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Baryon magnetic moments in the effective quark Lagrangian approach
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An effective quark Lagrangian is derived from first principles through bilocal gluon field correlators. It is
used to write down equations for baryons, containing both perturbative and nonperturbative fields. As a result
one obtains magnetic moments of octet and decuplet baryons without the introduction of constituent quark
masses and using only string tension as input. Magnetic moments come out on average in reasonable agree-
ment with experiment, except for nucleons a&id. The predictions for the proton and neutron are shown to
be in close agreement with the empirical values once we choose the string tension to yield the proper nucleon
mass. Pionic corrections to the nucleon magnetic moments have been estimated. In particular, the total result
of the two-body current contributions is found to be small. Inclusion of the anomalous magnetic moment
contributions from pion and kaon loops leads to an improvement of the predictions.
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I. INTRODUCTION absence of spontaneous CSB effects in genglrd. Re-
cently a new type of formalism was suggested to treat simul-

The QCD dynamics oqaand 3y systems is governed by taneously confinement and CSB and a nonlinear equation
two basic phenomena: confinement and chiral symmetryvas derived for a light quark in the field of a heavy antiquark
breaking(CSB), which should be treated in a fully relativis- 118]. This equation, derived directly from the QCD Lagrang-
tically covariant way. Confinement is usually introduced forian, was found to produce linear confinement and CSB for
static quarks via the area law of the Wilson |0@_’p] or the ||ght quark and the eXpIiCit form of the effective quark
equivalently through the field correlators in the field cor-mass operato¥ (x,y) was defined obeying both these prop-
relator method FCM) [2,3]. erties.

For Spin|ess quarks or neg|ecting Spin_dependent mass The eigenvalues and eigenfunctions of the nonlocal and
corrections, one can envisage a self-consistent method whidpnlinear equations have been determined and a nonzero
treats confinement as the area law also for light quarks in §ondensate was computed [ih9], confirming that CSB is
relativistically covariant way. Such a method was introduced€ally present in the equations. In an additional stie it
originally in [4] for mesons, if5] for baryons, and ifi6] for ~ Was demonstrated that magnetic field correlators do not con-
heavy_”ght mesons, and later On[ﬁ‘ﬂ the method was gen- tribute to the Iarge distance confinement; however, they
eralized taking into account the dynamical degrees of freestrongly modify the confinement for lowest levels and
dom of the QCD string, which naturally appears due to theheavy-light masses corrected in this way are favorably com-

area law. pared in[20] to the experiment and results of other calcula-
As a result Regge trajectories have been fouri@Jmwith ~ tions. _ . .
the correct string slope @) L. It was realized later on, Moreover, it was shown ifi21] that lattice data strongly

that the method used {#—7] can be more generally devel- support the dominance of the Gaussiailocal) correlator,
oped in the framework of the so-called einbein formalism;estimating the correction due to higher correlators to 1%-—
see[8—10]. Spin corrections have been considerefllitj for ~ 2% Since the method ¢18] is quite general and allows one
heavy mesons and 6] for heavy-light ones. In the general to treat also multiquark systems, it can be applied toghe
case of light quarks spin-dependent correlations have beeand 3y systems, to find dynamical equations for them, which
introduced in[12] and for gluons iM13]. For a general re- contain confinement and CYR2]. To make these equations
view with explicit formulas se€14]. Baryon Regge trajecto- tractable, one systematically exploits the laietimit and
ries have been found if5]. In all cases the basic formalism mostly confine ourselves to the simplest field correlators—
is the FCM and the Feynman-Schwinger world-line) path  the so-called Gaussian approximation; it was in particular
integral representatiofi3,15,14 which is well suited for shown in[18] that the sum over all correlators does not
relativistic quarks when spin is considered as a perturbatiorchange the qualitative results. However, the kernel of equa-
The main difficulty which was always present in this tions becomes much more complicated.
method has been the perturbative treatment of spin degrees In the present paper we study the baryon magnetic mo-
of freedom (which is incorrect, e.g., for the pidrand the ments based on the derived effective Lagrangian without
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constituent quark masses. The paper is organized as followahere the effective quark Lagrangiany is defined as
In Sec. Il the general effective quark Lagrangian from the
standard QCD Lagrangian is obtained by integrating out glu-
onic degrees of freedom, and the nonlinear equation for the
single quark propagat@ (attached to the string in a gauge-
invariant way is derived, following the procedure if22].  When the quark fields are treated statically the right-hand
Section 1l is devoted to the baryon Green’s function, whichside (RHS) of Eq. (7) reduces to the well-known Wilson
can be expressed in the lowest order of our approximatiotoop. To study the averaging of the gluonic field configura-
scheme(neglecting gluon and pion exchangés terms of tions we adopt the correlator method, based on the series
three independent quark Green's function, resulting in axpansion of the exponent operator. Using the cluster expan-
Hamiltonian as a sum of three quark terms. In Sec. IV thesion, L¢ can be written as an infinite sum containing aver-

next order approximation is written down when perturbativeages((A)k),. At this point one can exploit the Gaussian

gluon ex‘?haf.‘ges are taken into account,_mclpdmg the nonapprOX|mat|on, neglecting all correlatot¢A)*) of degree
perturbative interaction between quarks violating the factor;: — . . =
! S higher thank=2. Numerical accuracy of this approximation
ized form of the zeroth-order approximation. The next sec-

o= . : as discussed and tested[Ril]. One expects that for static
tion is devoted to the calculation of magnetic moments o . : S

. . uarks corrections to Gaussian approximation amount to less
baryons both in octet and decuplet representations of th

0/4—30,
SU(3) flavor group. In Sec. VI we discuss the corrections to an 2% 3/0.' . L .
; . L The resulting effective Lagrangian is quarticin
magnetic moments due to pion exchange contributions.

exp(Leﬁ)=<expf fwTAf¢d4x> . 7

A

1
Il. EFFECTIVE QUARK LAGRANGIAN L= N J d*xd*y il (%) "np(X) O () Shas(y)
C
As was discussed in the previous section, one can obtain 6
an effective quark Lagrangian by averaging over background XJag:yoX.¥)+ O, ®)
luonic fields. We shall repeat this procedure followjigl,
J P P [ 6] Jaﬁ,yﬁ(xvy):(yu)aﬁ( yv)yéJuv(Xay)! (9)

now paying special attention to the dependence on the con-
tour in the definition of contour gauge and introducing the ;

! . . andJ,, is expressed as
operation of averaging over contour manifold. The QCD par- e P

tition function for quarks and gluons can be written as U Vv s r
—g2 | =2 ® L
J,(XY)=9 c«%duﬁfc 7y, dver o
Z:J DADyD ¢ exd Lo+ Ly+ Linl, (1)
X<Faw(u)Fs’w’(U)>- (10)

where we are using Euclidean metric and define . . .
9 Lo, EQ.(8), is written in the contour gaude3]. It can be

1 identically rewritten in the gauge-invariant form if one sub-
LOZ_ZJ d*x(F%,)?, (2)  stitutes parallel transporter®(x,xo),®(y,xo) (identically
equal to unity in this gaugento Eqs.(8) and(10), multiply-
A ing eachy(x) and(y), respectively, and replacirig(u) in
L,= —if Pt () (94 mg) Tp(x)d?x, (3)  EQ.(10) by ®(x,u)F(u)®(u,x,) and similarly forF(v).
After that L.y becomes gauge invariant, but in general
contour dependent, if one keeps only the quartic t€8n
Limzf Fut () gAX) fp(x)d*x. (4)  and neglects all higher terms. A similar problem occurs in the
cluster expansion of Wilson loop, when one keeps only low-
Here m; is the (current mass of the quark field,, with St correlators, leading to tiierroneoussurface dependence
flavor f, color a, and bispinor index:. of the result. The situation here is the same as with a sum of
To expressA,,(x) throughF,, one can use the general- QCD perturbation series, which depends on the normaliza-

ized Fock-Schwinger gaug@3] with the contouiC(x) from  tion massu for any finite number of terms in the series. This
the pointx to X,, which can also lie at infinity: unphysical dependence is usually treated by fixingt some
physically reasonable valye, (of the order of the inverse

9245(8,X) 9z, size of the systeim
x93 0% (5 The integration over contoui«(C) in Eq. (6) resolves
a this difficulty in a similar way. Namely, the partition function

Now one can integrate out the gluonic figig(x) and intro- Z formally does not depend on contousince it is_ integrated
duce an arbitrary integration over the set of contoDfg) ~ OVver a set of contouysbut depends on the weiglt«(C).
with weight D (C), sinceZ is gauge invariant it does not We choose this weight in such a way that the contours would
depend on the conto®(x). One obtains generate a string of minimal length betwegmand q. Thus
the physical choice of the contour corresponds to the mini-
mization of the meson(baryon mass over the class of
Z= j Dr(C)D YDy explLt Leth, ©) strings, in the same way asnt/he choiceust u corresponds

AL(X)= chxﬁ(Z)
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to the minimization of the dropped higher perturbative termswhere the correlatob 1, not contributing to confinement, is

As a practical outcome, we shall keep the inte@ral C) till neglected. As a result one has, fdr[19,20,

the end and finally use it to minimize the string between the . _

quarks. chX x,y)= MO+ MO g+ TMH, + fM(y')yi _
4

Until this point we have made only one approximation—
neglected all field correlators except the Gaussian one. Re-
cent lattice calculationgsee Refs[24,25) estimate the ac- Here we have defined
curacy of this approximation at the level of a few percent.
Now one must use another approximation, i.e., assume a . g 0
largeN, expansion and keep the lowest term. As was shown o= ( 0 ) . 17
in [18] this enables one to replace in E®) the colorless

product "y, (x) 9y (y) =t 'Y P (X, X0) P (X0.Y) ® " (Y)]  The dominant part ok, "M© is linearly growing at large

(16)

b the quark Green’s function Ix|,]y| and in the most simple case of Gaussian fornD¢x)
; + can be written as
Pop(X) W (Y) — S1gNcSp,(X,Y). (17)
X+Y|~
LY assumes the form MO(x,y)= e~ Ca YT, Ty 5C)(x—y),
g o

18
L& =i f d*xdy gl () "M s(x,Y) "hasly), (12) 1o
whereT is the correlation time characterizing the time scale
of correlations in the fluctuations of the gluon background
field. It has been studied in lattice gauge simulatid¥ and
(19 found to be of the order of fm. Following Ref.[19] we
have adopted a valug;=0.24 fm.

where the quark mass operator is

fM aﬁ(xvy) = _JW(X,Y)(Y,LfS(XvY) ’)/V)aﬁ'

From Eq.(12) it is evident that'S satisfies Similarly, in the space dimension we assumeddn Eq.
(18 a smeareds function, which can be represented as
. [19,20
(—iax—imf)fS(x,y)—if "M(x,z)d*z"S(z,y)
— 5(4) _ (14) “5(3)(X_y)~e)(;{ — M) (L) i b~2T..
=6M(x—y). b2 N g

Equationg13) and(14) were first derived if18]. Fﬂ)m Egs. (19
(6) and(12) one should expect that at lard theqgand 33 Here againT, is the gluon correlation length, which enters
dynamics is expressed through the quark mass opel®8br D (u) asD(u)=D(0)exp(—u?/4T2). In Eq.(18) the param-

. . . [¢]
which should contain both confinement and CSB. Indeed, thgter & has been introduced. It corresponds to the string ten-

analys_is performed in Ref:{l_8—2q reveals that confine- gjon, as can be seen from HA44). For asymptotic largéx|
ment is present in the long-distance formM{x,y), when e find that the kernel18) leads to a linear confining inter-

both distancesx|,|y| of the light quark from the heavy anti- action|x| [19,20. We are now in the position to derive the
quark (placed at the originare large. —

S . gg, 3q Green’s function, which will be done in the next
We shall now make several simplifying assumptions Ogection
clarify the structure oM (x,y). First of all we take the class '
of contoursC going from any poink=(x,4,X) to the chosen
point Xo= (X4,r®) and then to £ ,r®) along thex, axis.
For this class the corresponding gauge was studig@6h
Second, we take the dominant part &f, in Eq. (13), Equations for the § system can be written in the same

namely,J,4, which is proportional to the correlator of color- way as for theqq system. We again shall assume the large-

elﬁﬁtr'ihf'eldfﬁ This yields ?g I|n§achonflTrigz |gterhact|0n, N, limit in the sense that N, corrections frorrqa pairs to
while the other componentSic,Jia,Jai, 1=1,2,3, NAVE "o quark Green's function and the effective mass can be

been neglected, containing T“agr.‘e“c fields anq yleIdmgﬁeglected. We now write down the explicit expressions for
momentum-dependent correctiofié.is easy to take into ac- N.—3
=3.

count these contributions in a more detailed analysis. P : :
: The initial and final field operators are
The correlatoFF) in Eg. (10) can be expressed through P

the scalar correlatdd (x), defined ag2] \Pin(xvyaz):eabcraﬁy‘//aa(x’C(X))'Jfbﬁ(yrc(y))

trg’ X e(2,C(2)), (20)
%<Faﬁ(u)q)(ulv)|:y5(v)q)(v,U)> w Y (

I1l. EQUATIONS FOR THE BARYON GREEN'’S
FUNCTION

wherea,b,c, are color indicesgq, 3,y are Lorentz bispinor
=D(U—=v)(64y0g5— 0as9s,) +O(D1), (15 indices, and transported quark operators are
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This can readily be generalized for the noninstantaneous
case.
One can write, foGE?,

I

(—idy—imy—iM ) (—idy—imy—iMy)
X (—id,—img—iMz)GEY
=5W(x=x") 8 (y—y")6W(z~27'), (24)

with, e.g., M;G=/M(x,u)G(u,x')d*u. One can simplify

the form (24) for GG? taking into account thaM (x,x’)

actually does not depend om,(+Xx,)/2. Hence the interac-

tion kernel ofG(? does not depend on relative energies, as

in [27]. Similarly to [27,28 one can introduce the Fourier
L transform ofG(% in time components and take into account
energy conservatioe=E,+ E,+ E;. One obtains

FIG. 1. The set of contour@ for the instantaneous configuration
of three quarks ak=(X,4,X), y=(Xs,y), andz=(x,,z), passing

through the common pointy= (x4,r'®). G(BQ)(E,Eans):f D«(C)(el)(e'T")
Yaa(%,C(X) = (DX X) da(X)a- (21) y 1
(E-Ex—E3—Hy)(Ex—H3)(Ez—H3)’

The contouiC(x) in ® can be arbitrary, but it is convenient
to choose it in the same class of contours that is used in (25)
D«(C) and in the generalized Fock—Schwinger ga[2/&.

I'*P7 is the Lorentz spinor tensor securing proper baryorwhere we have used the notation

guantum numbers. One can also choose other operators, but

it does not influence the resulting equations. In ) we Hi=m; 80 +pMaf) + gOM (r() — (0, (26)

have omitted flavor indices il and (x,C), to be easily

restored in the final expressions. Moreover, we have taken il (x,x") the limit of smallT.
Using now the effective Lagrangiafi2) valid at large  As in [27] one can now integrate ové,,E; to obtain, fi-

N, we obtain, for the § Green’s function, nally,

GCI(x,y,z|x",y",z") 1
(3a) !y = T
G (Eyr|ar|) f DK(C)(eF)(eF )(E_Hl_HZ_H3)

1 T 1\, ol T
~x ] PrCIDIDI oy 2y 2 &

Xexp(Li+Leg). (22 From Eq.(27) one obtains an equation for the 8vave func-

tion similar to that of theyq system:
Integrating out quark degrees of freedom and neglecting the 49 sy

determinant at larg&l., one has
e (Hy+Ho+ Ham E)(ry,15.05) =0, (28)

GGRI= f D«(C)(el)(e'T") For a(arbitrary given pointr(®) the solution of Eq(28) is of
a factorizable form. Hence, when we tre&t as a constant
x{S(x,x")S(y,y')S(z,z')+permt,  (23)  parameter, the three-quark wave function is simply expressed
in terms of single-quark orbitals. However, in general the
where for simplicity color and bispinor indices are sup-pointr(®) should be found by minimizing the interaction be-
pressed together with parallel transporters in initial and finatween the three quarks, yielding fof®) the so-called Torri-
states. One can also define unprojectethout I',I'') 3q  celli point. As a result we obtain for the effective string not
Green’s functiorﬁﬁm with three initial and three final bis- an additive two-body confining interaction, but a single-
pinor indices instead of projected byI"" quantum numbers string Y junction, which is of a genuine three-body nature.
of the baryon. Here we do not consider, in E®8), r(®) to be expressed
The set of contour€(x) in Eq. (23) should be chosen to through three-quark positions, as required by the Torricelli
yield a stationary point of the actio{®). For the particular point, but in a first approximation take it as a constant pa-
case of small correlation timgy, i.e., takingx,=y,=2,, we  rameter. This allows us to have the three-quark solutions in
may assume that this can be achieved by a single choice &ctorized form, leaving calculation of the dynamical corre-
contours passing through the poigt= (x4,r?) (see Fig. 1L lations induced by nonfactorizability to a further study.
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In the nonrelativistic approximatiom;> \/o one has

d, ds

+0'|I’(i)—r(0) [|[T=eW, SZE_E m; .
(29)

(p™)?
2m

IV. PERTURBATIVE CORRECTIONS TO FACTORIZED
SOLUTIONS

The effective Lagrangiaf8) and the effective mass op-
eratorM(x,y), Eqg. (13), do not take into account the pertur-
bative interaction between the quarks in the baryon. To this
end we separate the gluonic fiedd, into a background,,
and perturbative parté,=B,+a, and use the 't Hooft
identity to integrate in the partition function independently
over both parts oA, as was done ifi30].

We shall use the following representation of gauge trans-
formations,

FIG. 2. A schematic view of the gluon propagating inside the
world sheet of the string.

+
B,—U

i . .
B,+ —(9#) u, a#HUTaﬂu, (30) Because of its attractive nature, the color Coulomb con-
9 tribution leads to smaller baryon masses and gives rise to
composite systems with a smaller radius. As a result the
magnetic moments become smaller. In the remaining part of
_ _ ; the paper we neglect the effect from the Coulomb interac-
D,B)a,=0, D,(B)=4d,—igB,. 31 : . : .
w(B)ay wB)=0,~1gB, S tion. To study this a more involved analysis is needed, where
As a result of the perturbative gluon exchange between dif@/S0 the hyperfine interaction has to be included.
ferent quarks in the baryon there will appear an additional
vertex in the effective Lagrangidri9] V. BARYON MAGNETIC MOMENTS WITHOUT QUARK
CONSTITUENT MASSES

and keep fora, the background gauge conditi$pn9,30)

f g
AL:QZJ lﬂT(X)VLlﬂ(X)J W (y) yIuy) Since the calculation of magnetic moments as well as
baryon masses does not involve large momentum transfer,
X(a,(x)a,(y))ydx dy. (32 one can use for that purpose the Hamiltonian equa@&n

According to the results of Sec. I¥j; can be represented as
In what follows we shall be interested only in the color Cou- . - o
lomb interaction which results from E¢32) assuming the Hi=m; 80 +pMaf) + gOM O (r () — () (34
simplest form of gluon propagator and neglecting at first for
simplicity the influence of the background field on it, The baryon solution of E((34) can be represented as
namely,
W= 56 (F1F 21 5) @apetil (1 —r @) g2 (@) —r ()

f (au(¥)a,(y))d(xs—ya) ><¢£37(r(3)—r(°)), (35)
B 6,,Co d(X4—VYa4) B 6,,C2 wherea,b,c and a, 8,y refer to color and Lorentz indices,
A2 (7—?)2+(x4—y4)2 " Amlx—y|” respectively, and; is the flavor index. In what follows we

shall use only the lowest orbitalfowest eigenvalues solu-
(33  tions) for quarks and therefore the orbital excitation indices

. ) . are everywhere omitted. The orbital wave function can be
Now taking the background into account, one arrives at th%ecomposed in the standard way.

picture of the gluona, propagating inside the film—the

world sheet of the string, created by the background between 1/G(p)Qim 9(p)Qim
three-quark world lines and the string junction, as is shown 1//L(p): —(_ J ) = ( J ) p=r—r0),
in Fig. 2. Depending on the choice of® we will get in PAF(P)Qjim i (p)Qjirm

general an effective interaction of a two-body or three-body (36)

nature. Because of th_e presence OT the QCD background, thc\%d the color index is omitted, since the orbital satisfies a
strength of the resulting Coulomb interaction is expected ta
be different from the perturbative OGE contribution and as a
result different from the interaction used for example in the ot () i
Breit equation31]. Hitrg, = en Y- (37)

white” (vacuum averagecequation
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Therefore the only remnant of color is the requirement thatConstructing the fully symmetrical®dwave function for the
¥ ;1 be symmetric in all coordinates besides color. From Eqnucleon with total spin up one has, for the proton,
(28) we see that the mass of the baryon, corresponding to Eq.

is i 2
(39). Is given by W8 = N 51U (1) (2)+d_ (1)U (2)]u. (3)

3
Moo= (i) 38
B i:Elfni 38 —%[m(l)u,(z)+u7(1)d+(2)]m(3)

To define the magnetic moment one may introduce an exter-

) i i i 1
nal em. fieldA, p@—pl—el)A, A=3(Hxr), and cal- —5[U (DU (2)+u(1)u.(2)]d.(3)
culate perturbatively the energy shift

_ 1
AE=—pH. (39 —5[U (1A, () +dL (DU (2)]u-(3)
Because of the symmetry of the problem, it is enough to

consider only the perturbation of one orbital, say, for the first 2
oy e Y +2U, (1)UL (2)d_(3) [, (46)
quark, 3
Hi—Hy+AH;,  AH;=—e{PafVA. (400 whereN’=1/,/2, and subscripts¥) refer to the spin pro-
) jection. In a similar way for the neutron one replacesd
Hence, denoting and obtains
¢(l) 5
\If(l): n —_ NI/
EhIE V=N’ 5[d4(Du-(2)+u-(1)d4(2)]d+(3)

(AH)=— egl)(so(l)* ,X(l)*)

0 oA
oA 0 %

— — el gAY

1
—3zlus(Dd-(2)+d-(1u+(2)]d-+(3)
oM

o (1)

1
—3[d+(Dd-(2)+d-(1)d+(2)]u+(3)

+ *WoDAM). (41) —%[d+(1)u+(2)+u+(1)d+(2)]d,(3)

Using Eq.(36) and a simple derivation given in Appendix A 2
one obtains, for the contribution of the first quark to the +=d.(1)d.(2)u_(3)¢. (47
magnetic moment operator in spin space, 3

2eél) The matrix elements are computed easily:
pH=— 3 f g* (N f(Nrd’ Qi oDy . (42) .
(Uhymrlef oIV =S e, (48)
For the lowest orbita] =%, =0, M=%, o—o,, one ob- symmea e Lo sy 3
tains )
(Weymled oW gy mm == g€, (49)

MZES,LLgl):—Zegl)ogl)f g*(n)f(r)rr2dr, (43

wheree is the charge of the proton. From E@48) and(49)
where the superscript 1 denotes the contribution of the firspne immediately gets the famous relation
quark to the magnetic moment. The normalization condition

is M 2
=—_, (50)
u(® 3

(n)

J (gl+]f?)r2dr=1. (44
Writing for identical orbitals the magnetic moment as a prod-

Note that everywhere we puf?—r©@=r. In the case of a UCl

local linear confining interaction using the Dirac equation _ (1) (1)
one can expresa'” throughg(r) only (see Appendix A for #8=3(Vsymrl€q 02| Vsymm, (51
details: where
(i) (1) 2.2
N €40 =|g|“r#(2or +3e) 5
(i Sa zf dr. 45 =__f . s
H 3 Jo  (e+or)? 49 =—3|9 (r)f(r)rsdr. (52)
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TABLE I. Ground state energy, of the orbitals and the pre- TABLE Il. The magnetic moment of the baryons in units of
dicted magnetic moments of the nucleons in units of nuclear magnuclear magneton for various valuesaf Calculations and experi-
neton for various values of. The experimental values are also mental results.

listed.

B MB MB MB Expt.
g (GeVZ) €o(u,d) (MeV)  eo(s) (MeV) Mproton  Mneutron 0=0.09 GeV¥ 0=0.12 GeV ¢=0.15 GeV
0.09 297 439 281 —1.87 p 2.81 2.44 2.20 2.79
0.12 342 482 244 —-1.63 n —-1.87 —-1.63 —1.46 —-1.91
0.15 380 519 220 —1.46 S —1.03 —-0.89 —-0.79 —1.16

0

A —0.66 —0.60 —0.56 —-0.61
It is clear that inclusion of higher orbitals will change the &~ —0.57 —0.53 —0.50 —0.65
magnetic moment of proton and neutron, similarly to the=° —-151 —1.34 —-1.23 -1.25
case of tritium and®He, where the admixture of the orbital . 562 489 439 452
momentumL =2 changes the magnetic moment by 7%—-8%. ., 2.81 2'44 2'20 '
In our case the orbital momentum is brought by all three OlOO 0'00 0'00
quarks symmetrically, and these components appear in the_ ' X :
wave function due to mixing through the tensor and spin—AH —281 —244 —2.20
orbit forces between quarks. EO* 3.09 2.66 2.37

Equations(51) and(52) can readily be generalized when 27 0.27 0.21 0.18

the quarks have different orbital wave functions. For the> —2.54 —2.23 —2.02
single-quark orbitals we have taken the solution of the="* 0.55 0.43 0.35
Dyson-Schwinger-Dirac equation with nonlocal kernel from=~* —2.26 —-2.02 —184
Refs.[19,20. Assuming for the field correlator a Gaussian 2~ —1.99 —1.80 —1.67 —2.02

form

21 4e2 o tal values. Considering the case @=0.12 GeV we see
D(u)=D(0)exp(—u/4Ty), D(0)= o2 (33 that there is a rather close agreement with the experimental
g magnetic moments, with the largest deviations found for the
with T,=0.24 fm the ground state orbital solution is deter-nucleon andx". As discussed for the case of the nucleon
mined. In Table | are shown the calculated ground state eriMprovement of the predicted mass of the composite system

ergy of the orbitals for various flavor states. For the currenf!SO leads to magnetic moments closer to the experimental
masses we have usedn,=my=5 MeV and m, Values. This applies also for the case of thésobar. Hence

=200 MeV. we may hope that inclusion of the Coulomb and hyperfine
Using these orbitals we calculate the nucleon magnetiéP"tt_mg interactions will improve the predictions. Moreoyer_,_

moment for various values of the string tensienThe re-  Pionic effect_s are expected_ to _be present. As a rgsult signifi-

sults are also shown in Table I. From the table we see that theAt mesonic current contributions to the magnetic moments

predictions depends sensitively on the string tengiorin- ~ May occur. In the pext section we study the dominant cor-

creasing the value of leads to a larger ground state energy '€ctions from the pion to the one- and two-body current.

of the orbitals and smaller size of the magnetic moment. This

in accordance with an analysis where the small component of VI. MESONIC CONTRIBUTIONS

the orbital is treated perturbatively. Similarly the presence of

a Coulomb interaction yields a lower ground state energy of In this section we carry out in our single-orbital model an

the orbital, resulting in a larger value in magnitude of theestimate of the magnitude of the pionic-current corrections to

magnetic moment. Close agreement with the experimentdhe magnetic moment of the nucleon. Because of the quark

values of the magnetic moment is found when coupling to effective mesonic degrees of freedom, one- and

—=0.09 Ge\?. In this case the mass of the nucleon is pre_two-body current contributions to the magnetic moments of

dicted to be 891 MeV. It is gratifying to see that the magneticthe paryons_ exist from the virtual exqitations of mesons. As-

moments are reasonable in the regime where also the prélming as in Ref[32] that there exists an effective one-

dicted mass of the nucleon is close to the empirical value. Meson exchange between quarks in the three-quark system
The explicit forms of®¥ g, for other baryons are given this leads to meson exchange current contributions to the

in Appendix B. Note that due to the strange quark mass theif’@gnetic moment. The leading correction is due to the pion-

orbitals are different from those of.d quarks and therefore in-flight and pair term; see Ref32]. Effects from the

the decompositioi51) has to be modified. Some useful for- heavier mesons like the are in general less important.

mulas can be found in Appendix B. Our starting point is the e.m. current matrix element
The resulting values for baryon magnetic moments are
given in Table I, where they are compared with experimen- Mﬂ=<\If|JM(Q)|‘lf), (549

094013-7
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whereW is the three-quark wave function a@lis the pho-  ZZ= = = ==
ton momentum. K, Kk, k, K, k, K o
We first consider the single-quark current contribution.
For the single-quark current operator we use Q
3
ngqszg‘*Q(1)=3eg”y§}>n];[2 Y, L N S O e e
and for the wave function normalization, E@4) for the k, K’ k'3 ky K% K3
single-particle orbitals is taken. This choice has the nice = —_—_
property that the zeroth component of the currer®at0 is @ ®)
found to give the proper charge of the three-quark system,
ie., FIG. 3. The diagrams corresponding to the pionic contributions
3 to the currenti(a) the pion-in-flight diagram(b) the pair term. The
M= (W] —0)| W)= e 56 bound state of the quarks is represented by the blobs at the begin-
0=¢ | o(Q )| ) n§=:1 a (56) ning and the end of the diagrams.

The result for the magnetic moment, obtained in the previouThe momenta are expressed in terms of the Jacobi coordi-
section, can readily be recovered from our single-quark curnates as
rent matrix element. Following Ref33], the magnetic mo-

ment can be calculated by taking the curl of the space com- | — _ i } r— i ’ E '
: ) . Ky q+ 3P, k; q'+zP,
ponent of the current matrix element in the Breit system. In J3© 3 3~ 3
doing so, the magnetic moment can be deduced from the 1 1 1 1
e.m. current as ,
ko=p+-—=q+ 5P, k;=p'+—=q +5F, (62
Mz:mpemag(Q:O):_E[VQXM]z (Q=0), - N 1 +1P o - 1 ’+1P,
(57 3= P ﬁq 37 3= P ﬁq 37

whereM, is the proton mass the proton charge, an@p, 4 ] ]

the Sachs e.m. magnetic form factor. The matrix elementmposing the Breit systen?+P’=0, and momentum con-
(57) can easily be evaluated in momentum space. Introducservation give®’ = —P=Q/2, p'=p and3(q—q')=Q.
ing the Fourier transform of the wave function of the single- Use has been made of the identity

quark orbital, e . - 1
300 (Qjim (ko) [(kp)i(ky)j| Qjim (ky))= §5ij : (63
iM

~f(k)QjVM
B J'((—i)lh(kP)Q(P)QuM

5 ()=

o

with =0 and Eqgs.(48) and (49). The magnetic moment
expression51) from the previous section is readily recov-
2dp, (58) ered when we replace the integration over the Jacobi mo-
i(—=)"j1/(kp) F(p) Qjy 1y pap menta in Eqs(60) and(61) by IT3_,dk,.
We now turn to the pionic two-body current contributions,
with j, the spherical Bessel functions, we may after someassuming ays theory. The resulting pion-in-flight and pair

algebra reduce Ed57) in momentum space to current operators, shown in Fig. 3, are given, respectively, by
=30 =3(Usymed €M oymmh. (59 IZ)=—2ieg), ¥y (#@Dx 70),
We thus find A
3 X7 2 T 2
~_ 1 33 ~ 2. (% 2 ! 2 ! 2
K=o | [ eocall (B0 2+ fikol? A-5Q| +m2|[|a+5Q) +m2
2N n=2 L JL J
~ 4
- 4. ag(ky) 2. Az
X 9(k1)3—kf(k1)—T§f(k1) XT 1 \2 T 1 \2 7
1 1 A-5Qf + A2l A+ 5Q| + AZ
+§(k )E @) (60) 1 2- - 1 2
! 3 akl QZZO' —EQ +mi_ A+ EQ) +m727
whereN is the normalization factor: x| 1+ 1 \? + 1 \?
A+3Q +A2 -5Q| + A2

3
_ 3 3 = 2 F 2
N= [ [ dpdall takol+ kol 60 o0

094013-8
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TABLE 1ll. The single-quark current contributiop.{’ to the magnetic moment in units of nuclear
magneton, together with the two-body corrections and the anomalous corréplf{b?mrising from the pion
one-loop diagrams. Also are shown the total combined prediction of our calculations and the experimental

results.
N pi uym” PG spi e Expt.
0=0.09 GeV
p 2.81 0.20 -0.21 0.12 2.92 2.79
n -1.87 -0.20 0.21 -0.16 -2.02 -1.91
0=0.12 GeV
p 2.44 0.19 —0.18 0.11 2.56 2.79
n -1.63 -0.19 0.18 -0.14 -1.78 -1.91
0=0.15 GeV
p 2.20 0.18 —0.16 0.10 2.32 2.79
n —1.46 —0.18 0.16 —0.13 —-1.61 —-191
and The photopion vertex is described by an effective interac-
tion Lagrangian
23 .
i e A O ), : 1
- (19— 1)@ . 1 Lomy=— EGAM(’JTX M)+ EeA,u(&'“TrX 7),. (67)
X am, 7 1\, From the two-body operators,,, Eqs. (64)—(65), we
(A— EQ +m; may write down the current matrix element between the
- three-quark state:
4 0_1)(2)
X _ A’IT ) _ (7 1) '}/(2)
St Amg (1)_ o1 30 Byl (1) 129)
A-5Q| TA% M2b=3M2b=3ﬁf fd pdiqwygHISIw. (68
4
1 Az Taking the curl of Eq.(68) the magnetic moment can be
Xz > 5 5. (65 , . . S .
1 5 1 ) determined. The resulting expressions are given in Appendix
A+5Q] +my) || A+5Q) +AZ C. As a check using the obtained magnetic moment operators

) : we have determined the exchange magnetic moment contri-
In Egs. (64) and (65), Q is the photon momentums = p bution to the trinucleon system. Our results agree with those

L : obtained by Kloet and Tjof33].

_27'5 AMeTlop\ggotl)ieLOLrgeJaglEﬁ; I\ggth n/\fgtfef:m??r?ﬁz las To get an estimate of the exchange current contributions
. . ) . i the three-quark case we have used for the couplings and
factor in Eq.(64) correspond to contact terms, which are

needed to satisfy current conservation. The quark propagatcumff mass the values from Rq2]. They are taken to be

in Eq. (65) has been replaced by its negative-ener art %%QWMW:O.G?. The results for the magnetic moments are
9 P y 9 9Y P shown in Table 1Il. Our estimates are in strong disagreement

with those obtained in Ref32]. The pion-in-flight contribu-
tion is substantially smaller than found in RE32] using the

, , 0
! Py_m+yp~+m7y chiral constituent mod€I34]. This may be partially due to
p—m 2y p>+m?  pP+pi+m? the three-quark wave function used, which has a matter ra-

dius smaller than in our case. Moreover, it contains only

i nonrelativistic components. The pair contribution is found to

~—(y°-1), (66)  be comparable to the pion-in-flight term, leading to an al-
4m most cancellation of the mesonic current pionic contribu-
tions.

as the positive-energy part has already been included in the The presence of mesonic degrees of freedom will modify
single-quark current matrixelemef85]. Moreover, the pair the single-quark current. The resulting e.m. current operator
contribution(65) consists of four terms where the photon cancan in general be characterized by a large number of off-shell
interact with quarks 2 and 3 prior to and after the pion-quarkiorm factors[36—38, which reduces to 2 when we assume

interaction. that the initial and final quarks are on mass shell. Using this

094013-9
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TABLE IV. The quark anomalous magnetic moments in units of
the nucleon magneton in the one-loop approximation for various
string tensionso. The first set is the prediction for only the pion
loops, while the second set is with both pion and kaon loops in-

FIG. 4. The diagrams contributing to the anomalous magnetic

moment of the single quark.

approximation we may estimate the resulting anomalou$-12
magnetick term due to the the pionic contributions. Near 0.15

cluded.
o (GeV?) Ky Ky Ks
Pion loops

0.09 0.101 —0.160 0.0

0.12 0.092 —0.140 0.0

0.15 0.085 —0.126 0.0

Pion and kaon loops

0.09 0.132 -0.151 —0.034
0.121 —0.133 —0.032
0.112 -0.120 -0.031

Q?=0 we have

ie
quqzeqy#-i- qupa'qu, (69)

where k= kst K, 7, for the u,d quarks. Thex coefficients

wherep is the momentum of the quark. For details we refer
to Appendix D. Equatiori70) corresponds to the coupling of
the photon to the pion, E471) to the coupling of the photon
to the quark.

In Table IV are shown the calculated anomalous magnetic
moments of theu, d, ands quarks forA =675 MeV for

can be determined in a simple model, assuming that the looyarious choices or. Clearly, the results depend on the con-
corrections are given by only the one-loop pionic contribu-stituent quark masses. These are given in Table | for the
tions to the e.m. vertex. Similarly as in the two-body currentconsidered string tensions.

case we approximate the single-quark orbital by a free quark Using Eq.(57) the « term in Eq.(69) yields a nucleon
propagation with a constituent mass given by the groundnagnetic moment correction

state orbital energy. With the above simplifying assumptions

the calculation amounts to calculating the magnetic moment
contributions of the diagrams shown in Fig. 4. Using the

Sp,= 35,U~§1): 3( ‘/’symrrl Kq(l)o'z(l)| 'psymn))\o , (72

same cutoff mass regularization as for the two-body currentgith
we find for the anomalous magnetic moment in units of the

nuclear magneton:

()

(@)=
K=Kk,

4MpJ d*k 4(p-k)%—p?k?
-
3myJ (2m)* [K*—2pk+ie][k*—m’+i€]?

2 2

m

k2—m?
2

+2 il
k2— A2

) (70

and

k® =P 4, P 7 = —jg

5 1—722|v|pf d*k
T2 3md) (2m)t

4(p-k)?—p?K? i

[k?>—2pk+ie][k?—m2+ie]

A2
k?—AZ

(71

frzdr(lglz—lflz)

)\0: .
| rearigr+ 1112

(73

In Table 11l the predictions for the nucleon are shown includ-
ing also the one-pion loop contributio(2) and two-body
currents. Our results obtained for the one-loop corrections
are smaller than reported by Glozman and R{g&. This is

due to the inclusion of the lower component in the single-
quark orbitals. Neglecting these we recover the results of
Ref.[39]. From Table Il we see that the proton and neutron
magnetic moment is in reasonable agreement with experi-
ment for a string tension af=0.1 Ge\~. For this value of

the string tension the model predicts a nucleon mass of 940
MeV, remarkably close to the empirical value. The anoma-
lous magnetic moment contributions are found to be of the
order of 10%.

As a result of the one-loop contributions, the magnetic
moments of the other baryons are modified. Corrections from
kaon loops have also been considered. Because of the larger
kaon mass, the contributions are expected in general to be

094013-10
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TABLE V. The magnetic momentg of the baryon octet and decuplet in units of nuclear magneton,
including the anomalous contributiaflug arising from the pion and kaon one-loop diagrams and the pion
exchange corrections for different string tensienAlso are shown the experimental results.

B Sup “B Sps B Spp MB EXxpt.
o=0.09 GeV 0=0.12 GeV 0=0.15 GeV

p 0.15 2.95 0.14 2.59 0.12 2.34 2.79
n -0.16 -2.02 -0.14 -1.78 -0.13 —-161 -—1.91

i -0.13 -1.16 -0.11 —-1.00 -0.10 -0.89 -—1.16

30 0.00 0.85 0.00 0.74 0.00 0.67

>t 0.12 2.84 0.11 2.48 0.11 2.25 2.46
A —-0.02 —0.68 -0.02 —-0.62 —0.02 -0.58 —0.61

= 0.00 -0.57 0.00 -0.53 0.00 -0.50 —0.65

=N —-0.06 —1.57 —-0.05 -1.39 —0.05 -1.28 —1.25

AtH 0.26 5.88 0.24 5.13 0.22 4.61 452
At 0.07 2.88 0.07 2.51 0.07 2.27

A° -0.11 -0.11 —-0.10 —-0.10 —0.08 —-0.08

A~ —-0.30 -3.11 -0.26 —2.70 —0.24 —2.44

3t 0.15 3.24 0.14 2.80 0.13 2.50

0% —0.04 0.23 —0.03 0.18 —0.03 0.15

3 -0.22 —2.76 -0.20 —2.43 —-0.18 -2.20

=i 0.04 0.59 0.04 0.47 0.03 0.38

B* -0.14 —2.40 -0.13 -2.15 -0.12 -1.96

Q- —-0.07 —2.06 —-0.06 —-1.86 —0.06 -1.73 -—2.02

smaller in size than those of the pion loops. In Table IV theing three-quark wave function has been used to determine
calculated anomalous moments of the strange quark due the magnetic moments of the baryons. This has been done
the kaon one-loop corrections are given. In the calculations or both the octet and decuplet of the @Jflavor group.

cutoff mass ofA =675 MeV has been used. The isoscalar ~Comparing the predictions we find that the magnetic mo-
and isovector anomalous magnetic moment pieces are alsfients are mostly in close overall agreement with the experi-
changed by the kaon loop contributions. From Table IV wement for a string tension of=0.1 Ge\2. We find that the

see that the kaon loop contrlbutl_ons are indeed smaller iBredicted magnetic moment of the nucleon is improved sub-
magnitude as compared to the pion loop ones. The full regiantially once we choose a string tension to give a reason-
sults fOF the magnetic moments of the baryon octet and ,deéble nucleon mass. The same applies forAhisobar. Effects
cuplet, including the pionic _exchange currents an_d the PIORyye to the presence of virtual mesons are in general expected
and kaon one-loop contributions, are summarized in Table Vio be important. We have estimated the pionic one-loop and

For the value of the string tensian=0.1 the overall agree- one-pion exchange contributions to the magnetic moment.

ment with the experimental data is reasonable. From th he single-quark corrections from pionic loops are found to
table we see that the anomalous magnetic moment contrib@— gie-q P P

e of the order of 10%, whereas the total effect of two-body
current contributions are predicted to be small, to be con-
trasted to the results of Rdf32]. This is due to the cancel-
lation of the pion-in-flight and pair terms in the present
We have written down the general effective quark La-model. Because of the anomalous magnetic contributions,
grangian as obtained from the standard QCD Lagrangian bthere seems to be somewhat an improvement of the predic-
integrating out the gluonic degrees of freedom. Consideringions.
the baryon Green’s function, neglecting gluon and meson We have assumed here that the baryon wave function can
exchanges, we find in lowest order of the approximationbe described as a product of single-quark orbitals, i.e., ne-
scheme that it is given by a product of three independenglecting correlation effects. Our results in this approximation
single-quark Green'’s functions. As a result the Hamiltonianfor the magnetic moments of baryons are encouraging, but
can be written as a sum of three quark terms, where thare in need of including higher-order corrections. In particu-
single-quark solutions satisfy the Dyson-Schwinger equatiottar, the mass spectrum obtained from our lowest-order ap-
with a nonlocal kernel. proximation does not contain ti¢-A mass splitting. This is
The nonlinear equation for the single-quark propag&or due to neglecting contributions like the hyperfine interaction
(attached to the string in a gauge-invariant vags been arising from the one-gluon interaction. This induces correla-
solved in the Gaussian correlator approximation. The resulttions in the three-quark wave function and its magnitude may

tion leads to an improvement of the predictions.

VIl. CONCLUSION

094013-11
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give us insight into whether our basic description in this _
paper in terms of simply single-quark orbitals is a reasonable ,ug'):
one. Moreover, it is clearly of interest to investigate how the
magnetic moments are changed when effects from color
Coulomb and hyperfine interactions are accounted for.

o)

3

|g|?r2dr
(e+m+U

J

For U(r)=or one obtains Eq(49).

)2[3(s+m+ U)—ru’(r)].
(A5)
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APPENDIX A: MAGNETIC MOMENT CALCULATION IN

COORDINATE SPACE PP —
symm
The one-quark contribution to the magnetic moment can

be written as in Eq(45):

(AH)=— egl)f (0% WA YD 4 (W% g (DA G 3y,
(A1) n

symm

where A=3(HXr) is the vector potential of external con-
stant magnetic field.

Inserting in Eq. (A1) eW=g(r)Q;u and xY

=if(r)Qj.v, and taking into account that(jy
=—(on)Qjyu , one easily obtains —
symm
1 (1) 3 (q* * *
(AH1>=—§eq dr(g* f+f*g)rQjy
Equation  (A2) contains the matrix element 30 _
JdnQjiynin Q. which simplifies whenl =0, so that symm
(NN =736

In this case one obtains, taking into account relation
(AH))=AE=—pu®H,

1
pt=— §eé”f [g* () + F*(1)g(r)]rd

XQ]\]M (T(l)Q“M

2 \Ifgymm:
=—a(1)§egl)f Re g* (r)f(r)]r3dr. (A3)
In the case of a local scalar potentla(r) one can further
expressf (r) throughg(r) using the Dirac equation for the
one-quark state: N
\Psymm_

d K
(gr)+ ?gr . (A4)

ri(r= e+m+U(r) (a

Introducing Eq.(A4) into Eq. (A3) and integrating by parts
one obtains

094013-12

6

V2

F{Zd,u+u+—u,d+u+—d+u,u++2u+d,u+

—uyu_d,—u_u,d,—-u,d,u_—d,u,u_

+2u,u,d_}, (BY)
V2
?{ZU_d+d+—d_u+d+—u+d_d++2d+u_d+

—d,d_u,—d_d,u,—d,u,d_—u,d,d_

+2d,d,u_l, (B2)

?{Zs_u+u+—u_s+u+—s+u_u++2u+s_u+

—u,U_S,—U_U,S,—U,S,U_—S,U,U_

+2u,u,s_}, (B3)

-1
= ?{u+d,s++d+u,s++s+d,u++s+u,d+

—2u,s_d,—2d,s_u,+u_d,s,+d_u,s,
—-2s.d,u,—2s u,d,+u_s;d,+d_s,u,
—-2u,d,s_ —2d,u,s_+s,d,u_+s,u,d_

+u,;s,d_+d,s,u_}, (B4)

V2

—{2s_d,d,—d_s;d,—s,d_d,+2d,s d,

6
—d,d_s,—d d,s,—d,s,d —s,d,d_
+2d,d,s_},

V3

(B5)

{u_d;s,—d_u,s,+u_s,d,—d_s,u,

—u,d_s,+d u_s,—s, d_u,+s,u_d,
+s,d,u_—s,u,d_—u,s,d_+d,s,u_},
(B6)
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N

\Psymm 6 —{2u_s,s,—s_u,s,—u,s_s,+2s,u_s,

—S+S_U+—S_S+U+—S+U+S_—U+S+S_
+2s,s,u_}, (B7)

= _\2

\Ifgymmzf{Zd,s+s+—s,d+s+—d+s,s++25+d,s+

—-s,s_d,—s_s,d,—s,d,s_—d,s,s_

+2s,s,.d_}, (B8)

where the subscriptst() refer to the spin projection. For the

flavor decuplet with total spin 3/2 up we have

T+
N TIRTI T (B9)
+
V2= \/_{u cudi+uidiu,+d,ugugd,
(B10)

1
0
V2= ﬁ{d+d+u++d+u+d++u+d+d+},

(B11)
Vo mr=dedady (B12)
i 1
VSymn= \/_{u Juys,+uis,uy+s,u uyl,
(B13)

20
Y symni= \/_{u +dys,+d u,s,+u,s,d,+s,u,d,

+d s u;+s.d,u,}, (B14)
V2= \/_{d .d,s.+d,s,d,+s,d,d,},
(B15)
=0 1
W= symm= ﬁ{s+s+u++s+u+s++u+s+s+}, (B16)
1
\If;ymm \/§{s+s+d++s+d+s++d+s+s+}, (B17)
quymm S:S:S;. (B18)

These fully symmetrical wave functions, Eq&1)—(B18),
can be written symbolically as

Y syma= TS0 (Pt o) w2y (B19)

As the orbital of thes quark is heavier than the- and

d-quark orbitals, Eq(51) has to be split up in contributions
from the u,d quarks and from the quark. Using the sym-
metrical wave function, EqB19), this is realized by writing

3uN=3 3 (IS (fafafo)uluiiy Pleg(Doy(1)

f1faf3

><|r§ﬁ’<flfzfgwglwgzw;%xfl, (B20)
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TABLE VI. The matrix elements of the e.m. current for the
baryons.

N un/3
p 3y
n §\u
3 7t 27hs
30 FNuT 37N
%" _% u+21_7 s
A _%)\s
EO _%)\5_22_7)\u
= _%)\s+21_7)\u
A++ %)\u
At i\
A° 0
AT _%)\u
aN shu—5\s
30 S\ 5hs
37 ~§\u—3\s
=i — Nt 5Ny
Ei* _é)\s_%)\u
Q- _%)\s
with
2
)\f|=—§f g (N (ryrédr. (B21)

The flavor indexf; can take the values, d, ors. Note that
Nu=M\4 as the same orbital is taken for theandd quarks.
Evaluating Eq(B20) for the different baryon wave functions
Egs.(B1)—(B18) result in the expressions in Table VI.

APPENDIX C: PIONIC TWO-BODY CONTRIBUTION TO
THE MAGNETIC MOMENT

In this appendix the pion-in-flight and pair contributions
to the magnetic moment of the nucleons are given. Follow-
ing Ref.[33] these contributions are determined by taking
the curl of the pionic two-body currents, E&8). The three-
quark state¥ is given by the product of three single-quark
orbitals, Eq.(35). Because of symmetry considerations, it
suffices to calculate the magnetic moment contribution of
pion exchange between, say, the second and third quarks
only and multiply the result by a factor of 3 to include the
contribution of the other possible permutations of quark
pairs.

Considering the pion-in-flight contribution firgEq. (64)],
taking the curl gives rather long expressions which can be
divided into two parts:

5Mgroton= _ 5M2eutron= 3( 5:“*;\"' 35#28)' (Cy

The first part gives the larger contribution and can be written
as
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Sul= lim —”qq j 3qdpdp’

- _ o 1
TP 2)z[lg(k1)|2+|f(k1)|2] g(kz)f(kz)g(kg)f(ka)m(pA—pzAz)

(A

+9(k5)T (ko) T (k3)g(ks) [(2p—p’+3q)A—(2p,— ps+ V3a)A ]+ F(kp) (ko) g(ks) F(kg)——

6kok3 6kiks
X[(2p—p’ = 3a)A—(2p,— p,— 30, A,]+T(k5)G(ko) T(k5)g(ka) Sk (p A-p,A,)
273
. 2A2+ m?2. A2 2 2
+
A%+ AZ)\ A%+ A2
The second part comes from the curl applied to the wave functions
2ed’ 1 ~ ~ 1. d9(k3).,
5B=|im—”qud3d3d3'— k) |24 [T(k) |21 (KX A) 4 ——=F (k) 9(K5) T (Kq) (K, X K
Mz o SN qd’pdp (A2+M2)2[|g( DI+ k) PI5 (K< A), 2 (k2)a(k3)F(ks) (ko xk3),
) JF(k)).. Fkphe
o f(ko)T(k5)g(Ka)(k 2 k'5),— (ko) g(k3)T(ka) (Ko xk 3),+ ———g(ko) T(k3)g(ks) (kX k's),
2 2 2
A2+ m?2 A2 \?
+T(k5)g(k kfk—k><k k) g(k,)F(kL)g(k k. K 142 u u Cc3
(k2)9(k2)g(ka)T (ks) 2( 5xKs),~T(kp)a(ka)T(ka)a(ks) 2( 2 3)] Az A2)|azia2 (C3

The normalization factoN is the same as used before in the single-quark current contrigiipr(61)]. The momenta are
expressed in terms of the Jacobi coordinates, B3, again, but from imposing the Breit system and momentum conserva-

tion we now geP’ = —P=Q/2 and 2/3(q’ — ) =Q. In writing down these expressions use has been made of the spin-isospin
operator sandwiched between the fully symmetric wave functions in the spin-isospin and orbital space of the three quarks:

2
<¢s n'l(T(l)XT(Z)) U'(l) (2)|‘/’symn> _<¢symn'l(7(l)><7(2)) U(l) (2)|¢symn> elj3 (C4)

It should be noted that the spin-isospin factG#) is identical to that found for the trinucleon case. For all the other baryon
wave functions given in Appendix B the matrix element of the considered two-body e.m. operators vanish, because of the
isospin structure of the e.m. operator. Hence the considered two-body currents contribute only to the magnetic moment of the
proton and neutron.

The second panﬁ,uzB is a relativistic effect which enlarges the values by about 10% and which vanishes in the static limit
as is shown at the end of this section.

In the same way the pair term can be analyzed. We find

5Mgroton: _ 5M2eutron: 3(5Mzc+ 35:“2'3)' (CH

with
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oHz= st P LAk 2+ Tk I o 5 - S22 Gk T ko (K B ko)
Mz . 02mq(27T)N qd’p p mi3 9(Kyg 1 Ky | 3 A2+mi g(K3 2)9(K3)9(Kz
1(2 Ak,—ALKY), o 11 Akg—Ay(ks),|~ o
k_é g"‘me T(ko)g (kz)g(kg)g(k3)+k—3 §+W (k) a(ka)g(ky)F(ks)
LL(2 AKAKD 2 )
k3 e 9(k2)g(ka) f(ks)g(ks) ATTAZ
and

(C6)

ed’
Sul= lim A fff dpdip’
e ™ o2, 06mq(277)3N “ad’p

e -~ g(ks)., .
—f(ké)g(ks)[kéké—(ké)z(ké)z]}+9(ké)g(k3)< P “F(ka)[kgko— (k) (k2),]
2

d9(Kp)-. .
m2 3[|9(k1)|2+|f(k1 |2]| 9(ka){3(k3)T(ka)[K3ka— (5 (ka).]

2

o7f(k )~
+ ——2g(Kg) [ kpkj—
k2

A2 \?

<R5>z<%5)z]) f(kz>g<kz>g<ks)g(k3> [koks— (kb) 4 (kb) ]

2

o
— (C7)
A2+ A2
In the nonrelativistic limit the lower component of the wave function can be expressed in the upper component as

k| ~
f(k)——% (K, 8
q

wherem,, is the constituent mass of the quark. As a result, the pionic two-body current contribution€CBg$C3) and Eqs
(C5—(C7), can be simplified considerably. We obtain, for the pion-in-flight contribution

2 2 2 2
egqrqq f AZAZ A +m Aﬂ_
Suh= dpd? ko) |[2+[T(ky)|?Ta(ks)a(ka) (k3 g(k
e o2 (2m°N 3qd®pd®p’[[g(ky) >+ [T(ky)|?Ta(k5)g (k)G (k3)g( 3)( )2 A2+A2 AT AL
(C9
For the pair term we get
2 2_ A2 2 2
eg7T ~ F ~ ~ ~ ~ z 1 A7T
5°:—Wjd3d3d3’ ko) |2+ [T(ky)|219(K5) 9 (k) G(k5)a(K - ,
Kz o2 2m°N qd®pd®p’[|g(ky) |+ [f(ky)[?]a(k2)g(k2)9(k3)g(ks) Aty Nrni) | ATrAZ
(C10
while du; and du, vanish. These expressions agree with the results of RR85and[35]
APPENDIX D: ANOMALOUS MAGNETIC MOMENT CONTRIBUTIONS FROM PION LOOPS
Our starting point is the e.m. currents, corresponding to the one-loop diagrams shown in Fig. 4
2 2
J(a):_Zigz eTZf d4k 75(p_k+mq)75(2kM+QM) Aqr A’?T
a i (2m)* [(p—K)?—mi+iel[kP—mi+ie][(k+Q)2—mi+ie] k2*—AZ (k+Q)
k?=mZ  (k+Q)*~
>+ 5 (DY)
(k+Q)?—AZ k?—A
2
S g LT[ A% ys(B' —K+mg) v, (p—K+my) ¥s A% oo
#_lgwqqcz ' V2 2 N2 2 T2 2 2_ A2 (D2)
(2m)" [(p" —kK)*—mg+ie][(p—k)*—mg+ie][k*—m +ie] As
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Since we have assumed a finite form factor atlyg vertex, similar as in the two-body current case, the two additional terms
are needed in the last factor of H@p1) to satisfy current conservation. From these currents the anomalous magnetic moment
has to be extracted. By applying the Gordon decomposition to the current68ig.nearQ?=0 it can be seen that the
anomalous magnetic momeatis the term proportional to{e/2M)K , with K,,=p,,+ P,'L- To isolate this term the currents

are rewritten by explicit evaluation of thematrix algebra and taking the lim@“— 0. Using the approximation that the initial

and final quarks are on mass shell we obtain

d%k 2k k 2 \? k2—m?2
J@=—2ig2 er J i - 1+2 ~ | =—2ig%.er,y'C® (D3
2 Imaa®T2Y | o)A [k~ 2pktiel[ke—m2+iel? | k- A2 K2~ A2 Oraq72Y Chv (DI
and
1-7 d%k 2k k,—k2g Az \? 1-7
IP=jg2 e~ f B —#7 | =igZie——5—y"Ch. (D4)
b T Il ) oy Ko 2pkt ik mEtie] | K- AZ) OS2 e
As the tensor€C#” depend only on the initial and final momenta, they can be written as
cl)=APK, K, +APK,Q,+ALQ,K,+APQ,Q,+Alg,,, (D5)

whereA() are Lorentz invariants. It can readily be seen that only the first #&{Pncontributes to the magnetic moment.
Substituting Eq(D5) into Egs.(D3),(D4) and taking the initial and final quarks on mass shell we find, for the anomalous
magnetic moment corrections,

k@ =8iM ;my02, AL, (D6)
. 1-7,
k)= —aiM my0Z,—5—AP. (D7)
The Lorentz-invariant expressiok’ can immediately be determined from the ten€dj,. We get
| .
A9)=@(4K#K”—K2gmcg{. (D8)

Inserting Eq.(D8) into Egs.(D6) and (D7) the expression§70) and (71) are obtained.
The kaon one-loop diagrams can be calculated in similar way. The starting point is the expré3sijoasd (D2) again,
where the mass of the pion is replaced by the mass of the kaon and the isospin structure is change@Yy/Z and

—(3+13Y), respectively, in EqgD1) and(D2) with Y the hypercharge. The expressions for the anomalous magnetic moment
due to the kaon loop become

2 2 2 2
D ig? (T+3Y)2Mpf d*  4(p-k)2—p2k*+3my(Mg—mg)p-k AR k2—mg 09)
Kaqh 'z amd) (2m)* [K2—2pk+ m2—M2+iel[k2—mZ+ie]? | k2— A2 k2—A2)’
and
2
o2 (2.4, 12Mp [ d*k  4(p-K)*— p?k*+3my(Mg—mg)p-k A%
K =i0kqql g T 3 Y 3 5 T > > (D10
9 3 /3m}) (2m)* [K2—2pk+mi—Mi+iel [k2—mg+ie] | k2= AR

with M, the mass of the intermediate quark, angthe mass of the initial and final quarks. The coupling consgagt and
the cutoff A« are taken the same as for the pion loop.
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