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Baryon magnetic moments in the effective quark Lagrangian approach
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An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is
used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result
one obtains magnetic moments of octet and decuplet baryons without the introduction of constituent quark
masses and using only string tension as input. Magnetic moments come out on average in reasonable agree-
ment with experiment, except for nucleons andS2. The predictions for the proton and neutron are shown to
be in close agreement with the empirical values once we choose the string tension to yield the proper nucleon
mass. Pionic corrections to the nucleon magnetic moments have been estimated. In particular, the total result
of the two-body current contributions is found to be small. Inclusion of the anomalous magnetic moment
contributions from pion and kaon loops leads to an improvement of the predictions.
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I. INTRODUCTION

The QCD dynamics ofqq̄ and 3q systems is governed b
two basic phenomena: confinement and chiral symm
breaking~CSB!, which should be treated in a fully relativis
tically covariant way. Confinement is usually introduced f
static quarks via the area law of the Wilson loop@1# or
equivalently through the field correlators in the field co
relator method~FCM! @2,3#.

For spinless quarks or neglecting spin-dependent m
corrections, one can envisage a self-consistent method w
treats confinement as the area law also for light quarks
relativistically covariant way. Such a method was introduc
originally in @4# for mesons, in@5# for baryons, and in@6# for
heavy-light mesons, and later on in@7# the method was gen
eralized taking into account the dynamical degrees of fr
dom of the QCD string, which naturally appears due to
area law.

As a result Regge trajectories have been found in@7# with
the correct string slope (2ps)21. It was realized later on
that the method used in@4–7# can be more generally deve
oped in the framework of the so-called einbein formalis
see@8–10#. Spin corrections have been considered in@11# for
heavy mesons and in@6# for heavy-light ones. In the genera
case of light quarks spin-dependent correlations have b
introduced in@12# and for gluons in@13#. For a general re-
view with explicit formulas see@14#. Baryon Regge trajecto
ries have been found in@5#. In all cases the basic formalism
is the FCM and the Feynman-Schwinger~or world-line! path
integral representation@3,15,16# which is well suited for
relativistic quarks when spin is considered as a perturbat

The main difficulty which was always present in th
method has been the perturbative treatment of spin deg
of freedom~which is incorrect, e.g., for the pion! and the
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absence of spontaneous CSB effects in general@17#. Re-
cently a new type of formalism was suggested to treat sim
taneously confinement and CSB and a nonlinear equa
was derived for a light quark in the field of a heavy antiqua
@18#. This equation, derived directly from the QCD Lagran
ian, was found to produce linear confinement and CSB
the light quark and the explicit form of the effective qua
mass operatorM (x,y) was defined obeying both these pro
erties.

The eigenvalues and eigenfunctions of the nonlocal
nonlinear equations have been determined and a non
condensate was computed in@19#, confirming that CSB is
really present in the equations. In an additional study@20# it
was demonstrated that magnetic field correlators do not c
tribute to the large distance confinement; however, th
strongly modify the confinement for lowest levels an
heavy-light masses corrected in this way are favorably co
pared in@20# to the experiment and results of other calcu
tions.

Moreover, it was shown in@21# that lattice data strongly
support the dominance of the Gaussian~bilocal! correlator,
estimating the correction due to higher correlators to 1%
2%. Since the method of@18# is quite general and allows on
to treat also multiquark systems, it can be applied to theqq̄
and 3q systems, to find dynamical equations for them, wh
contain confinement and CSB@22#. To make these equation
tractable, one systematically exploits the large-Nc limit and
mostly confine ourselves to the simplest field correlators
the so-called Gaussian approximation; it was in particu
shown in @18# that the sum over all correlators does n
change the qualitative results. However, the kernel of eq
tions becomes much more complicated.

In the present paper we study the baryon magnetic m
ments based on the derived effective Lagrangian with
©2002 The American Physical Society13-1



ow
h
lu
th

e-

ch
tio

th
ive
o

to
ec
o
th
to

ta
un

co
he
ar

l-

t

nd

a-
ries
an-
r-
n

n
c
less

b-

ral

the
w-
e

of
iza-
is

n

uld

ini-
f

YU. A. SIMONOV, J. A. TJON, AND J. WEDA PHYSICAL REVIEW D65 094013
constituent quark masses. The paper is organized as foll
In Sec. II the general effective quark Lagrangian from t
standard QCD Lagrangian is obtained by integrating out g
onic degrees of freedom, and the nonlinear equation for
single quark propagatorS ~attached to the string in a gaug
invariant way! is derived, following the procedure in@22#.
Section III is devoted to the baryon Green’s function, whi
can be expressed in the lowest order of our approxima
scheme~neglecting gluon and pion exchanges! in terms of
three independent quark Green’s function, resulting in
Hamiltonian as a sum of three quark terms. In Sec. IV
next order approximation is written down when perturbat
gluon exchanges are taken into account, including the n
perturbative interaction between quarks violating the fac
ized form of the zeroth-order approximation. The next s
tion is devoted to the calculation of magnetic moments
baryons both in octet and decuplet representations of
SU~3! flavor group. In Sec. VI we discuss the corrections
magnetic moments due to pion exchange contributions.

II. EFFECTIVE QUARK LAGRANGIAN

As was discussed in the previous section, one can ob
an effective quark Lagrangian by averaging over backgro
gluonic fields. We shall repeat this procedure following@18#,
now paying special attention to the dependence on the
tour in the definition of contour gauge and introducing t
operation of averaging over contour manifold. The QCD p
tition function for quarks and gluons can be written as

Z5E DADcDc† exp@L01L11L int#, ~1!

where we are using Euclidean metric and define

L052
1

4E d4x~Fmn
a !2, ~2!

L152 i E fc†~x!~ ]̂1mf !
fc~x!d4x, ~3!

L int5E fc†~x!gÂ~x! fc~x!d4x. ~4!

Here mf is the ~current! mass of the quark fieldfcaa with
flavor f, color a, and bispinor indexa.

To expressAm(x) throughFmn one can use the genera
ized Fock-Schwinger gauge@23# with the contourC(x) from
the pointx to x0, which can also lie at infinity:

Am~x!5E
c
Flb~z!

]zb~s,x!

]xm

]zl

]s
ds. ~5!

Now one can integrate out the gluonic fieldAm(x) and intro-
duce an arbitrary integration over the set of contoursC(x)
with weight Dk(C), sinceZ is gauge invariant it does no
depend on the contourC(x). One obtains

Z5E Dk~C!DcDc† exp$L11Leff%, ~6!
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where the effective quark LagrangianLeff is defined as

exp~Leff!5 K expE fc†Â fcd4xL
A

. ~7!

When the quark fields are treated statically the right-ha
side ~RHS! of Eq. ~7! reduces to the well-known Wilson
loop. To study the averaging of the gluonic field configur
tions we adopt the correlator method, based on the se
expansion of the exponent operator. Using the cluster exp
sion, Leff can be written as an infinite sum containing ave
ages^(Â)k&A . At this point one can exploit the Gaussia
approximation, neglecting all correlators^(Â)k& of degree
higher thank52. Numerical accuracy of this approximatio
was discussed and tested in@21#. One expects that for stati
quarks corrections to Gaussian approximation amount to
than 2%–3%.

The resulting effective Lagrangian is quartic inc,

Leff
(4)5

1

2Nc
E d4xd4yfcaa

† ~x! fcbb~x! gcbg
† ~y! gcad~y!

3Jab;gd~x,y!1O~c6!, ~8!

Jab,gd~x,y!5~gm!ab~gn!gdJmn~x,y!, ~9!

andJmn is expressed as

Jmn~x,y!5g2E
C

x]uv

]xm
du«E

C

y]vv8
]yn

dv«8

tr

Nc

3^F«v~u!F«8v8~v !&. ~10!

Leff , Eq. ~8!, is written in the contour gauge@23#. It can be
identically rewritten in the gauge-invariant form if one su
stitutes parallel transportersF(x,x0),F(y,x0) ~identically
equal to unity in this gauge! into Eqs.~8! and~10!, multiply-
ing eachc(x) andc(y), respectively, and replacingF(u) in
Eq. ~10! by F(x,u)F(u)F(u,x0) and similarly forF(v).

After that Leff becomes gauge invariant, but in gene
contour dependent, if one keeps only the quartic term~8!,
and neglects all higher terms. A similar problem occurs in
cluster expansion of Wilson loop, when one keeps only lo
est correlators, leading to the~erroneous! surface dependenc
of the result. The situation here is the same as with a sum
QCD perturbation series, which depends on the normal
tion massm for any finite number of terms in the series. Th
unphysical dependence is usually treated by fixingm at some
physically reasonable valuem0 ~of the order of the inverse
size of the system!.

The integration over contoursDk(C) in Eq. ~6! resolves
this difficulty in a similar way. Namely, the partition functio
Z formally does not depend on contours~since it is integrated
over a set of contours! but depends on the weightDk(C).
We choose this weight in such a way that the contours wo
generate a string of minimal length betweenq and q̄. Thus
the physical choice of the contour corresponds to the m
mization of the meson~baryon! mass over the class o
strings, in the same way as the choice ofm5m0 corresponds
3-2
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to the minimization of the dropped higher perturbative term
As a practical outcome, we shall keep the integralDk(C) till
the end and finally use it to minimize the string between
quarks.

Until this point we have made only one approximation
neglected all field correlators except the Gaussian one.
cent lattice calculations~see Refs.@24,25#! estimate the ac-
curacy of this approximation at the level of a few perce
Now one must use another approximation, i.e., assum
large-Nc expansion and keep the lowest term. As was sho
in @18# this enables one to replace in Eq.~8! the colorless
product fcb(x) gcb

†(y)5tr@ fc(x)F(x,x0)F(x0 ,y) gc1(y)#
b the quark Green’s function

fcbb~x! gcbg
† ~y!→d f gNcSbg~x,y!. ~11!

Leff
(4) assumes the form

Leff
(4)52 i E d4xd4y fcaa

† ~x! fMad~x,y! fcad~y!, ~12!

where the quark mass operator is

fMad~x,y!52Jmn~x,y!„gm
fS~x,y!gn…ad . ~13!

From Eq.~12! it is evident thatfS satisfies

~2 i ]̂x2 imf !
fS~x,y!2 i E fM ~x,z!d4z fS~z,y!

5d (4)~x2y!. ~14!

Equations~13! and~14! were first derived in@18#. From Eqs.
~6! and~12! one should expect that at largeNc theqq̄ and 3q
dynamics is expressed through the quark mass operator~13!,
which should contain both confinement and CSB. Indeed,
analysis performed in Refs.@18–20# reveals that confine
ment is present in the long-distance form ofM (x,y), when
both distancesuxu,uyu of the light quark from the heavy anti
quark ~placed at the origin! are large.

We shall now make several simplifying assumptions
clarify the structure ofM (x,y). First of all we take the class
of contoursC going from any pointx5(x4 ,x) to the chosen
point x05(x4 ,rW (0)) and then to (2`,rW (0)) along thex4 axis.
For this class the corresponding gauge was studied in@26#.
Second, we take the dominant part ofJmn in Eq. ~13!,
namely,J44, which is proportional to the correlator of colo
electric fields. This yields a linear confining interactio
while the other componentsJik ,Ji4 ,J4i , i 51,2,3, have
been neglected, containing magnetic fields and yield
momentum-dependent corrections.~It is easy to take into ac
count these contributions in a more detailed analysis.!

The correlator̂ FF& in Eq. ~10! can be expressed throug
the scalar correlatorD(x), defined as@2#

tr g2

Nc
^Fab~u!F~u,v !Fgd~v !F~v,u!&

5D~u2v !~dagdbd2daddbg!1O~D1!, ~15!
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where the correlatorD1, not contributing to confinement, i
neglected. As a result one has, forM @19,20#,

fMCx4
~x,y!5 fM (0)I 1 fM ( i )ŝ i1

fM (4)g41 fMg
( i )g i .

~16!

Here we have defined

ŝ i5S s i 0

0 s i
D . ~17!

The dominant part ofM , fM (0) is linearly growing at large
uxu,uyu and in the most simple case of Gaussian form ofD(x)
can be written as

fM (0)~x,y!5
1

2TgAp
e2(x42y4)2/4Tg

2
sUx1y

2 Ud̃ (3)~x2y!,

~18!

whereTg is the correlation time characterizing the time sca
of correlations in the fluctuations of the gluon backgrou
field. It has been studied in lattice gauge simulations@24# and
found to be of the order of14 fm. Following Ref. @19# we
have adopted a valueTg50.24 fm.

Similarly, in the space dimension we assume ford̃ in Eq.
~18! a smearedd function, which can be represented
@19,20#

d̃ (3)~x2y!'expS 2
ux2yu2

b2 D S 1

bAp
D 3

, b;2Tg .

~19!

Here againTg is the gluon correlation length, which ente
D(u) asD(u)5D(0)exp(2u2/4Tg

2). In Eq. ~18! the param-
eters has been introduced. It corresponds to the string t
sion, as can be seen from Eq.~14!. For asymptotic largeuxu
we find that the kernel~18! leads to a linear confining inter
actionsuxu @19,20#. We are now in the position to derive th
qq̄, 3q Green’s function, which will be done in the nex
section.

III. EQUATIONS FOR THE BARYON GREEN’S
FUNCTION

Equations for the 3q system can be written in the sam
way as for theqq̄ system. We again shall assume the larg
Nc limit in the sense that 1/Nc corrections fromqq̄ pairs to
the quark Green’s function and the effective mass can
neglected. We now write down the explicit expressions
Nc53.

The initial and final field operators are

C in~x,y,z!5eabcG
abgcaa„x,C~x!…cbb„y,C~y!…

3ccg„z,C~z!…, ~20!

wherea,b,c, are color indices,a,b,g are Lorentz bispinor
indices, and transported quark operators are
3-3
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caa„x,C~x!…5„FC~x,x̄!ca~ x̄!…a . ~21!

The contourC(x) in FC can be arbitrary, but it is convenien
to choose it in the same class of contours that is use
Dk(C) and in the generalized Fock–Schwinger gauge@23#.
Gabg is the Lorentz spinor tensor securing proper bary
quantum numbers. One can also choose other operators
it does not influence the resulting equations. In Eq.~20! we
have omitted flavor indices inG and c(x,C), to be easily
restored in the final expressions.

Using now the effective Lagrangian~12! valid at large
Nc , we obtain, for the 3q Green’s function,

G(3q)~x,y,zux8,y8,z8!

5
1

NE Dk~C!DcDc†Cfin~x8,y8,z8!C in
† ~x,y,z!

3exp~L11Leff!. ~22!

Integrating out quark degrees of freedom and neglecting
determinant at largeNc , one has

G(3q)5E Dk~C!~eG!~e8G8!

3$S~x,x8!S~y,y8!S~z,z8!1perm%, ~23!

where for simplicity color and bispinor indices are su
pressed together with parallel transporters in initial and fi
states. One can also define unprojected~without G,G8) 3q
Green’s functionGun

(3q) with three initial and three final bis
pinor indices instead of projected byG,G8 quantum numbers
of the baryon.

The set of contoursC(x) in Eq. ~23! should be chosen to
yield a stationary point of the action~6!. For the particular
case of small correlation timeTg , i.e., takingx45y45z4, we
may assume that this can be achieved by a single choic
contours passing through the pointx05(x4 ,r (0)) ~see Fig. 1!.

FIG. 1. The set of contoursC for the instantaneous configuratio

of three quarks atx5(x4 ,xW ), y5(x4 ,yW ), and z5(x4 ,zW), passing

through the common pointx05(x4 ,rW (0)).
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This can readily be generalized for the noninstantane
case.

One can write, forGun
(3q) ,

~2 i ]̂x2 im12 iM̂ 1!~2 i ]̂y2 im22 iM̂ 2!

3~2 i ]̂z2 im32 iM̂ 3!Gun
(3q)

5d (4)~x2x8!d (4)~y2y8!d (4)~z2z8! , ~24!

with, e.g., M̂1G[*M (x,u)G(u,x8)d4u. One can simplify
the form ~24! for G(3q) taking into account thatM (x,x8)
actually does not depend on (x41x48)/2. Hence the interac-
tion kernel ofG(3q) does not depend on relative energies,
in @27#. Similarly to @27,28# one can introduce the Fourie
transform ofG(3q) in time components and take into accou
energy conservationE5E11E21E3. One obtains

G(3q)~E,E2 ,E3!.E Dk~C!~eG!~e8G8!

3
1

~E2E22E32H1!~E22H2!~E32H3!
,

~25!

where we have used the notation

Hi5mib
( i )1p( i )a( i )1b ( i )M ~r ( i )2r (0)!. ~26!

Moreover, we have taken inM (x,x8) the limit of smallTg .
As in @27# one can now integrate overE2 ,E3 to obtain, fi-
nally,

G(3q)~E,r i ,r i8!.E Dk~C!~eG!~e8G8!
1

~E2H12H22H3!
.

~27!

From Eq.~27! one obtains an equation for the 3q wave func-
tion similar to that of theqq̄ system:

~H11H21H32E!c~r1 ,r2 ,r3!50. ~28!

For a~arbitrary! given pointr (0) the solution of Eq.~28! is of
a factorizable form. Hence, when we treatr (0) as a constant
parameter, the three-quark wave function is simply expres
in terms of single-quark orbitals. However, in general t
point r (0) should be found by minimizing the interaction b
tween the three quarks, yielding forr (0) the so-called Torri-
celli point. As a result we obtain for the effective string n
an additive two-body confining interaction, but a singl
string Y junction, which is of a genuine three-body nature

Here we do not consider, in Eq.~28!, r (0) to be expressed
through three-quark positions, as required by the Torric
point, but in a first approximation take it as a constant p
rameter. This allows us to have the three-quark solution
factorized form, leaving calculation of the dynamical corr
lations induced by nonfactorizability to a further study.
3-4
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In the nonrelativistic approximationmi@As one has

(
i 51

3 F ~p( i )!2

2mi
1sur ( i )2r (0) uGC5«C, «5E2( mi .

~29!

IV. PERTURBATIVE CORRECTIONS TO FACTORIZED
SOLUTIONS

The effective Lagrangian~8! and the effective mass op
eratorM (x,y), Eq. ~13!, do not take into account the pertu
bative interaction between the quarks in the baryon. To
end we separate the gluonic fieldAm into a backgroundBm
and perturbative partsAm5Bm1am and use the ’t Hooft
identity to integrate in the partition function independen
over both parts ofAm as was done in@30#.

We shall use the following representation of gauge tra
formations,

Bm→U†S Bm1
i

g
]mDU, am→U†amU, ~30!

and keep foram the background gauge condition@29,30#

Dm~B!am50, Dm~B!5]m2 igBm . ~31!

As a result of the perturbative gluon exchange between
ferent quarks in the baryon there will appear an additio
vertex in the effective Lagrangian@19#

DL5g2E f

c†~x!gm
f c~x!Eg

c†~y!gn
gc~y!

3^am~x!an~y!&dx dy. ~32!

In what follows we shall be interested only in the color Co
lomb interaction which results from Eq.~32! assuming the
simplest form of gluon propagator and neglecting at first
simplicity the influence of the background field on
namely,

E ^am~x!an~y!&d~x42y4!

5
dmnC2

4p2 E d~x42y4!

~ x̄2 ȳ!21~x42y4!2
5

dmnC2

4pux2yu
.

~33!

Now taking the background into account, one arrives at
picture of the gluonam propagating inside the film—the
world sheet of the string, created by the background betw
three-quark world lines and the string junction, as is sho
in Fig. 2. Depending on the choice ofr (0) we will get in
general an effective interaction of a two-body or three-bo
nature. Because of the presence of the QCD background
strength of the resulting Coulomb interaction is expected
be different from the perturbative OGE contribution and a
result different from the interaction used for example in t
Breit equation@31#.
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Because of its attractive nature, the color Coulomb c
tribution leads to smaller baryon masses and gives rise
composite systems with a smaller radius. As a result
magnetic moments become smaller. In the remaining par
the paper we neglect the effect from the Coulomb inter
tion. To study this a more involved analysis is needed, wh
also the hyperfine interaction has to be included.

V. BARYON MAGNETIC MOMENTS WITHOUT QUARK
CONSTITUENT MASSES

Since the calculation of magnetic moments as well
baryon masses does not involve large momentum tran
one can use for that purpose the Hamiltonian equation~28!.
According to the results of Sec. IV,Hi can be represented a

Hi5mib
( i )1p( i )a( i )1b ( i )M ( i )~r ( i )2r (0)!. ~34!

The baryon solution of Eq.~34! can be represented as

CJM5GJM
abg~ f 1f 2f 3!eabccaa

f 1 ~r (1)2r (0)!cbb
f 2 ~r (2)2r (0)!

3ccg
f 3 ~r (3)2r (0)!, ~35!

wherea,b,c and a,b,g refer to color and Lorentz indices
respectively, andf i is the flavor index. In what follows we
shall use only the lowest orbitals~lowest eigenvalues solu
tions! for quarks and therefore the orbital excitation indic
are everywhere omitted. The orbital wave function can
decomposed in the standard way,

ca
f ~r!5

1

r S G~r!V j lM

iF ~r!V j l 8M
D 5S g~r!V j lM

i f ~r!V j l 8M
D , r5r2r (0),

~36!

and the color index is omitted, since the orbital satisfie
‘‘white’’ ~vacuum averaged! equation

Hica i

f i 5«ni

( i )ca i

f i . ~37!

FIG. 2. A schematic view of the gluon propagating inside t
world sheet of the string.
3-5
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Therefore the only remnant of color is the requirement t
CJM be symmetric in all coordinates besides color. From
~28! we see that the mass of the baryon, corresponding to
~35!, is given by

MB5(
i 51

3

eni

( i ) . ~38!

To define the magnetic moment one may introduce an ex
nal e.m. fieldA, p( i )→p( i )2eq

( i )A, A5 1
2 (H3r ), and cal-

culate perturbatively the energy shift

DE52mH. ~39!

Because of the symmetry of the problem, it is enough
consider only the perturbation of one orbital, say, for the fi
quark,

H1→H11DH1 , DH152eq
(1)a(1)A. ~40!

Hence, denoting

C (1)5S w (1)

x (1) D ,

^DH1&52eq
(1)~w (1)* ,x (1)* !

3S 0 s(1)A

s(1)A 0 D S w (1)

x (1) D
52eq

(1)~w (1)* s(1)Ax (1)

1x* (1)s(1)Aw (1)!. ~41!

Using Eq.~36! and a simple derivation given in Appendix
one obtains, for the contribution of the first quark to t
magnetic moment operator in spin space,

m(1)52
2eq

(1)

3 E g* ~r ! f ~r !rd3rV j lM* s(1)V j lM . ~42!

For the lowest orbitalj 5 1
2 , l 50, M5 1

2 , s→sz , one ob-
tains

mz[3mz
(1)522eq

(1)sz
(1)E g* ~r ! f ~r !rr 2dr, ~43!

where the superscript 1 denotes the contribution of the
quark to the magnetic moment. The normalization condit
is

E ~ ugu21u f u2!r 2dr51. ~44!

Note that everywhere we putr (1)2r (0)5r . In the case of a
local linear confining interaction using the Dirac equati
one can expressm ( i ) throughg(r ) only ~see Appendix A for
details!:

mz
( i )5

eq
( i )sz

( i )

3 E
0

` ugu2r 2~2sr 13«!

~«1sr !2
dr. ~45!
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Constructing the fully symmetrical 3q wave function for the
nucleon with total spin up one has, for the proton,

Csymm
P 5N8H 2

3
@u1~1!d2~2!1d2~1!u1~2!#u1~3!

2
1

3
@d1~1!u2~2!1u2~1!d1~2!#u1~3!

2
1

3
@u1~1!u2~2!1u2~1!u1~2!#d1~3!

2
1

3
@u1~1!d1~2!1d1~1!u1~2!#u2~3!

1
2

3
u1~1!u1~2!d2~3!J , ~46!

whereN851/A2, and subscripts (6) refer to the spin pro-
jection. In a similar way for the neutron one replacesu↔d
and obtains

Csymm
n 5N8H 2

3
@d1~1!u2~2!1u2~1!d1~2!#d1~3!

2
1

3
@u1~1!d2~2!1d2~1!u1~2!#d1~3!

2
1

3
@d1~1!d2~2!1d2~1!d1~2!#u1~3!

2
1

3
@d1~1!u1~2!1u1~1!d1~2!#d2~3!

1
2

3
d1~1!d1~2!u2~3!J . ~47!

The matrix elements are computed easily:

^Csymm
p ueq

(1)sz
(1)uCsymm

p &5
1

3
e, ~48!

^Csymm
n ueq

(1)sz
(1)uCsymm

n &52
2

9
e, ~49!

wheree is the charge of the proton. From Eqs.~48! and~49!
one immediately gets the famous relation

m (n)

m (p)
52

2

3
. ~50!

Writing for identical orbitals the magnetic moment as a pro
uct,

mB53^Csymmueq
(1)sz

(1)uCsymm&l, ~51!

where

l[2
2

3E g* ~r ! f ~r !r 3dr. ~52!
3-6
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BARYON MAGNETIC MOMENTS IN THE EFFECTIVE . . . PHYSICAL REVIEW D 65 094013
It is clear that inclusion of higher orbitals will change th
magnetic moment of proton and neutron, similarly to t
case of tritium and3He, where the admixture of the orbita
momentumL52 changes the magnetic moment by 7%–8
In our case the orbital momentum is brought by all thr
quarks symmetrically, and these components appear in
wave function due to mixing through the tensor and sp
orbit forces between quarks.

Equations~51! and ~52! can readily be generalized whe
the quarks have different orbital wave functions. For t
single-quark orbitals we have taken the solution of
Dyson-Schwinger-Dirac equation with nonlocal kernel fro
Refs. @19,20#. Assuming for the field correlator a Gaussia
form

D~u!5D~0!exp~2u2/4Tg
2!, D~0!5

s

2pTg
2

, ~53!

with Tg50.24 fm the ground state orbital solution is dete
mined. In Table I are shown the calculated ground state
ergy of the orbitals for various flavor states. For the curr
masses we have usedmu5md55 MeV and ms
5200 MeV.

Using these orbitals we calculate the nucleon magn
moment for various values of the string tensions. The re-
sults are also shown in Table I. From the table we see tha
predictions depends sensitively on the string tensions. In-
creasing the value ofs leads to a larger ground state ener
of the orbitals and smaller size of the magnetic moment. T
in accordance with an analysis where the small componen
the orbital is treated perturbatively. Similarly the presence
a Coulomb interaction yields a lower ground state energy
the orbital, resulting in a larger value in magnitude of t
magnetic moment. Close agreement with the experime
values of the magnetic moment is found whens
50.09 GeV2. In this case the mass of the nucleon is p
dicted to be 891 MeV. It is gratifying to see that the magne
moments are reasonable in the regime where also the
dicted mass of the nucleon is close to the empirical valu

The explicit forms ofCsymm for other baryons are given
in Appendix B. Note that due to the strange quark mass t
orbitals are different from those ofu,d quarks and therefore
the decomposition~51! has to be modified. Some useful fo
mulas can be found in Appendix B.

The resulting values for baryon magnetic moments
given in Table II, where they are compared with experime

TABLE I. Ground state energye0 of the orbitals and the pre
dicted magnetic moments of the nucleons in units of nuclear m
neton for various values ofs. The experimental values are als
listed.

s (GeV2) e0(u,d) (MeV) e0(s) (MeV) mproton mneutron

0.09 297 439 2.81 21.87
0.12 342 482 2.44 21.63
0.15 380 519 2.20 21.46

Expt. 2.79 21.91
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tal values. Considering the case ofs50.12 GeV2 we see
that there is a rather close agreement with the experime
magnetic moments, with the largest deviations found for
nucleon andS2. As discussed for the case of the nucle
improvement of the predicted mass of the composite sys
also leads to magnetic moments closer to the experime
values. This applies also for the case of theD isobar. Hence
we may hope that inclusion of the Coulomb and hyperfi
splitting interactions will improve the predictions. Moreove
pionic effects are expected to be present. As a result sig
cant mesonic current contributions to the magnetic mome
may occur. In the next section we study the dominant c
rections from the pion to the one- and two-body current.

VI. MESONIC CONTRIBUTIONS

In this section we carry out in our single-orbital model
estimate of the magnitude of the pionic-current corrections
the magnetic moment of the nucleon. Because of the qu
coupling to effective mesonic degrees of freedom, one-
two-body current contributions to the magnetic moments
the baryons exist from the virtual excitations of mesons. A
suming as in Ref.@32# that there exists an effective one
meson exchange between quarks in the three-quark sy
this leads to meson exchange current contributions to
magnetic moment. The leading correction is due to the pi
in-flight and pair term; see Ref.@32#. Effects from the
heavier mesons like ther are in general less important.

Our starting point is the e.m. current matrix element

Mm5^CuJm~Q!uC&, ~54!

g-
TABLE II. The magnetic moment of the baryons in units

nuclear magneton for various values ofs. Calculations and experi-
mental results.

B mB mB mB Expt.
s50.09 GeV2 s50.12 GeV2 s50.15 GeV2

p 2.81 2.44 2.20 2.79
n 21.87 21.63 21.46 21.91
S2 21.03 20.89 20.79 21.16
S0 0.85 0.74 0.67
S1 2.72 2.37 2.14 2.46
L 20.66 20.60 20.56 20.61
J2 20.57 20.53 20.50 20.65
J0 21.51 21.34 21.23 21.25

D11 5.62 4.89 4.39 4.52
D1 2.81 2.44 2.20
D0 0.00 0.00 0.00
D2 22.81 22.44 22.20
S1* 3.09 2.66 2.37
S0* 0.27 0.21 0.18
S2* 22.54 22.23 22.02
J0* 0.55 0.43 0.35
J2* 22.26 22.02 21.84
V2 21.99 21.80 21.67 22.02
3-7
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whereC is the three-quark wave function andQ is the pho-
ton momentum.

We first consider the single-quark current contributio
For the single-quark current operator we use

Jm
gqq[3Jm

gqq~1!53eq
(1)gm

(1))
n52

3

g0
(n) , ~55!

and for the wave function normalization, Eq.~44! for the
single-particle orbitals is taken. This choice has the n
property that the zeroth component of the current atQ50 is
found to give the proper charge of the three-quark syst
i.e.,

M05^CuJ0~Q50!uC&5 (
n51

3

eq
(n) . ~56!

The result for the magnetic moment, obtained in the previ
section, can readily be recovered from our single-quark c
rent matrix element. Following Ref.@33#, the magnetic mo-
ment can be calculated by taking the curl of the space c
ponent of the current matrix element in the Breit system.
doing so, the magnetic moment can be deduced from
e.m. current as

mz5
e

2M p
Gmag~Q50!52

i

2
@¹Q3M #z ~Q50!,

~57!

whereM p is the proton mass,e the proton charge, andGmag
the Sachs e.m. magnetic form factor. The matrix elem
~57! can easily be evaluated in momentum space. Introd
ing the Fourier transform of the wave function of the sing
quark orbital,

c̃a
f ~k!5S g̃~k!V j lM

f̃ ~k!V j l 8M
D

54pE S ~2 i ! l j l~kr!g~r!V j lM

i ~2 i ! l 8 j l 8~kr! f ~r!V j l 8M
D r2dr, ~58!

with j l the spherical Bessel functions, we may after so
algebra reduce Eq.~57! in momentum space to

mz53mz
(1)53^csymmueq

(1)sz
(1)ucsymm&l̃. ~59!

We thus find

l̃5
21

2NE E d3pd3q)
n52

3

@ ug̃~kn!u21u f̃ ~kn!u2#

3S g̃~k1!
4

3k1
f̃ ~k1!2

]g̃~k1!

]k1

2

3
f̃ ~k1!

1g̃~k1!
2

3

] f̃ ~k1!

]k1
D

Q250

, ~60!

whereN is the normalization factor:

N5E E d3pd3q)
n51

3

@ ug̃~kn!u21u f̃ ~kn!u2#. ~61!
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The momenta are expressed in terms of the Jacobi coo
nates as

k152
2

A3
q1

1

3
P, k1852

2

A3
q81

1

3
P8,

k25p1
1

A3
q1

1

3
P, k285p81

1

A3
q81

1

3
P8, ~62!

k352p1
1

A3
q1

1

3
P, k3852p81

1

A3
q81

1

3
P8.

Imposing the Breit system,P1P850, and momentum con
servation givesP852P5Q/2, p85p andA3(q2q8)5Q.

Use has been made of the identity

^V j lM ~ k̂1!u~ k̂1! i~ k̂1! j uV j lM ~ k̂1!&5
1

3
d i j , ~63!

with l 50 and Eqs.~48! and ~49!. The magnetic momen
expression~51! from the previous section is readily recov
ered when we replace the integration over the Jacobi
menta in Eqs.~60! and ~61! by )n51

3 dkn .
We now turn to the pionic two-body current contribution

assuming ag5 theory. The resulting pion-in-flight and pa
current operators, shown in Fig. 3, are given, respectively

Jgpp
(23) 522iegpqq

2 g5
(2)g5

(3)~t (2)3t (3)!z

3
D

F S D2
1

2
QD 2

1mp
2 GF S D1

1

2
QD 2

1mp
2 G

3
Lp

4

F S D2
1

2
QD 2

1Lp
2 GF S D1

1

2
QD 2

1Lp
2 G

3S 11

S D2
1

2
QD 2

1mp
2

S D1
1

2
QD 2

1Lp
2

1

S D1
1

2
QD 2

1mp
2

S D2
1

2
QD 2

1Lp
2
D
~64!

FIG. 3. The diagrams corresponding to the pionic contributio
to the current:~a! the pion-in-flight diagram,~b! the pair term. The
bound state of the quarks is represented by the blobs at the b
ning and the end of the diagrams.
3-8
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TABLE III. The single-quark current contributionmN
(1) to the magnetic moment in units of nuclea

magneton, together with the two-body corrections and the anomalous correctiondmN
(1) arising from the pion

one-loop diagrams. Also are shown the total combined prediction of our calculations and the experi
results.

N mN
(1) mN

(ppg)
mN

(NN̄g) dmN
(1) mN

tot Expt.

s50.09 GeV2

p 2.81 0.20 20.21 0.12 2.92 2.79
n 21.87 20.20 0.21 20.16 22.02 21.91

s50.12 GeV2

p 2.44 0.19 20.18 0.11 2.56 2.79
n 21.63 20.19 0.18 20.14 21.78 21.91

s50.15 GeV2

p 2.20 0.18 20.16 0.10 2.32 2.79
n 21.46 20.18 0.16 20.13 21.61 21.91
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JgNN̄
(23)

52 iegpqq
2 g5

(2)g5
(3)~t (2)3t (3)!z

3F ~g021!(3)

4mq
g (3)

1

F S D2
1

2
QD 2

1mp
2 G

3
Lp

4

F S D2
1

2
QD 2

1Lp
2 G2 2

~g021!(2)

4mq
g(2)

3
1

F S D1
1

2
QD 2

1mp
2 G

Lp
4

F S D1
1

2
QD 2

1Lp
2 G2G . ~65!

In Eqs. ~64! and ~65!, Q is the photon momentum,D5p
2p8. A monopole form factor with cutoff massLp

5675 MeV has been used. The last two terms in the
factor in Eq. ~64! correspond to contact terms, which a
needed to satisfy current conservation. The quark propag
in Eq. ~65! has been replaced by its negative-energy par

i

p”2m
⇒ i

2A p21m2

pg2m1A p21m2g0

p01A p21m2

'
i

4m
~g021!, ~66!

as the positive-energy part has already been included in
single-quark current matrixelement@35#. Moreover, the pair
contribution~65! consists of four terms where the photon c
interact with quarks 2 and 3 prior to and after the pion-qu
interaction.
09401
st

tor

he

k

The photopion vertex is described by an effective inter
tion Lagrangian

Lppg52
1

2
eAm~pW 3]mpW !z1

1

2
eAm~]mpW 3pW !z . ~67!

From the two-body operatorsJ2b , Eqs. ~64!–~65!, we
may write down the current matrix element between
three-quark state:

M2b53M2b
(1)53

1

NE E d3pd3qC̄g0
(1)J2b

(23)C. ~68!

Taking the curl of Eq.~68! the magnetic moment can b
determined. The resulting expressions are given in Appen
C. As a check using the obtained magnetic moment opera
we have determined the exchange magnetic moment co
bution to the trinucleon system. Our results agree with th
obtained by Kloet and Tjon@33#.

To get an estimate of the exchange current contributi
in the three-quark case we have used for the couplings
cutoff mass the values from Ref.@32#. They are taken to be
gqqp

2 /4p50.67. The results for the magnetic moments a
shown in Table III. Our estimates are in strong disagreem
with those obtained in Ref.@32#. The pion-in-flight contribu-
tion is substantially smaller than found in Ref.@32# using the
chiral constituent model@34#. This may be partially due to
the three-quark wave function used, which has a matter
dius smaller than in our case. Moreover, it contains o
nonrelativistic components. The pair contribution is found
be comparable to the pion-in-flight term, leading to an
most cancellation of the mesonic current pionic contrib
tions.

The presence of mesonic degrees of freedom will mod
the single-quark current. The resulting e.m. current opera
can in general be characterized by a large number of off-s
form factors@36–38#, which reduces to 2 when we assum
that the initial and final quarks are on mass shell. Using t
3-9
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approximation we may estimate the resulting anomal
magnetick term due to the the pionic contributions. Ne
Q250 we have

Jm
gqq5eqgm1kq

ie

2M p
smnqn , ~69!

wherekq5ks1kvtz for the u,d quarks. Thek coefficients
can be determined in a simple model, assuming that the
corrections are given by only the one-loop pionic contrib
tions to the e.m. vertex. Similarly as in the two-body curre
case we approximate the single-quark orbital by a free qu
propagation with a constituent mass given by the grou
state orbital energy. With the above simplifying assumptio
the calculation amounts to calculating the magnetic mom
contributions of the diagrams shown in Fig. 4. Using t
same cutoff mass regularization as for the two-body curre
we find for the anomalous magnetic moment in units of
nuclear magneton:

k (a)5kv
(a)tz

5 igpqq
2 tz

4M p

3mq
3E d4k

~2p!4

4~p•k!22p2k2

@k222pk1 i e#@k22mp
2 1 i e#2

3S Lp
2

k22Lp
2 D 2S 112

k22mp
2

k22Lp
2 D ~70!

and

k (b)5ks
(b)1kv

(b)tz52 igpqq
2 12tz

2

2M p

3mq
3E d4k

~2p!4

3
4~p•k!22p2k2

@k222pk1 i e#2@k22mp
2 1 i e#

S Lp
2

k22Lp
2 D 2

,

~71!

FIG. 4. The diagrams contributing to the anomalous magn
moment of the single quark.
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wherep is the momentum of the quark. For details we re
to Appendix D. Equation~70! corresponds to the coupling o
the photon to the pion, Eq.~71! to the coupling of the photon
to the quark.

In Table IV are shown the calculated anomalous magn
moments of theu, d, and s quarks forL5675 MeV for
various choices ofs. Clearly, the results depend on the co
stituent quark masses. These are given in Table I for
considered string tensions.

Using Eq. ~57! the k term in Eq. ~69! yields a nucleon
magnetic moment correction

dmz53dmz
(1)53^csymmukq~1!sz~1!ucsymm&l0 , ~72!

with

l05

E r 2dr~ ugu22u f u2!

E r 2dr~ ugu21u f u2!

. ~73!

In Table III the predictions for the nucleon are shown inclu
ing also the one-pion loop contributions~72! and two-body
currents. Our results obtained for the one-loop correcti
are smaller than reported by Glozman and Riska@39#. This is
due to the inclusion of the lower component in the sing
quark orbitals. Neglecting these we recover the results
Ref. @39#. From Table III we see that the proton and neutr
magnetic moment is in reasonable agreement with exp
ment for a string tension ofs50.1 GeV2. For this value of
the string tension the model predicts a nucleon mass of
MeV, remarkably close to the empirical value. The anom
lous magnetic moment contributions are found to be of
order of 10%.

As a result of the one-loop contributions, the magne
moments of the other baryons are modified. Corrections fr
kaon loops have also been considered. Because of the la
kaon mass, the contributions are expected in general to

ic

TABLE IV. The quark anomalous magnetic moments in units
the nucleon magneton in the one-loop approximation for vari
string tensionss. The first set is the prediction for only the pio
loops, while the second set is with both pion and kaon loops
cluded.

s (GeV2) ku kd ks

Pion loops

0.09 0.101 20.160 0.0
0.12 0.092 20.140 0.0
0.15 0.085 20.126 0.0

Pion and kaon loops

0.09 0.132 20.151 20.034
0.12 0.121 20.133 20.032
0.15 0.112 20.120 20.031
3-10
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TABLE V. The magnetic momentmB of the baryon octet and decuplet in units of nuclear magne
including the anomalous contributiondmB arising from the pion and kaon one-loop diagrams and the p
exchange corrections for different string tensions. Also are shown the experimental results.

B dmB mB dmB mB dmB mB Expt.
s50.09 GeV2 s50.12 GeV2 s50.15 GeV2

p 0.15 2.95 0.14 2.59 0.12 2.34 2.79
n 20.16 22.02 20.14 21.78 20.13 21.61 21.91
S2 20.13 21.16 20.11 21.00 20.10 20.89 21.16
S0 0.00 0.85 0.00 0.74 0.00 0.67
S1 0.12 2.84 0.11 2.48 0.11 2.25 2.46
L 20.02 20.68 20.02 20.62 20.02 20.58 20.61
J2 0.00 20.57 0.00 20.53 0.00 20.50 20.65
J0 20.06 21.57 20.05 21.39 20.05 21.28 21.25

D11 0.26 5.88 0.24 5.13 0.22 4.61 4.52
D1 0.07 2.88 0.07 2.51 0.07 2.27
D0 20.11 20.11 20.10 20.10 20.08 20.08
D2 20.30 23.11 20.26 22.70 20.24 22.44
S1* 0.15 3.24 0.14 2.80 0.13 2.50
S0* 20.04 0.23 20.03 0.18 20.03 0.15
S2* 20.22 22.76 20.20 22.43 20.18 22.20
J0* 0.04 0.59 0.04 0.47 0.03 0.38
J2* 20.14 22.40 20.13 22.15 20.12 21.96
V2 20.07 22.06 20.06 21.86 20.06 21.73 22.02
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smaller in size than those of the pion loops. In Table IV t
calculated anomalous moments of the strange quark du
the kaon one-loop corrections are given. In the calculation
cutoff mass ofL5675 MeV has been used. The isosca
and isovector anomalous magnetic moment pieces are
changed by the kaon loop contributions. From Table IV
see that the kaon loop contributions are indeed smalle
magnitude as compared to the pion loop ones. The full
sults for the magnetic moments of the baryon octet and
cuplet, including the pionic exchange currents and the p
and kaon one-loop contributions, are summarized in Table
For the value of the string tensions50.1 the overall agree
ment with the experimental data is reasonable. From
table we see that the anomalous magnetic moment cont
tion leads to an improvement of the predictions.

VII. CONCLUSION

We have written down the general effective quark L
grangian as obtained from the standard QCD Lagrangian
integrating out the gluonic degrees of freedom. Consider
the baryon Green’s function, neglecting gluon and me
exchanges, we find in lowest order of the approximat
scheme that it is given by a product of three independ
single-quark Green’s functions. As a result the Hamilton
can be written as a sum of three quark terms, where
single-quark solutions satisfy the Dyson-Schwinger equa
with a nonlocal kernel.

The nonlinear equation for the single-quark propagatoS
~attached to the string in a gauge-invariant way! has been
solved in the Gaussian correlator approximation. The res
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ing three-quark wave function has been used to determ
the magnetic moments of the baryons. This has been d
for both the octet and decuplet of the SU~3! flavor group.

Comparing the predictions we find that the magnetic m
ments are mostly in close overall agreement with the exp
ment for a string tension ofs50.1 GeV2. We find that the
predicted magnetic moment of the nucleon is improved s
stantially once we choose a string tension to give a reas
able nucleon mass. The same applies for theD isobar. Effects
due to the presence of virtual mesons are in general expe
to be important. We have estimated the pionic one-loop
one-pion exchange contributions to the magnetic mom
The single-quark corrections from pionic loops are found
be of the order of 10%, whereas the total effect of two-bo
current contributions are predicted to be small, to be c
trasted to the results of Ref.@32#. This is due to the cancel
lation of the pion-in-flight and pair terms in the prese
model. Because of the anomalous magnetic contributio
there seems to be somewhat an improvement of the pre
tions.

We have assumed here that the baryon wave function
be described as a product of single-quark orbitals, i.e.,
glecting correlation effects. Our results in this approximati
for the magnetic moments of baryons are encouraging,
are in need of including higher-order corrections. In partic
lar, the mass spectrum obtained from our lowest-order
proximation does not contain theN-D mass splitting. This is
due to neglecting contributions like the hyperfine interact
arising from the one-gluon interaction. This induces corre
tions in the three-quark wave function and its magnitude m
3-11
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give us insight into whether our basic description in th
paper in terms of simply single-quark orbitals is a reasona
one. Moreover, it is clearly of interest to investigate how t
magnetic moments are changed when effects from c
Coulomb and hyperfine interactions are accounted for.
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APPENDIX A: MAGNETIC MOMENT CALCULATION IN
COORDINATE SPACE

The one-quark contribution to the magnetic moment c
be written as in Eq.~45!:

^DH1&52eq
(1)E ~w (1)* s (1)Ax (1)1x (1)* s (1)Aw (1)!d3r ,

~A1!

whereA5 1
2 (H3r ) is the vector potential of external con

stant magnetic field.
Inserting in Eq. ~A1! w (1)5g(r )V j lM and x (1)

5 i f (r )V j l 8M , and taking into account thatV j l 8M
52(s n)V j lM , one easily obtains

^DH1&52
1

2
eq

(1)E d3r ~g* f 1 f * g!rV j lM*

3$~s n!~n H!2s H%V j lM . ~A2!

Equation ~A2! contains the matrix elemen
*dnV j lM* ninkV j lM , which simplifies whenl 50, so that
^nink&5 1

3 d ik .
In this case one obtains, taking into account relat

^DH1&5DE52m (1)H,

m (1)52
1

3
eq

(1)E @g* ~r ! f ~r !1 f * ~r !g~r !#rd3r

3V j lM* s (1)V j lM

52s (1)
2

3
eq

(1)E Re@g* ~r ! f ~r !#r 3dr. ~A3!

In the case of a local scalar potentialU(r ) one can further
expressf (r ) throughg(r ) using the Dirac equation for th
one-quark state:

r f ~r !5
1

«1m1U~r ! S d

dr
~gr !1

k

r
gr D . ~A4!

Introducing Eq.~A4! into Eq. ~A3! and integrating by parts
one obtains
09401
le

or

t
k

n

n

mz
( i )5

eq
( i )sz

( i )

3 E ugu2r 2dr

~«1m1U !2
@3~«1m1U !2rU 8~r !#.

~A5!

For U(r )5sr one obtains Eq.~49!.

APPENDIX B: MAGNETIC MOMENT
OF THE MULTIPLET

In this appendix the calculation of the nucleon magne
moment is generalized to the baryon octet and decuplet.
analogy with the fully symmetrical 3q wave function for the
nucleon, Eqs.~46! and ~47!, wave functions for the baryon
multiplets can be formulated. The flavor octet with total sp
1/2 up becomes

Csymm
p 5

A2

6
$2d2u1u12u2d1u12d1u2u112u1d2u1

2u1u2d12u2u1d12u1d1u22d1u1u2

12u1u1d2%, ~B1!

Csymm
n 5

A2

6
$2u2d1d12d2u1d12u1d2d112d1u2d1

2d1d2u12d2d1u12d1u1d22u1d1d2

12d1d1u2%, ~B2!

Csymm
S1

5
A2

6
$2s2u1u12u2s1u12s1u2u112u1s2u1

2u1u2s12u2u1s12u1s1u22s1u1u2

12u1u1s2%, ~B3!

Csymm
S0

5
21

6
$u1d2s11d1u2s11s1d2u11s1u2d1

22u1s2d122d1s2u11u2d1s11d2u1s1

22s2d1u122s2u1d11u2s1d11d2s1u1

22u1d1s222d1u1s21s1d1u21s1u1d2

1u1s1d21d1s1u2%, ~B4!

Csymm
S2

5
A2

6
$2s2d1d12d2s1d12s1d2d112d1s2d1

2d1d2s12d2d1s12d1s1d22s1d1d2

12d1d1s2%, ~B5!

Csymm
L 5

A3

6
$u2d1s12d2u1s11u2s1d12d2s1u1

2u1d2s11d1u2s12s1d2u11s1u2d1

1s1d1u22s1u1d22u1s1d21d1s1u2%,

~B6!
3-12
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Csymm
J0

5
A2

6
$2u2s1s12s2u1s12u1s2s112s1u2s1

2s1s2u12s2s1u12s1u1s22u1s1s2

12s1s1u2%, ~B7!

Csymm
J2

5
A2

6
$2d2s1s12s2d1s12d1s2s112s1d2s1

2s1s2d12s2s1d12s1d1s22d1s1s2

12s1s1d2%, ~B8!

where the subscripts (6) refer to the spin projection. For th
flavor decuplet with total spin 3/2 up we have

Csymm
D11

5u1u1u1 , ~B9!

Csymm
D1

5
1

A3
$u1u1d11u1d1u11d1u1u1%,

~B10!

Csymm
D0

5
1

A3
$d1d1u11d1u1d11u1d1d1%,

~B11!

Csymm
D2

5d1d1d1 , ~B12!

Csymm
S1

5
1

A3
$u1u1s11u1s1u11s1u1u1%,

~B13!

Csymm
S0

5
1

A6
$u1d1s11d1u1s11u1s1d11s1u1d1

1d1s1u11s1d1u1%, ~B14!

Csymm
S2

5
1

A3
$d1d1s11d1s1d11s1d1d1%,

~B15!

CJsymm
0

5
1

A3
$s1s1u11s1u1s11u1s1s1%, ~B16!

Csymm
J2

5
1

A3
$s1s1d11s1d1s11d1s1s1%, ~B17!

Csymm
V2

5s1s1s1 . ~B18!

These fully symmetrical wave functions, Eqs.~B1!–~B18!,
can be written symbolically as

cJM,symm
N 5GJM

abg~ f 1f 2f 3!ca
f 1cb

f 2cg
f 3 . ~B19!

As the orbital of thes quark is heavier than theu- and
d-quark orbitals, Eq.~51! has to be split up in contribution
from the u,d quarks and from thes quark. Using the sym-
metrical wave function, Eq.~B19!, this is realized by writing

mz53mz
(1)53 (

f 1f 2f 3

^GJM
abg~ f 1f 2f 3!ca

f 1cb
f 2cg

f 3ueq~1!sz~1!

3uGJM
abg~ f 1f 2f 3!ca

f 1cb
f 2cg

f 3&l f 1
, ~B20!
09401
with

l f i
52

2

3E gf i
* ~r ! f f i

~r !r 3dr. ~B21!

The flavor indexf i can take the valuesu, d, or s. Note that
lu5ld as the same orbital is taken for theu andd quarks.
Evaluating Eq.~B20! for the different baryon wave function
Eqs.~B1!–~B18! result in the expressions in Table VI.

APPENDIX C: PIONIC TWO-BODY CONTRIBUTION TO
THE MAGNETIC MOMENT

In this appendix the pion-in-flight and pair contribution
to the magnetic moment of the nucleons are given. Follo
ing Ref. @33# these contributions are determined by taki
the curl of the pionic two-body currents, Eq.~68!. The three-
quark stateC is given by the product of three single-qua
orbitals, Eq.~35!. Because of symmetry considerations,
suffices to calculate the magnetic moment contribution
pion exchange between, say, the second and third qu
only and multiply the result by a factor of 3 to include th
contribution of the other possible permutations of qua
pairs.

Considering the pion-in-flight contribution first@Eq. ~64!#,
taking the curl gives rather long expressions which can
divided into two parts:

dmz
proton52dmz

neutron53~dmz
A13dmz

B!. ~C1!

The first part gives the larger contribution and can be writ
as

TABLE VI. The matrix elements of the e.m. current for th
baryons.

N mN/3

p 1
3 lu

n 2
2
9 lu

S1 8
27lu1

1
27ls

S0 2
27lu1

1
27ls

S2 2
4

27lu1
1

27ls

L 2
1
9 ls

J0 2
4

27ls2
2

27lu

J2 2
4

27ls1
1

27lu

D11 2
3 lu

D1 1
3 lu

D0 0
D2 2

1
3 lu

S1* 4
9 lu2

1
9 ls

S0* 1
9 lu2

1
9 ls

S2* 2
2
9 lu2

1
9 ls

J0* 2
2
9 ls1

2
9 lu

J2* 2
2
9 ls2

1
9 lu

V2 2
1
3 ls
3-13
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dmz
A5 lim

Q2→0

2egpqq
2

3~2p!3N
E d3qd3pd3p8

1

~D21mp
2 !2

@ ug̃~k1!u21u f̃ ~k1!u2#H g̃~k28! f̃ ~k2!g̃~k38! f̃ ~k3!
1

3k2k3
~p D2pzDz!

1g̃~k28! f̃ ~k2! f̃ ~k38!g̃~k3!
1

6k2k38
@~2p2p81A3q!D2~2pz2pz81A3qz!Dz#1 f̃ ~k28!g̃~k2!g̃~k38! f̃ ~k3!

1

6k28k3

3@~2p2p82A3q!D2~2pz2pz82A3qz!Dz#1 f̃ ~k28!g̃~k2! f̃ ~k38!g̃~k3!
22

3k28k38
~p8D2pz8Dz!J

3S 112
D21mp

2

D21Lp
2 D S Lp

2

D21Lp
2 D 2

. ~C2!

The second part comes from the curl applied to the wave functions

dmz
B5 lim

Q2→0

2egpqq
2

3~2p!3N
E d3qd3pd3p8

1

~D21m2!2
@ ug̃~k1!u21u f̃ ~k1!u2#

1

3
~ k̂ 28 3D!zH ]g̃~k28!

]k28
f̃ ~k2!g̃~k38! f̃ ~k3!~ k̂23 k̂3!z

2
]g̃~k28!

]k28
f̃ ~k2! f̃ ~k38!g̃~k3!~ k̂ 23 k̂ 38 !z2

] f̃ ~k28!

]k28
g̃~k2!g̃~k38! f̃ ~k3!~ k̂ 28 3 k̂ 3!z1

] f̃ ~k28!

]k28
g̃~k2! f̃ ~k38!g̃~k3!~ k̂ 28 3 k̂ 38 !z

1 f̃ ~k28!g̃~k2!g̃~k38! f̃ ~k3!
1

k28
~ k̂283 k̂3!z2 f̃ ~k28!g̃~k2! f̃ ~k38!g̃~k3!

1

k28
~ k̂283 k̂38!zJ S 112

D21mp
2

D21Lp
2 D S Lp

2

D21Lp
2 D 2

. ~C3!

The normalization factorN is the same as used before in the single-quark current contribution@Eq. ~61!#. The momenta are
expressed in terms of the Jacobi coordinates, Eqs.~62!, again, but from imposing the Breit system and momentum conse
tion we now getP852P5Q/2 and 2A3(q82q)5Q. In writing down these expressions use has been made of the spin-is
operator sandwiched between the fully symmetric wave functions in the spin-isospin and orbital space of the three q

^csymm
p u~t (1)3t (2)!zs i

(1)s j
(2)ucsymm

p &52^csymm
n u~t (1)3t (2)!zs i

(1)s j
(2)ucsymm

n &52
2

3
e i j 3 . ~C4!

It should be noted that the spin-isospin factor~C4! is identical to that found for the trinucleon case. For all the other bar
wave functions given in Appendix B the matrix element of the considered two-body e.m. operators vanish, becaus
isospin structure of the e.m. operator. Hence the considered two-body currents contribute only to the magnetic mome
proton and neutron.

The second partdmz
B is a relativistic effect which enlarges the values by about 10% and which vanishes in the stati

as is shown at the end of this section.
In the same way the pair term can be analyzed. We find

dmz
proton52dmz

neutron53~dmz
C13dmz

D!, ~C5!

with
094013-14
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dmz
C5 lim

Q2→0

egpqq
2

2mq~2p!3N
E d3qd3pd3p8

1

D 21mp
2

1

3
@ ug̃~k1!u21u f̃ ~k1!u2#H 1

k2
S 1

3
2

D k 22Dz~k2!z

D21mp
2 D g̃~k28! f̃ ~k2!g̃~k38!g̃~k3!

1
1

k28
S 2

3
1

D k 282Dz~k28!z

D21mp
2 D f̃ ~k28!g̃~k2!g̃~k38!g̃~k3!1

1

k3
S 1

3
1

D k 32Dz~k3!z

D21mp
2 D g̃~k28!g̃~k2!g̃~k38! f̃ ~k3!

1
1

k38
S 2

3
2

D k 382Dz~k38!z

D 21mp
2 D g̃~k28!g̃~k2! f̃ ~k38!g̃~k3!J S Lp

2

D 21Lp
2 D 2

~C6!

and

dmz
D5 lim

Q2→0

egpqq
2

6mq~2p!3N
E E E d3qd3pd3p8

1

D21mp
2

1

3
@ ug̃~k1!u21u f̃ ~k1!u2#H ]g̃~k28!

]k28
g̃~k2!$g̃~k38! f̃ ~k3!@ k̂28k̂32~ k̂28!z~ k̂3!z#

2 f̃ ~k38!g̃~k3!@ k̂28k̂382~ k̂28!z~ k̂38!z#%1g̃~k38!g̃~k3!S 2
]g̃~k28!

]k28
f̃ ~k2!@ k̂28k̂22~ k̂28!z~ k̂2!z#

1
] f̃ ~k28!

]k28
g̃~k2!@ k̂28k̂282~ k̂28!z~ k̂28!z# D 2 f̃ ~k28!g̃~k2!g̃~k38!g̃~k3!

1

k28
@ k̂28k̂282~ k̂28!z~ k̂28!z#J S Lp

2

D21Lp
2 D 2

. ~C7!

In the nonrelativistic limit the lower component of the wave function can be expressed in the upper component a

f̃ ~k!52
uku

2mq
g̃~k!, ~C8!

wheremq is the constituent mass of the quark. As a result, the pionic two-body current contributions, Eqs.~C1!–~C3! and Eqs.
~C5!–~C7!, can be simplified considerably. We obtain, for the pion-in-flight contribution,

dmz
A5

egpqq
2

6mq
2~2p!3N

E d3qd3pd3p8@ ug̃~k1!u21u f̃ ~k1!u2#g̃~k28!g̃~k2!g̃~k38!g̃~k3!
D22DzDz

~D21mp
2 !2 S 112

D21mp
2

D21Lp
2 D .S Lp

2

D21Lp
2 D 2

.

~C9!

For the pair term we get

dmz
C5

egpqq
2

6mq
2~2p!3N

E d3qd3pd3p8@ ug̃~k1!u21u f̃ ~k1!u2#g̃~k28!g̃~k2!g̃~k38!g̃~k3!S D22Dz
2

~D21mp
2 !2

2
1

D21mp
2 D S Lp

2

D21Lp
2 D 2

,

~C10!

while dmz
B anddmz

D vanish. These expressions agree with the results of Refs.@33# and @35#.

APPENDIX D: ANOMALOUS MAGNETIC MOMENT CONTRIBUTIONS FROM PION LOOPS

Our starting point is the e.m. currents, corresponding to the one-loop diagrams shown in Fig. 4:

Jm
(a)522igpqq

2 etzE d4k

~2p!4

g5~p”2k”1mq!g5~2km1Qm!

@~p2k!22mq
21 i e#@k22mp

2 1 i e#@~k1Q!22mp
2 1 i e#

Lp
2

k22Lp
2

Lp
2

~k1Q!22Lp
2

3S 11
k22mp

2

~k1Q!22Lp
2

1
~k1Q!22mp

2

k22Lp
2 D ~D1!

and

Jm
(b)52 igpqq

2 e
12tz

2 E d4k

~2p!4

g5~p” 82k”1mq!gm~p”2k”1mq!g5

@~p82k!22mq
21 i e#@~p2k!22mq

21 i e#@k22mp
2 1 i e#

S Lp
2

k22Lp
2 D 2

. ~D2!
094013-15
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Since we have assumed a finite form factor at thepqq vertex, similar as in the two-body current case, the two additional te
are needed in the last factor of Eq.~D1! to satisfy current conservation. From these currents the anomalous magnetic m
has to be extracted. By applying the Gordon decomposition to the current, Eq.~69!, nearQ250 it can be seen that th
anomalous magnetic momentk is the term proportional to (2e/2M )Km with Km5pm1pm8 . To isolate this term the current
are rewritten by explicit evaluation of theg-matrix algebra and taking the limitQ2→0. Using the approximation that the initia
and final quarks are on mass shell we obtain

Jm
(a)522igpqq

2 etzg
nE d4k

~2p!4

2kmkn

@k222pk1 i e#@k22mp
2 1 i e#2 S Lp

2

k22Lp
2 D 2S 112

k22mp
2

k22Lp
2 D [22igpqq

2 etzg
nCmn

(a) ~D3!

and

Jm
(b)5 igpqq

2 e
12tz

2
gnE d4k

~2p!4

2kmkn2k2gmn

@k222pk1 i e#2@k22mp
2 1 i e#

S Lp
2

k22Lp
2 D 2

[ igpqq
2 e

12tz

2
gnCmn

(b) . ~D4!

As the tensorsCmn depend only on the initial and final momenta, they can be written as

Cmn
( i ) 5A1

( i )KmKn1A2
( i )KmQn1A3

( i )QmKn1A4
( i )QmQn1A5

( i )gmn , ~D5!

whereAn
( i ) are Lorentz invariants. It can readily be seen that only the first termA1

( i ) contributes to the magnetic momen
Substituting Eq.~D5! into Eqs.~D3!,~D4! and taking the initial and final quarks on mass shell we find, for the anoma
magnetic moment corrections,

k (a)58iM pmqgpqq
2 tzA1

(a) , ~D6!

k (b)524iM pmqgpqq
2 12tz

2
A1

(b) . ~D7!

The Lorentz-invariant expressionA1
( i ) can immediately be determined from the tensorCmn

( i ) . We get

A1
( i )5

1

3K4
~4KmKn2K2gmn!Cmn

( i ) . ~D8!

Inserting Eq.~D8! into Eqs.~D6! and ~D7! the expressions~70! and ~71! are obtained.
The kaon one-loop diagrams can be calculated in similar way. The starting point is the expressions~D1! and ~D2! again,

where the mass of the pion is replaced by the mass of the kaon and the isospin structure is changed to (tz13Y)/2 and

2( 2
9 1 4

3 Y), respectively, in Eqs.~D1! and~D2! with Y the hypercharge. The expressions for the anomalous magnetic mo
due to the kaon loop become

k (a)5 igKqq
2 ~tz13Y!

2M p

3mq
3E d4k

~2p!4

4~p•k!22p2k213mq~Mq2mq!p•k

@k222pk1mq
22Mq

21 i e#@k22mK
2 1 i e#2 S LK

2

k22LK
2 D 2S 112

k22mK
2

k22LK
2 D , ~D9!

and

k (b)5 igKqq
2 S 2

9
1

4

3
YD2M p

3mq
3E d4k

~2p!4

4~p•k!22p2k213mq~Mq2mq!p•k

@k222pk1mq
22Mq

21 i e#2@k22mK
2 1 i e#

S LK
2

k22LK
2 D 2

, ~D10!

with Mq the mass of the intermediate quark, andmq the mass of the initial and final quarks. The coupling constantgKqq and
the cutoffLK are taken the same as for the pion loop.
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