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We examine the role oB%(B%)—om®—w* 7 #° decay in the Dalitz plot analysis d8°(B%)—pm

— 7t 7~ 7% decays, employed to extract the CKM parameieiThe o channel is significant because it can
break the relationship between the penguin contributionB-np°#°, B—p*"#~, andB—p 7" decays
consequent to an assumption of isospin symmetry. Its presence thus mimics the effect of isospin violation. The
o0 state is of definiteCP, however; we demonstrate that tBe- p analysis can be generalized to include

this channel without difficulty. Ther or fo(400—1200) “meson” is a broad =J=0 enhancement driven by
strong w# rescattering; a suitable scalar form factor is constrained by the chiral dynamics of low-energy
hadron-hadron interactions—it is rather different from the relativistic Breit-Wigner form adopted in &rlier
—om andD— o7 analyses. We show that the use of this scalar form factor leads to an improved theoretical
understanding of the measured ratio Bt p* 7 *)/Br(B~— p°m ).
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[. INTRODUCTION Polosa have argued as a consequence thdthe 7 chan-
nel contributes significantly to thes phase space iB
Measurements at SLAC ang KEK of the time-dependent ., ; -+ 7~ and modifies the rati08(§°—>piwi)/B(B*
CP-violating asymmetry inB(B)—J/¢Kg [1,2], yvielding  —p°7 ™) to yield better agreement with experim¢ai. The
sin(2B), have conclusively established the existenceCéf  scalar form factor, which describes the appearance obthe
violation in theB meson system. The results found are con-in the 7+ 7~ final state, enters as a crucial ingredient in the
sistent with standard modéEM) expectationd3], so that assessment of the size of these effects. The scalar form factor
establishing whether or not the Cabibbo-Kobayashi-cannot be determined directly from experiment; nevertheless,
Maskawa(CKM) matrix [4] is the only source o€P viola-  ample indirect constraints exist, permitting us to describe its
tion in nature, as in the SM, requires the empirical measurefeatures with confidencgl0]. Nevertheless, different ap-
ment of all the angles of the unitarity triangle. proaches, with different dynamical assumptions, yield
In this paper we consider the determinationaothrough  roughly comparable descriptions of ther scattering data,

a Dalitz plot analysis of the decayB°(B° —pw  so that the emergence of a favored form of the scalar form
—at7~ 7% under the assumption of isospin symmetryfactor does not resolve the question of whether ¢hes a
[5,6]. Ten parameters appear in the analysis, and they can fge-existing resonance or, rather, a dynamical consequence
determined in a fit to the data. Nevertheless, the assumptiogf 77 interactions in the final state. We follow R¢10] and
of p dominance iBB— 3 decays has no strong theoretical adopt a unitarized, coupled-channel approach to the final-
basis[7], so that the contribut!ons from other resonances instate interaction&=S) in the mr-KKsystem, and match the
Fhep ™ phase space may be Important. We discuss how thFesulting scalar form factor to chiral perturbation theory
isospin analysis can be enlarged to include dhwe channel . . . .
as well. Theo or f (400 1200) *meson” is a broad=| (CHPD in the regime where the Iatter. is appllgable. The
=0 enhancement, close to tpemeson in mass, so that the _resul_tlr_lg form factor, in ther char!n_el,_dlscu_ssegl in Sec. V,

is strikingly different from the relativistic Breit-Wigner form

om channel can potentially populate ther3phase space o . :
associated with thp 7 channels. Ther# final state contrib- adopted by the E791 Collaboration in their analysis ofdhe
inD*— 7" 7" 7~ decay—the latter form factor is also used

utes preferentially to the°#° final state. In the context of ' ) :

the isospin analysis, such contributions are of consequendd Ref. [9]. The differences are particularly large as

as they invalidate the underlying assumptions of the isospin~2M ., so that the relativistic Breit-Wigner form is at odds

analysis and thus mimic the effect of isospin violation. with CHPT in the precise region where it is applicable, note
Our considerations are inspired in part by recent studie&ig. 4 in Ref.[10]. This casts doubt on the recent conclusions

of D-—# wta~ decay: the E791 Collaboration find that Of Refs.[8,9], prompting new analyses incorporating a suit-

the pathwayD  — o— = 7 7 accounts for approxi- able scalar form factor.

mately half of allD~— 7~ " 7~ decayq8]. Deandrea and The generation of the: resonance via strong rescattering
effects, as in the approach we adopt, indicates that Okubo-

Zweig-lizuka-(OZI-)violating effects in the scalar sector are
*Electronic address: gardner@pa.uky.edu significant. Moreover, the “doubly” OZI-violating form fac-

"Electronic address: u.meissner@fz-juelich.de tor (0|ss|7) is non-trivial as well; such a contribution is
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needed to fit therm andKK invariant mass distributions in o L 1
JIy— pmrm(KK) decay[10]. These effects are also needed a;-=AB —p 7 ):2\/§[A3/22+ Asiz 2]
to explain the branching ratios of the decays of #3€980)
andf,(980) states intar7m andKK final stated11]. These 1 1
observations give new insight on rescattering effects in had- +§[A3/2,1+ A1/2,ﬂ+?A1/z,o, (4)
ronic B decays, generating a new mechanism of factorization 6
breaking inn=3 particle final states.
The contribution of theB— o7 channel to theB— p°r _ 0 4
phase space can also modify the inferred empirical branching a_=AB —p 77)= 2\/§[A3,2,2+ Asi22]
ratios in these channels. Combining the CLEO requlf§

1 1
Br(B~—p%7)=(10.4'33+2.1)x 105, (1) 5 [Aszat Azl +%A1/2,o' 5

Br(B®—p*m)=(27.6"84+4.2)x107® (29 and

with the BaBar result[13] Br(B°—p*7")=28.9+5.4

1 1
ag=A(B°— p°70) = — —[ Az o+ Acpr o] +—=A1 0,
+4.3 (charge conjugate modes are imp)igdelds, adding 00=Al P \/5[ w22t Aozl J6 vz0

the errors in quadrature and ignoring correlations, (6)

BHEO s o™ noting thatA(B®—w* 7 n%)=f,a,_+f_a_,+fyag,

— MZZ_E 19 (3  Wheref; is the form factor describing'— . Isospin is
Br(B~—p°7") merely an approximate symmetry of the SM; nevertheless,

our parametrization possesses three independent “isospin”

This ratio of ratios is roughly 6 if one works at tree level and@mplitudes, distinguished By, to describe the three empiri-
uses the naive factorization approximation for the hadroni¢al amplitudesa;; , so that it persists in the presence of isos-
matrix element§14]. The inclusion of penguin contributions Pin breaking as well.
can alter this result, and potentially yield better accord with The lowest-dimension operators of the effectiyaB]|
theory and experimeft5—18. However, our focus will par- =1 Hamiltonian generate transitions p&l|=1/2 or 3/2
allel that of Ref.[9]: we wish to examine howB— o character, so that [a\ || =5/2 transition is generated, in this
— 37 decay, given a particular scalar form factor, can effec-order, through long-distance, isospin-breaking effects in con-
tively modify the theoretical prediction of the ratio given in cert with a|Al|=1/2 or 3/2, short-distance, weak transition.
Eq. (3). It is apparent thaB— o is of greater impact in If we neglect transitions ofAl|=5/2 character and, indeed,
B—p®7 decay, so that the inclusion of such contributionsisospin-violating effects all together, the transitiba-qqd
ought alter the ratio of ratios. which mediatesB—pm decay can be realized through a
We begin by reviewing the isospin analysis BY(B%)  “tree” amplitude with [Al|=1/2 or 3/2 or through a “pen-
—pm—a @ a° decay[5,6] in Sec. II, and discuss its ex- guin” amplitude with [Al[=1/2. Practically, the decay to-
tension to include!3°(§°)—>aw—> =t 7 7% decay in Sec. polog_ies_are distinguished_ by their weak phase, so that the
IIl. We proceed by evaluating-mediatedB— 3 decay in contnbgtmns associated W|th thg CKM factar§,V q, e.g..,
Sec. IV, relegating the-mediatedB— 37 decay formulasto &€ Qeflneq to be tree_co_ntrlbutlons, regardle_ss_ of their dy-
the Appendix. Our analysis employs the scalar and vectop@mical origin. The unitarity of the CKM matrix in the SM
form factors discussed in Sec. V and Sec. VI, respectivelymPlies that two combinations of CKM factors suffice in
We conclude with a presentation of our results in Sec. Vildescribingb—qqq’; here we associate the combination

and an accompanying summary. Vi, Viq With the penguin contribution. Noting
. VioVua toVid -
Il. PRELIMINARIES: ISOSPIN ANALYSIS OF B—pa b H® iy =g B (7)
VEV " VAV

Let us recall the isospin analysis possibleBin-p de- ViVl ViVl
cay [5,6]. Under the .assumption of isospin symmetpp*@ anda=m— B— v, we have
final state can have isospip=0,1, or 2, whereas the™,B
states form an isospin doublet. Thus we can hadé| ehfa, =Tt e laypt-,
=1/2,3/2, or 5/2 transitions iB— p7r decay, so that we can
parametrize the amplitudes which appeaﬁkpM“f. We have eha_, =T telaqtp +, (8)
[5,191"

e'Pagy=T%% o+ P00,

We flip the overall sign of they, amplitude with respect to Ref. The overall weak phase'® is without physical impact and
[19], to conform with our computation of the amplitudes. can be neglected, because in the SM the weak phase associ-
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ated withB®— B° mixing is controlled byg/p=exp(—2i3).2 The impact of .these isospin-violating effects can be re-
- , ) ) dressed, at least in part. For exampleBin> p decay, the
Thus qa;; /p=exp(-if), just asa;; is. Consequently, the a_  amplitude appears in the combinatidky, +Ags
isospin analysis iB— p decay determines. The crucial  61,ghout Eqs(4), (5), (6). Moreover, the two amplitudes
assumption of the isospin analysis is to associate the CKMpore"the same weak phase, to a good approximation. This
factor V}} V4 with |Al|=1/2 transitions exclusively, so that emerges because, unliké—ma decay [28], no “|All
from Egs.(4), (5), (6), we have =1/2 rule” apparently exists inB—ma decay—though
B(B"— 7" 7P has yet to be conclusively determing2p].
1 Recent theoretical estimates suggest that the magnitude of
POO:z(P+_+P_+)- (9 the ratio of the|Al|=1/2 to |Al|=3/2 amplitudes inB
—arar decay is roughly 0.330], so that thd Al|=5/2 am-
plitude is driven by an underlying\||=3/2 weak transition.
The overall strong phase in E@) is trivial, so that with Eq.  Strong-interaction isospin violation acts in concert with a
(9), we have ten parameters in all, which can be determinegiA | | = 3/2 weak transition to generatd &l |=5/2 amplitude,
in an analysis of the Dalitz pld6,19]. whereas electromagnetism can generatd la="5/2 ampli-
The presence of the'w final state in the phase space tyde from a|Al|=1/2 weak transition. The size of strong-
associated with the°w° channel breaks the relation as- interaction isospin violation is typified by the®— » mixing
sumed in Eq(9), and thus mimics the appearance of isospinangle €= [3(my—m,)/4(m — ) with ﬁ1=(md+m )/2:
violation. In this paper we study how the impact of this ad-\ ™ 1o thate®/a~1.45 [351] enhancing the extent to
ditional decay channel can be minimized. It is worth noting,Which Acrz, and Ay, » Share th,e same weak phase. To the
howeyer, e t.he”T final state is of de_ﬂmté:P, SO that the degree that this is true, the phenomenologichlparameters
isospin analysis can be enlarged to include this channel Eq. (8) include|Al| =5/2 effects as well. Thus we see that

well addlltlonal' observables are also present' In th!s CaSGhe single, crucial assumption of the isospin analysis is that
Before doing this, let us enumerate the ways in which SM * : - "
) oS . . the CKM factor V},V,qy accompaniegAl|=1/2 transitions
isospin violation can impact the usuBl-p= analysis, to

determine whether the impact of these effects can be reducgd(dus'vew’ for in th|s_case_ the weak phases ofAlg , gnd .
as well: Azpp 2 amplitudes are identical. We have shown that isospin-

(i) Isospin violation can generate an additional amplitudeVio""’ltingl con?ributions bu?lt on th@AIlf3/2 _short-distgnce,
of |Al|=5/2 character, as in Eq&d), (5), (6). A |Al|=5/2 Wweak transition do not impact the isospin analysisBn

amplitude can be generated bym,—m,) or O effects P FOMCLEr Mot L L bongn SRS, be (O
in concert with aJAl|=3/2 weak transition, or byO(«) peng

effects in concert with dAl|=1/2 weak transition. The quent to isospin-violating effects in the hadronic matrix ele-

O(my—m,) term acts as an isovector interaction. We recalMeNts of| Al|=1/2 operators, present a irreducible hadronic

that the physical neutral pion state is an admixture of theamb'gUIty from the viewpoint of this analysis.

pseudoscalar octet fields® and 7: that is, ()= 7° Empirical information on the all-neutral moda;, is es-
T+ e with e~O(my—m,) Conseqhentlw acts asphésn _q1 sentialto the extraction af; however, itis possible to bound
d u/- -

“spurion” [20], encoding isospin-violating effects so that the tN€ SIrong-phase uncertainty using boundsagp and its
matrix elements with the spurion agJ(2); invariant. Isos- CP-conjugateag, [19]. Under the assumptions we have ar-
pin violation is also realized via the*, B® mass difference; ticulated, the bounds on the hacjromc uncertainty realized in
such effects are not encoded in the spurion framework, bu8—p7 decay[19] are not modified by the presence of a
they are also comparatively trivial. Al|=5/2 transition. _

(i) Isospin violation can modify the form factofs. The An isospin analysis oB— m decay also permits the
factor o, e.g., is distinguished by the G-parity-violating de- €xtraction of sin(z) from the mixing-inducedC P asymme-
cay w— 7" . The magnitude and phase of this effectivetry in B—m"7 [32]. In this case, in contrast, thell|
p%-w “mixing” can be elucidated frome* e —z* 7~ data = 5/2 amplitude cannot be combined with il |=3/2 am-
[21]; however, the contribution is reflective of the ded@y  Plitude. WithAy . we have
—om’— 77 70 so thatay, is modified in this region as
well. In addition, electromagnetic effects distingui$h, 1 1
probed in7 decay, fromf, [22,23. by =AB =7 7 )=— —=A1p ot —=[Az22- Asp2l,

(iii) Penguin contributions dfAI|=3/2 character can oc- V3 V6 10
cur, either through electroweak penguin effe¢®f], or (10
through isospin violation in the matrix elements of the glu-

onic penguin operatdr5—27. 1 2
Peng P boo=A(B— m07%) = — ﬁAuz,o_ \[g[As/z,z_ Aszs

(11)
’Recall that theB mass eigenstates are defined \Ba)=p|B°)
+q|B% and|By)=p|B%—q|B°. We assume throughout that the /3
width difference of the twd mass eigenstates is negligible, so that b, =A(B*— 7" 7%) = 7A3,2 o+ TAS/z 5 (12
|la/p|=1. TNz
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As the case oB—pm, three isospin amplitudes describe o L ) 1+]|Ng,|?
three empirical amplitudes, so that we expect our parametri- I (B°(t)— 7" 7~ 7°)=[Ag,|“exp(—T't) —
zation to persist in the presence of isospin violation. The

lowest-dimension operators of the effective weak Hamil- (1—|\3,? A

tonian generate transitions pfl|=1/2 and|Al|=3/2 char- + 2 cogAm )

acter, so that in the absence of isospin-violating effects in the

hadronic matrix elementsh;;; — A and Az, ,—A,, and —Im )\3wsin(Amt)}, (14)

two amplitudes suffice to describe the three transitions. The

isospin analysis inB— m relies on the relation i, _

—boo)/v2— b o=0[32]. The right-hand side of this relation whereas the decay rate into’ =~ 7° for aB® meson at time
is proportional toAs, ,, so that the required relation is bro- t=0 is given

ken by amplitudes ofAl|=5/2 character. With such effects

the isospin analysis can fail to determine the true value of — B 1+]|N3,|?
sin(2q) [25]. The smallB— 7%7° rate makes the full isospin Bt —m"m 7%= |A3,,|2exp(—Ft){T
analysis difficult to effect, so that bounds on the hadronic

uncertainty in the extraction of sing} have also been con- (1—\34]%)
structed[33—36. The presence of thg\l|=5/2 amplitude, B 2 cogAm f

as well as that of electroweak penguins, imply that the

bqunds can underestimate the §ize of the hadronic uncer- +Im)\3wsin(Amt)}. (15)
tainty [25]. However, bounds which rely on the neutil

modes exclusively, such as E§3) of Ref.[33], contain the

same linear combination ¢A\I|=3/2 and|Al|=5/2 ampli- We note that\s;,=qA;,/pAs,, where we have defined
tudes throughout—so that our arguments concerning thg3 —AB— 77 7%, and Am=M,—M,. Different

|Al|=5/2 amplitude inB— p7 decay are germane here as ghservables are possible. For example, we can consider un-
well. We conclude, to the extent thel|=3/2 and|Al|  tagged observables, for which the identity of Bieneson at
=5/2 amplitudes share the same weak phase, that sugk-0 is unimportant, so that I'(B%(t)— =" 7 =°)
bounds are insensitive to thal|=5/2 amplitude and yield +T(BY(t)— 7t 7% (1+|\s,]?), Or We can consider
more reliable bounds on the hadronic uncertainty. time-integrated, tagged observables, containigBO(t)
— 7t 7 79T B (t)— "7 «°), which are sensitive to
(1—1|X\3,/%). The productsf;f¥ contained therein are distin-
IIl. EXTENSION OF THE ISOSPIN ANALYSIS: guishable through the Dalitz plot of this decay and thus the
INCLUSION OF THE oz CHANNEL coefficients of these functions are distinct observap@s
Were we to neglect the-r channel, nine distinct, untagged
observables exist, so that all the hadronic parameters save
one would be determinable from the untagged data, for
which greater statistics will be availabl&9]. If we enlarge
the analysis to include the#° channel, the additional inter-
ferences possible imply that there are now sixteen distinct,
untagged observables. Moreover, there are fifteen, rather
than eight, tagged, time-integrated observables as well. Nev-
ertheless, it would seem that the additional hadronic param-
T andP° are unrelated to the parameters of B, so that  eters associated with ther° final state can be extracted
we gain four additional hadronic parameters. However, morérom untagged data alone. Of course the practicability of the
observables are present as well. Including the scalar channgocedure relies on the amount of data eventually collected;
we now haveA;, =AB— 7 7 #%)=f_a,_+f_a_, moreover, the observables are highly correlated.
+foaget fyag, Wheref, is the form factor describingr
— "~ . It is worth noting that any discernable presence of IV. EVALUATING B—at 7~ 7° DECAY
the B— o channel in theB— p phase space falsifies the .
notion that the “nonresonant” background can be character- The effective|AB|=1 Hamiltonian foro—dqq decay is
ized by a single, constant phase across the Dalitz[BI0}t given by
For further discussion of the treatment of nonresonant con-
tributions, specifically irD — 37 decay, see Ref38]—note

The B— o channel has definite properties und@=, so
that it can be included in thB— p# analysis as well. De-
fining ajy=A(B%— o7?), we have

e'Pagy=TPe 1o+ PP, (13

also Ref[7], Har= k| No(C108+C,08+ Ao(CLO5+C,09)
Neglecting the width difference of th8-meson mass V2

eigenstates, adal'=I'y—I'| and |AT|<I'=(T'y+1)/2, 10

we note that the decay rate into" 7~ 7° for a B meson at 2> co, (16)

time t=0 is given by[39] e T
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wherel q=Vq,Vqq With Vj; an element of the CKM matrix. Ge . .

The Wilson coefficientsC; and operator®; are detailed in To6=— —\, a52 dy*(1—ys)b®qy,(1+vs)q
Ref.[40], though we shall interchang,0{« C,0% so that V2 .

C,~0O(1) andC;>C,>C3; 4o. The contributions with _ _

=3 ...6 correspond to strong penguin effects, whereas —ZaeEq: q(1-ys)b®d(1+y5)q|. (21)

those withi=7 ... 10 arecharacterized by electroweak pen-
guin effects. The Wilson coefficients with=7 ... 10 are _ .
numerically smaller than those witk=3 . . . 6, andpenguin ~ We definea;=C;+C;, ;/3 fori odd anda;=C;+C;_,/3 for

effects are not CKM-enhanced in—dqq decay, so that we | €V€n; note, too, thajeu,d,s,c if p=m.

shall neglect the terms with=7 . .. 10 alltogether. We now specifically consideB— o 7r transitions; the rel-
The decay amplitude foB— M;M,, whereM, and M, evant formulas foB— pm are detailed in the Appendix. By
are mesons, is given by “o,” we always mean a two-pion state with total isospin

zero and in a relativ&wave state, fr) g, understanding its
dynamical origin in the strong pionic FSI for these quantum

A(B—M1M3)=(MM;|He|B). (17 numbers—see the following section for a more detailed dis-
cussion. The matrix elements involving theare

The requisite matrix element contains terms of the form
9“(o(py)|dy,.(1— v5)b|B°(Pg))

Ci(u){M1M,|O;|B). (18 — —i(M2—M2)FB~(q?), 22)
We adopt the naive factorization approximation to effect es- — , ) ,
timates of the hadronic matrix elements. To wit, we separat¥/Nere d=pg—p, and (o|q’y,(1+ys)q’|0), noting q

O, into a product of factorized currentis,® j ,, and evaluate € Y,d.S, vanishesby C invariance. It is just such a suppres-
(M4]j1|BYM3,lj,|0), so that the operator matrix element be- SIO" mechanism that_prompts the authors of I'{éf;_t] to
comes a product of a form factor and a decay constant. Suciy9ue that non-factorizable effects ought be relatively en-
a treatment, albeit simple, is incomplete. The amplitudd'@nced in two-body decays to final states with scalar me-
A(B—M;M,) is related to a physical observable and asSONS; as the factorlzanqn contribution is itself sma!l. Never-
such must beu-independent, though the; therein do de- theless, as our focqs is the scalar form factor itself, we
pend on. Evidently thex dependence of the operator ma- Proceed W”E our estimates.

trix elements compensates to yielgdndependent result. In ~ FOr them™ we have

the naive factorization approximation, we have replaced the

operator matrix element by a product of a form factor and <7T+(p)|jyu(1_ ys)d|0)=if ,p* (23)
decay constant. These quantities are themselves physical ob-

servables and thus are without dependence, so that the

overall © dependence of the computed amplitude remainsz.ind
Effecting this approximation, however, allows us to realize a

+ 11 _ RO
clear connection to earlier wofl@,16], for our purpose is to (7" (p)|uy,(1—v5)b|B°(pg))
illustrate the impact of using a scalar form factor consistent (MZ— MZ)
with low-energy constraints. o =| (Pg+Pp),— B 2 m a, FB-7(q?)
In the naive factorization approximation, we can replace q
the effective Hamiltonian by the sum of products of factor- M2— M2
ized currents, so thatlez= T+ T>*+ T > where +( B_2 ) FB-7(q?). (24)
q
Ge o o Wi . .
12_ °F wiq_ _ ith these relations, Eq$19), (20), (21), and the equations
7 \/E)\“[aluy (1= ys)body,(1=ys)u of motion for the quark fields, we have
+a,dy“(1— y5)b® Uy, (1— ys)ul, (190 (7 o|HexB)
G
G, B N = 75| T=ME=MOFE (M%)
T34=— =)\ 232 dy*(1- ys)b®qy,(1-7s)d
V2 q ,
agM:.
o . X )\ual_)\ta4+)\tf
+a4% qv“(l—ys)b@bdm(l—“ys)q}, (20) m(m,+m
o|dd|o
+7\tZaeM(M§—M1)Fg_’W(M§)] (25
and (Mp—m)
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and

fr

V2

Ge

(00| He| BO) = % (M3—M2)F5~7(M?)

.

aeMi
X[ Ay@rt Nids— A=

m(m,+m)

dd|o
—)\tZaGM(Mé—Mi)
(mp—m)

G
X—

V2

: (26)

where we have replaced thied quark masses wittn and set
M, o=M_ =M, and Mg==Mpogo=Mg, as we neglect

PHYSICAL REVIEW D65 094004

constraints or‘Pf’,0 in Eqg. (13) can be realized. Parametrizing
the amplitudes in terms oﬁm,‘,lf, we have

A(B° 0) ! A ! A (27
— 0T )= —= ——

B2l SR
and

AB ' —om")=—Ayp1— > A3, (28)

so that two isospin amplitudes appear for the two empirical
amplitudes. Although théAl|=1/2 amplitudes are simply
related, we see that no useful constraint emerges, as the tree
amplitude inB*—o# ™", which includes/Al|=1/2 and 3/2
amplitudes, gives rise to two additional, undetermined had-
ronic parameters.

We have illustrated that the penguin relation essential to
the isospin analysis iB—pm, Eqg. (9), can be broken

isospin-violating effects. We adopt the usual phase ConVenprough the presence of ti&— o decay channel. In our

tions for the flavor wave functionsﬁ,wo,w‘zug,(uu

—dd)/+/2,du, and adopt analogous relations for theme-
sons as well. In the context of tl— p 7 analysis, the decay

B~ o, specifically its penguin contributions, modify Eq.

numerical estimates, however, we neglect penguin contribu-
tions, in order to retain a crisp comparison with earlier work
[9], for our purpose is to illuminate the impact of the
—at7~ form factor. With such an approximation, a com-

(9), the assumption crucial to the analysis. Thus it is imporPutation of the Wilson coefficients in leading order in
tant to make an assessment of the size of penguin effects fffices[42], so thatC;(u)=1.124 andC,(u)=—0.271 at

this decay. The terms containirag, the scalar penguin con-

pn=m,=4.8 GeV as per Ref43], to yield a;=1.034 and

tribution, are formally Ih, suppressed, but can be chirally 82=0.104. In contrast, Ref[9] uses the *fitted” values

enhanced: the numerical factdvi fT/(rAnmb)~0.6 is only
modestly less than unity. The second term proportionalgto
containg/o|dd|0), where we anticipate, in the vicinity of the
o resonance,l',,..(s){a|dd|0)=(m"(p,)7 (p_)|dd|0)
=2/3B,I' *(s), whereT'}(s) is the scalar form factor,
which we detail in the next section, ase (p, +p_)?. The

C4(mp)=1.105 andC,(my)=—0.228, to yielda;=1.029
anda,=0.140. These are very similar to the Wilson coeffi-
cients in next-to-leading-order QCD, after Rpf4], used in
the B— pr analysis of Ref[16]. For definiteness, we shall
adopt these last values, detailed in Sec. VII, in our numerical
analysis. The values @f; are quite similar, whereas those of
a, differ by tens of percent. Generally, we expect our nu-

parameterB, is related to the vacuum quark condensatemerical predictions for decay channels controlledabyto be
Neglecting small terms of second order in the quark massesgss robust, as the scale dependencefas illustrated in

BO=—(0|aq|O>/Ff,, whereF ., the #° decay constant, is
f./\/2. Commensurately, we can simply s&f=M2/(2m)
to realize our numerical estimates. Note thgt,,. describes
theo— 7" 7w~ form factor. With our convention&,>0, so

that the twoag contributions are of the same sign. Using the

parameters of Ref9] andT',,.,=T7* x with, as we shall
determine,y=20.0 GeV !, we find theag term containing
f . to be roughly a factor of four larger. THer|dd|0) term,
present in the penguin contributions B+ o, slightly en-

hances theag contribution and its subsequent cancellation

with the a, contribution, asa, andag are of the same sign.

The same cancellation occurs@—mowo (see the Appen-
dix for a compilation of the relevant formulgsso that pen-

guin contributions inB°—ox® can be expected to be

crudely comparable to those BP— p°#°. Modifications of
Eg. (9) can thus be expected to occur.

Table Il of Ref.[43], is severe. Note that it persists to a
significant degree in the next-to-leading order treatment of
Ref. [30] as well.

Nevertheless, let us proceed to consider numerical esti-
mates forB— om decay. We reconstruct the meson from
the (m* 7 7)s final state, so that we have

A, B—r"m m)=((c—7" 7)) 7| He B)

=A(B—om)l ,.x, (29
wherel', .. is theo— a7~ form factor introduced previ-
ously. The scalar form factor contains the meson loop func-
tion and thus a regularization scgle at which it is evalu-
ated. In our approach, this scale dependence is disjoint from
that associated with the renormalization of the operators of
the effective, weak Hamiltonian, so that it is chosen for con-
venience and is quite independentof It may seem unto-

In the previous section we determined how the isospinward to graft two very different calculations, namely, of

analysis inB— pm could be extended to includ@— o .

A(B—om) and of .., to yield A(BB—(oc—=m" 77 ) 7).

Equations(25) and (26), however, are related by isospin In a holistic treatment one might hope to recast a resonance
symmetry, so that it is useful to determine whether additionabnd its subsequent decay products in terms of a single, com-
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T (py) ((o—m" 77_)W0|Heﬂ|§0>
B Gr . (B—a) pp2 2 2
g Zﬁvubvudaz Fo (Mw)(MB_M(r)
T (p,) fr
2 XEFMW(t). (32)

+
b1

FIG. 1. B—#" 7~ « decay as mediated by the resonance. In Ref.[9], theoc— 7" 7~ vertex function is chosen to be
The factorized weak vertex is denoted bg &.” The filled circle

denotes the strong three-meson vertex, lere2 . 1
. . . . - . FUWW(X) gU'7T+7T X—M(2r+|r(r(X)M(r ’ (32)
plex hadron distribution amplitudes(x, u), which describes
the non-perturbative dynamics. The analysis of the decayhere the running widtfi,(x) is defined as
amplitude could then proceed via standard PQCD techniques
[45,46]. In this manner the:, dependence of which we have M JA— M2
spoken is connected, albeit loosely, to the scale dependence I,(x)=T,— ———. (33
of #(x,u). Nevertheless, the explicit “QCD factorization” Vx VMG/4=MZ
analysis of Ref[30] shows that the scale dependence of the o
hadron distribution functions is trivial in an NLO analysis in e shall adopt, however, the definition
ag, SO that the consistency issues to which we have alluded s
are beyond the scope of current calculations. Fora(X)=xT717 (%), (34)

Tuming to B (pg) 7" (p+)7_(p)7 (p2) decay,
we define u=(pg—p1)®=(p++p2)® and t=(p,+p)?
The contributions driven by ther resonance are of the
form B~ (pa)— (o~ ()7 (P1)7 (p2) or B (po)
— (o=t (pL)7m (p,))7m (p)—the latter is illustrated nen2y | Jortas
—lo _ iter XITI(M2))| . (35
in Fig. 1. (The corresponding contributions tB—pmr r,(MoO)M,
decay are illustrated in Fig. 2The two contributions add
coherently, so that the branching ratio fdB (pg)  Using the parameteig, +,-, M, andl'; of Ref.[9], that
—a (py)m (p1) 7 (py) is enhanced through the presenceis, M ,=478+24 MeV andl’ ,=324+41 MeV as reported
of two identical pions in the final state. B decay this does Py the E791 Collaboration 'nD+?3ﬂTY and gy
not occur, and we hav@®(pg)— 7 (p. )7 (py) 7°(p.). =2.52 GeV,_we find y=20.0 Qe\/‘ . Alternatively, X
Thus we find =\2/3By/(|dd|0), so that this procedure determines

(o|dd|0) as well.
The o meson is a broal=J=0 enhancement, close to
((c—atm )m | Hee|B™) the p meson in mass, so thBt— o7 decay can contribute to
the allowed phase space Bf-pm decay as well. To ascer-
tain the impact of théd8— o7 channel toB— p 7 decay, we

where the normalizatioly is fixed to be identical to that of
Eqg. (32), namely

F — 0

= Evﬁqud a; F 2 (M2)(Mg—M?) combine the decay channels at the amplitude level and then
integrate over the relevant three-body phase space to deter-

xf [T, )+, (u)], (30) mine the effective B-pw branching ratio. ForB(pg)

—at(py) 7 (py) 7(p,) decay, we define
r* + cosp= P2 (36)
pallpal

— T where the primed variables refer to the momenta in the rest

™ () B0 frame of thesr ™ (p’.) 7= (p;) pair, so thatp;+p’. =0. Let-

ting p5=M3, we have

n(py) . (M,+8)? 1

1
F(B—>peﬁ77)=f dcosef 3
FIG. 2. B—#" 7~ 7 decay as mediated by tiperesonance. The -1 (M,-8?  32(47Mp)
factorized weak vertex is denoted byw'®.” The filled circle de-

2 2 ! ! 2
notes the strong three-meson vertex, here2 . X (Mg—t—M3) 8185 M|?, (37)
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where “pg” is determined by M ,— 5)2sts(Mp+ 8)?, B! scalar-isoscalar channel. In fact, these FSI are so strong that

refers to the velocity of particle in the primed frame, and they can dynamically generate themeson, with no need of

M is the sum of the amplitudes of interésTypically §  a genuindpre-existing quark model statg53]. Furthermore,

~(1-2),. extending such an analysis to three flavors, one finds that all
The scalar form factor we adopt describes 3€980)  the scalar mesons with mass below 1.1 GeV can be dynami-

— "~ vertex function as well, albeit with a new normal- cally generated, so that the genuine quark model nonet

ization factor, as would have its center of gravity at about 1.3 GeV, see e.g.
o . Ref. [54] and references therein. Irrespective of this admit-
Ffo,,,,(t)<fo|dd|0):(w+(p+)7r‘(pl)|dd|0) tedly controversial assignment of the scalars, for further re-

cent discussion see Rdf5], the pion scalar form factor
= \/73BOF2 (1), cannotbe represented simply in terms of a scalar meson with

a certain mass and width. Although tldescriptionof the

in the vicinity of thef,(980) resonance. The appearance ofjow-lying scalar states in terms of dynamically generated,
the fo(980) resonance in the "7~ channel is complicated rather than “pre-existing,” states may be controversial and
by the opening of th&KK threshold; thef,(980)— "7~  thus subject to ongoing discussion, let us stress that the sca-
form factor is decidedly not of Breit-Wigner form. It should |ar form factor itself is not. The form factor which emerges
be noted that the unitarization procedure we employ hergor the chiral unitary approach adopted here is quite compa-
neglects thepzn channel, though, as we discuss in the nextraple to that which emerges from the dispersion analysis of
section, this has no impact on the descriptionmof scatter-  Ref,[56]. Consequently, when one has a source with vacuum
ing belows=1.1 GeV. Note, too, that although multipar- gyantum numbers coupled to a two-pion state, it can be very
ticle final states, particularly the 7 state, can contribute, misleading to use a simple Breit-Wigner parametrization, al-
they are demonstrably small far<1.4 GeV[47,48. The et with a running width. We shall display this graphically
form factoi(s) we adopt can be tested though gfapeof the  ,ger giscussing the scalar form factor and its construction, to

fo(980) contribution in B_’fO(?So)Wﬁgm as well as o ised in calculating the branching ratios to which we have
through that inB—fo(980)m— K"K~ . alluded. We note in passing that this casts doubt on the ex-
traction of theo meson properties from — 37 decays, note
V. COUPLED-CHANNEL PION AND KAON SCALAR Ref. [8]. This is quite in contrast to the pion vector form
FORM FACTORS factor and thep meson, for which such a description works

In the preceding section, we encountered the non-strangé? goed accuracy.
scalar form factor of the piori;)(t). Such scalar form fac- We now summarize how to calculate the scalar form fac-

tors play a unique role in strong-interaction physics becaustor in Ed.(34), following Ref.[10], to which we refer in all
they measure the strength of the quark mass te(fff>  details. Of course, one could also use the numerical result of
- the dispersion analysis d66] for the scalar form factor.

=myuutmgddt-.., Le, the explicit chiral-symmetry- Eote that the band found there overlaps with the band of Ref.

breaking term in QCD. However, since no scalar-isoscala . . o
sources exist, these form factors cannot be determined d 10] if one allqws for parameter varlat|on's within known
rectly but, rather, must be inferred indirectly from hadron-Pounds. As a first step, we prefer to work in the framework
hadron scattering data. The most prominent example in thigf the chiral unitary approach, as it yields a form factor
context is the pion-nucleon sigma term, which can be exWhich is more convenient for applications. As we have
tracted from the analytically-continued and Born-term- hoted, we need the scalar form factor of the pion for momen-
subtracted isoscaladwave amplitude. Similarly, the pion tum transfers larger than 1 GeV. Consequently, we cannot
scalar form factor can be obtained from meson-meson scawork with the scalar form factor as computed in CHPT, but
tering data, with the added complication of channel cou-must invoke some resummation technique, as well as ac-

plings above th& K threshold at/s=1 GeV. At lower en-  count for the channel coupling between ther and theKK
ergies, the pion scalar form factor can be calculated in CHPBystems. The resummation method is constrained only by
at one-[49] and two-loop accuracy50,51]. The one-loop unitarity and thus is not entirely model-independent. How-
representation fails at surprisingly low energies, a conseever, it can be strongly constrained by requiring that the so-
quence of the strong pionic FSI present in this chapB2].  constructed form factors match the CHPT expressions, in the
This is also signaled by the very large pion scalar radiusfegion where CHPT is applicable. Due to the channel cou-
<r§>7,:0.6 fr?, which is sizeably bigger than the pion vec- pling, we have to consider transition matrix elements of the
tor radius governed by the rho masér?,}w:BIMf, nonstrange and strange scalar quark biIineErs between two
=0.4 fn?, indicating a smaller breakdown scale in the meson states of isospin zero, namelyr and KK, and the
vacuum. We exclude thge» channel, as it does not affect the
phase shifts or pion-kaon decays and transitions—it only
3For completeness, we note thai=M?2+M3+2E/ E5(1 plays a role in describing the inelasticity 6&J=0 7
+BBscosh), with E.=(t+M2-M?)/(2\t), E,=(t+M?  scattering above 1.1 GeV, the physioah threshold. For a
—M?2)/(2\1), andE,=(M3—t—M32)/(24), wherep? =M? and  detailed discussion of this point, we refer to R¢&3,57,58.
pi=M7%. The pertinent matrix elements are given in terms of four
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scalar form factors? Furthermore, theL{(u) are scale-dependent, renormalized
o o low-energy constants. We use here the same values as in Ref.
(O|nn|7m)=+2ByT(s),  (0|nn|KK)=2B,TY(s), [10]. Since the combination LZ—L} multiplies MZ, the
normalization ofl'}(s) is sensitive to the precise value of
<o|§5|777,>:\/§50ri(5), <O|§s|Kf>= \/EBOFE(S), these low-energy constants, which are only poorly known.
This motivates our choice for the normalizationldf..(s),
(39) given in Eg. (35. The one-loop representation cannot be
trusted beyond/s=400 MeV, as it begins to diverge from
WhereBO is a measure of the vacuum quark Conden@&e, the form factor extracted fromr Scattering data. To go to
_ —(OIEqIO)/FfT, with F_=93 MeV the pion decay con- higher _ene_zrg@es, one therefore has to study the con_strair_\ts
stant (strictly speaking its value in the limit of vanishing that unitarity imposes on the scalar_ forT" factors. The imagi-
quark masses In Eq. (38), the following notation is em- nary part of any scalar forr_n factor_ is given by the appropri-
ployed. The superscrig{n) refers to the strange-nonstrange ate_meson-meson scatteangma_tnx, so that .the starting
guark operator whereas the subsctip?) denotes pions and S(C:);rt":efr?r: '?nr%al:rri]:?é%] resummation scheme is exactly this
kaons, respectively. Furthermoran=(uu+dd)/\2. The g ’
pion scalar form factor§}(s) a_nd I'{(s) are calculated in T(s)=[1+K(s)-g(s)] t-K(s), (42)
Refs.[49,59 through one loop in CHPT anBj(s) through
two loops in Refs[50,51]. The scalar kaon form factors at wheres denotes the center-of-mass energy squared<dsyl
next-to-leading order in CHPT were first explicitly given in can be obtained from the lowest order CHPT Lagrangian,
Ref. [10]. Since it is central to our discussion, we give thee g., K(s);;=(s—M 2/2)/F2. This T-matrix not only de-

explicit expression foi'j(s) [59] scribes meson-meson scattering data but also, after gauging,
photon decays and transitions, as reviewed in REf]. In
] \F 1 emMz Eq. (42), the diagonal matrixy(s) is nothing but the familiar
1(s) Y Tt F—Q(ZLS_ 5) scalar loop integral
raaLy- Ly M MY 1 5 L T AL LG
(2Lg A)T (s)+3H(s), T am)? 2 oi(s)—1)
" 39 (43
_ given here in dimensional regularization for the modified
with f(s) andf(s) given by minimal subtraction schemeMS) scheme, ando;(s)
5 5 = \/1—4M2i /s. In what follows, we will set the regulariza-
f(s)= 2s—M7— (9)— J (8)— M7 — ) tion scaleu=1.08 GeV. Of course, observables do not de-
2F2 Jam ap2 KK 6F2 T pend on this choice, and we could choose another value for
i w. However, the original investigation of meson-meson scat-
4s 1 M2 M2 tering transitions and decays by Oller and O&fi] uses a
+—= 5— 5 4 Iog—z— Iog—2 +3 three-momentum cutoff in the pion loop function. Translated
Fo 256m s s to dimensional regularization, this gives the stated value of

. For energies above the threshold of the statenitarity
1 implies the following relation between the form factors and
@ the isospin-zero scatteringmatrix,

M2 12s] |
f(s) 4F2‘JKK(S) F2 777](5) FZ L4_

vz 20
r F*

Here Jpp(s) (P= K, 7) is the standard meson loop func- employing an obvious matrix notation with

tion [49], and u, in this section, is the scale of dimensional

2
regularization. The quantitiesp in Eq. (39) are given by Q(s)=( Pa(s)6(s—4My) 0
0 P2(s) 6(s—4M3) )’
mp | me (41
Mp=_——5100—.
32’772F2 ,LL2 (F1(3)>
™ F S)= , 45
©=| 1) (45

“Here “mmr” and “ KK” states denote the linear combinations of Where p;(s)= \s/4— M7 is the modulus of the c.m. three-
physicalmm andKK states, respectively, with zero total isospin. momentum of the state Substituting ImI'(s) with [T'(s)
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—I'(9*)/(2i) and T(s) with the expression of Eq42) and e L B B B B
using the properties of the matricgés) andK(s), one can ;

expresd’(s) as 12

I'(s)=[1+K(s)-g(s)] *-R(s), (46) 10

]

whereR(s) is a vector of functions free of any singularity. -
We remark that this procedure of taking the final state inter-
actions into account is based on the work of Réfl]. We g
also wish to stress that Eq46) can be applied to any
K-matrix without unphysical cut contributions. As the final
step, one fixes the functions in the vecRs) by requiring -10
matching of Eq(46) to the next-to-leading ordépbne loop

CHPT 77 andKK scalar form factors. This matching en-
sures that for energies where CHPT is applicable, these forn

[GeV
o

iy
&

ST T T T [ e e e

PR [N URT T T (NN TN N T NN TN T S Y SN SO S SN SO S
6.2 0.4 0.6 0.8 1

factors satisfy all the requirements given by chiral symmetry

and the underlying power counting. The matching procedure s [GeV]

thus determines the vectRB(s), as detailed in Ref.10]. For

completeness, we give the expressionRdrpertinent to the FIG. 3. Theo—m"(p,)m (p-) form factor’, ., as a func-

tion of \/s, with s=(p_.+p_)2. The real(solid line) and imaginary

n
scalar form factoi’s(s), (dot-dashed lineparts ofI', .., as well as its modulusdashed

line), are shown. The curves which do not persist below the physi-
r r r_
R(s),= \ﬁ 1+ 4(Ls+2Ly) S+ 168(2Lg—Ls) M2 cal threshold,\/§:2MW~O.27 GeV, correspond to the form factor
2 |:72T quf g adopted in Ref[9], whereas the curves which extendste O cor-
respond to the form factor adopted héi€].
8(2LE—LY) M2 1
+F—2(2Mﬁ+3Mi) Taa2p2 3M[ pared to the choice E32), used by Ref[9], we have fixed
G T the normalization constang such that Rel'j(s) has the

(47) same value as the Breit-Wigner representation &
=0.478 GeV. This amounts to setting=20.0 GeV !. The

‘i aa2
where we have used the Gell-Mann—Okubo relatidvi;3 peak at/s=1 GeVis due to thé,(980) and the opening of

=4MZ—M?2 . This representation of the scalar form factors,, _ - :
. : ” ) _the KK channel. Also shown in Fig. 3 is the scalar form
is valid from threshold up to energies of about 1.2 GeV. Th|sf wn in +1d !

A - - 2
tiparticle states. In fact, in_the channel witht~Mj oneé oy tactor and that deduced from the low-energy effective
encounters larger values g. Therefore, we simply match fie|q theory of QCD are marked. In particular, in Fig. 3 we

our representation at/s;=1.2 GeV to the following see that the Breit-Wigner representationlgf, . is deficient

asymptotic forms: in that (i) ImI",,._(s) has a different shape asapproaches
physical thresholds—4M?2 and (ii) Rel,.,.(s) does not
Rel"(s)— E, ImFE(s)—>£, s.w, (48 POSSess a unitarity cusp st4M2 . It is also of the wrong

S s? sign in this limit. Moreover, the shapes of the two form fac-

tors are very different above/'s=0.5 GeV—this has par-
We have checked that the final results are insensitive to thigcular consequence for tHeé— p7r analysis.
choice of the matching point. The asymptotic form of the
real part of th.e scalar form factor foIIo_ws from quark count- VI. VECTOR FORM EACTOR
ing rules[62] in the crossed channel; it has also been found
in the dispersion analysis of the Higgs decay into two pions Thus far we have considered themeson contribution to
[56]. For continued contact with Ref9] we match to the B— a7« decay. In this section we turn to temeson
asymptotic form of the vertex function of E¢B2); a more  contribution, B(pg) —pm— 7" (py) 7 (p1) m(p,), which
precise treatment, if it were warranted, would involve presumably dominates fd)t&Mf,. In analogy to Eq(29), the
smoothly lettingK (s) — 0 and solving for the form factors in  amplitude forB— 7" 7~ 7 decay as mediated by thereso-
a manner consistent with unitarity—for further discussion,nanceAp(Bﬁ a7~ ), is the product of 8— p7 ampli-
see Ref[56]. In Fig. 3 we display the scalar form factor tude and g— 7 vertex function,I" ... We give the rel-
I'i(s) for Js<1.2 GeV. In the low-energy region, the evant formulas for B—p7m— =7 7 7 decay in the
modulus of the form factor has its maximum afs  Appendix. In this section we focus on the construction of
=0.46 GeV, very close to the central value of theneson I',.., generating a form which is consistent with all known
mass deduced by the E791 Collaboration from analyzing théheoretical constraints. We detail our procedure, as the form
D— 37 data. In fact, since we wish to examine the conse-of I' ., is important to the goals of thB— p7 analysis: it
qguences of using the more general vertex, B¢), as com-  drives the size of the interference betwgestates produced
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in different regions of the Dalitz plot. Our vertex function  To realize the vertex functioh . .(s), we define
differs from that of Ref[16], as the latter adopt a Breit-
Wigner form. We also compare our form with that adopted in _ —Fu(s)
Ref.[7]. At this point we should mention that the numerical Lpral(s)= f
differences are not large—simply because the pion vector
form factor can be described fairly well by a Breit-Wigner where, as described in the Appendix, the electromagnetic
form. We also note that a unitarized version of the vectorcoupling constant of thep meson, f,,, is f,,=0.122
form factor starting from tree-level CHPT, including reso- =0.001GeV [68]. Reference[16] adopts a Breit-Wigner
nance fields, has been presented in @8], based on the form for the vertex function, namely
methods described in Sec. V. It could be used equally well as
the parametrization employed here. BW g,

The vector form factoF ,(s) can be directly determined Ian(8) =", (52

i v . . s—M:+il' M

frome™e” —«" 7~ data in thep resonance region. General P P
theoretical constraints guide its construction: charge consefy... o parameterg,=5.8 andT’,=150 MeV—we use

vation requirgQ:P(O) to be unity, an.d' time-reversal invari- =769.3 MeV[69]. The two forms are compared in Fig.

ance anpl unitarity lead to the |dent|f|cat|.on ?f thg phase Oﬂﬂithe Breit-Wigner form offers a reasonable description of
F,o(s) with the =1, I=1 = phase shift,&;(s), in tr;e the vector form factor, though differences can be seen. In
region where wm scattering is elastics=(M,+M,)"  paricular, the imaginary part of the Breit-Wigner form does
Moreover, F (s) is an analytic function in the comples ¢ yanish below physical threshold, as it ought. This defi-

plane, with a branch cut along the real axis beginning at th%iency can be repaired by giving the Breit-Wigner form a
physical thresholds=4M2 . Below the two-pion cut at running width, i.e.,

=4M?, the vector form factor is real. Furthermore, at small

(51)

s the form factor can be computed in CHPT, as detailed in g
Refs. [50,51]. All these constraints are captured by the e (s)=——sgt—-, (53
Muskhelishvili-Omne (MO) integral equation{64]. For s s=My+ill(s)

=(M_,+M,)?, its solution can be writtefi65]° 2 3
_r

p(s)
F,(s)=P(s) Q(9), (49) I(s)= N

p(M2)

wherep(s)=+/s/4—M fr. This form, modulo the proportion-
ality constant, is adopted by R¢¥]. Figure 5 compares Egs.

(54)

pr

where P(s) is a real polynomial and the Omsdunction,
€ (s), contains all the phase information,

s wa ds ¢y(s)) (51) and(53)—the two forms are really very similar, though
s)=exp = ,—————|,
mJam2s' s'—s—ie 60 —r——————————————
ImF (s)
tang,(s)= F”(S) =tansj(s), (50)
P

where 5}(5) is the phase shift of=1, L=1 scattering. In
the Heyn-Lang parametrizatidi®5], ()(s) is approximated
by the quotient of two analytic functions, which contain
polynomial pieces and the one-pion-loop expression for the .
p self-energy functionP(s) is chosen to be of third order in
sin Ref.[65]. We use here a recent update of the pion form
factor [21], based on the Heyn-Lang parametrization. Spe-
cifically, we use the parameter set of “solution B” of Ref.
[21], reflecting a fit to thee*e™ — 7" 7~ data in the elastic
region, subject to the constraint that the model reproduce: L 0'4 TR T ole TR T ols
the empiricalm# scattering length in thé=1, L=1 chan- ’ 1/2' '
nel, a;=(0.038+0.002)M _* [67]. In what follows, we ne- s [GeV]
glect the presence of the resonance, or effectively®— o FIG. 4. Thep— =" (p, )= (p_) form factor—T',__ as a func-
mixing. The latter is an important isospin-violating effect o, o¢ /5 with s=(p, + p_)2. The form factor is shown in the
visible in theee” — 7" 7~ data in the close vicinity of region for whichl =1, | =1 77 scattering is elastic. The reéolid
= Mi—the fits of Ref[21] do include it. line) and imaginary(dot-dashed lineparts ofl’,,.., as well as its
modulus(dashed ling are shown. Noting Eq51), the arrows in-
dicate the form factor given bk (s)/f,,, as detailed in Sec. VI,
>The solution of the MO equation with inelastic unitarity, impor- whereas the other curves correspond to the Breit-Wigner form
tant fors=(M,+M )2, has been discussed in RE38]. *gp/(S*Mi‘HMpr), adopted in Ref[16].
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the form of the imaginary part is precisely captured by the
7rar branch cut, so that the phase is accurately determined by

r Y - o . o
L R N\ an arctan prescription to unitarize the amplitude. This is also
40 A i ‘-}_Q\,/ - realized in the CHPT analysis including an explieitneson,
I AL g B for details see Ref72].
0 \: S ] In the application to follow, we need to evaludtg, .(s)
% 20l YWY fors>(M,+M,)? so that at/s=(M ,+M,)=920 MeV,
g | N

-
prn

-20

0.4 0.6

gl® [GeV]

FIG. 5. Thep— 7" (p,)m (p-) form factor—T',,. .

as a func-

the form factor of Eq(51) is matched to the Breit-Wigner
form of Eq. (52), yielding ReF ,(s)~a'/s and ImF (s)
~b'/s? for larges. We now turn to a discussion of our nu-
merical results irp and o-mediatedB— 37 decay.

VIl. RESULTS AND DISCUSSION

First, we must collect parameters. For crisp comparison
with Refs.[9,16], we adopt the parameters used therein but
reiterate them here for convenience. For meson masses and
widths we useM=5.279 GeV,M ,=139.57 MeV, M,

tion of /s, with s=(p, +p_)2. The form factor is shown in the
region for whichl =1, | =1 o7 scattering is elastic. The reglolid
line) and imaginary(dot-dashed lineparts ofl", ., as well as its
modulus(dashed ling are shown. Noting Eq51), the arrows in-
dicate the form factor given by ,(s)/f,, , whereas the other curves
correspond to the form of E¢53) adopted in Ref[7].

=769.3 MeV, I' )=150 MeV, M,=478 MeV, andI’,
=324 MeV. We neglect th&™", B? lifetime difference and
use 75=1.6x10 ?sec. For quark masses, we us®

=4.6 GeV andm=6 MeV. As for the CKM matrix ele-
ments, we adopt the Wolfenstein parametrizafit®l, retain-
ing terms of O(\®) in the real part and of9(\°) in the
imaginary part, usingA=0.806, p=0.05, »=0.36, andx
the forms differ slightly aSH4M§T. The phase of the form =0.2196. For the Wilson coefficients, we u€g=1.100,
factors, namely ta‘nl((lml“p,,,,)/(Rel“p,,,T)), is plotted in C,=-0.226,C3=0.012,C4=—0.029,C5=0.009, andCq
Fig. 6. Unitarity and time-reversal invariance dictates that=—0.033, after Ref[44]. For form factors and coupling
the phase be that df=1, L=1 scattering; the phase shifts constants we useF{f~?(M2)=0.46, after Ref.[74],
from the data of Refs[70,71] are shown for comparison. F#®~™(M2)=0.37, AP "(M2)=0.29, f, =2(92.4
The forms of Eq(51) and Eq.(53) confront the phase shift MeV)=131 MeV, andf,=0.15 Ge\f. Finally, we useg,
data nicely. The agreement of the latter form is a particula=5.8 andg,..,=2.52 GeV when using the form factors of
surprise, as it contains only two free parameters. ApparentlRefs.[9,16].

Let us begin by computing the branching ratios fr
—pm and B— o7 decay. Assuming two-body phase space,
we use Eqgs(A2) and (A3) with Egs.(A10)—(A13), as well
as Eq.(25). The results are tabulated in the first row of Table
I. In the treatment of Ref[16], the branching ratios oB
—M;M, decay and its charge conjugate are identical, even
with penguin contributions, as no strong phase between the
amplitudes of differing weak phase has been included.

Proceeding to treat B—pw—37w and B—omw
— a7~ decay, we follow the ando intermediate states
to their 7 final states. We realize the transition amplitudes
as per Eq(A4), (A5), or (29), and integrate over the three-
body phase space as per E8j7), computing the integral in
over[2M . ,Mg—M _]. With this procedure, the branching
ratios for B—p 7", B—p 7, and B—p°#° become
identical; we simply report the final result in tle—p~ 7+
column. In treatingB™— 7" 7 7~ decay, we divide the

FIG. 6. The phase of the vector form factoy,(s) as a func- total rate_by 1/_2, to compensate for inte%rating over equiva-
tion of Vs, in the region where the scattering is elastic. The forml€nt configurations. Noting that Be(—=" 7 )=2/3, the
factor we adoptF ,(s)/f,, (solid line), the relativistic Breit-Wigner ~ guantity in brackets in the first row includes the factor of 2/3,
form of Ref.[16] (dot-dashed ling as well as that of Reff7] ~ for comparison with the three-body results. Comparing the
(dashed ling are all shown. Unitarity and time-reversal invariance two-body branching ratios with those computed by integrat-
requires that the phase be the phase sfiifof 1=1, L=1 -7 ing over the entire three-body phase space, it is evident that
scattering. The empirical phase shifts of Rgf0] (O0) and Ref.  the branching ratios do not agree. The deviations can be
[71] (A) are indicated. attributed to both interference effects and finite-width effects.
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TABLE I. Branching ratiog(in units of 10 °) for B— pm andB— o7 decay, computed at tree level. The
numbers in parentheses include penguin contributions as well, afte{ F&f.The first row of numbers
compute the branching ratios using two-body phase space. Although-B#(" 7 )=1, Brlc—="7")
=2/3, so that the numbers in brackets reflect the branching ratio times 2/3. The rows labeled “3-body”
computeB— pm— 37 andB—owm— " 7~ 7 decay, integrating over the entire three-body phase space.
“BW” denotes the use of the form factors of Ref®,16], Eqs.(32), (52), whereas “RW” denotes the use of
the vector form factor of Ref[7], Eq. (53). Finally, “*” denotes the use of the form factors we have

advocated.

B'—p mt BY=ptm  BY—pPn® B —p’m B —om B~ on?
2-body 21.6(21.0 5.96(5.94 0.237(0.308 4.74(5.00 15.6[10.4] 0.147[0.0987
3-body (BW) 22.5(22.) 4.11(4.33 8.31 0.0739
3-body (RW) 22.4(22.0 4.08(4.30
3-body (*) 22.3(21.9 4.03(4.29 11.7 0.108

As an example of the former, both the diagrams illustrated inng these couplings in place of those used in Rg#s16)]
Figs. 1 and 2, as well as those wifh« p,, contribute to  does reduce the discrepancy. Note that it is a “finite width”
B™—m" o~ m decay. Clearly the interference of these dia-effect in that reducing the numerical width of theor o
grams is not included when tf8~ —p®7~ or B"—om~  meson, in concert with Eq$55), (56), reduces the discrep-
process is treated as a two-body decay. As an illustration cdncy between the two-and three-body treatments. It is worth
the latter, note that the couplings andg, ., are typically  noting, however, for the physical values of the meson widths,

chosen so that they reproduce the> w7 ando—7"7"  that there is no one fixed coupling,, or g, which re-
decay rates, namely moves the discrepancy entirely—the needed coupling in any
5 given case is sensitive to the form factor chosen, as well as to
§Fa= To—omtm )= - (Mi—4M 727)1/2|9mm|2 f[he masses of the other pa.rt|cles in the final state. The former
16mM? is apparent from a comparison with the vector form factor of

(55) Ref. [7], Eq. (53), for which we useg,=5.8 as well. The
normalization issue of which we speak is particularly rel-
and evant for the comparison of theoretical branching ratios, for
B— VP decay, e.g., to experiment. It is present regardless of
(M2—4M2)1’2|g 2. (56) the form factor used. That is, in the_ case of the vector form
P m P factor we adopt, Eq(51), the determination of ,, can also
be modified by finite width effects. The sign and size of the
For the meson masses and widths we have used, these fanismatch between the two- and three-body phase space cal-
mulas yieldg, .= 2.53 andg,=6.03, respectively. Adopt- culations can be quite sensitive to the choice of form factor,

I =
g 487TM§

TABLE Il. Effective branching ratiogin units of 10 6) for B— p# decay, computed at tree level. The
numbers in parentheses include penguin contributions as well, aftefll8gfThe form factors are defined as

in Table I.

é [MeV] (i.f.) §O—>p_77+ §0—>p+77_ §°—>p0770 B —pm R
200 (BW) 15.1(14.7 4.21(4.24 0.508(0.497 3.50(3.68 5.5(5.0)
300 (BW) 16.4(16.0 4.74(4.76 0.918(0.908 3.89(4.10 5.4(5.1)
200 (RW) 15.1(14.8 4.19(4.21 0.468(0.463 3.49(3.68 55(5.2
300 (RW) 16.4(16.0 4.69(4.70 0.835(0.83) 3.87(4.07) 5.5(5.)
200 (*) 15.3(14.9 4.26(4.28 0.473(0.467 3.49(3.68 5.6 (5.2
300 (*) 16.4(16.0 4.75(4.76 0.865(0.859 3.85(4.06 5.5(5.0)
S [MeV] (f.f.) BO—pta™ B—p wt B— pOr? Bt —pon" R
200 (BW) 15.1(14.7 4.21(4.15 0.508(0.619 3.50(3.68 5.5(5.1)
300 (BW) 16.4(16.0 4.74(4.67) 0.918(1.02 3.89(4.10 5.4 (5.0
200 (RW) 15.1(14.7 4.19(4.13 0.468(0.57)) 3.49(3.68 5.5(5.2
300 (RW) 16.4(15.9 4.69(4.62 0.835(0.935 3.87(4.07) 5.5(5.0
200 (*) 15.3(14.8 4.26(4.20 0.473(0.579 3.49(3.68 5.6(5.2
300 (*) 16.4(15.9 4.75(4.68 0.865(0.963 3.85(4.06 5.5(5.)
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TABLE lIl. Effective branching ratiogin units of 10 %) for B— o7 andB— p# decay, computed at the tree level. The form factors are
defined as in Table I.
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é [MeV] (f.f.) B —onm™ B —(p°+o)m™ B gm® BO— (p%+ o) 7° R

200 (BW) 2.97 6.16 0.0258 0.516 31
300 (BW) 5.17 8.61 0.0457 0.940 25
200 (RW) 2.97 6.19 0.0258 0.475 3.1
300 (RW) 5.17 8.62 0.0457 0.855 2.4
200 (*) 4.11 7.61 0.0396 0.508 2.6
300 (*) 7.01 10.7 0.0663 0.916 2.0

as illustrated by the scalar case. We set the normalization afoting that theo® and p°#° contributions can, to some
the form factor of Sec. V, denoted by “*” in the tables, to measure, be distinguished. Certainly the® and p#° con-
that of the form factor of Refl9], Eq.(32). This is the only tributions behave differently under the cut on the invariant
manner in which the parametelé, ,I",, enter our analysis. mass of ther™ 7~ pair, recalling Eq(37). Moreover, mak-
Were we to determine the normalization so that the two- andhg a cut on the helicity anglé, defined in Eq(36), ought to
three-body computations of tha8° o 7 7 70  also be helpful in separating th& ando contributions. This
branching ratio yield identical results, the effective impact ofis illustrated in Figs. 7 and 8. The# contributions roughly
the o in the pr phase space would be reduced by some 10%ollow a cog(#) distribution, whereas the-7 contributions

In Table Il we report theB— p— 37 branching ratios, are quite flat, save for the bump resulting from thg, .(u)
computed in the manner of RéfL6]. Our numerical results term in Eq.(30). Cutting on the helicity angl@ should also
differ slightly from theirs(note thatB%—BP in their Table Nelp disentangle the contributions from some oftfereso-
IIl). The upshot is that our estimate Bfwith penguin con- "ances, discussed in R¢16]. The contributions oB* reso-
tributions is ~5.1, rather than the 5.5 they estimate. We@nces to thepa channels should be included in a more
show the branching ratios computed for differing vector formrefined analysis, but they will not alter the conclusions drawn
factors; these differing choices have little impact on the re1€r€:
sulting branching ratios, or oR.

We compute th&— o7r branching ratios in Table Ill. In
e s anq VS PADeT, e have scrutnzed th ol of hereson.
parémeters input, as our formula, E80), differs from theirs nB—pmr—3m depay, l_Jnderstand_mg s Qynamlcal orgun In

' L ' . 0 the strong pion-pion final state interactions in the scalar-
by a factor Of.\/i' Thus the impact of the in the p°n isoscalar channel. The presence of the® contribution in
phase space is rather larger than that estimated in[BEf.

Updating the scalar form factor to use what we feel is its best
estimate, we find that the values Bfare smaller still. Inter-
estingly, the computed values & are comparable to the f |
empirical results, albeit the errors are largan additional sk -
contribution to the phenomenological value Bf realized !\

through a diagram mediated by thg meson, is proposed in
Ref.[75].)

Turning toB— o 7° decay, we see that the contribution of
the o meson toB°(B%)— p# decay ismuchsmaller—with
the scalar form factor we advocate, the effect is some 10%
Interestingly thes has a tremendous impact & — p°7~

decay, and a relatively modest one Bh— p°#° decay. Let

us emphasize that we have realized our numerical analysis ¢
tree level. It is the relative size of the penguin contributions
in B— o7® andB— p°#° decay which is of relevance to
the isospin analysis to extraat. The presence of the 7°
final state in thep®#® phase space can break the assumed
relationship, Eq(9), between the penguin contributions in £, 7. Absolute square of the matrix elemeft|2, for B~

pm and thus mimic the effect of isospin violation— _, 07~ decay(dashed ling Eg. (A5), and forB~—ox~ decay
alternatively we can expand ther analysis to include the (solid line), Eq. (30), as a function of coé att=M?2. The scalar
o channel. Nevertheless, we expect our estimates to band vector form factors advocated in Secs. V and VI have been
crudely indicative of the importance of these effects—used. The bump in the solid line reflects the presence of the
guantitatively, however, differences may exist. It is worthT,..(u) term in Eq.(30).

VIIl. SUMMARY

®
[=3
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o
=
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08 Our analysis is based aronsistentscalar and vector form

factors.

(v) On the other hand, the impact of ther channel on
the B— pr isospin analysis is merely significant. Varying
the cuts on therw invariant mass and helicity anglé
] should be helpful in disentangling the various contributions.
] (vi) We have shown that one can expand the isospin
- analysis to include therm channel because it has definite
] properties undeCP. This may be necessary if varying the
\ /T cuts in thesar invariant mass and helicity angl are not

sufficiently effective in suppressing the contribution from the
e A © channel in the®#° phase space.

N o channel in thep p p
[ N 7 This work is merely a first step in exploiting constraints

~o P from chiral symmetry, analyticity, and unitarity in the de-

i i scription of hadroni® decays. In particular, the contribution
of the “doubly” OZI-violating strange scalar form factor and
cos(8) its phenomenological role in factorization breaking ought be
investigated.

g e - ——

1
I
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!
1
0.6 1
!
I
1
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IM*x10™
o
s
I

T
-
-

FIG. 8. Absolute square of the matrix elemefi|2, for B®
—p%7° decay(dashed ling Eq. (A4), and for B— o7 decay
(solid line), Eq. (31), as a function of co8 att:Mi. The scalar ACKNOWLEDGMENTS
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(i) We have considered how SM isospin violation can im-
pact the analysis to extraet in B—pm decay. Under the  APPENDIX: FORMULAS FOR B—pm—a* @~ #° DECAY
assumption thatAl|=3/2 and|Al|=5/2 amplitudes share _ .
the same weak phase, the presence of an additional ampli- N this appendix, we report the formulas needed to evalu-
tude of|Al|=5/2 character, induced by isospin-violating ef- &€ B—pm— " @« transitions, as per the approach of
fects, does not impact tHe— par analysis in any way. This Sec.'IV. For clarity of. comparison, we conform as much as
is in contradistinction to the isospin analysis Br-==.  POssible to the notation and conventions of Réf], but
Thus the isospin-violating effects of importance are thosédive the formulas required for completeness. This also al-
which can break the assumed relationship between the pefRWs s to identify the changes in replacing the Breit-Wigner
guin contributions, Eq(9). form adopted for the resonance in Ref16] Wl.th. the pion

(i) The scalar form factor can be determined to goodvector form factor we discuss in Sec. VI. Defining
precision by combining the constraints of chiral symmetry, 0 B B
analyticity, and unitarity. The form factor we adopt describes (m ()7 (PP (Py.€))=g, € (po—p1) (AL
the appearance of thig(980) as well, so that the shape of
the f,(980) contribution inB— f,(980)7— 3, e.g., should and
serve as a test of our approach. We emphasize that the result- _ o _
ing scalar form factor is very different from the commonly <p'(pp)7-r(p,7)|7-{eﬁ| B%(pg))=2€*-p,7', (A2)
used Breit-Wigner form with a running width. This is in stark
contrast to the vector form factor, which is dommgted by the (po(pp)ﬂ'f(pw)mefdBi(pa)>= 2¢*.p.7°,

p resonance. In that case, one can construct simple forms (A3)
that fit the theoretical and empirical constraints.

(iii) We have pointed out that the two- versus three-bod
treatments of the decays— pw,B— o can lead to differ-
ing results due to finite-width and interference effects.

(iv) Remarkably, the impact of thew channel on the — N B 0
ratio R, cf. Eq.(3), is huge. The numbers we find f& are A (B (pg)— 7" (p+) 7 (P1) 7 (P2))
in agreement with t_he empirical ones, given its sizeable ex- =—%s—wT, () + 7 (s—),_(u)
perimental uncertainty. This underscores the suggestion P P
made, as well as improves the calculations done, in [Réf. +7 (t=ul,,(s), (A4)

Xvherei e (+,0,-), the B®— pm— 7" 7~ = amplitude can
be written as
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where the first of these contributions is illustrated in Fig. 2.+0.001 GeV [68]. The two forms are compared in Fig. 4.
We have useds=(p;+p,)?, t=(p;+py)?% andu=(p, In Ref.[16] the parameterg,=5.8 andl’,=150 MeV are
+ p,)2, and have summed over the polarization states of thehosen—we use the vaIlMp—769 3 MeV[69] for the p
p' mesons, settinyl .- =M __o. With our conventions for the meson mass, as it IS not reported in Ré&®].

p™) To determiney', 7°, we introduce
=—|I=113=1), whereas the othefr and p charge states _
do not have a minus sign when written in the isospin basis. (p™(py,©)dy,ul0)="f,€,, (A8)
Using the isospin-raising operator,, we thus de- . — -
termine from Eq. (A1) that (m*(p.)m" (p1)|p0(pp,e)> a“{p " (P,,€)|uy,(1—¥s5)b|B°(pg))
=—g,e(p—p) and (7 (p)m(pP2)lpT(Py.€)) — i 2M,(e* - AR (qP), (A9)

=g, € (p+ P2); the signs We indicate consequently
follow.® For theB™ — p°n~ — ="~ 7~ amplitude we have whereq=pg—p,, and recall Eqs(23) and(24), to find

2

A,(B™(pg)— 7" (pi)m (P (P2) . Gg agM?7 B
- 7 :E )\ual_)\ta4+)\trfh(m e f-M,A5P(M2),
=—70(s—wT, . ()+(s—OT, (u)]. b
7 L(s=WI () +(s=)I ,7(u)] (AL0)
(A5)
Note thatl" . .(s) is the pion vector form factor, for whicha 7 = Ge —[Na1— ta4]pr§“’T(M§), (A11)
Breit-Wigner form is used in Ref9]. As discussed in Sec. 2
VI, we replace B
o _ B¢ Nu@z+N@s—\ oMy
9, —F,(X) T a2 [T M my )

Lpra(X)= , (AB)

2 —
X—Mp+iFPMp fpy
X f.M,ASP(M2)+[Na,+N@glf FET(M?)

wheref ,, is the electromagnetic coupling constant of the
meson, determined from (A12)

agM?2

Ay@y— Mg+ A= f.M,A5P(M2)

4 2
T(poete )= 2 ¢2 A7) ~o_CF
3 m(m,+m)

3 py? n
o 2

where I'(p—e*e™) is, in turn, extracted frome'e~ b
— a7~ data ats=M?, as described in Ref68]. For the +[haztN@glf FT7(M7)
“solution B” fit of Ref. [21] we have f,,=0.122

(A13)

where we neglect electroweak penguin contributions, as well
as all isospin-violating effects. Our expressions agree with
5We thank J. Tandean for discussions on this point. those of Ref[9] and Ref[15].
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