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Elusiveness of infrared critical exponents in Landau gauge Yang-Mills theories
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We solve a truncated system of coupled Dyson-Schwinger equations for the gluon and ghost propagators in
SU(N,) Yang-Mills theories in Faddeev-Popov quantization on a four-torus. This compact space-time manifold
provides an efficient mean to solve the gluon and ghost Dyson-Schwinger equations without any angular
approximations. We verify that analytically two powerlike solutions in the very far infrared seem possible.
However, only one of these solutions can be matched to a numerical solution for nonvanishing momenta. For
a bare ghost-gluon vertex this implies that the gluon propagator is only weakly infrared vanlajﬂgz,)
x(k?)?* 1, k~0.595, and the ghost propagator is infrared singubay(k?)=(k?)~*~*. For nonvanishing
momenta our solutions are in agreement with the results of rece(@ $dnte Carlo lattice calculations. The
running coupling possesses an infrared fixed point. We ohté@)=8.92N, for all gauge groups SUN,).

Above one GeV the running coupling rapidly approaches its perturbative form.
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[. INTRODUCTION to the Dyson-Schwinger equations has to be applied to arrive
at this conclusion if one assumes that the involved Green'’s
It is generally accepted that the theory of strong interacfunctions can be represented in the infrared by asymptotic
tions, QCD, should describe the observed phenomenon @xpansions5,7]. In Landau gauge, a sufficient condition for
confinement: colored objects such as quarks and gluons ote Kugo-Ojima confinement criterion is that the nonpertur-
cur only in hadrons. A possible route for gaining more un-bative ghost propagator is more singular than a massless pole
derstanding of this phenomenon is the study of the infrared the infrared[14]:
behavior of QCD Green'’s functions; for a recent review see
[1]. In addition, to shed light on the fundamental properties
of QCD the knowledge of these Green’s functions provides
the basis for a successful description of hadronic physics
[1,2]. Based on the idea of infrared slavery older works onThis behavior is also correlated to other aspects of Yang-
this subject assumed a strongly infrared singular gluorMills theories. First, the Oehme-Zimmermann superconver-
propagator. Recent studies based either on Dyson-Schwinggence relation§16] can be derived from Ward-Takahashi
equations[3-7] or lattice calculationd8—11] in Landau identities assuming the Kugo-Ojima confinement criterion
gauge indicate quite the opposite: an infrared finite or evefil7]. These superconvergence relations formalize a long
infrared vanishing gluon propagator. These two techniqgueknown contradiction between asymptotic freedom and the
are complementary in the following sense: On the one handositivity of the spectral density for transverse gluons in the
Monte Carlo lattice calculations include all non-perturbativecovariant gauge. Second, E(.) agrees with Zwanziger’s
physics of Yang-Mills theories but cannot make definitehorizon condition6,18]. This amounts to Gribov’s prescrip-
statements about the very far infrared due to the finite latticéion to cut off the functional integral at the first Gribov ho-
volume. On the other hand, Dyson-Schwinger equations alfizon[19]. Noting that this horizon is a convex hypersurface
low one to extract the leading infrared behavior analyticallyin A space that surrounds the oridi®0] allows one to con-
and the general non-perturbative behavior with moderate nwelude that the Dyson-Schwinger equations are not changed
merical effort but these equations, consisting of an infinitgf 18]. However, one has to note that this treatment of the
tower of coupled nonlinear integral equations, have to bdunctional integral is related to the resolution of an ambiguity
truncated in order to be manageable. As we will also see iim the solution of these equatiof3,6]. Nevertheless, supple-
the course of this article, the propagators of(land SU3I) menting the Faddeev-Popov quantization with this additional
Landau gauge Yang-Mills theory in Faddeev-Popov quanticonstraint might not be sufficient to provide an exact solution
zation coincide for these two different approaches reasonablygf the problem because there exist Gribov copies within the
well. Thus we are confident that our results for the qualitafirst Gribov horizon[21].
tive features of these propagators are trustable. As already stated, the obtained values for the infrared
Especially, these recent results on the Landau gaugexponents of the gluon and ghost propagators depend on the
propagators imply that the Kugo-Ojima confinement crite-employed approximation for the Dyson-Schwinger equa-
rion [12—14 is satisfied(for a short summary on this topic tions. Beyond the necessary truncation of this set of integral
see e.g. Refl15]). It is gratifying to note that no truncation equations in numerical calculations also some approxima-
tions for the angular integrals have been used sp3fdl. On
the other hand, employing infrared expansiéwithout us-
*Email address: chfi@axion01.tphys.physik.uni-tuebingen.de  ing any angular approximatipnvhich are strictly valid only
"Email address: reinhard.alkofer@uni-tuebingen.de in the limit of vanishing momentunp®—0, [4—7] yield also
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some quite different values for the infrared critical exponent S

D

depending on the truncation scheme. With respect to thes § % SO
analytical calculations the question arises whether for every g ' =  wwsmmmn - +  wdodr  + s .
extracted value of the infrared exponent the corresponding P@e@‘t@
numerical solution exists also for finite values of momenta.

As will be detailed in this paper a tool to overcome angular

appro?<|mat|ons is the treatment of the Dyson-_Schwmger <O, .
equations on a compact Euclidean four-manifold, in our case § 2 § 2

a four-torus. This allows us to answer the above question: + fmf;ammmgym + fm}?;r@, gj’am
We will see that not every analytically extracted infrared & D &

%
exponent can be matched to a numerical solution for nonva:

nishing momenta.

To make this paper self-contained we will shortly summa-
rize truncation schemes for the gluon and ghost Dyson- P
Schwinger equations in fldinfinite) Euclidean space-time, 1 w - fm{ QW
which have been solved recently, in the first two sections of e
Sec. Il. In the following section we introduce a novel trun-

cation scheme. In Sec. Iil we present the Dyson-Schwingeg, FIG. 1. Diagrammatic representation of the gluon Dyson-

equations formulated on the momentum grid which is thethehwr'ggzrai?ounag?n'luzhni nggg{sd:nsgei;g ?Z!delgs,zreg?;igt
dual space to the compact four-torus. In Sec. IV we will propag 9 9 4 » fesp y.

- . - blob represents a full propagator and a circle indicates a one-
present solutions done in otherwise exactly the same ap- P propag

. ; - . . particle irreducible vertex.
proximation scheme as previous solutions for flat space-time.

The comparison to thesg previous solutlons_allqws us t%quation immediately leads to a problem: The gluon polar-
chose a suitable regularization and renormalization proce:

) ; i ization, which due to gauge symmetry would be transverse to
dure.[As in previous work we adopt a modified momentum ' gauge sy Y

. : the gluon momentum in an exact calculation, acquires spuri-
qutraCt'On(MOM) scheme} _In S_ec. IV_aIso the solutions ous longitudinal terms. These terms are in general quadrati-
without any angular approximations will be discussed. The

central result of this paper is: only one of two solutions aI—CaIIy ultraviolet divergent and thus highly ambiguous be-

lowed by the infrared analvsis can be matched to a numeric ause they depend on the momentum routing in the loop
wed by ' : analysi umert tegral. In addition, a gauge invariant regularization scheme
solution for non-vanishing momenta. E.g. for bare vertlcesis

this implies that the gluon propagator is only weakly infrared required to avoid these unphysical longitudinal terms.
vanishing,Dg|(k2)oc(kZ)ZKfl, x=05% ..., and theghost Such schemes are, however, hard to implement in Dyson-

g . R Schwinger studies, for the corresponding use of dimensional
2 2y—k—1 '
propagator is infrared singulagn(k®) e (k") - In Sec. regularization see e.g. Ref22,23. An alternative unam-

V'we present our conclusions. Furthermore, in Appendix iguous procedure is to isolate the part free of quadratic ul-
we present our approximation to impose one.—loop scaling of oyjolet divergences by contracting with the projector
the gluon and ghost propagators in the ultraviolet. In Appen-

dix B we discuss the influence of gluon and ghost zero

modes on the solutions. The numerical methods to solve the R, (k)= _d@: S _4@ @)
gluon and ghost Dyson-Schwinger equations in flat Euclid- Y mr 2 mr K2’

ean space-time will be described in Appendix C.

which is constructed such th&, (k) 5“”=0, and therefore
the ambiguous term proportional &, is projected ouf24].
Note that the use of this projector also removes the tadpole
term. As has become obvious recerfily (see also Ref.25]

In this section a short summary of previously employedfor a corresponding discussion in a much simpler truncation
truncation and approximation schemes for the coupled gluoachemgthe use of the projectd®) interferes with the infra-
and ghost Dyson-Schwinger equatioi&4] will be given

Il. GLUON AND GHOST DYSON-SCHWINGER
EQUATIONS IN FLAT EUCLIDEAN SPACE-TIME

first. We will also provide the underlying formula for a new . . S, RN
truncation scheme. All these schemes include all diagrams irse@sse = wseseesse  + fmg Q}m - ooy O
the ghost equation and neglect contributions from the two- o™ o

loop diagrams in the gluon equation, see Fig. 1, where the
full gluon Dyson-Schwinger equation of QCD is represented

diagrammatically. In addition, as we will be only concerned é@mﬁ'@%

with pure Yang-Mills theory in this paper the quark loop will € S §‘%

be neglected. The tadpole term provides in Landau gauge

only an (ultraviolet divergent constant and will drop out FIG. 2. Diagrammatic representation of the truncated gluon and

during renormalization anyhow. Thus, we will effectively ghost Dyson-Schwinger equations studied in this article. In the
study the coupled system of equations as depicted in Fig. 2jluon Dyson-Schwinger equation terms with four-gluon vertices
The necessary trunction of the gluon Dyson-Schwingeland quarks have been dismissed.
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red analysis of the coupled gluon-ghost system. For technicamployed which ensures consistency at the level of one-
reasons we will employ a one-parameter family of projectorgarticle Green’s functions, i.e. propagators. The detailed
form of the vertex functions can be found in RE3]. Here

Pﬁfg(k)= 5W_£kMI2<,,, 3 we provide directly the ghost
‘ da o
—7 2
which allows us to interpolate continuously from the projec- G(kZ)_Z3 g ch (277)4(kp (P)Q)
tor (2) to the transversal on@vith /=1). Furthermore, we
will also use the general form of the quadratically ultraviolet Z(pH)G(g?) [ G(p?) G(p?)
divergent tadpole to remove these unwanted ultraviolet di- K2p?q? G(q) + G(K?) -1
vergencies.
Here we employ the conventions and notations of Ref. —k— )
[1]. As usual for Dyson-Schwinger studies all integrals are P 9
formulated in Euclidean space-tim&(k?) is the gluon  and the gluon
renormalization function defined via the gluon propagator in
Landau gauge 1 2N a4
—=2-2, 0 qA[Nl(pz,qZ;k%
k k,\Z(k?) Z(k?) (27)
D(k) =8| 5, — ~= | ——. )
k* ) K L ZPG(P)Z(a)G(a%)
The deviation ofZ(k?) from its tree-level valu&Z=1 pro- Z(K*)G*(k?)
vides a measure for renormalization of the gluon field due to 2 5
the considered interactions. The ghost renormalization func- +Ny(p?, 2_k2)Z(p )G(p%)
tion G(k?) is defined analogously via the ghost propagator, ’ G(g?)
see Eq(1).
In Landau gauge the ghost-gluon vertex does not attribute NP Z.kZ\Z(qz)G(qz) G(k?)
an independent ultraviolet divergence, i.e. one Has 1 2(0%p% k) G(p?) k?p?q?
[26]. Therefore a truncation based on the tree-level form for , ,
the ghost-gluon vertex functiorG; ,(q,p)=iq, is compat- g°N; [ d"q
ible with the desired short distance behavior of the solutions. + Tf (Zw)4{(qR(k)Q)(G(kZ)G(DZ)
This will be exploited in the following.
To proceed we will first consider the truncation schemes —G(9%)G(p?)— (qR(K)p)G(k?)G(g?)}
of Refs.[3,4] in the next two subsections. Both these trun-
cation schemes employ only the project®r,, (2) in the 1
gluon equation. The main difference between these trunca- Xm (6)

tion schemes consists in the treatment of the three-point
functions. Whereas in Ref3] the form of ghost-gluon and equations, respectively. The  functionsN;(x,y;2)

three-gluon vertex function has been related to the gluon and N, (y,x:2) andN(x,y;z) are given in Appendix C of Ref.
ghost renormalization functions using Slavnov-Taylor iden-P]_

tities (and then the resulting system has been solved sel . . =
consistently, in Ref. [4] bare three-point functions have h_ln Eq. (5) we have already EXpl(.)'tEd the 'de“_mi.—l-
been used. Amazingly, though, both schemes provide result-I;, Is leaves Ehe gluon and ghost field renormahzatpn .con-
with identical qualitative infrared behavior: the gluon propa-StantsZz andZ; as well as the gluon vertex renormalization
gator vanishes in the infrared, the ghost propagator is highlgonstantZ, to be determined correspondingly to the em-
singluar there, and the strong running couplimghich can ployeq truncation. Note that these gon_stants depend on the
be related to the gluon and ghost renormalization functionglltraviolet cutoff A and the renormalization scaje

using the specific form of the ghost-gluon vertex in Landau N Ref. [3] different angular approximations far”>k?
gauge[3]) has an infrared fixed point. Because this infrared@nd for g°<k® have been employed. In the latter case
behavior is determined by the interplay between the ghos®(P?)=G((k—q)*)—G(k?) andZ(p*)—Z(k?) have been
loop in the gluon equatiofthe gluon loop being subleading Set which obviously preserves the lingif—0 of the inte-

in the infrared and the ghost equation such a scenario is als@rand. With this approximation one obtains from E§)
found in the ghost-loop only approximatiga]. We will ex- ~ Upon angular integration

ploit these two recent truncation schemes in the course of

this article for various tests of our method. 1 3. g’ 3N¢| (wdg? Q_22 K2\ G(K2
Gk ° 16m2 4 @ e ZKIeHD
A. The dressed vertex truncation including the gluon loop )
In Ref.[3] an approximation scheme for the longitudinal + fAzd_qZ(qz)G(qz)
parts of ghost-gluon and 3-gluon vertex functions has been 2 g?
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EZ(kZ)G(kZ)

+f zdi2<q2>e<q2>),
K q

where we introduced a@(4)-invariant momentum cutofi

@)

to account for the logarithmic ultraviolet divergence, which

PHYSICAL REVIEW B5 094008

Z(X)oex?<,  G(x)oex . 9

In this truncation scheme one obtairs-0.92[3]. To solve
the coupled system for all momenta the power laws, (BYg.
are used to perform the integrals frop+=0 to an infrared
point y= e analytically, while the remaining part of the inte-
grals is done with the help of numerical routines, see e.g.
Ref.[25].

The nonperturbative subtraction scheme of R&f.im-

will have to be absorbed by the renormalization constantsplies a strong running coupling with infrared fixed point.
With some further assumptions the angular approximatiorStarting again from the nonrenormalization of the ghost-

for the gluon equatiori6) yields
B 92 szdq 79 179> 9

o K212k 242 8
><Z(0|2)G(qz)+fk2

Z(k?) 2 k4

2 q 2
q_ §¥—7 Z(9%)G(g?)

2 2 a2
9° Nc| (¥dg”3q 2 2 2,12
W?[L e 21 SIeE 36
qu
+§fk 7 G3(q 2)] 8

In the infrared the solutiong(x) andG(x) behave pow-
erlike:

gluon vertex

2,=2,7375=1, (10)

one can readily show that the produgtZ(u?)G?(u?) is
renormalization group invariant. Therefore, in the absence of
any dimensionful parameter, thidimensionlessproduct is

a function of the running coupling only. Analyzing this
renormalization group invariant product more closely one
concludes that it is identical to the running coupligrd 2).

As the infrared powers in the produg6G? cancel exactly the
running coupling is a finite constant far?=0.

B. The bare vertex ghost-loop only truncation

Substituting the tree-level ghost-gluon vertex for the
dressed one and neglecting the gluon loop the coupled sys-
tem of equationg5),(6) reads

1 - 5 [ d'g KoP-(k q)2
= —02 2 Kk — 2
1 Ny dq k2(|<2+qz+(k—q)2)+4q2(k—q)2—2(k—0|)“—2q4 )
k—q)?).

To simplify notation we introduce the abbreviatiors
:=k?, y:=q?, s:=u? andL:=AZ. In the angular approxima-
tion of Ref. [4] (‘ymax approximation’) where
Z(min(P%,g?)) and G(min(p?,q?)) are substituted foiZ((k
—q)?) andG((k—q)?) Eqs.(ll) (12) are simplified to

1 .
mda(s,L)—Z ( Z(x )f ——G(y)
+fXLd7yZ(y)G(y)), 13
7002 |_)+gz G(x )fxdy<—y—2+§—i>
><G(y)+LLg—;/GZ(y))- (14

Imposing as renormalization conditioZ{s)=G(s)=1 to

determineZ; andZ; these equations may be solved numeri-
cally for a given[O(4) invariani cutoff. As a matter of fact,
we use subtracted finite equations in our numerical proce-
dure; see Appendix C for details.

In the infrared, also the solutions of E¢3),(14) behave
powerlike, cf. Eq.9), with k~0.77[4]. In the same trunca-
tion but with no angle approximation employed a solution
x=1 has been extracted for the infrared behavior. However,
it will be explained below that we could not find a numerical
solution for nonvanishing momenta connected to kel
infrared behavior.

C. The bare vertex truncation including the gluon loop

In this subsection we will detail a novel truncation
scheme which employs bare vertices. Nevertheless it will be
constructed such that it reproduces the correct perturbative
limit for large momenta. To analyze the gluon loop we will
use the class of prolectoﬂg“) (3). A smooth interpolation
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between the Brown-Pennington projectaf=(4) and the

transverse onel=1) will be helpful in the analysis of un-

physical quadratic ultraviolet divergencies fo#4 in the

PHYSICAL REVIEW D 65 094008

one sees that fof=4 the terms independent of the integra-
tion momentuny vanish. Thus these integrals are then only
logarithmically ultraviolet divergent as could be expected on

gluon equation. Their careful removal is essential for a nuthe basis of the results summarized in the previous subsec-
merical solution retaining the infrared behavior of the solu-tions. Of course, the quadratic ultraviolet divergencies are

tions.

artifacts of the employed truncation. Due to gauge invariance

The coupled equations for the ghost and gluon dressinthey would cancel against the tadpole and similar divergen-

functions using bare vertices read as folldwye ghost equa-
tion is, of course, identical to Eq11); it is only repeated for
a coherent representatibn

1 . d'q K(xy,2)
=73~ ZNJ —_—
G 2 9] ami xy

G(y)Z(z), (19

1 N d*qg M(x,y,z
gl S M2
Z(x) 3J) (2m* Xy

N
+ Zlgzgcf

G(y)G(2)

4
d*q Q(x,y,2) (16)
)

2 X—yZ(Y)Z(Z)-

The kernels ordered with respect to powerszefp?=(k
—q)? have the form

1 (x=y)?) 1 x+y) 1
e e R B U
1(¢-=2 'y (y?\ 1 ¢y (z
e S E AP S
(18
1, 19-¢ 5-C, LY
Q(x,y,z)=—2<§7+x2_ 5 Xy+—— 2+§Y)
1(x2 15+¢  17-¢ y2)
Z\y T4 TTa VX
(19—§x 17-¢ 9gy)
ey e Tax
[ 54 , ¢
e ;+W> 7 axy (19

It is straightforward to verify that for{=4 the kernel
M(x,y,z) is identical to the kernel in Eq12).

cies in the two-loop terms. The calculation of the latter being
beyond the scope of this paper we will simply subtract these
divergent terms. This cannot be done straightforwardly at the
level of integrands: Such a procedure would disturb the in-
frared properties of the Dyson-Schwinger equations. As we
anticipate from previous studies and analytic wiBk7] that

the ghost loop is the leading contribution in the infrared the
natural place to subtract the quadratically ultraviolet diver-
gent constant is the gluon loop. We do this by employing the
substitution

Q%Y 2)—=Q'(x,y,2)=Q(x,y,2) + (4= ()

in Eq. (16). At first sight, due to the presence of the prefactor
Z, in the gluon loop, this seems not to be sufficient to re-
move also the quadratic ultraviolet divergence of this ghost
loop. However, note that in the next step we will enforce
consistency of the logarithmic divergencies which entails
then cancelation of the quadratic divergencie®If is em-
ployed in the gluon loop; see below.

To achieve the correct one-loop scaling in the ultraviolet
we will adopt a similar treatment to the one of RE3].
Please note that within the presented class of truncation
schemes it is impossible to satisfy both correct one-loop scal-
ing and the Slavnov-Taylor identitf,=Z3/Z5. For large
Euclidean momenta and to one loop the behavior of the
propagator functions can be described as

(21)

X Y

Z(x)=Z(s)| wlog §)+1 , (22
X 5

G(x)=G(s)| wlog S +1 (23

Z(s) andG(s) denote the value of the dressing functions at
some renormalization poirst:=u?; y and é are the respec-
tive anomalous dimensions. To one loop one has—9/44
and y=—1-26 for arbitrary number of color&. and no
quarks,N¢=0 [27]. Furthermorew= 11N a(s)/127.
Employing these expressions in the ghost equatids)

The quadratic ultraviolet divergencies of the integrals areand approximating the angular integrals as done previously
most easily discovered approximating the angular integralgne obtains to the order of the leading logarithms

as done in the previous subsectidmete that we will use

these approximations only for an analysis of the ultraviolet
behavioj and introducing an Euclidean sharp cutoff. Dis-

playing only the ultraviolet divergent integrals

2
chdey 4-¢ 5—2x) 5
| —+>==|G
4812 ) x X( 4 4y )
. 3(—12 (+24x Tx? 22 00
thl T 3_/+§F (y)] (20

G~ (s)| wlog X1 76:23— 99°2(5)6(s)
S 64m°w(y+ 6+1)
L y+o+1
X | wlog S +1
y+5+1
- wlog(; +1 ]

(24)
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where the abbreviatioh. :=A? has been used again. The Carrying out the remaining integral in Ed27) and

renormalization constaris(L,s) cancels the cutoff depen- Matching powers one obtains

dence of the first term in the bracket. Thus, the power and the

prefactor of the second term have to match with the left-hand y+25+1=0, (30
side of this equation. This leads to two conditions: )

g

_ — Z(s)G%(s
y+28+1=0, (25) 2y 1672 (s)G*(s)
2
— g—Z(S)Gz(s) =1. (26) _l g’ Z(s)L-a-bG(s)2-a/o-blo-2a-2b_
20(y+1) 1672 Y© 1672 '
Equation(25) is of course nothing else but consistency of the (31

ghost equation with one-loop scaling. . .
Plugging the ultraviolet behaviai22) and (23) into the First of all, we reproduce correct one-loop scaling also from

gluon equatior{16) and keeping the leading order logarithms the gluon equation as can be seen from the equivalence of
leads to Egs.(30) and(25). Second, with the perturbative renormal-

ization conditionsZ(s)=G(s)=1 which are possible and

Y appropriate at a large Euclidean renormalization pgirtne
obtains together with Eq26) the correct anomalous dimen-
sionsy=—13/22 andé= —9/44.

- A reasonable choice of parameters is of course one which
keepsZ; as weakly dependent as possible on the momgnta
and z, cf. Fig. 10 in Appendix A. Note that the choie

y} 79Z(s)G(s) =b=0 corresponds to the truncation scheme [@8]

X
wlogl =|+1

s
g°G*(s) (
3272wy

Z7X(s)

3 +1

L
) Iog(g

+1 whereasa=36,b=0 together with the appropriate vertex
1672 dressings reproduces cdsgof Ref.[3]. The infrared behav-
yis ior of the gluon loop in the gluon equation depends strongly
(277  onaandb. E.g. forb=0 one can distinguish three cases: For
a<0 the gluon loop is subleading in the infrared; &0

) as in Ref.[28] the gluon loop produces the same power as
Here we see that due to the employed truncation we have tg,, ghost loop; fom>0 the gluon loop becomes the leading

give up eithfr one-loop scaling or the Slavnov-Taylor iden-tgrm'in the infrared. In the last case we did not find a solu-
tity Z,=25/Z5. Note, however, thaZ;(L,s) has the correct tion to the coupled gluon-ghost system. In Appendix A we
cutoff dependence to make this equation finite with finitewill demonstrate that=b=38 minimizes the momentum
Zy(L,s). Nevertheless, in order to get the correct leading logdependence off;. Thus we will use these values, unless
contribution from the gluon loop the integrand in the last linestated otherwise, explicitly.
should be proportional thw log(y/s)+1]~**. This not only The infrared behavior of the propagator functions in this
contradicts the identityZ,=Z5/Z; but also requires the truncation scheme and for the transverse projector X)
renormalizationconstant Z(L,s) to acquire a momentum has been determined very recenf,7]. It can be shown
dependence if correct one-loop scaling is to be enforcedstraightforwardly that the relation between ghost and gluon
Following case(c) described in Chap. 6 of Reff3] we de-  infrared behavior is again as in E@). This is expected also
mand therefore on general ground$]. Due to this one can immediately use
the Ansdze

wlog

s

wlogl =|+1

y
s

L
xf dyz,
X

Z,(L,s)— Z1(x,y,z;s,L)

)1
s

Generalizing the approach of R¢B] we note that the fol-
lowing two-parameter ansatz:

Csm2y-1 Z(x)—AX?*,  G(x)—Bx * for x—0. (32

o log (28)

As is explained in detail in Ref7] the renormalization con-
stantsZ; and?s can be dropped for very small momenta
They are either subleading in the infrargduon equatiopor
have to be zero when the renormalization takes place at
)(1-al5-23) G 7)(1-blo-2b) =0 (ghost equation The remaining infrared integrals can be

Gly evaluated usin
. — g the formul@]
Zixy.zs,b) Z(y)+a) Z(2)+D (29

i a2 aiaspT(2+@(2+b)I(—a—b—2)
with arbitrary a and b satisfies the required proportionality. d'qy’z’=mx T(—a)l(—-b)[(4+a+b) °
This can be straightforwardly verified with the help of ex- (33

pression(25) obtained from the ghost equation. In addition
ansatz(29) ensures the cancelation of quadratic ultravioletwhere againk=k?, y=q? andz=(k—q)2. From the result-
divergencies as discussed above alsp#f4. ing two conditions
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N L B L B given k. With a(0)=g?AB?/47 one concludes immediately

| — Ghosteq. that a(x) is proportional taN_ *. Furthermore, the ghost and
I' ... Gluonegq. { =1 gluon dressing functionZ(x) and G(x) are independent of
" -- Gluoneq. { =2 the number of colorsN, enters the Dyson-Schwinger equa-
0sf .-. Gluon eq. { =3 tions only in the combinatiog®N,, at our level of truncation.
L Gluon eq: ¢ =4 From the solution<= 0.5953 of the infrared analysis with the

transverse projectaf=1 one determines the infrared fixed
point of the running coupling to be(0)=2.972 forN.=3.

Ill. GLUON AND GHOST DYSON-SCHWINGER
EQUATIONS ON A FOUR-TORUS

There are three central aims connected to the investigation
of the Dyson-Schwinger equations on a four-torus. The first
one is purely technical: This allows us to study finite volume
effects also in the Dyson-Schwinger approach. Monte Carlo

FIG. 3. Here the graphical solution to Eq@4) and (35) is simulations on a Iatt!ce necessarily have to be done !n a finite
shown. The thick line represents the left hand side of &), volume.. Therefore in the _Iatter kind of aplproach |nf_ra(e_d
whereas the other four curves depict the left hand side of ).  Properties are only accessible by extrapolations to an infinite
for different values of the parametér The ellipse marks the bulk Volume where the available data are gained on several dif-
of solutions betweer =0.5 andx= 0.6 for different/, whereas the ~ ferent volumes which, due to limitations in computer time,
circles show the movement of the solutier=1.3 for a transverse do only differ at best by one order of magnitude. We will see

projector tox=1 for the Brown-Pennington casé=4. in the present Dyson-Schwinger approach that available vol-
umes cover several orders of magnitude. And more impor-
1 (24 K)(1+«) 22— x)0(26)  g°N, tantly, in several truncations and approximations one can
— = 5 ZABZ, compare to the results obtained in an infinite volume.
18 (3-2«) [(4=2k)T%(1+ k) 48w The second issue is the solution of tlieincated Dyson-

(34 Schwinger equations without any angular approximations.
We will detail below why and how this can be achieved on
Ak—2 _ T%2-0l(2k) ¢°Ne the momentum grid dual to the four-torus. This will also lead
4(k—4k+6—3 T(4—2k)T2(1+ k) 4872 ' us t(_) the main result of this paper discussed in the following
(35) section.
The third aim relates to the possibility of topological ob-
one obtains the determining relation ferby equating both  structions on a compact manifold. It is well known e.g. that a
left hand sides; see Fig. 3. For the Brown-Pennington profour-torus allows for a nonvanishing Pontryagin index. We
jector, i.e./=4, one then finds the known solutian=1[4].  hope that we will be able to describe the solutions of Dyson-
However, as can be seen immediately the left-hand side dbchwinger equations with twisted boundary conditi28]
the second equation possesses a zeroxferl/2 which is in a subsequent publication. And choosing an asymmetric
canceled by a pole only faf=4. LoweringZ only slightly a  four-torus might allow the introduction of a nonvanishing
further solution withx slightly larger than 0.5 exists. For the temperature in a relatively simple way.
transverse projector, i.€&=1, this latter solution becomes
x=0.59 ... inaccordance with Ref$6,7]. Also the solu- A. Finite volume effects
tion k=1 changes continuously when lowerigg The cor-
respondingx are then all larger than 1 and contradict the
masslessness condition; see Chap. 5 of Réffor a discus-
sion of this condition. The main result of this paper is that
the infrared behaviok~ 0.5 matches to a numerical solution
whereas no numerical solution could be found with the in-
frared behaviox=1.
The renormalization group analysis for the running cou-
pling given in Ref.[3] certainly applies here as well. The
renormalization group invariant expression for the running j d%q 1

From a technical point of view using as an underlying
manifold a four-torus or choosing periodic boundary condi-
tions on a hypercube is identical. Note that the definition of
the Faddeev-Popov operator necessitates periodic boundary
conditions for ghosts instead of their Grassmannian nature,
see e.g. Ref.30]. With L being the length in every direction
of the hypercube the four-dimensional momentum integral
has to be substituted by a sum over four indices,

coupling is therefore given by —— ) (37
(2m*  L*Yi1izlas
9° )
a(X)= EZ(X)G (X). (36) On the other hand, the quantities of interest, the gluon and

ghost renormalization functiorZ(k?) and G(k?), respec-
As can be seen directly from Eq®4),(35), in the here pre- tively, do only depend on the @) invariant squared mo-
sented truncations the produbt,g?AB? is constant for a menta as long as all directions are treated on an equal footing

094008-7



C. S. FISCHER, R. ALKOFER, AND H. REINHARDT PHYSICAL REVIEW B5 094008

on the torus. This suggests relabeling the points on the mo-
mentum grid not according to a Cartesian but a hypersherical
coordinate system,

1 1
= > =—§, (38)

L% i1i203.0a L3

where the indej numbers the hypersphergé=const. The
index |, which numbers the grid points on each hypersphere
respectively, will be dropped in the following.

In the integrals to be discretized there appear three mo-
menta: the external momentum, labeledhe loop momen-
tum g and for the second propagator in the Igpp k—q. We
will use the following notation:

x:=k? with x; e hypersphere,
FIG. 4. Sketch of the momentum grid dual to the four-torus and

) the summation over complete hyperspheres indicated by fully

y:=q° with y;ehyperspherg, drawn circles. The hyperspheres depicted by dashed lines are not
complete due to the numerical ultraviolet cutoff.
z:=p?=(k—q)? with z,ehypersphere. (39
_ _ L=~Z‘3(S,L)—92Nci z M

On the hypercubic momentum grid dual to the four-torus the G(x)) L4 XiYj
momentump=Kk—q is located on the grid for every pair of
grid momentek andq as can be seen from elementary vector XG(yj)Z(max(xi,y;)), (40)
operations(or from the analogue of cubic lattices in solid
state physics 1 7 (s L)t Z&iz M(X;,Yj,Zn)

Note that we have introduced an(4) invariant cutoffA Z(x) s(sb)+g 3 145 XiYj
into Egs. (7),(8). As we will see below in more detail a
corresponding regularization of the sums over grid momenta X G(yj)G(maxx;,y;))- (41
is required. In a first step we set up a momentum grid with
i1,i2+03,ja=—N, ...,0,.. N. The hypercube property of As shown in the previous subsection the momenfurnk

this lattice seems to suggest in the first place to cut off the-d Which satisfiesz,=(k—q)? lies on the momentum grid,
sums such that overcomplete hypercubes are summed. SugRd furthermorep=k—q is determined uniquely frorkand
a method, however, breaks(4) invariance and introduces d for which x;=k? andy;=q? by using elementary vector
sizeable numerical errorfNote that in lattice Monte Carlo operations. Note, however, thdp? might be larger than the
simulations the analysis of the resulting data fgdOnvari-  ultraviolet cutoff even if\k? and \/g? are not. The actual
ance necessitates special kinds of cuts through the lattideeatment of the sums in Eq&0),(41) can nevertheless be
[9].] As can be seen from Fig. 4 an(4) invariant cutoff of  done straightforwardly as the exact algebraic expressions for
the sums necessitates neglecting the “edges:” The sum exhe kernels are known.
tends only over the fully drawn hypersheres, and we omitthe The main difference between the equations on the torus
summation over the dashed ones. and the flat space equations is the effective treatment in the
To be able to compare to already known flat space soluinfrared. The finite volume in coordinate space leads to a
tions we will first solve the torus analogue of the equationdinite value of squared momentum for the first hypersphere
with angle approximations, i.e. Eq§),(8) or Egs.(13),(14).  j=1. Thus one has not to worry about possible infrared sin-
To this end we start from Eq$5),(6) or Eqs.(11),(12), re-  gularities. On the other hand, there exists zero modes on the
spectively. After formulating the corresponding four- four-torus. In all the calculations presented here they are ne-
dimensional integrals as sums over lattice momenta the funglected; an estimate of their possible contribution is given in
tional dependence of the propagator functions isAppendix B. Note furthermore that for the numerical solu-
approximated according to the rules described in Secs. Il Aion as described in Ref§3,25] the disadvantage of dealing
and 11 B, respectively. We give the explicit expressions forwith infrared singularities has been turned into a benefit: The
the bare vertex ghost-loop only truncation. The correspondinfrared behavior of the propagator functions has been deter-
ing ones for dressed vertex truncation can be derived analanined via an asymptotic series calculating the corresponding
gously in a straightforward manner; however, as these areoefficients and powers analytically. Matching these series at
quite lengthy we do not give their explicit form. some finite momentum to the functions as obtained from
The Dyson-Schwinger equations in bare vertex ghost-loogtandard numerical techniques finally enabled us to numeri-
only truncation with angle approximation read, on the toruscally solve the coupled integral equations. Such a compli-
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cated process is not necessary employing a torus. Howevéicontinuum” equations are summarized. Second, one can
one anticipates already at this level some deviations in theubtract both equations at the squared momsegtand s,
infrared between the solutions obtained in these differenand therefore trade the two renormalization constants for the
ways. In the next section the corresponding numerical resultgalues of the dressing functions at these momenta, namely
will be discussed. They demonstrate that using a torus ag(s,) andG(sg). For the sake of comparison one can read

infrared cutoff works surprisingly well. these values from the continuum solution to be used in the
torus equations. 1§, andsg are taken to be sufficently far in
B. Dyson-Schwinger equations with angle integrals the ultraviolet region of momentum, where finite volume ef-
on the torus fects play a minor role, the two procedures lead to the same

The intricacy of the infrared analysis has prevented so faresults. We have verified that this is indeed the case within
a solution of the coupled gluon-ghost system without angulathe limits of numerical accuracy.
approximations. Using a torus as an infrared regulator opens Our results for the ghost dressing function, the gluon
up the possiblity to solve these equations directly withoutdressing function and the running coupling in the bare-vertex
any recourse to an infrared asymptotic expansion. As recemghost-only and the dressed vertex truncation can be seen in
arguments have been provided that the use of a bare ghostigs. 5 and 6, respectively. In both truncation schemes we
gluon vertex is not inferior to employing a dressed §8&]  solved for three different momentum spacings corresponding
we will solve the system in the truncation described in Secto different volumes in coordinate space. To keep the cutoff

e ' identical for all the spacings within each truncation scheme
W'”L the above discussed replacement/pé‘a/(27)*] e have chosen three different grid sizes respectively. For
—(1L%)Z; Egs.(15),(16) read on the torus the bare vertex truncation they ake=17*,314,51* and for
the dressed vertex truncation they &fe=21% 41* 61*.
1 ~Z.(s,L)—g?N 1 D K(Xi,Y;,2n) A physical momentum scale cannot be determined in trun-
G(x) 7 e XY cation schemes which do not provide the correct perturbative
running of the coupling in the ultraviolet. With the missing
XG(yj)Z(zn), (42 gluon loop this is the case in the bare vertex only truncation
scheme. We therefore have to stick to an internal momentum
1 oNe 1 D M(Xi,Yj,Zq) scale without physical units in this case. The situation is
Z(Xi)—Zg(s,LHg ENE J. T different, however, in the dressed vertex truncation scheme.

Here we have fixed the momentum scale by calculating the
N, 1 Q'(Xi.Y;Zn) running coupling for the color group $8) and using the
XG(Y;)G(Zn)ﬂLgZ? = experimental valuer(x)=0.118 atx=M3=(91.187 GeV}

L] XiYi to fix a physical scale.
X G- #0-2a(y ) GL D=2z In the bare vertex truncation scheme we have chosen
Z(u?)=G(u?) =1 as renormalization condition where we
XZ AY)Z P (zy). (43 have takenu?=A?, the (squaredl ultraviolet cutoff. Of

course, this choice is by no means special and one is com-
As already stated/z might be larger than the ultraviolet pletely free to choose the renormalization point wherever
cutoff even if yx and \y are not. Again the kernels can be one likes. For the numerical calculation in flat space we have
nevertheless evaluated straightforwardly, however,\fith  chosen two different subtraction points for the ghost and the
L<z<A4L is the argument of a propagator function we setgluon equations as described in Appendix C. For good con-
z=L, i.e. we approximateZ(z) or G(z) then byZ(L) or  vergence of the iteration process the ghost equation is most
G(L), respectively. Another more elaborate treatment coneonveniently subtracted at zero momentum, whereas the
sists of matching the corresponding perturbative ultraviolegluon equation can be subtracted at any value of squared
tail to the function under consideration. This has been apmomentum in the region where the equations are solved nu-

plied in some cases to test the viability of the method. merically. In our calculation we chose the cutdff=0.2 in
internal units as a subtraction point for the gluon equation.
IV. NUMERICAL RESULTS This allows us to use the renormalization conditibp 2)

=1 directly as input in the calculation. The second input is
provided by the coefficienf of the leading order infrared
expansion of the gluon dressing functi@hg(x) = Ax?<. The

The solutions of the Dyson-Schwinger equations on theconditionG(A?)=1 then leads tA=357.33. The value of
torus can be compared in two different ways to the oneshe coupling at the renormalization poinat(x?), is taken to
obtained in flat space-time. First, one can use the solutions dfe 0.97. Again one is completely free to choose this number
the “continuum” equations for a certain cutoff and certain  arbitrarily up to the maximum value of the running coupling
renormalization scalg to provide the values faf;(u2,A?)  which is reached in the very infrared. For the torus calcula-
andZ,(u2 A?) as input for the equations on the torus which tions the unsubtracted equations have been used. The same

are then solved, cf. the discussion in Appendix C where th&0uplinga(?)=0.97 has been taken and insteadZ¢f\?)
numerical methods employed to obtain the solutions of thend A the valuesZ;(u?=0.2A2=0.2)=0.9591 andZ;(u?

A. Comparing torus solutions to previous results
in flat space-time
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FIG. 5. Shown are the ghost dressing function, the gluon dressing function and the running coupling in the bare-vertex ghost-only
truncation for different momentum grid spacings corresponding to different finite volumes of the torus. The fully drawn lines labeled
“continuum” represent the respective results for flat Euclidean space-time, i.e. continuous momenta.

=0.2A%=0.2)=1.1034 for the renormalization constants point s=1.048 Ge\. For the calculations on the torus we
determined from the “continuum” solution have been em-use the unsubtracted equations with the vallegu?
ployed. =M2,A?=1.255 GeW)=1.266 and Zg(u’=M3, A2

As has already been mentioned, in the dressed vertex q 255 GeV)=0.966 for the renormalization constants
truncation scheme we determine a “physical” momentumyhich have been determined from the “continuum” solution.
scale according to experimental results. In the numerical Qur numerical results, depicted in Figs. 5 and 6, show
treatment again the ghost equation has been subtracted @ilar properties for both truncation schemes. Compared
zero momentum whereas the gluon equation is subtracted @fith the respective “continuum” solutions the ones obtained
finite momentum. We solved both equations similar to theon a torus show deviations for the first few lattice points in
method described in Rdi25], especially we introduced also the infrared. For higher momenta all functions on the torus
the auxiliary functiond=(x) andR(x) as defined in Ref3]. = approach the continuum ones. Deviations are only visible
As input values serve the infrared expansiorRgk), R(x) there for the curves with the largest spacings. The biggest
=x"+ ..., and the valudr(s) =0.8 at the gluon subtraction effect can be seen for the running coupliagwhich is the
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FIG. 6. The same as Fig. 5 for the dressed vertex truncation.

“observable” of the system. A& is proportional to the prod- ing function on the torus has the same shape and the same
uct Z(x)G2(x) the deviations of the dressing functions from height of the bump in the bending region of the curve. As all
the “continuum” curve amplify in the infrared in a some- curves with sufficently small momentum spacing follow the
what erratic way, so that the points in the very infrared cancorrect power behavior within numerical errors we conclude
not be connected by a smooth line. Comparing larger an¢hat one surely can address the question of the value of the
smaller spacings of momentum grids one clearly sees that theswer « in the infrared on a manifold with finite volume as
effect is always one of the first spheres on the respectivias heen used here or as one uses in lattice calculations. This
!attlces and therefore moves to the infrared for smaller spagg the central result of the present section: Employing a torus
INgs. as infrared regularization is possible. In the following section

The most important properties of the solutions in flat, ;e i yse this to go beyond the angular approximation.
space can still be found in the torus solutions despite some

deviations in the infrared. Going from larger to smaller spac-
ings a powerlike behavior of the dressing functions in the
infrared with the correct exponents can still be inferred. For In this section we discuss our numerical results for the
the truncation scheme with dressed vertices the gluon dresbare vertex truncation scheme with various projectors in the

B. Numerical solutions without angular approximations
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gluon equation. We show results for the gluon and ghosthis leads to a distinct mismatch to what one is to expect on
dressing function and the running coupling calculated on dhe basis of analytical results.

torus without any angular approximations. Note that up to At first sight the fact that the power solution for the ghost
now in the gluon-ghost Dyson-Schwinger equations soludressing function could not be reproduced numerically to a
tions for nonvanishing momenta have been obtained onlyeasonable precision may seem disappointing. Nevertheless
employing some sort of angular approximation. Going be-these numerical results themselves show that the ghost dress-
yond these approximations we will use our new truncationng function is highly infrared singular. This reflects the
scheme introduced in Sec. Il C. The reason for this is that théong-range correlation of ghosts in Landau gauge. Therefore
dressed vertex truncation scheme is quite complicated, and ne should expect the ghost dressing function to be the one
its derivation one has dismissed terms which seem to baffected most by a finite volume. On the contrary the gluon
crucial for the infrared behavior beyond the angle ap[)r(j)(i_qressing function vanishes @n_the infrared and consequently it
mation. As the survey of gluon and ghosts infrared behaviorss much less affected by a finite volume. We expect the ghost
related to differenfansaze for vertex functiond7] does not ~ dressing function together with the running coupling to ap-

provide any evidence for crucial differences between bar roach more and more the correct power solution in the in-

and dressed vertex functions the use of the latter seems to @red as lattice spacings are decreased and lattice sizes are
increased.

an unnecessary complication. In the case of the bare-verteX :
host-loop only truncation with the Brown-Pennington pro- Furthermore, we add a _rema_rk on the transversality of t_he
g gluon propagator as obtained in the bare vertex truncation

Jectqr no solutions for finite momenta without angular AP scheme. Of course, the full gluon propagator calculated from

proximation have been reported yet. In fact the results preg,o complete gluon equation with fully dressed vertices in

sented in this section suggest that these solutions might n@h 45 gauge is transversal due to Slavnov-Taylor identities.

eX'St', ) o Thus such a hypothetical solution would be independent of
This time the values for the renormalization constafys  the form of the projector, i.e. in our notation with the projec-

andZ cannot be taken from a “continuum” solution. Thus tor (5M—§p#pv)/p2 independent of the parametér In

we use the subtracted equations on the torus in the course pfactice, using bare vertices as in our truncation scheme this

the numerical solution by iteration. Both equations are subis certainly not the case. Our numerical results for different

tracted at the renormalization poipf=1.9 Ge\f. Similar ~ values of the parametércan be seen in Fig. 8. Although our

to the case of the dressed vertex truncation from the lagtolutions show the expected dependence on the form of the

section the “physical” units are gained from experimental Projector this dependence is not too drastic and in general the

input: a(x)=0.118 atx=M2=(91.187 GeV¥. The input behavior of these d|ffere_nt solut|(_)ns is very similar.

values for the dressing functions at the renormalization point FOr the gluon dressing function one observes that the

y , he greater is the deviation from the pure
are Z(u?) =0.83. RequiringG(u?)=1/Z(x?) then fixes MOre ¢ grows t N :
the 0\(/’:ra)1ll scale foG(gx). Igor(tﬁe)value cffuth)e coupling at power behavior. The points in the very infrared cannot be

o . o 2 connected by a smooth line any more. Correspondingly this
the renormalization point we chose agai(y.”) =0.97 simi- happens for the running coupling. Based on the infrared

lar to the two trgncation schemes in the last secti_on. Eor thglnalysis one might anticipate that should approach the
presented solution on three different volumes lattice sizes of ;) e x=0.5 more and more asgrows until there is a jump
N=13"43"71* have been used. to the solution fromx=0.5" to k=1 as the Brown-

As mentioned in the last section we did check cutoff ef'Pennington limitz =4 is reached. We do not observe such a
fects by extrapolating the propagator functiongatA? with  qualitative jump in our solutions on a torus. The solution
a logarithmic tail with the correct anomalous dimensions.shown for{=4 is approached smoothly whenhapproaches
The results as compared to the ones obtained by simply sethis limit. This clearly indicates that the solutian=1 might
ting Z(z)=2Z(A?% and G(z2)=G(A? for all z>A? did not exist at all if one removes the torus as a regulator.
change by less than 18. Finally we compare our results to recent @V lattice

Our results for the dressing functions obtained with acalculationd31]. As has already been stated above the ghost
transverse projector as shown in Fig. 7 are in agreement witand gluon dressing functions from Dyson-Schwinger equa-
the expected power behavior. The infrared critical exponentions are independent from the numbers of colors at least to
as calculated in Ref$6,7], k=0.5953, thus has been veri- our level of truncation. The only caveat in comparing our
fied: A correspondingnumerical solution for nonvanishing results with the lattice ones is the adjustment of the momen-
momenta exists. The gluon dressing function is remarkablyum scale which is certainly different from the case of(SU
stable against changes of the volume and approaches mosbove. To get an appropriate momentum scale we therefore
and more the expected power solution for small momentaused the lattice resulirsy,)(x)=0.68 atx=10 GeV as
For the ghost dressing function one observes again deviaaput. The two graphs in Fig. 9 show that the main qualita-
tions of the first points in the infrared: An extraction of the tive features, the vanishing of the gluon and the divergence
correct infrared critical exponent from the numerical solutionof the ghost dressing functions in the infrared, are common
for the ghost function is hardly possible. Only some pointsproperties of both the lattice solutions and the one from
come close to the analytical value of the continuum befordDyson-Schwinger equations. Even the power0.59 . .. of
the curve starts bending down again in the very infrared. Fothe gluon dressing function on the torus is very close to the
the extracted value of the running coupling in the infraredone that can be extracted from the lattice fit to Ae0.5.
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FIG. 7. Shown are the ghost dressing function, the gluon dressing function and the running coupling in the new truncation scheme
without angular approximation for different volumes using a transverse projector.

The main difference of both approaches lies in the mediuntions have been provided by an analytic determinaf&id]
energy region around one GeV, where the Dyson-Schwingesf the exponents governing the infrared powerlike behavior
solutions suffer from the missing two loop contributions thatof the gluon and ghost propagators. Typically the infrared
are certainly present in lattice Monte Carlo simulations. ~ analysis provide two possible values each for the gluon and
the ghost, respectively. The central result of this paper is:
V. CONCLUSIONS AND OUTLOOK Only one of these two possible infrared behaviors in a given
truncation scheme can be matched to a numerical solution
In this paper we have presented numerical solutions ofor nonvanishing momenta.
truncated systems of Dyson-Schwinger equations for the In a truncation scheme with a bare ghost-gluon vertex and
gluon and ghost propagators in Landau gaugéN§lYang-  a transverse projection of ti{gruncated gluon equation this
Mills theories. We have employed a four-torus, i.e. a comimplies that the gluon propagator is only weakly infrared
pact space-time manifold, as an infrared regulator. This envanishing,Dg,(kz)oc(kz)z"*l, xk=0.59..., and thegghost
abled us to overcome angular approximations used so far ipropagator is highly infrared singulangh(kz)oc(kz)"“l.
previous studie$3,4]. The basis for our numerical calcula- The running coupling possesses an infrared fixed point
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o6 =1
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FIG. 8. The same as Fig. 7 for different projectors.

whose value is given bw(0)~2.97[or, for a general num- ber of interesting studies of Dyson-Schwinger equations.
ber N, of colors, a(0)~8.92N.]. Amongst these, the use of twisted boundary conditions on
Our results compare very favorably with results of recentthe torus might enable one to shed some light on the impor-
lattice calculations performed for two colors. Due to the fi-tance of topologically nontrivial gauge field configurations
nite lattice volume the lattice results cannot, of course, bdor the infrared behavior of QCD Green’s functions. We
extended into the far infrared. In this respect our results argvould like to note that recent lattice calculatiofid] indi-
complementary to the lattice ones: We do obtain the infraredate a relation between the existence of center vortices in the
behavior analytically. On the other hand, lattice calculationgnaximal center gauge, the area law of the Wilson loop and
include, at least in principle, all nonperturbative effectsthe infrared behavior of the gluon propagator in Landau
whereas we had to rely on truncations. E.g. the deviations fogauge.
the gluon renormalization functions at intermediate momenta Furthermore, we want to point out that choosing an asym-
depicted in Fig. 9 might be due to the neglect of the four-metric four-torus might provide an efficient mean to extend
gluon vertex function in our calculations. these calculations to nonvanishing temperatures. Here the
As an outlook we would like to mention that employing a main qualitative question arises about the fate of the Kugo-
four-torus as an underlying manifold might serve for a num-Ojima confinement criterion at the deconfinement transition.
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DSE on torus vs. lattice results (1 63x32)
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FIG. 9. Results on the torus compared to recent lattice rgRil{sAs the torus points are very close to each other on a linear momentum
scale we did not resolve the torus curves into single points.

Finally, we want to remark that QCD Green’s functions choice ofa and b which keepsZ; as weakly varying as
are an important input in many calculations in hadron physpossible seems the most reasonable one.
ics[1,2]. The next necessary step towards such phenemeno- This choice can be inferred using the scaling of the dress-
logical applications is a study of the quark propagator. Sucling functions extracted from the renormalization group equa-
an investigation might hopefully also provide some insighttion, see Ref[3] for details. The dressing functions can be
into the mechanism of quark confinement in covariantexpressed as

auges.
gaug a(X) 1+26 )
Z(X)=|—= RA(x),
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2\ 1+358
Zl(x,y,z;s,L)=(a(M )) R™37¥2(y)
APPENDIX A: ONE-LOOP SCALING a(y)
2\ 1+358
In the framework of the truncation scheme presented in X(“(“ )) R3+M/5(z).  (A3)
Sec. 11 C we have shown that the approximation a(z) '

In the perturbative regiom(y),R(z)—1 and the function

Z, is therefore slowly varying for ang andb according to

the logarithmic behavior of the running coupling In the
infrared, however,a approaches its fixed point while the
functions R behave like a power. Consequently the choice
for the gluon vertex renormalization constant yields the cora=b=36 guarantees the weakest momentum dependence of
rect one loop scaling of the gluon loop in the gluon Dyson-Z; which is illustrated in Fig. 10. Shown is tlyedependence
Schwinger equation. This is true for any valieandb. Of  of the functionZ,(x,y,z=y;s,L). [Note also that due to the
course, in a full treatment of the coupled ghost gluon systensymmetry Z;(x,y,z;s,L)= Z:(X,z,y;s,L) and the absence
Z,(s,L) would be independent of momentum. Therefore aof an explicitx dependence this is sufficient to demonstrate

G(y)(l—a/(?— 2a) G(Z)(l—b/5—2b)
Z(y)(l+a) Z(z)(l+b)

Z,(X,Y,z;8,L)=
(A1)
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FIG. 10. They dependence of the functias,(y,z) for different
values of the parameter Only the choicea= 34 leads to momen-
tum independence in the infrared. Due to the symmetry of the an-
satz for Z,(y,z) thez dependence is the same fo+a.

its momentum dependengén the perturbative momentum
regime the functionZ; does not vary with the parametaer

So all three choices give the same logarithmic running in
momentum as required to give the correct one loop scaling
behavior of the integral. In the infrared, however, a change in
a gives rise to substantial changes in the behaviof gfwith

only the choicea= 34 leading to a constant.

APPENDIX B: THE INFLUENCE OF ZERO MODES
ON THE SOLUTIONS

An important point when formulating the Dyson-
Schwinger equations on the torus could be the treatment of
the zero modes. In addition, on the torus an infrared analysis
like the one in flat Euclidean space-time is not possible, and
one is left with the problem of how the dressing functions
behave at vanishing momenta. Guided by the intuition that
especially the long ranged modes should be affected by the
finite volume we assume in the following(x—0)=0 just
like in the continuum an&(x— 0)=const if zero modes are

W:ZS_Q NCJ' (271_)4 Xy

Zﬁ Zst

Q'(x,y,z)=

PHYSICAL REVIEW B5 094008

d*q K(xy.2)

G(y)Z(2), (B1)

d*g M ,
f 1 (Xy MEY2 5 e

N[ d9 Q(y.2)
9 3f(277)4 Xy

G(y)—2—65 G(Z)—2—6§
Z(y)¥  Z(2*

(B2)

According to Appendix A we have chosarb= 36, where
6= —9/44, the anomalous dimension of the ghost. The ker-
nels have the form

K 1 (x=y)?| 1(x+y) 1 sirPO
e e B b e
(B3)
C1(¢-2 0y LyR 1 oLy (2
(B4)
1 1x% , 19-¢  5-¢ , (Y’
8y+X 8 Xy+Ty +§Y
1/x? 15+ ¢ 17—¢ yz
Z\y T Ta TTa Ve
19-¢x 3-4¢ 9y { 5-¢
fex o sty e o
4
+Z% (BS)

We first analyze the behavior of the integrands in the limit

neglected. Phrased otherwise we assume that the zero modes:0 for finite momentax. Then Z(z)—Z(x) and G(2)
are the missing ingredient to ensure the correct infinite vol-—— G(x) and the kernels times the respective dressing func-
ume limit for the torus results. Therefore, if on tori of differ- tions are to appropriate order in momentym

ent volumesG(x=0) shows no sign of becoming divergent,
the infrared enhancement seen @(x—0) or in the flat
space-time results has to be due to the torus zero modes of
gluons and ghosts.

Therefore, in this appendix, we will show that the as-
sumptionG(x=0)< does not lead to a contradiction in the
equations on the torus if zero modes are neglected. To this
end we focus on the truncation scheme without angular ap-
proximations. First we rewrite Eq$15),(16) as

094008-16
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L <> 1
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G(y) > *G(y) *® i o

T _

G(0) 2799G(x) 2789 cog®
— Z(0)35Z(X)35Xy Xy +-e . (B8)
127 1 1 1111 |l| 1 1 11 Il|| £} 1 11 11 Ill 1
-3 -2 o 0
Furthermorez=x+y— 2Xy cos® has been used and terms 10 1 L 1@
proportional to co® have been dropped, as they either in- x=p" [GeV]

tegrate to zero in the continuum or cancel each other in the

sums on the torus. Each of the expressi@®),(B7),(B8) is

then the appropriate term fgr=0 on the right-hand side of

the Dyson-Schwinger equations on the torus. Clearly on

observes that only a finite ghost mo@€0) avoids trouble

with divergencies. This is especially true for the ker@élof

the gluon loop, aZ 3%(y—0) is more singular than the  S(Y)G(2) (1—50052@) )
i : : vy MY, 2)=GY)G(Y)| —— "t |

simple pole, so this kernel vanishes for small momenta Xy Xy

The other two expression®6) and (B7) are finite. One is (B10)

then left with the ambiguous quantities 4h and co4®

which will be replaced by their integrals from zero tar2n ~ where the kerne’ is of no interest, as we know the gluon

the calculation at the end of this section. The arbitrariness abop to be subleading in the infrared. Clearly, the keMedf

this procedure is made considerably milder by the observathe ghost loop in the gluon equation is now singular for

tion that any number plugged in for the trigonometric func- — 0, corresponding to a vanishing gluon dressing function in

tions yields the same qualitative result at the end of thighe infrared. This result confirms our working hypothesis that
section. the gluon mode&Z(0) is not affected by the finite volume of
Second, we take the limiz—0, which on the torus is the torus. The integrand of the ghost equation is finite up to
identical to®—0. The ghost kernel st®/z> alone would  the pointy=0. There the pole in the kernel is canceled by
certainly diverge a® — 0, but taking into account the power the behavior of the gluon dressing functidfy) ~y2~ result-

law behaviorZ(z) ~z?* for the gluon dressing function the ing in a zero for vanishing momenturandy.

integrand is zero in this limit. This is valid foe>0.5, which We therefore arrive at a consistent set of equations for a

is in agreement with the infrared analysis in the continuumf{inite ghost modeéS(0) and a vanishing gluon mo@0). In

We therefore may omit the poings=0 in the ghost equation. Fig. 11 we show the results for the ghost dressing function

The situation is different in the gluon equation where thegained on two different volumes on the torus. Within numeri-

kernel of the ghost loop has a finite limiz—0: cal accuracy the values @(0) are the same for the two

M (x,x,0)/xy=({+1)/(2x?). Therefore with a finite ghost volumes. Obviously terms with high loop momentyrgon-

dressing functionG(0) the pointsz=0 in the ghost loop tribute most to the right-hand side of the ghost equation for

contribute but no divergencies occur. In the gluon loop thevanishing momentunx. Furthermore, one observes that the
kernel Q" multiplied by the dressing functions approachesactual value of5(0) is not in accordance with an extrapola-
zero for vanishing momentumdue to the power law behav- tion of the ghost curves to the infrared. There is also no
ior of Z73%(z—0). sizeable change of the gluon and the ghost dressing function

To obtain a definite value fo5(0) we now investigate whenG(0) is set to zero by hand. This has been done in all
the behavior of the equatior®81),(B2) in the limit x—0. calculations in the main body of this paper.

The integrands are then given by Having shown thatG(0)<« on the torus even in the
infinite-volume limit and assuming that the torus should pro-
vide a reasonable infrared regularization of physics in flat

G(V)Z 20 space-time we conclude that the divergenc&¢0) is very
¥)Z(2) K(x,y z)—>G(y)Z(y)SI (B9) probably due to the torus zero modes of gluons and ghosts.
Xy o 27 Noting furthermore that a diverginG(0) is related to the

FIG. 11. The ghost mod&(0) compared with the results for
finite momentunx on the torus. For convenience we have kept the
logarithmic momentum scale and plotted the zero modes on the left
%order of the figure.
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Zwanziger-Gribov horizon condition and the Kugo-Ojima ¢ 1 9 g2N xdy y
confinement criterion this indicates a direct relation between —— - ———=—— ;(Z(x)f — =G(y)
zero modes, the Gribov horizon and confinement. G(x)  G(se) 4 48w 0 X X

A2dy
+ fx 72(y)G(y)Z(se)

APPENDIX C: NUMERICAL METHODS FOR FLAT q 2d
- SG A

EUCLIDEAN SPACE-TIME Xf s_yslG(y)’Lf _yz(y)G(y)),
The numerical methods to solve the coupled gluon-ghost G =G ¢ ¥
system in flat Euclidean space-time after applying angular (C2
approximations has been described in great detail in Refs. .
[4,25]. Note that different numerical techniques have bee or the truncation scheme of Sec. IIB a_nd anal(_)gous equa-
employed in Refg3,25] and Ref[4]. We have used all these tions for the scheme of Sec. Il A thereby introducing subtrac-

techniques to verify the independence of our solutions fron{on pc_)lntssz andsg . The parts of the_mtegrals from_:O
details of the numerical treatment. to an infrared matching point are carried out analytically,

First, we discuss the numerical renormalization procesaVith the dressing functions in the integral being replaced by

As we know the characteristics of the solutiGngriori we  their leading infrared behavid82)

may exploit the possibility of_independent subtractions of th_e Z(x)=Ax2*, G(x)=Bx *.

gluon and the ghost equation. The procedure followed in _ . .

Ref. [3] was to eliminate renormalization consta@igand  The infrared analysis leads to fixed valuesind a.= «(0)

~ _ 2 2 i H
75 by subtracting the equation at the renormalization scalé™ (9°Nc/12m)AB?, so A is left as a free parameter in the

s=u2. The results presented in Sec. IV A are generated b)infrared expansion. I_:or nu_merical reasons it_is convenient to
solving the equations choose the subtraction pointgg=0 ands; to lie above the

maximum ofZ(x). The two input parameters that determine
the renormalization point where we require the normalization
conditions G(s=u?) =Z(s=u?) =1 are thenA and the

1 1 @°Ng xdy( y* 3y value of the gluon dressing function at its subtraction point,
“Ze) aa2| G| ol TS5 |G ie. Z(sy)
Z(x)  Z(sz) 48w o X | x2 2x £.2(sy).
The equations are solved using the Newton iteration
a2dy ) szdy y? method thereby generating ve_llues for the propagator fu_nc-
+ | 556G(y)—G(sz) Pl Bl tions. These are then plugged into the unsubtracted equations
y 0%z 8z to obtain the respective values of the renormalization con-

3y A2dy stantsZ andZ5 for a given cutoffA and a given renormal-
+ 7e. G(y)+J Z—GZ(y) , (Cy ization scalew which allows us finally to determine the nu-
Sz sz <Y merical solutions respecting the normalization conditions
G(s=u?)=2Z(s=pn?=1.
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