g5!%ml,ik . ~C6!

Now in the case of a generalized contour gauge as in Appendix B, one has to make Fierz transformation of the com

~gm!mk~gn! i l 5
1
4 (

A
DA~gmgAgn!ml~gA! ik . ~C7!

Note that scalar and pseudoscalar combinations occur on the left-hand side of Eq.~C7! only for m5n.
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