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Elusiveness of infrared critical exponents in Landau gauge Yang-Mills theories
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We solve a truncated system of coupled Dyson-Schwinger equations for the gluon and ghost propagators in
SU(Nc) Yang-Mills theories in Faddeev-Popov quantization on a four-torus. This compact space-time manifold
provides an efficient mean to solve the gluon and ghost Dyson-Schwinger equations without any angular
approximations. We verify that analytically two powerlike solutions in the very far infrared seem possible.
However, only one of these solutions can be matched to a numerical solution for nonvanishing momenta. For
a bare ghost-gluon vertex this implies that the gluon propagator is only weakly infrared vanishing,Dgl(k

2)
}(k2)2k21, k'0.595, and the ghost propagator is infrared singular,Dgh(k

2)}(k2)2k21. For nonvanishing
momenta our solutions are in agreement with the results of recent SU~2! Monte Carlo lattice calculations. The
running coupling possesses an infrared fixed point. We obtaina(0)58.92/Nc for all gauge groups SU(Nc).
Above one GeV the running coupling rapidly approaches its perturbative form.
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I. INTRODUCTION

It is generally accepted that the theory of strong inter
tions, QCD, should describe the observed phenomeno
confinement: colored objects such as quarks and gluons
cur only in hadrons. A possible route for gaining more u
derstanding of this phenomenon is the study of the infra
behavior of QCD Green’s functions; for a recent review s
@1#. In addition, to shed light on the fundamental propert
of QCD the knowledge of these Green’s functions provid
the basis for a successful description of hadronic phy
@1,2#. Based on the idea of infrared slavery older works
this subject assumed a strongly infrared singular glu
propagator. Recent studies based either on Dyson-Schwi
equations@3–7# or lattice calculations@8–11# in Landau
gauge indicate quite the opposite: an infrared finite or e
infrared vanishing gluon propagator. These two techniq
are complementary in the following sense: On the one ha
Monte Carlo lattice calculations include all non-perturbat
physics of Yang-Mills theories but cannot make defin
statements about the very far infrared due to the finite lat
volume. On the other hand, Dyson-Schwinger equations
low one to extract the leading infrared behavior analytica
and the general non-perturbative behavior with moderate
merical effort but these equations, consisting of an infin
tower of coupled nonlinear integral equations, have to
truncated in order to be manageable. As we will also se
the course of this article, the propagators of SU~2! and SU~3!
Landau gauge Yang-Mills theory in Faddeev-Popov qua
zation coincide for these two different approaches reason
well. Thus we are confident that our results for the qual
tive features of these propagators are trustable.

Especially, these recent results on the Landau ga
propagators imply that the Kugo-Ojima confinement cri
rion @12–14# is satisfied~for a short summary on this topi
see e.g. Ref.@15#!. It is gratifying to note that no truncation
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to the Dyson-Schwinger equations has to be applied to ar
at this conclusion if one assumes that the involved Gree
functions can be represented in the infrared by asympt
expansions@5,7#. In Landau gauge, a sufficient condition fo
the Kugo-Ojima confinement criterion is that the nonpert
bative ghost propagator is more singular than a massless
in the infrared@14#:

DG
ab~p!52dab

G~p2!

p2
, with G~p2! →

p2→0
`. ~1!

This behavior is also correlated to other aspects of Ya
Mills theories. First, the Oehme-Zimmermann superconv
gence relations@16# can be derived from Ward-Takahas
identities assuming the Kugo-Ojima confinement criteri
@17#. These superconvergence relations formalize a lo
known contradiction between asymptotic freedom and
positivity of the spectral density for transverse gluons in
covariant gauge. Second, Eq.~1! agrees with Zwanziger’s
horizon condition@6,18#. This amounts to Gribov’s prescrip
tion to cut off the functional integral at the first Gribov ho
rizon @19#. Noting that this horizon is a convex hypersurfa
in A space that surrounds the origin@20# allows one to con-
clude that the Dyson-Schwinger equations are not chan
@18#. However, one has to note that this treatment of
functional integral is related to the resolution of an ambigu
in the solution of these equations@3,6#. Nevertheless, supple
menting the Faddeev-Popov quantization with this additio
constraint might not be sufficient to provide an exact solut
of the problem because there exist Gribov copies within
first Gribov horizon@21#.

As already stated, the obtained values for the infra
exponents of the gluon and ghost propagators depend on
employed approximation for the Dyson-Schwinger equ
tions. Beyond the necessary truncation of this set of integ
equations in numerical calculations also some approxim
tions for the angular integrals have been used so far@3,4#. On
the other hand, employing infrared expansions~without us-
ing any angular approximation! which are strictly valid only
in the limit of vanishing momentum,p2→0, @4–7# yield also
©2002 The American Physical Society08-1
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C. S. FISCHER, R. ALKOFER, AND H. REINHARDT PHYSICAL REVIEW D65 094008
some quite different values for the infrared critical expon
depending on the truncation scheme. With respect to th
analytical calculations the question arises whether for ev
extracted value of the infrared exponent the correspond
numerical solution exists also for finite values of momen
As will be detailed in this paper a tool to overcome angu
approximations is the treatment of the Dyson-Schwin
equations on a compact Euclidean four-manifold, in our c
a four-torus. This allows us to answer the above quest
We will see that not every analytically extracted infrar
exponent can be matched to a numerical solution for non
nishing momenta.

To make this paper self-contained we will shortly summ
rize truncation schemes for the gluon and ghost Dys
Schwinger equations in flat~infinite! Euclidean space-time
which have been solved recently, in the first two sections
Sec. II. In the following section we introduce a novel tru
cation scheme. In Sec. III we present the Dyson-Schwin
equations formulated on the momentum grid which is
dual space to the compact four-torus. In Sec. IV we w
present solutions done in otherwise exactly the same
proximation scheme as previous solutions for flat space-ti
The comparison to these previous solutions allows us
chose a suitable regularization and renormalization pro
dure.@As in previous work we adopt a modified momentu
subtraction~MOM! scheme.# In Sec. IV also the solutions
without any angular approximations will be discussed. T
central result of this paper is: only one of two solutions
lowed by the infrared analysis can be matched to a nume
solution for non-vanishing momenta. E.g. for bare vertic
this implies that the gluon propagator is only weakly infrar
vanishing,Dgl(k

2)}(k2)2k21, k50.595 . . . , and theghost
propagator is infrared singular,Dgh(k

2)}(k2)2k21. In Sec.
V we present our conclusions. Furthermore, in Appendix
we present our approximation to impose one-loop scaling
the gluon and ghost propagators in the ultraviolet. In App
dix B we discuss the influence of gluon and ghost z
modes on the solutions. The numerical methods to solve
gluon and ghost Dyson-Schwinger equations in flat Euc
ean space-time will be described in Appendix C.

II. GLUON AND GHOST DYSON-SCHWINGER
EQUATIONS IN FLAT EUCLIDEAN SPACE-TIME

In this section a short summary of previously employ
truncation and approximation schemes for the coupled gl
and ghost Dyson-Schwinger equations@3,4# will be given
first. We will also provide the underlying formula for a ne
truncation scheme. All these schemes include all diagram
the ghost equation and neglect contributions from the tw
loop diagrams in the gluon equation, see Fig. 1, where
full gluon Dyson-Schwinger equation of QCD is represen
diagrammatically. In addition, as we will be only concern
with pure Yang-Mills theory in this paper the quark loop w
be neglected. The tadpole term provides in Landau ga
only an ~ultraviolet divergent! constant and will drop ou
during renormalization anyhow. Thus, we will effective
study the coupled system of equations as depicted in Fig

The necessary trunction of the gluon Dyson-Schwin
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equation immediately leads to a problem: The gluon po
ization, which due to gauge symmetry would be transvers
the gluon momentum in an exact calculation, acquires sp
ous longitudinal terms. These terms are in general quad
cally ultraviolet divergent and thus highly ambiguous b
cause they depend on the momentum routing in the l
integral. In addition, a gauge invariant regularization sche
is required to avoid these unphysical longitudinal term
Such schemes are, however, hard to implement in Dys
Schwinger studies, for the corresponding use of dimensio
regularization see e.g. Refs.@22,23#. An alternative unam-
biguous procedure is to isolate the part free of quadratic
traviolet divergences by contracting with the projector

Rmn~k!5dmn2d
kmkn

k2
5dmn24

kmkn

k2
, ~2!

which is constructed such thatRmn(k)dmn50, and therefore
the ambiguous term proportional todmn is projected out@24#.
Note that the use of this projector also removes the tadp
term. As has become obvious recently@7# ~see also Ref.@25#
for a corresponding discussion in a much simpler truncat
scheme! the use of the projector~2! interferes with the infra-

FIG. 1. Diagrammatic representation of the gluon Dyso
Schwinger equation. The wiggly, dashed and solid lines repre
the propagation of gluons, ghosts and quarks, respectively. A fi
blob represents a full propagator and a circle indicates a o
particle irreducible vertex.

FIG. 2. Diagrammatic representation of the truncated gluon
ghost Dyson-Schwinger equations studied in this article. In
gluon Dyson-Schwinger equation terms with four-gluon vertic
and quarks have been dismissed.
8-2
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ELUSIVENESS OF INFRARED CRITICAL EXPONENTS . . . PHYSICAL REVIEW D 65 094008
red analysis of the coupled gluon-ghost system. For techn
reasons we will employ a one-parameter family of project

P mn
(z)~k!5dmn2z

kmkn

k2
, ~3!

which allows us to interpolate continuously from the proje
tor ~2! to the transversal one~with z51). Furthermore, we
will also use the general form of the quadratically ultravio
divergent tadpole to remove these unwanted ultraviolet
vergencies.

Here we employ the conventions and notations of R
@1#. As usual for Dyson-Schwinger studies all integrals a
formulated in Euclidean space-time.Z(k2) is the gluon
renormalization function defined via the gluon propagator
Landau gauge

Dmn
ab~k!5dabS dmn2

kmkn

k2 D Z~k2!

k2
. ~4!

The deviation ofZ(k2) from its tree-level valueZ[1 pro-
vides a measure for renormalization of the gluon field due
the considered interactions. The ghost renormalization fu
tion G(k2) is defined analogously via the ghost propaga
see Eq.~1!.

In Landau gauge the ghost-gluon vertex does not attrib
an independent ultraviolet divergence, i.e. one hasZ̃151
@26#. Therefore a truncation based on the tree-level form
the ghost-gluon vertex function,Gm(q,p)5 iqm is compat-
ible with the desired short distance behavior of the solutio
This will be exploited in the following.

To proceed we will first consider the truncation schem
of Refs. @3,4# in the next two subsections. Both these tru
cation schemes employ only the projectorRmn ~2! in the
gluon equation. The main difference between these trun
tion schemes consists in the treatment of the three-p
functions. Whereas in Ref.@3# the form of ghost-gluon and
three-gluon vertex function has been related to the gluon
ghost renormalization functions using Slavnov-Taylor ide
tities ~and then the resulting system has been solved s
consistently!, in Ref. @4# bare three-point functions hav
been used. Amazingly, though, both schemes provide res
with identical qualitative infrared behavior: the gluon prop
gator vanishes in the infrared, the ghost propagator is hig
singluar there, and the strong running coupling~which can
be related to the gluon and ghost renormalization functi
using the specific form of the ghost-gluon vertex in Land
gauge@3#! has an infrared fixed point. Because this infrar
behavior is determined by the interplay between the gh
loop in the gluon equation~the gluon loop being subleadin
in the infrared! and the ghost equation such a scenario is a
found in the ghost-loop only approximation@4#. We will ex-
ploit these two recent truncation schemes in the course
this article for various tests of our method.

A. The dressed vertex truncation including the gluon loop

In Ref. @3# an approximation scheme for the longitudin
parts of ghost-gluon and 3-gluon vertex functions has b
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employed which ensures consistency at the level of o
particle Green’s functions, i.e. propagators. The deta
form of the vertex functions can be found in Ref.@3#. Here
we provide directly the ghost

1

G~k2!
5Z̃32g2NcE d4q

~2p!4 „kP (1)~p!q…

3
Z~p2!G~q2!

k2p2q2 S G~p2!

G~q2!
1

G~p2!

G~k2!
21D ,

p5k2q, ~5!

and the gluon

1

Z~k2!
5Z32Z1

g2Nc

6 E d4q

~2p!4 H N1~p2,q2;k2!

3
Z~p2!G~p2!Z~q2!G~q2!

Z~k2!G2~k2!

1N2~p2,q2;k2!
Z~p2!G~p2!

G~q2!

1N2~q2,p2;k2!
Z~q2!G~q2!

G~p2!
J G~k2!

k2p2q2

1
g2Nc

3 E d4q

~2p!4
$„qR~k!q…„G~k2!G~p2!

2G~q2!G~p2!…2„qR~k!p…G~k2!G~q2!%

3
1

k2p2q2
~6!

equations, respectively. The functionsN1(x,y;z)
5N1(y,x;z) andN2(x,y;z) are given in Appendix C of Ref.
@3#.

In Eq. ~5! we have already exploited the identityZ̃151.
This leaves the gluon and ghost field renormalization c
stantsZ3 andZ̃3 as well as the gluon vertex renormalizatio
constantZ1 to be determined correspondingly to the em
ployed truncation. Note that these constants depend on
ultraviolet cutoffL and the renormalization scalem.

In Ref. @3# different angular approximations forq2.k2

and for q2,k2 have been employed. In the latter ca
G(p2)5G„(k2q)2

…→G(k2) and Z(p2)→Z(k2) have been
set which obviously preserves the limitq2→0 of the inte-
grand. With this approximation one obtains from Eq.~5!
upon angular integration

1

G~k2!
5Z̃32

g2

16p2

3Nc

4 H E
0

k2dq2

k2

q2

k2
Z~k2!G~k2!

1E
k2

L2dq2

q2
Z~q2!G~q2!J
8-3
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5Z̃32
g2

16p2

3Nc

4 S 1

2
Z~k2!G~k2!

1E
k2

L2dq2

q2
Z~q2!G~q2!D , ~7!

where we introduced anO(4)-invariant momentum cutoffL
to account for the logarithmic ultraviolet divergence, whi
will have to be absorbed by the renormalization consta
With some further assumptions the angular approxima
for the gluon equation~6! yields

1

Z~k2!
5Z31Z1

g2

16p2

Nc

3 H E
0

k2dq2

k2 S 7

2

q4

k4
2

17

2

q2

k2
2

9

8D
3Z~q2!G~q2!1E

k2

L2dq2

q2 S 7

8

k2

q2
27D Z~q2!G~q2!J

1
g2

16p2

Nc

3 H E
0

k2dq2

k2

3

2

q2

k2
G~k2!G~q2!2

1

3
G2~k2!

1
1

2Ek2

L2dq2

q2
G2~q2!J . ~8!

In the infrared the solutionsZ(x) andG(x) behave pow-
erlike:
-

09400
s.
n

Z~x!}x2k, G~x!}x2k. ~9!

In this truncation scheme one obtainsk'0.92 @3#. To solve
the coupled system for all momenta the power laws, Eq.~9!,
are used to perform the integrals fromy50 to an infrared
point y5e analytically, while the remaining part of the inte
grals is done with the help of numerical routines, see e
Ref. @25#.

The nonperturbative subtraction scheme of Ref.@3# im-
plies a strong running coupling with infrared fixed poin
Starting again from the nonrenormalization of the gho
gluon vertex

Z̃15ZgZ3
1/2Z̃351, ~10!

one can readily show that the productg2Z(m2)G2(m2) is
renormalization group invariant. Therefore, in the absence
any dimensionful parameter, this~dimensionless! product is
a function of the running couplingḡ only. Analyzing this
renormalization group invariant product more closely o
concludes that it is identical to the running couplingḡ2(m2).
As the infrared powers in the productZG2 cancel exactly the
running coupling is a finite constant form250.

B. The bare vertex ghost-loop only truncation

Substituting the tree-level ghost-gluon vertex for t
dressed one and neglecting the gluon loop the coupled
tem of equations~5!,~6! reads
1

G~k2!
5Z̃32g2NcZ̃1E d4q

~2p!4

k2q22~k•q!2

k2q2~k2q!4
G~q2!Z„~k2q!2

…, ~11!

1

Z~k2!
5Z31g2

Nc

3
Z̃1E d4q

~2p!4

k2
„k21q21~k2q!2

…14q2~k2q!222~k2q!422q4

2k4q2~k2q!2
G~q2!G„~k2q!2

…. ~12!
ri-

ce-

on
ver,
al

n
l be
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To simplify notation we introduce the abbreviationsx
ªk2, yªq2, sªm2 andLªL2. In the angular approxima
tion of Ref. @4# ~‘‘ymax approximation’’! where
Z„min(p2,q2)… and G„min(p2,q2)… are substituted forZ„(k
2q)2

… andG„(k2q)2
… Eqs.~11!,~12! are simplified to

1

G~x!
5Z̃3~s,L !2

9

4

g2Nc

48p2 S Z~x!E
0

xdy

x

y

x
G~y!

1E
x

Ldy

y
Z~y!G~y! D , ~13!

1

Z~x!
5Z3~s,L !1

g2Nc

48p2 S G~x!E
0

xdy

x S 2
y2

x2
1

3y

2xD
3G~y!1E

x

Ldy

2y
G2~y!D . ~14!

Imposing as renormalization conditionsZ(s)5G(s)51 to
determineZ3 andZ̃3 these equations may be solved nume
cally for a given@O~4! invariant# cutoff. As a matter of fact,
we use subtracted finite equations in our numerical pro
dure; see Appendix C for details.

In the infrared, also the solutions of Eqs.~13!,~14! behave
powerlike, cf. Eq.~9!, with k'0.77 @4#. In the same trunca-
tion but with no angle approximation employed a soluti
k51 has been extracted for the infrared behavior. Howe
it will be explained below that we could not find a numeric
solution for nonvanishing momenta connected to thek51
infrared behavior.

C. The bare vertex truncation including the gluon loop

In this subsection we will detail a novel truncatio
scheme which employs bare vertices. Nevertheless it wil
constructed such that it reproduces the correct perturba
limit for large momenta. To analyze the gluon loop we w
use the class of projectorsP mn

(z) ~3!. A smooth interpolation
8-4
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between the Brown-Pennington projector (z54) and the
transverse one (z51) will be helpful in the analysis of un
physical quadratic ultraviolet divergencies forzÞ4 in the
gluon equation. Their careful removal is essential for a
merical solution retaining the infrared behavior of the so
tions.

The coupled equations for the ghost and gluon dress
functions using bare vertices read as follows@the ghost equa-
tion is, of course, identical to Eq.~11!; it is only repeated for
a coherent representation#:

1

G~x!
5Z̃32g2NcE d4q

~2p!4

K~x,y,z!

xy
G~y!Z~z!, ~15!

1

Z~x!
5Z31g2

Nc

3 E d4q

~2p!4

M ~x,y,z!

xy
G~y!G~z!

1Z1g2
Nc

3 E d4q

~2p!4

Q~x,y,z!

xy
Z~y!Z~z!. ~16!

The kernels ordered with respect to powers ofzªp25(k
2q)2 have the form

K~x,y,z!5
1

z2 S 2
~x2y!2

4 D1
1

z S x1y

2 D2
1

4
~17!

M ~x,y,z!5
1

z S z22

4
x1

y

2
2

z

4

y2

x D1
1

2
1

z

2

y

x
2

z

4

z

x
~18!

Q~x,y,z!5
1

z2 S 1

8

x3

y
1x22

192z

8
xy1

52z

4
y21

z

8

y3

x D
1

1

z S x2

y
2

151z

4
x2

172z

4
y1z

y2

x D
2S 192z

8

x

y
1

172z

4
1

9z

4

y

xD
1zS z

x
1

52z

4y D1z2
z

8xy
. ~19!

It is straightforward to verify that forz54 the kernel
M (x,y,z) is identical to the kernel in Eq.~12!.

The quadratic ultraviolet divergencies of the integrals
most easily discovered approximating the angular integ
as done in the previous subsections~note that we will use
these approximations only for an analysis of the ultravio
behavior! and introducing an Euclidean sharp cutoff. Di
playing only the ultraviolet divergent integrals

g2Nc

48p2Ex

Ldy

x S S 42z

4
1

z22

4

x

yDG2~y!

1Z1S 3z212

2
2

z124

4

x

y
1

7

8

x2

y2D Z2~y!D ~20!
09400
-
-

g

e
ls

t

one sees that forz54 the terms independent of the integr
tion momentumy vanish. Thus these integrals are then on
logarithmically ultraviolet divergent as could be expected
the basis of the results summarized in the previous sub
tions. Of course, the quadratic ultraviolet divergencies
artifacts of the employed truncation. Due to gauge invaria
they would cancel against the tadpole and similar diverg
cies in the two-loop terms. The calculation of the latter be
beyond the scope of this paper we will simply subtract th
divergent terms. This cannot be done straightforwardly at
level of integrands: Such a procedure would disturb the
frared properties of the Dyson-Schwinger equations. As
anticipate from previous studies and analytic work@6,7# that
the ghost loop is the leading contribution in the infrared t
natural place to subtract the quadratically ultraviolet div
gent constant is the gluon loop. We do this by employing
substitution

Q~x,y,z!→Q8~x,y,z!5Q~x,y,z!1 5
4 ~42z! ~21!

in Eq. ~16!. At first sight, due to the presence of the prefac
Z1 in the gluon loop, this seems not to be sufficient to
move also the quadratic ultraviolet divergence of this gh
loop. However, note that in the next step we will enfor
consistency of the logarithmic divergencies which enta
then cancelation of the quadratic divergencies ifQ8 is em-
ployed in the gluon loop; see below.

To achieve the correct one-loop scaling in the ultravio
we will adopt a similar treatment to the one of Ref.@3#.
Please note that within the presented class of trunca
schemes it is impossible to satisfy both correct one-loop s
ing and the Slavnov-Taylor identityZ15Z3 /Z̃3. For large
Euclidean momenta and to one loop the behavior of
propagator functions can be described as

Z~x!5Z~s!Fv logS x

sD11Gg

, ~22!

G~x!5G~s!Fv logS x

sD11Gd

. ~23!

Z(s) andG(s) denote the value of the dressing functions
some renormalization pointsªm2; g andd are the respec-
tive anomalous dimensions. To one loop one hasd529/44
and g52122d for arbitrary number of colorsNc and no
quarks,Nf50 @27#. Furthermore,v511Nca(s)/12p.

Employing these expressions in the ghost equation~15!
and approximating the angular integrals as done previou
one obtains to the order of the leading logarithms

G21~s!Fv logS x

sD11G2d

5Z̃32
9g2Z~s!G~s!

64p2v~g1d11!

3H Fv logS L

sD11Gg1d11

2Fv logS x

sD11Gg1d11J
~24!
8-5
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where the abbreviationLªL2 has been used again. Th
renormalization constantZ̃3(L,s) cancels the cutoff depen
dence of the first term in the bracket. Thus, the power and
prefactor of the second term have to match with the left-h
side of this equation. This leads to two conditions:

g12d1150, ~25!

9

2v~g11!

g2

16p2
Z~s!G2~s!51. ~26!

Equation~25! is of course nothing else but consistency of t
ghost equation with one-loop scaling.

Plugging the ultraviolet behavior~22! and ~23! into the
gluon equation~16! and keeping the leading order logarithm
leads to

Z21~s!Fv logS x

sD11G2g

5Z32
g2G2~s!

32p2vg
H Fv logS L

sD11G2g

2Fv logS x

sD11G2gJ 2
7g2Z~s!G~s!

16p2

3E
x

L

dyZ1Fv logS y

sD11Gg1d

. ~27!

Here we see that due to the employed truncation we hav
give up either one-loop scaling or the Slavnov-Taylor ide
tity Z15Z3 /Z̃3. Note, however, thatZ3(L,s) has the correct
cutoff dependence to make this equation finite with fin
Z1(L,s). Nevertheless, in order to get the correct leading
contribution from the gluon loop the integrand in the last li
should be proportional to@v log(y/s)11#2g21. This not only
contradicts the identityZ15Z3 /Z̃3 but also requires the
renormalizationconstant Z1(L,s) to acquire a momentum
dependence if correct one-loop scaling is to be enforc
Following case~c! described in Chap. 6 of Ref.@3# we de-
mand therefore

Z1~L,s!→Z1~x,y,z;s,L !

;Fv logS y

sD11G2d22g21

. ~28!

Generalizing the approach of Ref.@3# we note that the fol-
lowing two-parameter ansatz:

Z1~x,y,z;s,L !5
G~y!(12a/d22a)

Z~y!(11a)

G~z!(12b/d22b)

Z~z!(11b)
~29!

with arbitrary a and b satisfies the required proportionalit
This can be straightforwardly verified with the help of e
pression~25! obtained from the ghost equation. In additio
ansatz~29! ensures the cancelation of quadratic ultravio
divergencies as discussed above also ifzÞ4.
09400
e
d

to
-
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Carrying out the remaining integral in Eq.~27! and
matching powers one obtains

g12d1150, ~30!

1

2gv

g2

16p2
Z~s!G2~s!

2
7

gv

g2

16p2
Z~s!12a2bG~s!22a/d2b/d22a22b51.

~31!

First of all, we reproduce correct one-loop scaling also fro
the gluon equation as can be seen from the equivalenc
Eqs. ~30! and ~25!. Second, with the perturbative renorma
ization conditionsZ(s)5G(s)51 which are possible and
appropriate at a large Euclidean renormalization pointm one
obtains together with Eq.~26! the correct anomalous dimen
sionsg5213/22 andd529/44.

A reasonable choice of parameters is of course one wh
keepsZ1 as weakly dependent as possible on the momeny
and z, cf. Fig. 10 in Appendix A. Note that the choicea
5b50 corresponds to the truncation scheme of@28#
whereasa53d,b50 together with the appropriate verte
dressings reproduces case~c! of Ref. @3#. The infrared behav-
ior of the gluon loop in the gluon equation depends stron
on a andb. E.g. forb50 one can distinguish three cases: F
a,0 the gluon loop is subleading in the infrared; fora50
as in Ref.@28# the gluon loop produces the same power
the ghost loop; fora.0 the gluon loop becomes the leadin
term in the infrared. In the last case we did not find a so
tion to the coupled gluon-ghost system. In Appendix A w
will demonstrate thata5b53d minimizes the momentum
dependence ofZ1. Thus we will use these values, unle
stated otherwise, explicitly.

The infrared behavior of the propagator functions in th
truncation scheme and for the transverse projector (z51)
has been determined very recently@6,7#. It can be shown
straightforwardly that the relation between ghost and glu
infrared behavior is again as in Eq.~9!. This is expected also
on general grounds@5#. Due to this one can immediately us
the Ansätze

Z~x!→Ax2k, G~x!→Bx2k for x→0. ~32!

As is explained in detail in Ref.@7# the renormalization con-
stantsZ3 and Z̃3 can be dropped for very small momentax:
They are either subleading in the infrared~gluon equation! or
have to be zero when the renormalization takes place am
50 ~ghost equation!. The remaining infrared integrals can b
evaluated using the formula@7#

E d4qyazb5p2x21a1b
G~21a!G~21b!G~2a2b22!

G~2a!G~2b!G~41a1b!
,

~33!

where againx5k2, y5q2 andz5(k2q)2. From the result-
ing two conditions
8-6
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1

18

~21k!~11k!

~322k!
5

G2~22k!G~2k!

G~422k!G2~11k!

g2Nc

48p2
AB2,

~34!

4k22

4zk24k1623z
5

G2~22k!G~2k!

G~422k!G2~11k!

g2Nc

48p2
AB2,

~35!

one obtains the determining relation fork by equating both
left hand sides; see Fig. 3. For the Brown-Pennington p
jector, i.e.z54, one then finds the known solutionk51 @4#.
However, as can be seen immediately the left-hand sid
the second equation possesses a zero fork51/2 which is
canceled by a pole only forz54. Loweringz only slightly a
further solution withk slightly larger than 0.5 exists. For th
transverse projector, i.e.z51, this latter solution become
k50.59 . . . inaccordance with Refs.@6,7#. Also the solu-
tion k51 changes continuously when loweringz. The cor-
respondingk are then all larger than 1 and contradict t
masslessness condition; see Chap. 5 of Ref.@1# for a discus-
sion of this condition. The main result of this paper is th
the infrared behaviork'0.5 matches to a numerical solutio
whereas no numerical solution could be found with the
frared behaviork51.

The renormalization group analysis for the running co
pling given in Ref.@3# certainly applies here as well. Th
renormalization group invariant expression for the runn
coupling is therefore given by

a~x!5
g2

4p
Z~x!G2~x!. ~36!

As can be seen directly from Eqs.~34!,~35!, in the here pre-
sented truncations the productNcg

2AB2 is constant for a

FIG. 3. Here the graphical solution to Eqs.~34! and ~35! is
shown. The thick line represents the left hand side of Eq.~34!,
whereas the other four curves depict the left hand side of Eq.~35!
for different values of the parameterz. The ellipse marks the bulk
of solutions betweenk50.5 andk50.6 for differentz, whereas the
circles show the movement of the solutionk51.3 for a transverse
projector tok51 for the Brown-Pennington case,z54.
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givenk. With a(0)5g2AB2/4p one concludes immediatel
thata(x) is proportional toNc

21 . Furthermore, the ghost an
gluon dressing functionsZ(x) andG(x) are independent o
the number of colors:Nc enters the Dyson-Schwinger equ
tions only in the combinationg2Nc at our level of truncation.
From the solutionk50.5953 of the infrared analysis with th
transverse projectorz51 one determines the infrared fixe
point of the running coupling to bea(0)52.972 forNc53.

III. GLUON AND GHOST DYSON-SCHWINGER
EQUATIONS ON A FOUR-TORUS

There are three central aims connected to the investiga
of the Dyson-Schwinger equations on a four-torus. The fi
one is purely technical: This allows us to study finite volum
effects also in the Dyson-Schwinger approach. Monte Ca
simulations on a lattice necessarily have to be done in a fi
volume. Therefore in the latter kind of approach infrar
properties are only accessible by extrapolations to an infi
volume where the available data are gained on several
ferent volumes which, due to limitations in computer tim
do only differ at best by one order of magnitude. We will s
in the present Dyson-Schwinger approach that available
umes cover several orders of magnitude. And more imp
tantly, in several truncations and approximations one
compare to the results obtained in an infinite volume.

The second issue is the solution of the~truncated! Dyson-
Schwinger equations without any angular approximatio
We will detail below why and how this can be achieved
the momentum grid dual to the four-torus. This will also le
us to the main result of this paper discussed in the follow
section.

The third aim relates to the possibility of topological o
structions on a compact manifold. It is well known e.g. tha
four-torus allows for a nonvanishing Pontryagin index. W
hope that we will be able to describe the solutions of Dys
Schwinger equations with twisted boundary conditions@29#
in a subsequent publication. And choosing an asymme
four-torus might allow the introduction of a nonvanishin
temperature in a relatively simple way.

A. Finite volume effects

From a technical point of view using as an underlyi
manifold a four-torus or choosing periodic boundary con
tions on a hypercube is identical. Note that the definition
the Faddeev-Popov operator necessitates periodic boun
conditions for ghosts instead of their Grassmannian nat
see e.g. Ref.@30#. With L being the length in every direction
of the hypercube the four-dimensional momentum integ
has to be substituted by a sum over four indices,

E d4q

~2p!4
→ 1

L4 (
j 1 , j 2 , j 3 , j 4

. ~37!

On the other hand, the quantities of interest, the gluon
ghost renormalization function,Z(k2) and G(k2), respec-
tively, do only depend on the O~4! invariant squared mo-
menta as long as all directions are treated on an equal foo
8-7
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on the torus. This suggests relabeling the points on the
mentum grid not according to a Cartesian but a hypershe
coordinate system,

1

L4 (
j 1 , j 2 , j 3 , j 4

5
1

L4 (
j ,l

, ~38!

where the indexj numbers the hyperspheresq25const. The
index l, which numbers the grid points on each hypersph
respectively, will be dropped in the following.

In the integrals to be discretized there appear three
menta: the external momentum, labeledk, the loop momen-
tum q and for the second propagator in the loopp5k2q. We
will use the following notation:

xªk2 with xiPhyperspherei ,

yªq2 with yjPhyperspherej ,

zªp25~k2q!2 with znPhyperspheren. ~39!

On the hypercubic momentum grid dual to the four-torus
momentump5k2q is located on the grid for every pair o
grid momentak andq as can be seen from elementary vec
operations~or from the analogue of cubic lattices in sol
state physics!.

Note that we have introduced an O~4! invariant cutoffL
into Eqs. ~7!,~8!. As we will see below in more detail a
corresponding regularization of the sums over grid mome
is required. In a first step we set up a momentum grid w
j 1 , j 2 , j 3 , j 452N, . . . ,0, . . .N. The hypercube property o
this lattice seems to suggest in the first place to cut off
sums such that overcomplete hypercubes are summed.
a method, however, breaks O~4! invariance and introduce
sizeable numerical errors.@Note that in lattice Monte Carlo
simulations the analysis of the resulting data for O~4! invari-
ance necessitates special kinds of cuts through the la
@9#.# As can be seen from Fig. 4 an O~4! invariant cutoff of
the sums necessitates neglecting the ‘‘edges:’’ The sum
tends only over the fully drawn hypersheres, and we omit
summation over the dashed ones.

To be able to compare to already known flat space s
tions we will first solve the torus analogue of the equatio
with angle approximations, i.e. Eqs.~7!,~8! or Eqs.~13!,~14!.
To this end we start from Eqs.~5!,~6! or Eqs.~11!,~12!, re-
spectively. After formulating the corresponding fou
dimensional integrals as sums over lattice momenta the fu
tional dependence of the propagator functions
approximated according to the rules described in Secs.
and II B, respectively. We give the explicit expressions
the bare vertex ghost-loop only truncation. The correspo
ing ones for dressed vertex truncation can be derived an
gously in a straightforward manner; however, as these
quite lengthy we do not give their explicit form.

The Dyson-Schwinger equations in bare vertex ghost-l
only truncation with angle approximation read, on the tor
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1

G~xi !
5Z̃3~s,L !2g2Nc

1

L4 (
j

K~xi ,yj ,zn!

xiyj

3G~yj !Z„max~xi ,yj !…, ~40!

1

Z~xi !
5Z3~s,L !1g2

Nc

3

1

L4 (
j

M ~xi ,yj ,zn!

xiyj

3G~yj !G„max~xi ,yj !…. ~41!

As shown in the previous subsection the momentump5k
2q which satisfieszn5(k2q)2 lies on the momentum grid
and furthermore,p5k2q is determined uniquely fromk and
q for which xi5k2 and yj5q2 by using elementary vecto
operations. Note, however, thatAp2 might be larger than the
ultraviolet cutoff even ifAk2 and Aq2 are not. The actua
treatment of the sums in Eqs.~40!,~41! can nevertheless b
done straightforwardly as the exact algebraic expressions
the kernels are known.

The main difference between the equations on the to
and the flat space equations is the effective treatment in
infrared. The finite volume in coordinate space leads to
finite value of squared momentum for the first hypersph
j 51. Thus one has not to worry about possible infrared s
gularities. On the other hand, there exists zero modes on
four-torus. In all the calculations presented here they are
glected; an estimate of their possible contribution is given
Appendix B. Note furthermore that for the numerical sol
tion as described in Refs.@3,25# the disadvantage of dealin
with infrared singularities has been turned into a benefit: T
infrared behavior of the propagator functions has been de
mined via an asymptotic series calculating the correspond
coefficients and powers analytically. Matching these serie
some finite momentum to the functions as obtained fr
standard numerical techniques finally enabled us to num
cally solve the coupled integral equations. Such a com

FIG. 4. Sketch of the momentum grid dual to the four-torus a
the summation over complete hyperspheres indicated by f
drawn circles. The hyperspheres depicted by dashed lines are
complete due to the numerical ultraviolet cutoff.
8-8
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cated process is not necessary employing a torus. Howe
one anticipates already at this level some deviations in
infrared between the solutions obtained in these differ
ways. In the next section the corresponding numerical res
will be discussed. They demonstrate that using a torus
infrared cutoff works surprisingly well.

B. Dyson-Schwinger equations with angle integrals
on the torus

The intricacy of the infrared analysis has prevented so
a solution of the coupled gluon-ghost system without angu
approximations. Using a torus as an infrared regulator op
up the possiblity to solve these equations directly with
any recourse to an infrared asymptotic expansion. As re
arguments have been provided that the use of a bare g
gluon vertex is not inferior to employing a dressed one@6,7#
we will solve the system in the truncation described in S
II C.

With the above discussed replacement of*@d4q/(2p)4#
→(1/L4)( j Eqs.~15!,~16! read on the torus

1

G~xi !
5Z̃3~s,L !2g2Nc

1

L4 (
j

K~xi ,yj ,zn!

xiyj

3G~yj !Z~zn!, ~42!

1

Z~xi !
5Z3~s,L !1g2

Nc

3

1

L4 (
j

M ~xi ,yj ,zn!

xiyj

3G~yj !G~zn!1g2
Nc

3

1

L4 (
j

Q8~xi ,yj ,zn!

xiyj

3G12a/d22a~yj !G
12b/d22b~zn!

3Z2a~yj !Z
2b~zn!. ~43!

As already statedAz might be larger than the ultraviole
cutoff even ifAx andAy are not. Again the kernels can b
nevertheless evaluated straightforwardly, however, ifz with
L,z,4L is the argument of a propagator function we s
z5L, i.e. we approximateZ(z) or G(z) then by Z(L) or
G(L), respectively. Another more elaborate treatment c
sists of matching the corresponding perturbative ultravio
tail to the function under consideration. This has been
plied in some cases to test the viability of the method.

IV. NUMERICAL RESULTS

A. Comparing torus solutions to previous results
in flat space-time

The solutions of the Dyson-Schwinger equations on
torus can be compared in two different ways to the o
obtained in flat space-time. First, one can use the solution
the ‘‘continuum’’ equations for a certain cutoffL and certain
renormalization scalem to provide the values forZ3(m2,L2)
andZ̃3(m2,L2) as input for the equations on the torus whi
are then solved, cf. the discussion in Appendix C where
numerical methods employed to obtain the solutions of
09400
er,
e
t

lts
as

r
r

ns
t
nt
st-

.

t

-
t
-

e
s
of

e
e

‘‘continuum’’ equations are summarized. Second, one c
subtract both equations at the squared momentasG and sZ

and therefore trade the two renormalization constants for
values of the dressing functions at these momenta, nam
Z(sZ) andG(sG). For the sake of comparison one can re
these values from the continuum solution to be used in
torus equations. IfsZ andsG are taken to be sufficently far in
the ultraviolet region of momentum, where finite volume e
fects play a minor role, the two procedures lead to the sa
results. We have verified that this is indeed the case wit
the limits of numerical accuracy.

Our results for the ghost dressing function, the glu
dressing function and the running coupling in the bare-ver
ghost-only and the dressed vertex truncation can be see
Figs. 5 and 6, respectively. In both truncation schemes
solved for three different momentum spacings correspond
to different volumes in coordinate space. To keep the cu
identical for all the spacings within each truncation sche
we have chosen three different grid sizes respectively.
the bare vertex truncation they areN5174,314,514 and for
the dressed vertex truncation they areN5214,414,614.

A physical momentum scale cannot be determined in tr
cation schemes which do not provide the correct perturba
running of the coupling in the ultraviolet. With the missin
gluon loop this is the case in the bare vertex only truncat
scheme. We therefore have to stick to an internal momen
scale without physical units in this case. The situation
different, however, in the dressed vertex truncation sche
Here we have fixed the momentum scale by calculating
running coupling for the color group SU~3! and using the
experimental valuea(x)50.118 atx5MZ

25(91.187 GeV)2

to fix a physical scale.
In the bare vertex truncation scheme we have cho

Z(m2)5G(m2)51 as renormalization condition where w
have takenm25L2, the ~squared! ultraviolet cutoff. Of
course, this choice is by no means special and one is c
pletely free to choose the renormalization point where
one likes. For the numerical calculation in flat space we h
chosen two different subtraction points for the ghost and
gluon equations as described in Appendix C. For good c
vergence of the iteration process the ghost equation is m
conveniently subtracted at zero momentum, whereas
gluon equation can be subtracted at any value of squa
momentum in the region where the equations are solved
merically. In our calculation we chose the cutoffL250.2 in
internal units as a subtraction point for the gluon equati
This allows us to use the renormalization conditionZ(L2)
51 directly as input in the calculation. The second input
provided by the coefficientA of the leading order infrared
expansion of the gluon dressing function,ZIR(x)5Ax2k. The
conditionG(L2)51 then leads toA5357.33. The value of
the coupling at the renormalization point,a(m2), is taken to
be 0.97. Again one is completely free to choose this num
arbitrarily up to the maximum value of the running couplin
which is reached in the very infrared. For the torus calcu
tions the unsubtracted equations have been used. The
couplinga(m2)50.97 has been taken and instead ofZ(L2)
and A the valuesZ3(m250.2,L250.2)50.9591 andZ̃3(m2
8-9
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FIG. 5. Shown are the ghost dressing function, the gluon dressing function and the running coupling in the bare-vertex gh
truncation for different momentum grid spacings corresponding to different finite volumes of the torus. The fully drawn lines
‘‘continuum’’ represent the respective results for flat Euclidean space-time, i.e. continuous momenta.
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50.2,L250.2)51.1034 for the renormalization constan
determined from the ‘‘continuum’’ solution have been em
ployed.

As has already been mentioned, in the dressed ve
truncation scheme we determine a ‘‘physical’’ momentu
scale according to experimental results. In the numer
treatment again the ghost equation has been subtracte
zero momentum whereas the gluon equation is subtracte
finite momentum. We solved both equations similar to
method described in Ref.@25#, especially we introduced als
the auxiliary functionsF(x) andR(x) as defined in Ref.@3#.
As input values serve the infrared expansion ofR(x), R(x)
5xk1•••, and the valueR(s)50.8 at the gluon subtraction
09400
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e

point s51.048 GeV2. For the calculations on the torus w
use the unsubtracted equations with the valuesZ3(m2

5MZ
2 ,L251.255 GeV2)51.266 and Z̃3(m25MZ

2 ,L2

51.255 GeV2)50.966 for the renormalization constan
which have been determined from the ‘‘continuum’’ solutio

Our numerical results, depicted in Figs. 5 and 6, sh
similar properties for both truncation schemes. Compa
with the respective ‘‘continuum’’ solutions the ones obtain
on a torus show deviations for the first few lattice points
the infrared. For higher momenta all functions on the to
approach the continuum ones. Deviations are only visi
there for the curves with the largest spacings. The bigg
effect can be seen for the running couplinga, which is the
8-10



ELUSIVENESS OF INFRARED CRITICAL EXPONENTS . . . PHYSICAL REVIEW D 65 094008
FIG. 6. The same as Fig. 5 for the dressed vertex truncation.
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‘‘observable’’ of the system. Asa is proportional to the prod-
uct Z(x)G2(x) the deviations of the dressing functions fro
the ‘‘continuum’’ curve amplify in the infrared in a some
what erratic way, so that the points in the very infrared c
not be connected by a smooth line. Comparing larger
smaller spacings of momentum grids one clearly sees tha
effect is always one of the first spheres on the respec
lattices and therefore moves to the infrared for smaller sp
ings.

The most important properties of the solutions in fl
space can still be found in the torus solutions despite so
deviations in the infrared. Going from larger to smaller sp
ings a powerlike behavior of the dressing functions in
infrared with the correct exponents can still be inferred. F
the truncation scheme with dressed vertices the gluon dr
09400
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ing function on the torus has the same shape and the s
height of the bump in the bending region of the curve. As
curves with sufficently small momentum spacing follow t
correct power behavior within numerical errors we conclu
that one surely can address the question of the value of
powerk in the infrared on a manifold with finite volume a
has been used here or as one uses in lattice calculations.
is the central result of the present section: Employing a to
as infrared regularization is possible. In the following secti
we will use this to go beyond the angular approximation.

B. Numerical solutions without angular approximations

In this section we discuss our numerical results for
bare vertex truncation scheme with various projectors in
8-11
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gluon equation. We show results for the gluon and gh
dressing function and the running coupling calculated o
torus without any angular approximations. Note that up
now in the gluon-ghost Dyson-Schwinger equations so
tions for nonvanishing momenta have been obtained o
employing some sort of angular approximation. Going b
yond these approximations we will use our new truncat
scheme introduced in Sec. II C. The reason for this is that
dressed vertex truncation scheme is quite complicated, an
its derivation one has dismissed terms which seem to
crucial for the infrared behavior beyond the angle appro
mation. As the survey of gluon and ghosts infrared behav
related to differentAnsätze for vertex functions@7# does not
provide any evidence for crucial differences between b
and dressed vertex functions the use of the latter seems
an unnecessary complication. In the case of the bare-ve
ghost-loop only truncation with the Brown-Pennington pr
jector no solutions for finite momenta without angular a
proximation have been reported yet. In fact the results p
sented in this section suggest that these solutions might
exist.

This time the values for the renormalization constantsZ3

and Z̃3 cannot be taken from a ‘‘continuum’’ solution. Thu
we use the subtracted equations on the torus in the cour
the numerical solution by iteration. Both equations are s
tracted at the renormalization pointm251.9 GeV2. Similar
to the case of the dressed vertex truncation from the
section the ‘‘physical’’ units are gained from experimen
input: a(x)50.118 atx5MZ

25(91.187 GeV)2. The input
values for the dressing functions at the renormalization p
are Z(m2)50.83. RequiringG(m2)51/AZ(m2) then fixes
the overall scale forG(x). For the value of the coupling a
the renormalization point we chose againa(m2)50.97 simi-
lar to the two truncation schemes in the last section. For
presented solution on three different volumes lattice size
N5134,434,714 have been used.

As mentioned in the last section we did check cutoff
fects by extrapolating the propagator functions atz.L2 with
a logarithmic tail with the correct anomalous dimensio
The results as compared to the ones obtained by simply
ting Z(z)5Z(L2) and G(z)5G(L2) for all z.L2 did
change by less than 1023.

Our results for the dressing functions obtained with
transverse projector as shown in Fig. 7 are in agreement
the expected power behavior. The infrared critical expon
as calculated in Refs.@6,7#, k50.5953, thus has been ver
fied: A corresponding~numerical! solution for nonvanishing
momenta exists. The gluon dressing function is remarka
stable against changes of the volume and approaches
and more the expected power solution for small mome
For the ghost dressing function one observes again de
tions of the first points in the infrared: An extraction of th
correct infrared critical exponent from the numerical soluti
for the ghost function is hardly possible. Only some poi
come close to the analytical value of the continuum bef
the curve starts bending down again in the very infrared.
the extracted value of the running coupling in the infrar
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this leads to a distinct mismatch to what one is to expect
the basis of analytical results.

At first sight the fact that the power solution for the gho
dressing function could not be reproduced numerically t
reasonable precision may seem disappointing. Neverthe
these numerical results themselves show that the ghost d
ing function is highly infrared singular. This reflects th
long-range correlation of ghosts in Landau gauge. There
one should expect the ghost dressing function to be the
affected most by a finite volume. On the contrary the glu
dressing function vanishes in the infrared and consequent
is much less affected by a finite volume. We expect the gh
dressing function together with the running coupling to a
proach more and more the correct power solution in the
frared as lattice spacings are decreased and lattice size
increased.

Furthermore, we add a remark on the transversality of
gluon propagator as obtained in the bare vertex trunca
scheme. Of course, the full gluon propagator calculated fr
the complete gluon equation with fully dressed vertices
Landau gauge is transversal due to Slavnov-Taylor identit
Thus such a hypothetical solution would be independen
the form of the projector, i.e. in our notation with the proje
tor (dmn2zpmpn)/p2 independent of the parameterz. In
practice, using bare vertices as in our truncation scheme
is certainly not the case. Our numerical results for differe
values of the parameterz can be seen in Fig. 8. Although ou
solutions show the expected dependence on the form of
projector this dependence is not too drastic and in genera
behavior of these different solutions is very similar.

For the gluon dressing function one observes that
more z grows the greater is the deviation from the pu
power behavior. The points in the very infrared cannot
connected by a smooth line any more. Correspondingly
happens for the running coupling. Based on the infra
analysis one might anticipate thatk should approach the
valuek50.5 more and more asz grows until there is a jump
to the solution from k50.51 to k51 as the Brown-
Pennington limitz54 is reached. We do not observe such
qualitative jump in our solutions on a torus. The soluti
shown forz54 is approached smoothly whenz approaches
this limit. This clearly indicates that the solutionk51 might
not exist at all if one removes the torus as a regulator.

Finally we compare our results to recent SU~2! lattice
calculations@31#. As has already been stated above the gh
and gluon dressing functions from Dyson-Schwinger eq
tions are independent from the numbers of colors at leas
our level of truncation. The only caveat in comparing o
results with the lattice ones is the adjustment of the mom
tum scale which is certainly different from the case of SU~3!
above. To get an appropriate momentum scale we there
used the lattice resultaSU(2)(x)50.68 at x510 GeV2 as
input. The two graphs in Fig. 9 show that the main quali
tive features, the vanishing of the gluon and the diverge
of the ghost dressing functions in the infrared, are comm
properties of both the lattice solutions and the one fr
Dyson-Schwinger equations. Even the powerk50.59 . . . of
the gluon dressing function on the torus is very close to
one that can be extracted from the lattice fit to bek'0.5.
8-12
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FIG. 7. Shown are the ghost dressing function, the gluon dressing function and the running coupling in the new truncation
without angular approximation for different volumes using a transverse projector.
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The main difference of both approaches lies in the med
energy region around one GeV, where the Dyson-Schwin
solutions suffer from the missing two loop contributions th
are certainly present in lattice Monte Carlo simulations.

V. CONCLUSIONS AND OUTLOOK

In this paper we have presented numerical solutions
truncated systems of Dyson-Schwinger equations for
gluon and ghost propagators in Landau gauge SU~N! Yang-
Mills theories. We have employed a four-torus, i.e. a co
pact space-time manifold, as an infrared regulator. This
abled us to overcome angular approximations used so fa
previous studies@3,4#. The basis for our numerical calcula
09400
er
t

f
e

-
n-
in

tions have been provided by an analytic determination@6,7#
of the exponents governing the infrared powerlike behav
of the gluon and ghost propagators. Typically the infrar
analysis provide two possible values each for the gluon
the ghost, respectively. The central result of this paper
Only one of these two possible infrared behaviors in a giv
truncation scheme can be matched to a numerical solu
for nonvanishing momenta.

In a truncation scheme with a bare ghost-gluon vertex
a transverse projection of the~truncated! gluon equation this
implies that the gluon propagator is only weakly infrar
vanishing,Dgl(k

2)}(k2)2k21, k50.59 . . . , and theghost
propagator is highly infrared singular,Dgh(k

2)}(k2)2k21.
The running coupling possesses an infrared fixed po
8-13
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FIG. 8. The same as Fig. 7 for different projectors.
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whose value is given bya(0)'2.97 @or, for a general num-
ber Nc of colors,a(0)'8.92/Nc#.

Our results compare very favorably with results of rec
lattice calculations performed for two colors. Due to the
nite lattice volume the lattice results cannot, of course,
extended into the far infrared. In this respect our results
complementary to the lattice ones: We do obtain the infra
behavior analytically. On the other hand, lattice calculatio
include, at least in principle, all nonperturbative effec
whereas we had to rely on truncations. E.g. the deviations
the gluon renormalization functions at intermediate mome
depicted in Fig. 9 might be due to the neglect of the fo
gluon vertex function in our calculations.

As an outlook we would like to mention that employing
four-torus as an underlying manifold might serve for a nu
09400
t
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e
re
d
s

or
ta
-

-

ber of interesting studies of Dyson-Schwinger equatio
Amongst these, the use of twisted boundary conditions
the torus might enable one to shed some light on the imp
tance of topologically nontrivial gauge field configuratio
for the infrared behavior of QCD Green’s functions. W
would like to note that recent lattice calculations@11# indi-
cate a relation between the existence of center vortices in
maximal center gauge, the area law of the Wilson loop a
the infrared behavior of the gluon propagator in Land
gauge.

Furthermore, we want to point out that choosing an asy
metric four-torus might provide an efficient mean to exte
these calculations to nonvanishing temperatures. Here
main qualitative question arises about the fate of the Ku
Ojima confinement criterion at the deconfinement transiti
8-14



tum

ELUSIVENESS OF INFRARED CRITICAL EXPONENTS . . . PHYSICAL REVIEW D 65 094008
FIG. 9. Results on the torus compared to recent lattice results@31#. As the torus points are very close to each other on a linear momen
scale we did not resolve the torus curves into single points.
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Finally, we want to remark that QCD Green’s functio
are an important input in many calculations in hadron ph
ics @1,2#. The next necessary step towards such phenem
logical applications is a study of the quark propagator. S
an investigation might hopefully also provide some insig
into the mechanism of quark confinement in covaria
gauges.
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APPENDIX A: ONE-LOOP SCALING

In the framework of the truncation scheme presented
Sec. II C we have shown that the approximation

Z1~x,y,z;s,L !5
G~y!(12a/d22a)

Z~y!(11a)

G~z!(12b/d22b)

Z~z!(11b)

~A1!

for the gluon vertex renormalization constant yields the c
rect one loop scaling of the gluon loop in the gluon Dyso
Schwinger equation. This is true for any valuesa andb. Of
course, in a full treatment of the coupled ghost gluon sys
Z1(s,L) would be independent of momentum. Therefore
09400
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choice of a and b which keepsZ1 as weakly varying as
possible seems the most reasonable one.

This choice can be inferred using the scaling of the dre
ing functions extracted from the renormalization group eq
tion, see Ref.@3# for details. The dressing functions can b
expressed as

Z~x!5S a~x!

a~s! D
112d

R2~x!,

G~x!5S a~x!

a~s! D
2d

R21~x!, ~A2!

where the running coupling provides the correct one lo
scaling in the ultraviolet. Consequently the functionR(x)
approaches unity for high momenta. Furthermore, from
known infrared behavior ofZ(x), G(x) anda(x) one infers
thatR(x) is proportional toxk in the infrared. WritingZ1 in
terms ofa(x) andR(x) yields

Z1~x,y,z;s,L !5S a~m2!

a~y! D 113d

R231a/d~y!

3S a~m2!

a~z! D 113d

R231b/d~z!. ~A3!

In the perturbative regionR(y),R(z)→1 and the function
Z1 is therefore slowly varying for anya andb according to
the logarithmic behavior of the running couplinga. In the
infrared, however,a approaches its fixed point while th
functions R behave like a power. Consequently the cho
a5b53d guarantees the weakest momentum dependenc
Z1 which is illustrated in Fig. 10. Shown is they dependence
of the functionZ1(x,y,z5y;s,L). @Note also that due to the
symmetry Z1(x,y,z;s,L)5Z1(x,z,y;s,L) and the absence
of an explicitx dependence this is sufficient to demonstra
8-15
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its momentum dependence.# In the perturbative momentum
regime the functionZ1 does not vary with the parametera.
So all three choices give the same logarithmic running
momentum as required to give the correct one loop sca
behavior of the integral. In the infrared, however, a chang
a gives rise to substantial changes in the behavior ofZ1, with
only the choicea53d leading to a constant.

APPENDIX B: THE INFLUENCE OF ZERO MODES
ON THE SOLUTIONS

An important point when formulating the Dyson
Schwinger equations on the torus could be the treatmen
the zero modes. In addition, on the torus an infrared anal
like the one in flat Euclidean space-time is not possible,
one is left with the problem of how the dressing functio
behave at vanishing momenta. Guided by the intuition t
especially the long ranged modes should be affected by
finite volume we assume in the followingZ(x→0)50 just
like in the continuum andG(x→0)5const if zero modes are
neglected. Phrased otherwise we assume that the zero m
are the missing ingredient to ensure the correct infinite v
ume limit for the torus results. Therefore, if on tori of diffe
ent volumesG(x50) shows no sign of becoming divergen
the infrared enhancement seen inG(x→0) or in the flat
space-time results has to be due to the torus zero mode
gluons and ghosts.

Therefore, in this appendix, we will show that the a
sumptionG(x50),` does not lead to a contradiction in th
equations on the torus if zero modes are neglected. To
end we focus on the truncation scheme without angular
proximations. First we rewrite Eqs.~15!,~16! as

FIG. 10. They dependence of the functionZ1(y,z) for different
values of the parametera. Only the choicea53d leads to momen-
tum independence in the infrared. Due to the symmetry of the
satz forZ1(y,z) the z dependence is the same forb5a.
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1

G~x!
5Z32g2NcE d4q

~2p!4

K~x,y,z!

xy
G~y!Z~z!, ~B1!

1

Z~x!
5Z̃31g2

Nc

3 E d4q

~2p!4

M ~x,y,z!

xy
G~y!G~z!

1g2
Nc

3 E d4q

~2p!4

Q~x,y,z!

xy

3
G~y!2226d

Z~y!3d

G~z!2226d

Z~z!3d
. ~B2!

According to Appendix A we have chosena5b53d, where
d529/44, the anomalous dimension of the ghost. The k
nels have the form

K~x,y,z!5
1

z2 S 2
~x2y!2

4 D1
1

z S x1y

2 D2
1

4
5xy

sin2Q

z2
,

~B3!

M ~x,y,z!5
1

z S z22

4
x1

y

2
2

z

4

y2

x D1
1

2
1

z

2

y

x
2

z

4

z

x
,

~B4!

Q8~x,y,z!5
1

z2 S 1

8

x3

y
1x22

192z

8
xy1

52z

4
y21

z

8

y3

x D
1

1

z S x2

y
2

151z

4
x2

172z

4
y1z

y2

x D
2S 192z

8

x

y
2

324z

2
1

9z

4

y

xD1zS z

x
1

52z

4y D
1z2

z

8xy
. ~B5!

We first analyze the behavior of the integrands in the lim
y→0 for finite momentax. Then Z(z)→Z(x) and G(z)
→G(x) and the kernels times the respective dressing fu
tions are to appropriate order in momentumy:

G~y!Z~z!

xy
K~x,y,z!

→G~0!Z~x!
sin2Q

x2
, ~B6!

n-
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G~y!G~z!

xy
M ~x,y,z!

→G~0!G~x!
1

x2
„11~z22!cos2Q…, ~B7!

G~y!2226dG~y!2226d

Z~y!3dZ~z!3dxy
Q8~x,y,z!

→G~0!2226dG~x!2226d

Z~0!3dZ~x!3dxy
S z cos2Q

xy
1••• D . ~B8!

Furthermore,z5x1y22Axy cosQ has been used and term
proportional to cosQ have been dropped, as they either
tegrate to zero in the continuum or cancel each other in
sums on the torus. Each of the expressions~B6!,~B7!,~B8! is
then the appropriate term forj 50 on the right-hand side o
the Dyson-Schwinger equations on the torus. Clearly
observes that only a finite ghost modeG(0) avoids trouble
with divergencies. This is especially true for the kernelQ8 of
the gluon loop, asZ23d(y→0) is more singular than the
simple pole, so this kernel vanishes for small momentay.
The other two expressions~B6! and ~B7! are finite. One is
then left with the ambiguous quantities sin2Q and cos2Q
which will be replaced by their integrals from zero to 2p in
the calculation at the end of this section. The arbitrarines
this procedure is made considerably milder by the obse
tion that any number plugged in for the trigonometric fun
tions yields the same qualitative result at the end of t
section.

Second, we take the limitz→0, which on the torus is
identical to Q→0. The ghost kernel sin2Q/z2 alone would
certainly diverge asQ→0, but taking into account the powe
law behaviorZ(z);z2k for the gluon dressing function th
integrand is zero in this limit. This is valid fork.0.5, which
is in agreement with the infrared analysis in the continuu
We therefore may omit the pointsz50 in the ghost equation
The situation is different in the gluon equation where t
kernel of the ghost loop has a finite limitz→0:
M (x,x,0)/xy5(z11)/(2x2). Therefore with a finite ghos
dressing functionG(0) the pointsz50 in the ghost loop
contribute but no divergencies occur. In the gluon loop
kernel Q8 multiplied by the dressing functions approach
zero for vanishing momentumz due to the power law behav
ior of Z23d(z→0).

To obtain a definite value forG(0) we now investigate
the behavior of the equations~B1!,~B2! in the limit x→0.
The integrands are then given by

G~y!Z~z!

xy
K~x,y,z!→G~y!Z~y!

sin2Q

y2
, ~B9!
09400
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G~y!G~z!

xy
M ~x,y,z!→G~y!G~y!S 12z cos2Q

xy
1••• D ,

~B10!

where the kernelQ8 is of no interest, as we know the gluo
loop to be subleading in the infrared. Clearly, the kernelM of
the ghost loop in the gluon equation is now singular forx
→0, corresponding to a vanishing gluon dressing function
the infrared. This result confirms our working hypothesis th
the gluon modeZ(0) is not affected by the finite volume o
the torus. The integrand of the ghost equation is finite up
the pointy50. There the pole in the kernel is canceled
the behavior of the gluon dressing functionZ(y);y2k result-
ing in a zero for vanishing momentumx andy.

We therefore arrive at a consistent set of equations fo
finite ghost modeG(0) and a vanishing gluon modeZ(0). In
Fig. 11 we show the results for the ghost dressing funct
gained on two different volumes on the torus. Within nume
cal accuracy the values ofG(0) are the same for the two
volumes. Obviously terms with high loop momentumy con-
tribute most to the right-hand side of the ghost equation
vanishing momentumx. Furthermore, one observes that t
actual value ofG(0) is not in accordance with an extrapol
tion of the ghost curves to the infrared. There is also
sizeable change of the gluon and the ghost dressing func
whenG(0) is set to zero by hand. This has been done in
calculations in the main body of this paper.

Having shown thatG(0),` on the torus even in the
infinite-volume limit and assuming that the torus should p
vide a reasonable infrared regularization of physics in
space-time we conclude that the divergence ofG(0) is very
probably due to the torus zero modes of gluons and gho
Noting furthermore that a divergingG(0) is related to the

FIG. 11. The ghost modeG(0) compared with the results fo
finite momentumx on the torus. For convenience we have kept t
logarithmic momentum scale and plotted the zero modes on the
border of the figure.
8-17
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Zwanziger-Gribov horizon condition and the Kugo-Ojim
confinement criterion this indicates a direct relation betwe
zero modes, the Gribov horizon and confinement.

APPENDIX C: NUMERICAL METHODS FOR FLAT
EUCLIDEAN SPACE-TIME

The numerical methods to solve the coupled gluon-gh
system in flat Euclidean space-time after applying angu
approximations has been described in great detail in R
@4,25#. Note that different numerical techniques have be
employed in Refs.@3,25# and Ref.@4#. We have used all thes
techniques to verify the independence of our solutions fr
details of the numerical treatment.

First, we discuss the numerical renormalization proce
As we know the characteristics of the solutionsa priori we
may exploit the possibility of independent subtractions of
gluon and the ghost equation. The procedure followed
Ref. @3# was to eliminate renormalization constantsZ3 and
Z̃3 by subtracting the equation at the renormalization sc
s5m2. The results presented in Sec. IV A are generated
solving the equations

1

Z~x!
2

1

Z~sZ!
5

g2Nc

48p2 S G~x!E
0

xdy

x S 2
y2

x2
1

3y

2xD G~y!

1E
x

L2dy

2y
G2~y!2G~sZ!E

0

sZdy

sZ
S 2

y2

sZ
2

1
3y

2sZ
D G~y!1E

sZ

L2dy

2y
G2~y!D , ~C1!
th
e

2.

he

ll-

s,
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y

1

G~x!
2

1

G~sG!
52

9

4

g2Nc

48p2 S Z~x!E
0

xdy

x

y

x
G~y!

1E
x

L2dy

y
Z~y!G~y!Z~sG!

3E
0

sGdy

sG

y

sG
G~y!1E

sG

L2dy

y
Z~y!G~y! D ,

~C2!

for the truncation scheme of Sec. II B and analogous eq
tions for the scheme of Sec. II A thereby introducing subtr
tion pointssZ andsG . The parts of the integrals fromy50
to an infrared matching pointe are carried out analytically
with the dressing functions in the integral being replaced
their leading infrared behavior~32!

Z~x!5Ax2k, G~x!5Bx2k.

The infrared analysis leads to fixed valuesk andac5a(0)
5(g2Nc/12p)AB2, so A is left as a free parameter in th
infrared expansion. For numerical reasons it is convenien
choose the subtraction pointssG50 andsZ to lie above the
maximum ofZ(x). The two input parameters that determin
the renormalization point where we require the normalizat
conditions G(s5m2)5Z(s5m2)51 are thenA and the
value of the gluon dressing function at its subtraction po
i.e. Z(sZ).

The equations are solved using the Newton iterat
method thereby generating values for the propagator fu
tions. These are then plugged into the unsubtracted equa
to obtain the respective values of the renormalization c
stantsZ3 andZ̃3 for a given cutoffL and a given renormal-
ization scalem which allows us finally to determine the nu
merical solutions respecting the normalization conditio
G(s5m2)5Z(s5m2)51.
to,

a-
ron
@1# R. Alkofer and L. von Smekal, Phys. Rep.353, 281 ~2001!.
@2# C.D. Roberts and S.M. Schmidt, Prog. Part. Nucl. Phys.45, S1

~2000!.
@3# L. von Smekal, R. Alkofer, and A. Hauck, Phys. Rev. Lett.79,

3591 ~1997!; Ann. Phys.~N.Y.! 267, 1 ~1998!.
@4# D. Atkinson and J.C. Bloch, Phys. Rev. D58, 094036~1998!;

Mod. Phys. Lett. A13, 1055~1998!.
@5# P. Watson and R. Alkofer, Phys. Rev. Lett.86, 5239~2001!; R.

Alkofer, L. von Smekal, and P. Watson, Proceedings of
ECT* Collaboration Meeting on Dynamical Aspects of th
QCD Phase Transition, Trento, Italy, 2001, hep-ph/010514

@6# D. Zwanziger, Phys. Rev. D~to be published!, hep-th/0109224.
@7# C. Lerche and L. von Smekal, hep-ph/0202194; C. Lerc

Diploma thesis, Erlangen University, 2001~in German!.
@8# J.E. Mandula, Phys. Rep.315, 273 ~1999!.
@9# F.D. Bonnet, P.O. Bowman, D.B. Leinweber, and A.G. Wi

iams, Phys. Rev. D62, 051501~R! ~2000!.
@10# F.D. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. William

and J.M. Zanotti, Phys. Rev. D64, 034501~2001!.
e

,

@11# K. Langfeld, H. Reinhardt, and J. Gattnar, Nucl. Phys.B621,
131 ~2002!; Nucl. Phys. B~Proc. Suppl.! 106, 673 ~2002!.

@12# T. Kugo and I. Ojima, Suppl. Prog. Theor. Phys.66, 1 ~1979!.
@13# N. Nakanishi and I. Ojima,Covariant Operator Formalism Of

Gauge Theories And Quantum Gravity, Lecture Notes in Phys-
ics Vol. 27 ~World Scientific, Singapore, 1990!.

@14# T. Kugo, International Symposium on BRS Symmetry, Kyo
1995, hep-th/9511033.

@15# L. von Smekal and R. Alkofer, Proceedings of the 4th Intern
tional Conference on Quark Confinement and the Had
Spectrum, Vienna, Austria, 2000, hep-ph/0009219.

@16# R. Oehme and W. Zimmermann, Phys. Rev. D21, 471~1980!;
21, 1661~1980!.

@17# K. Nishijima, Czech. J. Phys.46, 1 ~1996!; M. Chaichian and
K. Nishijima, hep-th/9909158, and references therein.

@18# D. Zwanziger, Nucl. Phys.B364, 127 ~1991!; B399, 477
~1993!; B412, 657 ~1994!.

@19# V.N. Gribov, Nucl. Phys.B139, 1 ~1978!.
@20# D. Zwanziger, Nucl. Phys.B209, 336 ~1982!.
8-18



n
97

s,

s

-

ELUSIVENESS OF INFRARED CRITICAL EXPONENTS . . . PHYSICAL REVIEW D 65 094008
@21# P. van Baal, Nucl. Phys.B369, 259~1992!; talk given at NATO
Advanced Study Institute on Confinement, Duality and No
perturbative Aspects of QCD, Cambridge, England, 19
hep-th/9711070.

@22# V.P. Gusynin, A.W. Schreiber, T. Sizer, and A.G. William
Phys. Rev. D60, 065007~1999!; A.W. Schreiber, T. Sizer, and
A.G. Williams, ibid. 58, 125014~1998!.

@23# L. von Smekal, P.A. Amundsen, and R. Alkofer, Nucl. Phy
A529, 633 ~1991!.

@24# N. Brown and M.R. Pennington, Phys. Rev. D38, 2266
~1988!.
09400
-
,

.

@25# A. Hauck, L. von Smekal and R. Alkofer, Comput. Phys. Com
mun.112, 149 ~1998!; 112, 166 ~1998!.

@26# J.C. Taylor, Nucl. Phys.B33, 436 ~1971!.
@27# T. Muta, Foundations of Quantum Chromodynamics~World

Scientific, Singapore, 1998!, p. 409.
@28# J.C. Bloch, Phys. Rev. D64, 116011~2001!.
@29# G. ’t Hooft, Nucl. Phys.B153, 141 ~1979!; P. van Baal, Ph.D.

thesis, Utrecht, 1984, INIS-mf-9631.
@30# H. Reinhardt, Mod. Phys. Lett. A11, 2451~1996!.
@31# K. Langfeld ~private communication!.
8-19


