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Rescattering and chiral dynamics inB\rp decay
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We examine the role ofB0(B̄0)→sp0→p1p2p0 decay in the Dalitz plot analysis ofB0(B̄0)→rp
→p1p2p0 decays, employed to extract the CKM parametera. Thesp channel is significant because it can
break the relationship between the penguin contributions inB→r0p0, B→r1p2, and B→r2p1 decays
consequent to an assumption of isospin symmetry. Its presence thus mimics the effect of isospin violation. The
sp0 state is of definiteCP, however; we demonstrate that theB→rp analysis can be generalized to include
this channel without difficulty. Thes or f 0(40021200) ‘‘meson’’ is a broadI 5J50 enhancement driven by
strong pp rescattering; a suitable scalar form factor is constrained by the chiral dynamics of low-energy
hadron-hadron interactions—it is rather different from the relativistic Breit-Wigner form adopted in earlierB
→sp andD→sp analyses. We show that the use of this scalar form factor leads to an improved theoretical

understanding of the measured ratio Br(B̄0→r7p6)/Br(B2→r0p2).
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I. INTRODUCTION

Measurements at SLAC and KEK of the time-depend

CP-violating asymmetry inB(B̄)→J/cKs @1,2#, yielding
sin(2b), have conclusively established the existence ofCP
violation in theB meson system. The results found are co
sistent with standard model~SM! expectations@3#, so that
establishing whether or not the Cabibbo-Kobayas
Maskawa~CKM! matrix @4# is the only source ofCP viola-
tion in nature, as in the SM, requires the empirical measu
ment of all the angles of the unitarity triangle.

In this paper we consider the determination ofa through
a Dalitz plot analysis of the decaysB0(B̄0)→rp
→p1p2p0 under the assumption of isospin symme
@5,6#. Ten parameters appear in the analysis, and they ca
determined in a fit to the data. Nevertheless, the assump
of r dominance inB→3p decays has no strong theoretic
basis@7#, so that the contributions from other resonances
the rp phase space may be important. We discuss how
isospin analysis can be enlarged to include thesp channel
as well. Thes or f 0(40021200) ‘‘meson’’ is a broadJ5I
50 enhancement, close to ther meson in mass, so that th
sp channel can potentially populate the 3p phase space
associated with therp channels. Thesp final state contrib-
utes preferentially to ther0p0 final state. In the context o
the isospin analysis, such contributions are of conseque
as they invalidate the underlying assumptions of the isos
analysis and thus mimic the effect of isospin violation.

Our considerations are inspired in part by recent stud
of D2→p2p1p2 decay: the E791 Collaboration find th
the pathwayD2→p2s→p2p1p2 accounts for approxi-
mately half of allD2→p2p1p2 decays@8#. Deandrea and
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Polosa have argued as a consequence that theB→sp chan-
nel contributes significantly to therp phase space inB

→pp1p2 and modifies the ratioB(B̄0→r7p6)/B(B2

→r0p2) to yield better agreement with experiment@9#. The
scalar form factor, which describes the appearance of ths
in the p1p2 final state, enters as a crucial ingredient in t
assessment of the size of these effects. The scalar form fa
cannot be determined directly from experiment; neverthele
ample indirect constraints exist, permitting us to describe
features with confidence@10#. Nevertheless, different ap
proaches, with different dynamical assumptions, yie
roughly comparable descriptions of thepp scattering data,
so that the emergence of a favored form of the scalar fo
factor does not resolve the question of whether thes is a
pre-existing resonance or, rather, a dynamical consequ
of pp interactions in the final state. We follow Ref.@10# and
adopt a unitarized, coupled-channel approach to the fi

state interactions~FSI! in thepp-KK̄ system, and match the
resulting scalar form factor to chiral perturbation theo
~CHPT! in the regime where the latter is applicable. T
resulting form factor, in thepp channel, discussed in Sec. V
is strikingly different from the relativistic Breit-Wigner form
adopted by the E791 Collaboration in their analysis of thes
in D1→p1p1p2 decay—the latter form factor is also use
in Ref. @9#. The differences are particularly large asAs
→2Mp , so that the relativistic Breit-Wigner form is at odd
with CHPT in the precise region where it is applicable, no
Fig. 4 in Ref.@10#. This casts doubt on the recent conclusio
of Refs.@8,9#, prompting new analyses incorporating a su
able scalar form factor.

The generation of thes resonance via strong rescatterin
effects, as in the approach we adopt, indicates that Oku
Zweig-Iizuka-~OZI-!violating effects in the scalar sector a
significant. Moreover, the ‘‘doubly’’ OZI-violating form fac-
tor ^0us̄supp& is non-trivial as well; such a contribution i
©2002 The American Physical Society04-1
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needed to fit thepp andKK̄ invariant mass distributions in
J/c→fpp(KK̄) decay@10#. These effects are also need
to explain the branching ratios of the decays of thea0(980)
and f 0(980) states intopp andKK final states@11#. These
observations give new insight on rescattering effects in h
ronic B decays, generating a new mechanism of factoriza
breaking inn>3 particle final states.

The contribution of theB→sp channel to theB→r0p
phase space can also modify the inferred empirical branc
ratios in these channels. Combining the CLEO results@12#

Br~B2→r0p2!5~10.423.4
13.362.1!31026, ~1!

Br~B̄0→r6p7!5~27.627.4
18.464.2!31026 ~2!

with the BaBar result @13# Br(B0→r6p7)528.965.4
64.3 ~charge conjugate modes are implied! yields, adding
the errors in quadrature and ignoring correlations,

R5
Br~B̄0→r7p6!

Br~B2→r0p2!
52.761.2. ~3!

This ratio of ratios is roughly 6 if one works at tree level a
uses the naive factorization approximation for the hadro
matrix elements@14#. The inclusion of penguin contribution
can alter this result, and potentially yield better accord w
theory and experiment@15–18#. However, our focus will par-
allel that of Ref. @9#: we wish to examine howB→sp
→3p decay, given a particular scalar form factor, can eff
tively modify the theoretical prediction of the ratio given
Eq. ~3!. It is apparent thatB→sp is of greater impact in
B→r0p decay, so that the inclusion of such contributio
ought alter the ratio of ratios.

We begin by reviewing the isospin analysis inB0(B̄0)
→rp→p1p2p0 decay@5,6# in Sec. II, and discuss its ex
tension to includeB0(B̄0)→sp→p1p2p0) decay in Sec.
III. We proceed by evaluatings-mediatedB→3p decay in
Sec. IV, relegating ther-mediatedB→3p decay formulas to
the Appendix. Our analysis employs the scalar and ve
form factors discussed in Sec. V and Sec. VI, respectiv
We conclude with a presentation of our results in Sec.
and an accompanying summary.

II. PRELIMINARIES: ISOSPIN ANALYSIS OF B\rp

Let us recall the isospin analysis possible inB→rp de-
cay @5,6#. Under the assumption of isospin symmetry, arp
final state can have isospinI f50,1, or 2, whereas theB1,B0

states form an isospin doublet. Thus we can haveuDI u
51/2,3/2, or 5/2 transitions inB→rp decay, so that we can
parametrize the amplitudes which appear byAuDI u,I f

. We have
@5,19#1

1We flip the overall sign of thea00 amplitude with respect to Ref
@19#, to conform with our computation of the amplitudes.
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a12[A~B0→r1p2!5
1

2A3
@A3/2,21A5/2,2#

1
1

2
@A3/2,11A1/2,1#1

1

A6
A1/2,0, ~4!

a21[A~B0→r2p1!5
1

2A3
@A3/2,21A5/2,2#

2
1

2
@A3/2,11A1/2,1#1

1

A6
A1/2,0, ~5!

and

a00[A~B0→r0p0!52
1

A3
@A3/2,21A5/2,2#1

1

A6
A1/2,0,

~6!

noting that A(B0→p1p2p0)5 f 1 a121 f 2 a211 f 0 a00,
where f i is the form factor describingr i→pp. Isospin is
merely an approximate symmetry of the SM; neverthele
our parametrization possesses three independent ‘‘isos
amplitudes, distinguished byI f , to describe the three empiri
cal amplitudesai j , so that it persists in the presence of iso
pin breaking as well.

The lowest-dimension operators of the effective,uDBu
51 Hamiltonian generate transitions ofuDI u51/2 or 3/2
character, so that auDI u55/2 transition is generated, in thi
order, through long-distance, isospin-breaking effects in c
cert with auDI u51/2 or 3/2, short-distance, weak transitio
If we neglect transitions ofuDI u55/2 character and, indeed
isospin-violating effects all together, the transitionb̄→qq̄d̄
which mediatesB→rp decay can be realized through
‘‘tree’’ amplitude with uDI u51/2 or 3/2 or through a ‘‘pen-
guin’’ amplitude with uDI u51/2. Practically, the decay to
pologies are distinguished by their weak phase, so that
contributions associated with the CKM factorsVub* Vud , e.g.,
are defined to be tree contributions, regardless of their
namical origin. The unitarity of the CKM matrix in the SM
implies that two combinations of CKM factors suffice
describing b→qq̄q8; here we associate the combinatio
Vtb* Vtd with the penguin contribution. Noting

Vub* Vud

uVub* Vudu
5eig,

Vtb* Vtd

uVtb* Vtdu
5e2 ib ~7!

anda5p2b2g, we have

eiba125T12e2 ia1P12,

eiba215T21e2 ia1P21, ~8!

eiba005T00e2 ia1P00.

The overall weak phaseeib is without physical impact and
can be neglected, because in the SM the weak phase as
4-2
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RESCATTERING AND CHIRAL DYNAMICS IN B→rp DECAY PHYSICAL REVIEW D 65 094004
ated withB02B̄0 mixing is controlled byq/p5exp(22ib).2

Thus qāi j /p}exp(2ib), just as ai j is. Consequently, the
isospin analysis inB→rp decay determinesa. The crucial
assumption of the isospin analysis is to associate the C
factor Vtb* Vtd with uDI u51/2 transitions exclusively, so tha
from Eqs.~4!, ~5!, ~6!, we have

P005
1

2
~P121P21!. ~9!

The overall strong phase in Eq.~8! is trivial, so that with Eq.
~9!, we have ten parameters in all, which can be determi
in an analysis of the Dalitz plot@6,19#.

The presence of thesp final state in the phase spac
associated with ther0p0 channel breaks the relation a
sumed in Eq.~9!, and thus mimics the appearance of isos
violation. In this paper we study how the impact of this a
ditional decay channel can be minimized. It is worth notin
however, that thesp final state is of definiteCP, so that the
isospin analysis can be enlarged to include this channe
well—additional observables are also present in this ca
Before doing this, let us enumerate the ways in which S
isospin violation can impact the usualB→rp analysis, to
determine whether the impact of these effects can be red
as well:

~i! Isospin violation can generate an additional amplitu
of uDI u55/2 character, as in Eqs.~4!, ~5!, ~6!. A uDI u55/2
amplitude can be generated byO(md2mu) or O(a) effects
in concert with auDI u53/2 weak transition, or byO(a)
effects in concert with auDI u51/2 weak transition. The
O(md2mu) term acts as an isovector interaction. We rec
that the physical neutral pion state is an admixture of
pseudoscalar octet fieldsp0 and h; that is, (p0)phys5p0

1eh with e;O(md2mu). Consequentlye acts as anI 51
‘‘spurion’’ @20#, encoding isospin-violating effects so that th
matrix elements with the spurion areSU(2) f invariant. Isos-
pin violation is also realized via theB1, B0 mass difference;
such effects are not encoded in the spurion framework,
they are also comparatively trivial.

~ii ! Isospin violation can modify the form factorsf i . The
factor f 0, e.g., is distinguished by the G-parity-violating d
cay v→p1p2. The magnitude and phase of this effecti
r0-v ‘‘mixing’’ can be elucidated frome1e2→p1p2 data
@21#; however, the contribution is reflective of the decayB0

→vp0→p1p2p0, so thata00 is modified in this region as
well. In addition, electromagnetic effects distinguishf 7 ,
probed int decay, fromf 0 @22,23#.

~iii ! Penguin contributions ofuDI u53/2 character can oc
cur, either through electroweak penguin effects@24#, or
through isospin violation in the matrix elements of the g
onic penguin operator@25–27#.

2Recall that theB mass eigenstates are defined viauBL&5puB0&
1quB̄0& and uBH&5puB0&2quB̄0&. We assume throughout that th
width difference of the twoB mass eigenstates is negligible, so th
uq/pu51.
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The impact of these isospin-violating effects can be
dressed, at least in part. For example, inB→rp decay, the
A5/2,2 amplitude appears in the combinationA5/2,21A3/2,2
throughout Eqs.~4!, ~5!, ~6!. Moreover, the two amplitudes
share the same weak phase, to a good approximation.
emerges because, unlikeK→pp decay @28#, no ‘‘uDI u
51/2 rule’’ apparently exists inB→pp decay—though
B(B1→p1p0) has yet to be conclusively determined@29#.
Recent theoretical estimates suggest that the magnitud
the ratio of the uDI u51/2 to uDI u53/2 amplitudes inB
→pp decay is roughly 0.3@30#, so that theuDI u55/2 am-
plitude is driven by an underlyinguDI u53/2 weak transition.
Strong-interaction isospin violation acts in concert with
uDI u53/2 weak transition to generate auDI u55/2 amplitude,
whereas electromagnetism can generate auDI u55/2 ampli-
tude from auDI u51/2 weak transition. The size of strong
interaction isospin violation is typified by thep02h mixing
angle e (2)5A3(md2mu)/4(ms2m̂) with m̂5(md1mu)/2;
we note thate (2)/a;1.45 @31#, enhancing the extent to
which A5/2,2 and A3/2,2 share the same weak phase. To t
degree that this is true, the phenomenologicalTi j parameters
of Eq. ~8! includeuDI u55/2 effects as well. Thus we see th
the single, crucial assumption of the isospin analysis is t
the CKM factor Vtb* Vtd accompaniesuDI u51/2 transitions
exclusively, for in this case the weak phases of theA5/2,2 and
A3/2,2 amplitudes are identical. We have shown that isosp
violating contributions built on theuDI u53/2 short-distance,
weak transition do not impact the isospin analysis inB
→rp. However, non-uDI u51/2 penguin effects, be the
electroweak penguin contributions or contributions con
quent to isospin-violating effects in the hadronic matrix e
ments ofuDI u51/2 operators, present a irreducible hadron
ambiguity from the viewpoint of this analysis.

Empirical information on the all-neutral mode,a00, is es-
sential to the extraction ofa; however, it is possible to bound
the strong-phase uncertainty using bounds ona00 and its
CP-conjugateā00 @19#. Under the assumptions we have a
ticulated, the bounds on the hadronic uncertainty realized
B→rp decay @19# are not modified by the presence of
uDI u55/2 transition.

An isospin analysis ofB→pp decay also permits the
extraction of sin(2a) from the mixing-inducedCP asymme-
try in B→p1p2 @32#. In this case, in contrast, theuDI u
55/2 amplitude cannot be combined with theuDI u53/2 am-
plitude. WithAuDI u,I f

, we have

b12[A~B0→p1p2!52
1

A3
A1/2,01

1

A6
@A3/2,22A5/2,2#,

~10!

b00[A~B0→p0p0!52
1

A3
A1/2,02A2

3
@A3/2,22A5/2,2#,

~11!

b10[A~B1→p1p0!5
A3

2
A3/2,21

1

A2
A5/2,2. ~12!t
4-3
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As the case ofB→rp, three isospin amplitudes describ
three empirical amplitudes, so that we expect our param
zation to persist in the presence of isospin violation. T
lowest-dimension operators of the effective weak Ham
tonian generate transitions ofuDI u51/2 anduDI u53/2 char-
acter, so that in the absence of isospin-violating effects in
hadronic matrix elements,A1/2,0→A0 and A3/2,2→A2, and
two amplitudes suffice to describe the three transitions.
isospin analysis inB→pp relies on the relation (b12

2b00)/A22b1050 @32#. The right-hand side of this relatio
is proportional toA5/2,2, so that the required relation is bro
ken by amplitudes ofuDI u55/2 character. With such effect
the isospin analysis can fail to determine the true value
sin(2a) @25#. The smallB→p0p0 rate makes the full isospin
analysis difficult to effect, so that bounds on the hadro
uncertainty in the extraction of sin(2a) have also been con
structed@33–36#. The presence of theuDI u55/2 amplitude,
as well as that of electroweak penguins, imply that
bounds can underestimate the size of the hadronic un
tainty @25#. However, bounds which rely on the neutralB
modes exclusively, such as Eq.~83! of Ref. @33#, contain the
same linear combination ofuDI u53/2 anduDI u55/2 ampli-
tudes throughout—so that our arguments concerning
uDI u55/2 amplitude inB→rp decay are germane here
well. We conclude, to the extent theuDI u53/2 and uDI u
55/2 amplitudes share the same weak phase, that
bounds are insensitive to theuDI u55/2 amplitude and yield
more reliable bounds on the hadronic uncertainty.

III. EXTENSION OF THE ISOSPIN ANALYSIS:
INCLUSION OF THE sp CHANNEL

TheB→sp channel has definite properties underCP, so
that it can be included in theB→rp analysis as well. De-
fining a00

s 5A(B0→sp0), we have

eiba00
s 5Ts

00e2 ia1Ps
00. ~13!

Ts
00 andPs

00 are unrelated to the parameters of Eq.~8!, so that
we gain four additional hadronic parameters. However, m
observables are present as well. Including the scalar cha
we now haveA3p[A(B0→p1p2p0)5 f 1 a121 f 2 a21

1 f 0 a001 f s a00
s , where f s is the form factor describings

→p1p2. It is worth noting that any discernable presence
the B→sp channel in theB→rp phase space falsifies th
notion that the ‘‘nonresonant’’ background can be charac
ized by a single, constant phase across the Dalitz plot@37#.
For further discussion of the treatment of nonresonant c
tributions, specifically inD→3p decay, see Ref.@38#—note
also Ref.@7#.

Neglecting the width difference of theB-meson mass
eigenstates, asDG[GH2GL and uDGu!G[(GH1GL)/2,
we note that the decay rate intop1p2p0 for a B0 meson at
time t50 is given by@39#
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G„B0~ t !→p1p2p0
…5uA3pu2exp~2Gt !F11ul3pu2

2

1
~12ul3pu2!

2
cos~Dm t!

2Im l3psin~Dm t!G , ~14!

whereas the decay rate intop1p2p0 for a B̄0 meson at time
t50 is given

G~B̄0~ t !→p1p2p0!5uA3pu2exp~2Gt !F11ul3pu2

2

2
~12ul3pu2!

2
cos~Dm t!

1Im l3psin~Dm t!G . ~15!

We note thatl3p[qĀ3p /pA3p , where we have defined
Ā3p[A(B̄0→p1p2p0), and Dm[MH2ML . Different
observables are possible. For example, we can consider
tagged observables, for which the identity of theB meson at
t50 is unimportant, so that G„B0(t)→p1p2p0

…

1G„B̄0(t)→p1p2p0
…}(11ul3pu2), or we can consider

time-integrated, tagged observables, containingG„B0(t)
→p1p2p0

…2G„B̄0(t)→p1p2p0
…, which are sensitive to

(12ul3pu2). The productsf i f j* contained therein are distin
guishable through the Dalitz plot of this decay and thus
coefficients of these functions are distinct observables@6#.
Were we to neglect thesp channel, nine distinct, untagge
observables exist, so that all the hadronic parameters
one would be determinable from the untagged data,
which greater statistics will be available@19#. If we enlarge
the analysis to include thesp0 channel, the additional inter
ferences possible imply that there are now sixteen disti
untagged observables. Moreover, there are fifteen, ra
than eight, tagged, time-integrated observables as well. N
ertheless, it would seem that the additional hadronic par
eters associated with thesp0 final state can be extracte
from untagged data alone. Of course the practicability of
procedure relies on the amount of data eventually collec
moreover, the observables are highly correlated.

IV. EVALUATING B\p¿pÀp0 DECAY

The effective,uDBu51 Hamiltonian forb→dqq̄ decay is
given by

Heff5
GF

A2
Flu~C1O1

u1C2O2
u!1lc~C1O1

c1C2O2
c!

2l t(
i 53

10

CiOi G , ~16!
4-4
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wherelq[VqbVqd* with Vi j an element of the CKM matrix
The Wilson coefficientsCi and operatorsOi are detailed in
Ref. @40#, though we shall interchangeC1O1

q↔C2O2
q so that

C1;O(1) andC1.C2@C3 . . . 10. The contributions withi
53 . . . 6 correspond to strong penguin effects, where
those withi 57 . . . 10 arecharacterized by electroweak pe
guin effects. The Wilson coefficients withi 57 . . . 10 are
numerically smaller than those withi 53 . . . 6, andpenguin
effects are not CKM-enhanced inb→dqq̄ decay, so that we
shall neglect the terms withi 57 . . . 10 alltogether.

The decay amplitude forB→M1M2, whereM1 and M2
are mesons, is given by

A~B→M1M2!5^M1M2uHeffuB&. ~17!

The requisite matrix element contains terms of the form

Ci~m!^M1M2uOi uB&. ~18!

We adopt the naive factorization approximation to effect
timates of the hadronic matrix elements. To wit, we sepa
Oi into a product of factorized currents,j 1^ j 2, and evaluate
^M1u j 1uB&^M2u j 2u0&, so that the operator matrix element b
comes a product of a form factor and a decay constant. S
a treatment, albeit simple, is incomplete. The amplitu
A(B→M1M2) is related to a physical observable and
such must bem-independent, though theCi therein do de-
pend onm. Evidently them dependence of the operator m
trix elements compensates to yield am independent result. In
the naive factorization approximation, we have replaced
operator matrix element by a product of a form factor a
decay constant. These quantities are themselves physica
servables and thus are withoutm dependence, so that th
overall m dependence of the computed amplitude rema
Effecting this approximation, however, allows us to realiz
clear connection to earlier work@9,16#, for our purpose is to
illustrate the impact of using a scalar form factor consist
with low-energy constraints.

In the naive factorization approximation, we can repla
the effective Hamiltonian by the sum of products of facto
ized currents, so thatHeff5T 1,21T 3,41T 5,6, where

T 1,25
GF

A2
lu@a1ūgm~12g5!b^ d̄gm~12g5!u

1a2d̄gm~12g5!b^ ūgm~12g5!u#, ~19!

T 3,452
GF

A2
l tFa3(

q
d̄gm~12g5!b^ q̄gm~12g5!q

1a4(
q

q̄gm~12g5!b^ d̄gm~12g5!qG , ~20!

and
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T 5,652
GF

A2
l tFa5(

q
d̄gm~12g5!b^ q̄gm~11g5!q

22a6(
q

q̄~12g5!b^ d̄~11g5!qG . ~21!

We defineai[Ci1Ci 11/3 for i odd andai[Ci1Ci 21/3 for
i even; note, too, thatqPu,d,s,c if m&mb .

We now specifically considerB→sp transitions; the rel-
evant formulas forB→rp are detailed in the Appendix. By
‘‘ s,’’ we always mean a two-pion state with total isosp
zero and in a relativeS-wave state, (pp)S, understanding its
dynamical origin in the strong pionic FSI for these quantu
numbers—see the following section for a more detailed d
cussion. The matrix elements involving thes are

qm^s~ps!ud̄gm~12g5!buB̄0~pB!&

52 i ~MB
22Ms

2 !F0
B→s~q2!, ~22!

where q[pB2ps and ^suq̄8gm(11g5)q8u0&, noting q8
Pu,d,s, vanishesby C invariance. It is just such a suppre
sion mechanism that prompts the authors of Ref.@41# to
argue that non-factorizable effects ought be relatively
hanced in two-bodyB decays to final states with scalar m
sons, as the factorization contribution is itself small. Nev
theless, as our focus is the scalar form factor itself,
proceed with our estimates.

For thep1 we have

^p1~p!uūgm~12g5!du0&5 i f ppm ~23!

and

^p1~p!uūgm~12g5!buB̄0~pB!&

5F ~pB1p!m2
~MB

22Mp
2 !

q2
qmGF1

B→p~q2!

1
~MB

22Mp
2 !

q2
qmF0

B→p~q2!. ~24!

With these relations, Eqs.~19!, ~20!, ~21!, and the equations
of motion for the quark fields, we have

^p2suHeffuB2&

5
GF

A2
H f p~MB

22Ms
2 !F0

B→s~Mp
2 !

3Flua12l ta41l t

a6Mp
2

m̂~mb1m̂!
G

1l t2a6

^sud̄du0&

~mb2m̂!
~MB

22Mp
2 !F0

B→p~Ms
2 !J ~25!
4-5



e

.
or
ts
-
ly

e

,

te
se

he

on
.

e

pi

in
na

g

cal

tree

ad-

l to

ibu-
rk

-

fi-

ll
ical
f
u-

a
of

sti-

nc-

rom
of

n-

of

nce
om-

S. GARDNER AND ULF-G. MEIßNER PHYSICAL REVIEW D65 094004
and

^p0suHeffuB̄0&5
GF

A2
H f p

A2
~MB

22Ms
2 !F0

B→s~Mp
2 !

3Flua21l ta42l t

a6Mp
2

m̂~mb1m̂!
G

2l t2a6

^sud̄du0&

~mb2m̂!
~MB

22Mp
2 !

3
F0

B→p~Ms
2 !

A2
J , ~26!

where we have replaced theu,d quark masses withm̂ and set
Mp05Mp65Mp and MB65MB0,B̄05MB , as we neglect
isospin-violating effects. We adopt the usual phase conv
tions for the flavor wave functionsp1,p0,p25ud̄,(uū

2dd̄)/A2,dū, and adopt analogous relations for ther me-
sons as well. In the context of theB→rp analysis, the decay
B̄0→sp, specifically its penguin contributions, modify Eq
~9!, the assumption crucial to the analysis. Thus it is imp
tant to make an assessment of the size of penguin effec
this decay. The terms containinga6, the scalar penguin con
tribution, are formally 1/mb suppressed, but can be chiral
enhanced: the numerical factorMp

2 /(m̂mb);0.6 is only
modestly less than unity. The second term proportional toa6

containŝ sud̄du0&, where we anticipate, in the vicinity of th
s resonance,Gspp(s)^sud̄du0&5^p1(p1)p2(p2)ud̄du0&
5A2/3B0G1

n * (s), where G1
n(s) is the scalar form factor

which we detail in the next section, ands5(p11p2)2. The
parameterB0 is related to the vacuum quark condensa
Neglecting small terms of second order in the quark mas
B052^0uq̄qu0&/Fp

2 , whereFp , the p0 decay constant, is

f p /A2. Commensurately, we can simply setB0[Mp
2 /(2m̂)

to realize our numerical estimates. Note thatGspp describes
thes→p1p2 form factor. With our conventions,B0.0, so
that the twoa6 contributions are of the same sign. Using t
parameters of Ref.@9# and Gspp5G1

n * x with, as we shall
determine,x520.0 GeV21, we find thea6 term containing
f p to be roughly a factor of four larger. The^sud̄du0& term,
present in the penguin contributions inB→sp, slightly en-
hances thea6 contribution and its subsequent cancellati
with the a4 contribution, asa4 anda6 are of the same sign
The same cancellation occurs inB̄0→r0p0 ~see the Appen-
dix for a compilation of the relevant formulas!, so that pen-
guin contributions in B̄0→sp0 can be expected to b
crudely comparable to those inB̄0→r0p0. Modifications of
Eq. ~9! can thus be expected to occur.

In the previous section we determined how the isos
analysis inB→rp could be extended to includeB→sp.
Equations~25! and ~26!, however, are related by isosp
symmetry, so that it is useful to determine whether additio
09400
n-

-
in

.
s,

n

l

constraints onPs
00 in Eq. ~13! can be realized. Parametrizin

the amplitudes in terms ofAuDI u,I f
, we have

A~B0→sp0!5
1

A2
A1/2,12

1

A2
A3/2,1 ~27!

and

A~B1→sp1!52A1/2,12
1

2
A3/2,1, ~28!

so that two isospin amplitudes appear for the two empiri
amplitudes. Although theuDI u51/2 amplitudes are simply
related, we see that no useful constraint emerges, as the
amplitude inB1→sp1, which includesuDI u51/2 and 3/2
amplitudes, gives rise to two additional, undetermined h
ronic parameters.

We have illustrated that the penguin relation essentia
the isospin analysis inB→rp, Eq. ~9!, can be broken
through the presence of theB→sp decay channel. In our
numerical estimates, however, we neglect penguin contr
tions, in order to retain a crisp comparison with earlier wo
@9#, for our purpose is to illuminate the impact of thes
→p1p2 form factor. With such an approximation, a com
putation of the Wilson coefficients in leading order inas
suffices@42#, so thatC1(m)51.124 andC2(m)520.271 at
m5mb54.8 GeV as per Ref.@43#, to yield a151.034 and
a250.104. In contrast, Ref.@9# uses the ‘‘fitted’’ values
C1(mb)51.105 andC2(mb)520.228, to yielda151.029
anda250.140. These are very similar to the Wilson coef
cients in next-to-leading-order QCD, after Ref.@44#, used in
the B→rp analysis of Ref.@16#. For definiteness, we sha
adopt these last values, detailed in Sec. VII, in our numer
analysis. The values ofa1 are quite similar, whereas those o
a2 differ by tens of percent. Generally, we expect our n
merical predictions for decay channels controlled bya2 to be
less robust, as the scale dependence ofa2, as illustrated in
Table III of Ref. @43#, is severe. Note that it persists to
significant degree in the next-to-leading order treatment
Ref. @30# as well.

Nevertheless, let us proceed to consider numerical e
mates forB→sp decay. We reconstruct thes meson from
the (p1p2)S final state, so that we have

As~B→p1p2p![^~s→p1p2!puHeffuB&

5A~B→sp!Gspp , ~29!

whereGspp is thes→p1p2 form factor introduced previ-
ously. The scalar form factor contains the meson loop fu
tion and thus a regularization scalem r at which it is evalu-
ated. In our approach, this scale dependence is disjoint f
that associated with the renormalization of the operators
the effective, weak Hamiltonian, so that it is chosen for co
venience and is quite independent ofm. It may seem unto-
ward to graft two very different calculations, namely,
A(B→sp) and of Gspp , to yield A(B→(s→p1p2)p).
In a holistic treatment one might hope to recast a resona
and its subsequent decay products in terms of a single, c
4-6
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plex hadron distribution amplitude,f(x,m), which describes
the non-perturbative dynamics. The analysis of the de
amplitude could then proceed via standard PQCD techniq
@45,46#. In this manner them r dependence of which we hav
spoken is connected, albeit loosely, to the scale depend
of f(x,m). Nevertheless, the explicit ‘‘QCD factorization
analysis of Ref.@30# shows that the scale dependence of
hadron distribution functions is trivial in an NLO analysis
as , so that the consistency issues to which we have allu
are beyond the scope of current calculations.

Turning to B2(pB)→p1(p1)p2(p1)p2(p2) decay,
we define u5(pB2p1)25(p11p2)2 and t5(p11p1)2.
The contributions driven by thes resonance are of th
form B2(pB)→„s→p1(p1)p2(p1)…p2(p2) or B2(pB)
→„s→p1(p1)p2(p2)…p2(p1)—the latter is illustrated
in Fig. 1. ~The corresponding contributions toB→rp
decay are illustrated in Fig. 2.! The two contributions add
coherently, so that the branching ratio forB2(pB)
→p1(p1)p2(p1)p2(p2) is enhanced through the presen

of two identical pions in the final state. InB̄0 decay this does

not occur, and we haveB̄0(pB)→p1(p1)p2(p1)p0(p2).
Thus we find

^~s→p1p2!p2uHeffuB2&

5
GF

A2
Vub* Vud a1 F0

(B→s)~Mp
2 !~MB

22Ms
2 !

3 f p@Gspp~ t !1Gspp~u!#, ~30!

FIG. 1. B→p1p2p decay as mediated by thes resonance.
The factorized weak vertex is denoted by ‘‘^ ^ .’’ The filled circle
denotes the strong three-meson vertex, heres→2p.

FIG. 2. B→p1p2p decay as mediated by ther resonance. The
factorized weak vertex is denoted by ‘‘^ ^ .’’ The filled circle de-
notes the strong three-meson vertex, herer→2p.
09400
y
es

ce

e

d

^~s→p1p2!p0uHeffuB̄0&

5
GF

A2
Vub* Vud a2 F0

(B→s)~Mp
2 !~MB

22Ms
2 !

3
f p

A2
Gspp~ t !. ~31!

In Ref. @9#, thes→p1p2 vertex function is chosen to be

Gspp~x!5gsp1p2S 1

x2Ms
21 iGs~x!Ms

D , ~32!

where the running widthGs(x) is defined as

Gs~x!5Gs

Ms

Ax

Ax/42Mp
2

AMs
2/42Mp

2
. ~33!

We shall adopt, however, the definition

Gspp~x!5x G1
n * ~x!, ~34!

where the normalizationx is fixed to be identical to that o
Eq. ~32!, namely

xuG1
n~Ms

2 !u5
gsp1p2

Gs~Ms
2 !Ms

. ~35!

Using the parametersgsp1p2, Ms , andGs of Ref. @9#, that
is, Ms5478624 MeV andGs5324641 MeV as reported
by the E791 Collaboration inD1→3p, and gspp

52.52 GeV, we find x520.0 GeV21. Alternatively, x

5A2/3B0 /^sud̄du0&, so that this procedure determine

^sud̄du0& as well.
The s meson is a broadI 5J50 enhancement, close t

ther meson in mass, so thatB→sp decay can contribute to
the allowed phase space ofB→rp decay as well. To ascer
tain the impact of theB→sp channel toB→rp decay, we
combine the decay channels at the amplitude level and
integrate over the relevant three-body phase space to d
mine the effective B→rp branching ratio. ForB(pB)
→p1(p1)p2(p1)p(p2) decay, we define

cosu5
p18•p28

up18uup28u
, ~36!

where the primed variables refer to the momenta in the
frame of thep1(p18 )p2(p18) pair, so thatp181p18 50. Let-
ting p2

25M2
2, we have

G~B→reffp!5E
21

1

d cosuE
(Mr2d)2

(Mr1d)2

dt
1

32~4pMB!3

3~MB
22t2M2

2!b18b28uMu2, ~37!
4-7
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where ‘‘reff’’ is determined by (M r2d)2<t<(M r1d)2, b i8
refers to the velocity of particlei in the primed frame, and
M is the sum of the amplitudes of interest.3 Typically d
;(122)Gr .

The scalar form factor we adopt describes thef 0(980)
→p1p2 vertex function as well, albeit with a new norma
ization factor, as

G f 0pp~ t !^ f 0ud̄du0&5^p1~p1!p2~p1!ud̄du0&

5A2/3B0G1
n * ~ t !,

in the vicinity of the f 0(980) resonance. The appearance
the f 0(980) resonance in thep1p2 channel is complicated
by the opening of theKK̄ threshold; thef 0(980)→p1p2

form factor is decidedly not of Breit-Wigner form. It shoul
be noted that the unitarization procedure we employ h
neglects thehh channel, though, as we discuss in the n
section, this has no impact on the description ofpp scatter-
ing below s.1.1 GeV. Note, too, that although multipa
ticle final states, particularly the 4p state, can contribute
they are demonstrably small fors<1.4 GeV @47,48#. The
form factor~s! we adopt can be tested though theshapeof the
f 0(980) contribution in B→ f 0(980)p→3p, as well as
through that inB→ f 0(980)p→K1K2p.

V. COUPLED-CHANNEL PION AND KAON SCALAR
FORM FACTORS

In the preceding section, we encountered the non-stra
scalar form factor of the pion,G1

n(t). Such scalar form fac-
tors play a unique role in strong-interaction physics beca
they measure the strength of the quark mass termH m

QCD

5muūu1mdd̄d1•••, i.e., the explicit chiral-symmetry
breaking term in QCD. However, since no scalar-isosca
sources exist, these form factors cannot be determined
rectly but, rather, must be inferred indirectly from hadro
hadron scattering data. The most prominent example in
context is the pion-nucleon sigma term, which can be
tracted from the analytically-continued and Born-ter
subtracted isoscalarS-wave amplitude. Similarly, the pion
scalar form factor can be obtained from meson-meson s
tering data, with the added complication of channel co
plings above theK̄K threshold atAs.1 GeV. At lower en-
ergies, the pion scalar form factor can be calculated in CH
at one- @49# and two-loop accuracy@50,51#. The one-loop
representation fails at surprisingly low energies, a con
quence of the strong pionic FSI present in this channel@52#.
This is also signaled by the very large pion scalar rad
^r S

2&p.0.6 fm2, which is sizeably bigger than the pion ve
tor radius governed by the rho masŝr V

2&p.6/M r
2

.0.4 fm2, indicating a smaller breakdown scale in th

3For completeness, we note thatu5M 1
2 1M2

212E18 E28(1
1b18b28cosu), with E18 5(t1M 1

2 2M1
2)/(2At), E185(t1M1

2

2M 1
2 )/(2At), andE285(MB

22t2M2
2)/(2At), wherep1

2 5M 1
2 and

p1
25M1

2 .
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scalar-isoscalar channel. In fact, these FSI are so strong
they can dynamically generate thes meson, with no need o
a genuine~pre-existing! quark model state@53#. Furthermore,
extending such an analysis to three flavors, one finds tha
the scalar mesons with mass below 1.1 GeV can be dyna
cally generated, so that the genuine quark model no
would have its center of gravity at about 1.3 GeV, see e
Ref. @54# and references therein. Irrespective of this adm
tedly controversial assignment of the scalars, for further
cent discussion see Ref.@55#, the pion scalar form factor
cannotbe represented simply in terms of a scalar meson w
a certain mass and width. Although thedescriptionof the
low-lying scalar states in terms of dynamically generat
rather than ‘‘pre-existing,’’ states may be controversial a
thus subject to ongoing discussion, let us stress that the
lar form factor itself is not. The form factor which emerge
for the chiral unitary approach adopted here is quite com
rable to that which emerges from the dispersion analysis
Ref. @56#. Consequently, when one has a source with vacu
quantum numbers coupled to a two-pion state, it can be v
misleading to use a simple Breit-Wigner parametrization,
beit with a running width. We shall display this graphical
after discussing the scalar form factor and its construction
be used in calculating the branching ratios to which we h
alluded. We note in passing that this casts doubt on the
traction of thes meson properties fromD→3p decays, note
Ref. @8#. This is quite in contrast to the pion vector form
factor and ther meson, for which such a description work
to good accuracy.

We now summarize how to calculate the scalar form f
tor in Eq. ~34!, following Ref. @10#, to which we refer in all
details. Of course, one could also use the numerical resu
the dispersion analysis of@56# for the scalar form factor.
Note that the band found there overlaps with the band of R
@10# if one allows for parameter variations within know
bounds. As a first step, we prefer to work in the framewo
of the chiral unitary approach, as it yields a form fact
which is more convenient for applications. As we ha
noted, we need the scalar form factor of the pion for mom
tum transfers larger than 1 GeV. Consequently, we can
work with the scalar form factor as computed in CHPT, b
must invoke some resummation technique, as well as

count for the channel coupling between thepp and theKK̄
systems. The resummation method is constrained only
unitarity and thus is not entirely model-independent. Ho
ever, it can be strongly constrained by requiring that the
constructed form factors match the CHPT expressions, in
region where CHPT is applicable. Due to the channel c
pling, we have to consider transition matrix elements of
nonstrange and strange scalar quark bilinears between
meson states of isospin zero, namelypp and K̄K, and the
vacuum. We exclude thehh channel, as it does not affect th
phase shifts or pion-kaon decays and transitions—it o
plays a role in describing the inelasticity ofI 5J50 pp
scattering above 1.1 GeV, the physicalhh threshold. For a
detailed discussion of this point, we refer to Refs.@53,57,58#.
The pertinent matrix elements are given in terms of fo
4-8
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scalar form factors,4

^0un̄nupp&5A2 B0 G1
n~s!, ^0un̄nuKK̄&5A2 B0 G2

n~s!,

^0us̄supp&5A2B0 G1
s~s!, ^0us̄suKK̄&5A2 B0 G2

s~s!,

~38!

whereB0 is a measure of the vacuum quark condensateB0

52^0uq̄qu0&/Fp
2 , with Fp.93 MeV the pion decay con

stant ~strictly speaking its value in the limit of vanishin
quark masses!. In Eq. ~38!, the following notation is em-
ployed. The superscripts(n) refers to the strange-nonstrang
quark operator whereas the subscript1(2) denotes pions and
kaons, respectively. Furthermore,n̄n5(ūu1d̄d)/A2. The
pion scalar form factorsG1

n(s) and G1
s(s) are calculated in

Refs.@49,59# through one loop in CHPT andG1
n(s) through

two loops in Refs.@50,51#. The scalar kaon form factors a
next-to-leading order in CHPT were first explicitly given
Ref. @10#. Since it is central to our discussion, we give t
explicit expression forG1

n(s) @59#

G1
n~s!5A3

2H 11mp2
1

3
mh1

16Mp
2

Fp
2 ~2L8

r 2L5
r !

18~2L6
r 2L4

r !
2MK

2 13Mp
2

Fp
2

1 f ~s!1
2

3
f̃ ~s!J ,

~39!

with f (s) and f̃ (s) given by

f ~s!5
2s2Mp

2

2Fp
2

J̄pp~s!2
s

4Fp
2
J̄KK~s!2

Mp
2

6Fp
2
J̄hh~s!

1
4s

Fp
2 H L5

r 2
1

256p2 S 4 log
Mp

2

m2
2 log

MK
2

m2
13D J ,

f̃ ~s!5
3

4

s

Fp
2
J̄KK~s!1

Mp
2

3Fp
2
J̄hh~s!1

12s

Fp
2 H L4

r 2
1

256p2

3S log
MK

2

m2
11D J . ~40!

Here,J̄PP(s) (P5p,K,h) is the standard meson loop fun
tion @49#, andm, in this section, is the scale of dimension
regularization. The quantitiesmP in Eq. ~39! are given by

mP5
mP

2

32p2Fp
2
log

mP
2

m2
. ~41!

4Here ‘‘pp ’’ and ‘‘ KK ’’ states denote the linear combinations
physicalpp andKK states, respectively, with zero total isospin
09400
Furthermore, theLi
r(m) are scale-dependent, renormaliz

low-energy constants. We use here the same values as in
@10#. Since the combination 2L6

r 2L4
r multiplies MK

2 , the
normalization ofG1

n(s) is sensitive to the precise value o
these low-energy constants, which are only poorly know
This motivates our choice for the normalization ofGspp(s),
given in Eq. ~35!. The one-loop representation cannot
trusted beyondAs.400 MeV, as it begins to diverge from
the form factor extracted frompp scattering data. To go to
higher energies, one therefore has to study the constra
that unitarity imposes on the scalar form factors. The ima
nary part of any scalar form factor is given by the approp
ate meson-meson scatteringT-matrix, so that the starting
point for any unitary resummation scheme is exactly t
scatteringT-matrix @60#,

T~s!5@ I 1K~s!•g~s!#21
•K~s!, ~42!

wheres denotes the center-of-mass energy squared andK(s)
can be obtained from the lowest order CHPT Lagrangi
e.g., K(s)115(s2Mp

2 /2)/Fp
2 . This T-matrix not only de-

scribes meson-meson scattering data but also, after gau
photon decays and transitions, as reviewed in Ref.@11#. In
Eq. ~42!, the diagonal matrixg(s) is nothing but the familiar
scalar loop integral

g~s! i5
1

~4p!2 S 211 log
Mi

2

m2
1s i~s!log

s i~s!11

s i~s!21D ,

~43!

given here in dimensional regularization for the modifi
minimal subtraction scheme (MS) scheme, ands i(s)
5A124Mi

2/s. In what follows, we will set the regulariza
tion scalem51.08 GeV. Of course, observables do not d
pend on this choice, and we could choose another value
m. However, the original investigation of meson-meson sc
tering transitions and decays by Oller and Oset@60# uses a
three-momentum cutoff in the pion loop function. Translat
to dimensional regularization, this gives the stated value
m. For energies above the threshold of the statei, unitarity
implies the following relation between the form factors a
the isospin-zero scatteringT-matrix,

Im G~s!5T~s!•
Q~s!

8pAs
•G* ~s!, ~44!

employing an obvious matrix notation with

Q~s!5S p1~s!u~s24M1
2! 0

0 p2~s!u~s24M2
2!
D ,

G~s!5S G1~s!

G2~s!
D , ~45!

where pi(s)5As/42Mi
2 is the modulus of the c.m. three

momentum of the statei. Substituting Im G(s) with @G(s)
4-9
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2G(s)* #/(2i) and T(s) with the expression of Eq.~42! and
using the properties of the matricesg(s) andK(s), one can
expressG(s) as

G~s!5@ I 1K~s!•g~s!#21
•R~s!, ~46!

whereR(s) is a vector of functions free of any singularit
We remark that this procedure of taking the final state in
actions into account is based on the work of Ref.@61#. We
also wish to stress that Eq.~46! can be applied to any
K-matrix without unphysical cut contributions. As the fin
step, one fixes the functions in the vectorR(s) by requiring
matching of Eq.~46! to the next-to-leading order~one loop!
CHPT pp and KK̄ scalar form factors. This matching en
sures that for energies where CHPT is applicable, these f
factors satisfy all the requirements given by chiral symme
and the underlying power counting. The matching proced
thus determines the vectorR(s), as detailed in Ref.@10#. For
completeness, we give the expression forR1

n pertinent to the
scalar form factorG1

n(s),

Rn~s!15A3

2H 11
4~L5

r 12L4
r !

Fp
2

s1
16~2L8

r 2L5!

Fp
2

Mp
2

1
8~2L6

r 2L4
r !

Fp
2 ~2MK

2 13Mp
2 !2

Mp
2

32p2 Fp
2

2
1

3
mhJ ,

~47!

where we have used the Gell-Mann–Okubo relation 3Mh
2

54MK
2 2Mp

2 . This representation of the scalar form facto
is valid from threshold up to energies of about 1.2 GeV. T
range could be extended to higher energies by including m
tiparticle states. In fact, in theu channel witht;M r

2 one
encounters larger values ofAs. Therefore, we simply match
our representation atAs051.2 GeV to the following
asymptotic forms:

ReG1
n~s!→ a

s
, Im G1

n~s!→ b

s2
, s→`. ~48!

We have checked that the final results are insensitive to
choice of the matching point. The asymptotic form of t
real part of the scalar form factor follows from quark coun
ing rules@62# in the crossed channel; it has also been fou
in the dispersion analysis of the Higgs decay into two pio
@56#. For continued contact with Ref.@9# we match to the
asymptotic form of the vertex function of Eq.~32!; a more
precise treatment, if it were warranted, would invol
smoothly lettingK(s)→0 and solving for the form factors in
a manner consistent with unitarity—for further discussio
see Ref.@56#. In Fig. 3 we display the scalar form facto
G1

n(s) for As<1.2 GeV. In the low-energy region, th
modulus of the form factor has its maximum atAs
.0.46 GeV, very close to the central value of thes meson
mass deduced by the E791 Collaboration from analyzing
D→3p data. In fact, since we wish to examine the con
quences of using the more general vertex, Eq.~34!, as com-
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pared to the choice Eq.~32!, used by Ref.@9#, we have fixed
the normalization constantx such that ReG1

n(s) has the
same value as the Breit-Wigner representation atAs
50.478 GeV. This amounts to settingx520.0 GeV21. The
peak atAs.1 GeV is due to thef 0(980) and the opening o
the K̄K channel. Also shown in Fig. 3 is the scalar for
factor generated using the Breit-Wigner form with a runni
width, adopted in Refs.@8,9#. The differences between thi
form factor and that deduced from the low-energy effect
field theory of QCD are marked. In particular, in Fig. 3 w
see that the Breit-Wigner representation ofGspp is deficient
in that ~i! Im Gspp(s) has a different shape ass approaches
physical threshold,s→4Mp

2 and ~ii ! ReGspp(s) does not
possess a unitarity cusp ats54Mp

2 . It is also of the wrong
sign in this limit. Moreover, the shapes of the two form fa
tors are very different aboveAs.0.5 GeV—this has par-
ticular consequence for theB→rp analysis.

VI. VECTOR FORM FACTOR

Thus far we have considered thes meson contribution to
B→p1p2p decay. In this section we turn to ther meson
contribution, B(pB)→rp→p1(p1)p2(p1)p(p2), which
presumably dominates fort.M r

2 . In analogy to Eq.~29!, the
amplitude forB→p1p2p decay as mediated by ther reso-
nance,Ar(B→p1p2p), is the product of aB→rp ampli-
tude and ar→pp vertex function,Grpp . We give the rel-
evant formulas for B→rp→p1p2p decay in the
Appendix. In this section we focus on the construction
Grpp , generating a form which is consistent with all know
theoretical constraints. We detail our procedure, as the f
of Grpp is important to the goals of theB→rp analysis: it
drives the size of the interference betweenr states produced

FIG. 3. Thes→p1(p1)p2(p2) form factorGspp as a func-
tion of As, with s5(p11p2)2. The real~solid line! and imaginary
~dot-dashed line! parts of Gspp , as well as its modulus~dashed
line!, are shown. The curves which do not persist below the ph
cal threshold,As52Mp;0.27 GeV, correspond to the form facto
adopted in Ref.@9#, whereas the curves which extend tos50 cor-
respond to the form factor adopted here@10#.
4-10
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in different regions of the Dalitz plot. Our vertex functio
differs from that of Ref.@16#, as the latter adopt a Breit
Wigner form. We also compare our form with that adopted
Ref. @7#. At this point we should mention that the numeric
differences are not large—simply because the pion ve
form factor can be described fairly well by a Breit-Wign
form. We also note that a unitarized version of the vec
form factor starting from tree-level CHPT, including res
nance fields, has been presented in Ref.@63#, based on the
methods described in Sec. V. It could be used equally we
the parametrization employed here.

The vector form factorFr(s) can be directly determined
from e1e2→p1p2 data in ther resonance region. Gener
theoretical constraints guide its construction: charge con
vation requiresFr(0) to be unity, and time-reversal invar
ance and unitarity lead to the identification of the phase
Fr(s) with the l 51, I 51 pp phase shift,d1

1(s), in the
region where pp scattering is elastic,s&(Mp1Mv)2.
Moreover, Fr(s) is an analytic function in the complexs
plane, with a branch cut along the real axis beginning at
physical thresholds54Mp

2 . Below the two-pion cut ats
54Mp

2 , the vector form factor is real. Furthermore, at sm
s the form factor can be computed in CHPT, as detailed
Refs. @50,51#. All these constraints are captured by t
Muskhelishvili-Omne`s ~MO! integral equation@64#. For s
&(Mp1Mv)2, its solution can be written@65#5

Fr~s!5P~s! V~s!, ~49!

where P(s) is a real polynomial and the Omne`s function,
V(s), contains all the phase information,

V~s!5expS s

pE4Mp
2

` ds

s8

f1~s8!

s82s2 i e
D ,

tanf1~s![
Im Fr~s!

ReFr~s!
5tand1

1~s!, ~50!

whered1
1(s) is the phase shift ofI 51, L51 scattering. In

the Heyn-Lang parametrization@65#, V(s) is approximated
by the quotient of two analytic functions, which conta
polynomial pieces and the one-pion-loop expression for
r self-energy function.P(s) is chosen to be of third order in
s in Ref. @65#. We use here a recent update of the pion fo
factor @21#, based on the Heyn-Lang parametrization. S
cifically, we use the parameter set of ‘‘solution B’’ of Re
@21#, reflecting a fit to thee1e2→p1p2 data in the elastic
region, subject to the constraint that the model reprodu
the empiricalpp scattering length in theI 51, L51 chan-
nel, a1

15(0.03860.002)Mp
23 @67#. In what follows, we ne-

glect the presence of thev resonance, or effectivelyr02v
mixing. The latter is an important isospin-violating effe
visible in thee1e2→p1p2 data in the close vicinity ofs
5Mv

2 —the fits of Ref.@21# do include it.

5The solution of the MO equation with inelastic unitarity, impo
tant for s*(Mp1Mv)2, has been discussed in Ref.@66#.
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To realize the vertex functionGrpp(s), we define

Grpp~s![
2Fr~s!

f rg
, ~51!

where, as described in the Appendix, the electromagn
coupling constant of ther meson, f rg , is f rg50.122
60.001GeV2 @68#. Reference@16# adopts a Breit-Wigner
form for the vertex function, namely

Grpp
BW ~s!5

gr

s2M r
21 iGrM r

, ~52!

with the parametersgr55.8 andGr5150 MeV—we use
M r5769.3 MeV@69#. The two forms are compared in Fig
4—the Breit-Wigner form offers a reasonable description
the vector form factor, though differences can be seen
particular, the imaginary part of the Breit-Wigner form do
not vanish below physical threshold, as it ought. This de
ciency can be repaired by giving the Breit-Wigner form
running width, i.e.,

Grpp
RW ~s!5

gr

s2M r
21 iP~s!

, ~53!

P~s!5
M r

2

As
S p~s!

p~M r
2!
D 3

Gr , ~54!

wherep(s)5As/42Mp
2 . This form, modulo the proportion

ality constant, is adopted by Ref.@7#. Figure 5 compares Eqs
~51! and~53!—the two forms are really very similar, thoug

FIG. 4. Ther→p1(p1)p2(p2) form factor2Grpp as a func-
tion of As, with s5(p11p2)2. The form factor is shown in the
region for whichl 51, I 51 pp scattering is elastic. The real~solid
line! and imaginary~dot-dashed line! parts ofGrpp , as well as its
modulus~dashed line!, are shown. Noting Eq.~51!, the arrows in-
dicate the form factor given byFr(s)/ f rg , as detailed in Sec. VI,
whereas the other curves correspond to the Breit-Wigner fo
2gr /(s2M r

21 iM rGr), adopted in Ref.@16#.
4-11
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the forms differ slightly ass→4Mp
2 . The phase of the form

factors, namely tan21
„(ImGrpp)/(ReGrpp)…, is plotted in

Fig. 6. Unitarity and time-reversal invariance dictates t
the phase be that ofI 51, L51 scattering; the phase shif
from the data of Refs.@70,71# are shown for comparison
The forms of Eq.~51! and Eq.~53! confront the phase shif
data nicely. The agreement of the latter form is a particu
surprise, as it contains only two free parameters. Appare

FIG. 5. Ther→p1(p1)p2(p2) form factor2Grpp as a func-
tion of As, with s5(p11p2)2. The form factor is shown in the
region for whichl 51, I 51 pp scattering is elastic. The real~solid
line! and imaginary~dot-dashed line! parts ofGrpp , as well as its
modulus~dashed line!, are shown. Noting Eq.~51!, the arrows in-
dicate the form factor given byFr(s)/ f rg , whereas the other curve
correspond to the form of Eq.~53! adopted in Ref.@7#.

FIG. 6. The phase of the vector form factorGrpp(s) as a func-
tion of As, in the region where the scattering is elastic. The fo
factor we adopt,Fr(s)/ f rg ~solid line!, the relativistic Breit-Wigner
form of Ref. @16# ~dot-dashed line!, as well as that of Ref.@7#
~dashed line!, are all shown. Unitarity and time-reversal invarian
requires that the phase be the phase shiftd1

1 of I 51, L51 p-p
scattering. The empirical phase shifts of Ref.@70# (h) and Ref.
@71# (n) are indicated.
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the form of the imaginary part is precisely captured by t
pp branch cut, so that the phase is accurately determine
an arctan prescription to unitarize the amplitude. This is a
realized in the CHPT analysis including an explicitr meson,
for details see Ref.@72#.

In the application to follow, we need to evaluateGrpp(s)
for s.(Mp1Mv)2, so that atAs5(Mp1Mv).920 MeV,
the form factor of Eq.~51! is matched to the Breit-Wigne
form of Eq. ~52!, yielding ReFr(s);a8/s and ImFr(s)
;b8/s2 for larges. We now turn to a discussion of our nu
merical results inr ands-mediatedB→3p decay.

VII. RESULTS AND DISCUSSION

First, we must collect parameters. For crisp comparis
with Refs. @9,16#, we adopt the parameters used therein
reiterate them here for convenience. For meson masses
widths we useMB55.279 GeV, Mp5139.57 MeV, M r

5769.3 MeV, Gr5150 MeV, Ms5478 MeV, and Gs

5324 MeV. We neglect theB1, B0 lifetime difference and
use tB51.6310212sec. For quark masses, we usemb

54.6 GeV andm̂56 MeV. As for the CKM matrix ele-
ments, we adopt the Wolfenstein parametrization@73#, retain-
ing terms ofO(l3) in the real part and ofO(l5) in the
imaginary part, usingA50.806, r50.05, h50.36, andl
50.2196. For the Wilson coefficients, we useC151.100,
C2520.226,C350.012,C4520.029,C550.009, andC6
520.033, after Ref.@44#. For form factors and coupling
constants we useF0

(B→s)(Mp
2 )50.46, after Ref. @74#,

F1
(B→p)(M r

2)50.37, A0
(B→r)(Mp

2 )50.29, f p5A2(92.4
MeV).131 MeV, andf r50.15 GeV2. Finally, we usegr

55.8 andgspp52.52 GeV when using the form factors o
Refs.@9,16#.

Let us begin by computing the branching ratios forB
→rp andB→sp decay. Assuming two-body phase spac
we use Eqs.~A2! and ~A3! with Eqs.~A10!–~A13!, as well
as Eq.~25!. The results are tabulated in the first row of Tab
I. In the treatment of Ref.@16#, the branching ratios ofB
→M1M2 decay and its charge conjugate are identical, e
with penguin contributions, as no strong phase between
amplitudes of differing weak phase has been included.

Proceeding to treat B→rp→3p and B→sp
→p1p2p decay, we follow ther ands intermediate states
to their pp final states. We realize the transition amplitud
as per Eq.~A4!, ~A5!, or ~29!, and integrate over the three
body phase space as per Eq.~37!, computing the integral int
over @2Mp ,MB2Mp#. With this procedure, the branchin
ratios for B→r2p1, B→r1p2, and B→r0p0 become
identical; we simply report the final result in theB→r2p1

column. In treatingB2→p1p2p2 decay, we divide the
total rate by 1/2, to compensate for integrating over equi
lent configurations. Noting that Br(s→p1p2).2/3, the
quantity in brackets in the first row includes the factor of 2
for comparison with the three-body results. Comparing
two-body branching ratios with those computed by integr
ing over the entire three-body phase space, it is evident
the branching ratios do not agree. The deviations can
attributed to both interference effects and finite-width effec
4-12
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TABLE I. Branching ratios~in units of 1026) for B→rp andB→sp decay, computed at tree level. Th
numbers in parentheses include penguin contributions as well, after Ref.@16#. The first row of numbers
compute the branching ratios using two-body phase space. Although Br(r→p1p2).1, Br(s→p1p2)
.2/3, so that the numbers in brackets reflect the branching ratio times 2/3. The rows labeled ‘‘3-
computeB→rp→3p and B→sp→p1p2p decay, integrating over the entire three-body phase sp
‘‘BW’’ denotes the use of the form factors of Refs.@9,16#, Eqs.~32!, ~52!, whereas ‘‘RW’’ denotes the use o
the vector form factor of Ref.@7#, Eq. ~53!. Finally, ‘‘*’’ denotes the use of the form factors we hav
advocated.

B̄0→r2p1 B̄0→r1p2 B̄0→r0p0 B2→r0p2 B2→sp2
B̄0→sp0

2-body 21.6~21.0! 5.96 ~5.94! 0.237~0.308! 4.74 ~5.00! 15.6 @10.4# 0.147@0.0982#
3-body ~BW! 22.5 ~22.1! 4.11 ~4.33! 8.31 0.0739
3-body ~RW! 22.4 ~22.0! 4.08 ~4.30!
3-body (*) 22.3~21.9! 4.03 ~4.25! 11.7 0.108
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As an example of the former, both the diagrams illustrated
Figs. 1 and 2, as well as those withp1↔p2, contribute to
B2→p1p2p2 decay. Clearly the interference of these d
grams is not included when theB2→r0p2 or B2→sp2

process is treated as a two-body decay. As an illustratio
the latter, note that the couplingsgr andgspp are typically
chosen so that they reproduce ther→pp and s→p1p2

decay rates, namely

2

3
Gs5G~s→p1p2!5

1

16pMs
2 ~Ms

224Mp
2 !1/2ugsppu2

~55!

and

Gr5
1

48pM r
2 ~M r

224Mp
2 !1/2ugru2. ~56!

For the meson masses and widths we have used, these
mulas yieldgspp52.53 andgr56.03, respectively. Adopt-
09400
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ing these couplings in place of those used in Refs.@9,16#
does reduce the discrepancy. Note that it is a ‘‘finite widt
effect in that reducing the numerical width of ther or s
meson, in concert with Eqs.~55!, ~56!, reduces the discrep
ancy between the two-and three-body treatments. It is wo
noting, however, for the physical values of the meson widt
that there is no one fixed couplinggspp or gr which re-
moves the discrepancy entirely—the needed coupling in
given case is sensitive to the form factor chosen, as well a
the masses of the other particles in the final state. The for
is apparent from a comparison with the vector form factor
Ref. @7#, Eq. ~53!, for which we usegr55.8 as well. The
normalization issue of which we speak is particularly r
evant for the comparison of theoretical branching ratios,
B→VP decay, e.g., to experiment. It is present regardles
the form factor used. That is, in the case of the vector fo
factor we adopt, Eq.~51!, the determination off rg can also
be modified by finite width effects. The sign and size of t
mismatch between the two- and three-body phase space
culations can be quite sensitive to the choice of form fac
e
s

TABLE II. Effective branching ratios~in units of 1026) for B→rp decay, computed at tree level. Th
numbers in parentheses include penguin contributions as well, after Ref.@16#. The form factors are defined a
in Table I.

d @MeV# ~f.f.! B̄0→r2p1 B̄0→r1p2 B̄0→r0p0 B2→r0p2 R

200 ~BW! 15.1 ~14.7! 4.21 ~4.24! 0.508~0.497! 3.50 ~3.68! 5.5 ~5.1!
300 ~BW! 16.4 ~16.0! 4.74 ~4.76! 0.918~0.908! 3.89 ~4.10! 5.4 ~5.1!
200 ~RW! 15.1 ~14.8! 4.19 ~4.21! 0.468~0.463! 3.49 ~3.68! 5.5 ~5.2!
300 ~RW! 16.4 ~16.0! 4.69 ~4.70! 0.835~0.831! 3.87 ~4.07! 5.5 ~5.1!
200 (*) 15.3~14.9! 4.26 ~4.28! 0.473~0.467! 3.49 ~3.68! 5.6 ~5.2!
300 (*) 16.4~16.0! 4.75 ~4.76! 0.865~0.859! 3.85 ~4.06! 5.5 ~5.1!

d @MeV# ~f.f.! B0→r1p2 B0→r2p1 B0→r0p0 B1→r0p1 R̄
200 ~BW! 15.1 ~14.7! 4.21 ~4.15! 0.508~0.615! 3.50 ~3.68! 5.5 ~5.1!
300 ~BW! 16.4 ~16.0! 4.74 ~4.67! 0.918~1.02! 3.89 ~4.10! 5.4 ~5.0!
200 ~RW! 15.1 ~14.7! 4.19 ~4.13! 0.468~0.571! 3.49 ~3.68! 5.5 ~5.2!
300 ~RW! 16.4 ~15.9! 4.69 ~4.62! 0.835~0.935! 3.87 ~4.07! 5.5 ~5.0!
200 (*) 15.3~14.8! 4.26 ~4.20! 0.473~0.576! 3.49 ~3.68! 5.6 ~5.2!
300 (*) 16.4~15.9! 4.75 ~4.68! 0.865~0.963! 3.85 ~4.06! 5.5 ~5.1!
4-13
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TABLE III. Effective branching ratios~in units of 1026) for B→sp andB→rp decay, computed at the tree level. The form factors
defined as in Table I.

d @MeV# ~f.f.! B2→sp2 B2→(r01s)p2
B̄0→sp0 B̄0→(r01s)p0 R

200 ~BW! 2.97 6.16 0.0258 0.516 3.1
300 ~BW! 5.17 8.61 0.0457 0.940 2.5
200 ~RW! 2.97 6.19 0.0258 0.475 3.1
300 ~RW! 5.17 8.62 0.0457 0.855 2.4
200 (*) 4.11 7.61 0.0396 0.508 2.6
300 (*) 7.01 10.7 0.0663 0.916 2.0
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as illustrated by the scalar case. We set the normalizatio
the form factor of Sec. V, denoted by ‘‘*’’ in the tables, t
that of the form factor of Ref.@9#, Eq. ~32!. This is the only
manner in which the parametersMs ,Gs enter our analysis
Were we to determine the normalization so that the two-
three-body computations of theB̄0→sp0→p1p2p0

branching ratio yield identical results, the effective impact
thes in therp phase space would be reduced by some 10

In Table II we report theB→rp→3p branching ratios,
computed in the manner of Ref.@16#. Our numerical results
differ slightly from theirs~note thatB0↔B̄0 in their Table
III !. The upshot is that our estimate ofR with penguin con-
tributions is ;5.1, rather than the 5.5 they estimate. W
show the branching ratios computed for differing vector fo
factors; these differing choices have little impact on the
sulting branching ratios, or onR.

We compute theB→sp branching ratios in Table III. In
this case our computed branching ratios, forB2→sp2 de-
cay, are a factor of two larger with the same form factors a
parameters input, as our formula, Eq.~30!, differs from theirs
by a factor ofA2. Thus the impact of thes in the r0p2

phase space is rather larger than that estimated in Ref.@9#.
Updating the scalar form factor to use what we feel is its b
estimate, we find that the values ofR are smaller still. Inter-
estingly, the computed values ofR are comparable to the
empirical results, albeit the errors are large.~An additional
contribution to the phenomenological value ofR, realized
through a diagram mediated by thea1

2 meson, is proposed in
Ref. @75#.!

Turning toB→sp0 decay, we see that the contribution
the s meson toB0(B̄0)→rp decay ismuchsmaller—with
the scalar form factor we advocate, the effect is some 1
Interestingly thes has a tremendous impact onB2→r0p2

decay, and a relatively modest one onB̄0→r0p0 decay. Let
us emphasize that we have realized our numerical analys
tree level. It is the relative size of the penguin contributio
in B̄0→sp0 and B̄0→r0p0 decay which is of relevance t
the isospin analysis to extracta. The presence of thesp0

final state in ther0p0 phase space can break the assum
relationship, Eq.~9!, between the penguin contributions
rp and thus mimic the effect of isospin violation—
alternatively we can expand therp analysis to include the
sp channel. Nevertheless, we expect our estimates to
crudely indicative of the importance of these effects
quantitatively, however, differences may exist. It is wor
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noting that thesp0 and r0p0 contributions can, to some
measure, be distinguished. Certainly thesp0 andrp0 con-
tributions behave differently under the cut on the invaria
mass of thep1p2 pair, recalling Eq.~37!. Moreover, mak-
ing a cut on the helicity angleu, defined in Eq.~36!, ought to
also be helpful in separating ther0 ands contributions. This
is illustrated in Figs. 7 and 8. Ther0p contributions roughly
follow a cos2(u) distribution, whereas thesp contributions
are quite flat, save for the bump resulting from theGspp(u)
term in Eq.~30!. Cutting on the helicity angleu should also
help disentangle the contributions from some of theB* reso-
nances, discussed in Ref.@16#. The contributions ofB* reso-
nances to therp channels should be included in a mo
refined analysis, but they will not alter the conclusions dra
here.

VIII. SUMMARY

In this paper, we have scrutinized the role of thes meson
in B→rp→3p decay, understanding its dynamical origin
the strong pion-pion final state interactions in the sca
isoscalar channel. The presence of thesp0 contribution in

FIG. 7. Absolute square of the matrix element,uM u2, for B2

→r0p2 decay~dashed line!, Eq. ~A5!, and forB2→sp2 decay
~solid line!, Eq. ~30!, as a function of cosu at t5M r

2 . The scalar
and vector form factors advocated in Secs. V and VI have b
used. The bump in the solid line reflects the presence of
Gspp(u) term in Eq.~30!.
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the r0p0 phase space is important in that it can break
assumed relationship between the penguin amplitudes,
~9!, consequent to an assumption of isospin symmetry
this, then, its presence mimics the effect of isospin violati
The salient results of our investigation can be summarize
follows:

~i! We have considered how SM isospin violation can i
pact the analysis to extracta in B→rp decay. Under the
assumption thatuDI u53/2 and uDI u55/2 amplitudes share
the same weak phase, the presence of an additional am
tude of uDI u55/2 character, induced by isospin-violating e
fects, does not impact theB→rp analysis in any way. This
is in contradistinction to the isospin analysis inB→pp.
Thus the isospin-violating effects of importance are tho
which can break the assumed relationship between the
guin contributions, Eq.~9!.

~ii ! The scalar form factor can be determined to go
precision by combining the constraints of chiral symmet
analyticity, and unitarity. The form factor we adopt describ
the appearance of thef 0(980) as well, so that the shape
the f 0(980) contribution inB→ f 0(980)p→3p, e.g., should
serve as a test of our approach. We emphasize that the re
ing scalar form factor is very different from the common
used Breit-Wigner form with a running width. This is in sta
contrast to the vector form factor, which is dominated by
r resonance. In that case, one can construct simple fo
that fit the theoretical and empirical constraints.

~iii ! We have pointed out that the two- versus three-bo
treatments of the decaysB→rp,B→sp can lead to differ-
ing results due to finite-width and interference effects.

~iv! Remarkably, the impact of thesp channel on the
ratio R, cf. Eq. ~3!, is huge. The numbers we find forR are
in agreement with the empirical ones, given its sizeable
perimental uncertainty. This underscores the sugges
made, as well as improves the calculations done, in Ref.@9#.

FIG. 8. Absolute square of the matrix element,uM u2, for B̄0

→r0p0 decay ~dashed line!, Eq. ~A4!, and for B0→sp0 decay
~solid line!, Eq. ~31!, as a function of cosu at t5M r

2 . The scalar
and vector form factors advocated in Secs. V and VI have b
used.
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Our analysis is based onconsistentscalar and vector form
factors.

~v! On the other hand, the impact of thesp channel on
the B→rp isospin analysis is merely significant. Varyin
the cuts on thepp invariant mass and helicity angleu
should be helpful in disentangling the various contributio

~vi! We have shown that one can expand the isos
analysis to include thesp channel because it has defini
properties underCP. This may be necessary if varying th
cuts in thepp invariant mass and helicity angleu are not
sufficiently effective in suppressing the contribution from t
sp0 channel in ther0p0 phase space.

This work is merely a first step in exploiting constrain
from chiral symmetry, analyticity, and unitarity in the de
scription of hadronicB decays. In particular, the contributio
of the ‘‘doubly’’ OZI-violating strange scalar form factor an
its phenomenological role in factorization breaking ought
investigated.
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APPENDIX: FORMULAS FOR B\rp\p¿pÀp0 DECAY

In this appendix, we report the formulas needed to eva
ate B→rp→p1p2p0 transitions, as per the approach
Sec. IV. For clarity of comparison, we conform as much
possible to the notation and conventions of Ref.@16#, but
give the formulas required for completeness. This also
lows us to identify the changes in replacing the Breit-Wign
form adopted for ther resonance in Ref.@16# with the pion
vector form factor we discuss in Sec. VI. Defining

^p0~p2!p2~p1!ur2~pr ,e!&5gr e•~p22p1! ~A1!

and

^r i~pr!p~pp!uHeffuB̄0~pB!&52e* •pph i , ~A2!

^r0~pr!p2~pp!uHeffuB2~pB!&52e* •pph̃0,
~A3!

where i P(1,0,2), the B̄0→rp→p1p2p0 amplitude can
be written as

Ar„B̄
0~pB!→p1~p1!p2~p1!p0~p2!…

52h0~s2u!Grpp~ t !1h1~s2t !Grpp~u!

1h2~ t2u!Grpp~s!, ~A4!

n
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where the first of these contributions is illustrated in Fig.
We have useds5(p11p2)2, t5(p11p1)2, and u5(p1

1p2)2, and have summed over the polarization states of
r i mesons, settingMp65Mp0. With our conventions for the
flavor content of the meson states, we see thatup1&,ur1&
52uI 51 I 351&, whereas the otherp and r charge states
do not have a minus sign when written in the isospin ba
Using the isospin-raising operatort1 , we thus de-
termine from Eq. ~A1! that ^p1(p1)p2(p1)ur0(pr ,e)&
52gr e•(p12p1) and ^p1(p1)p0(p2)ur1(pr ,e)&
5gr e•(p12p2); the signs we indicate consequent
follow.6 For theB2→r0p2→p1p2p2 amplitude we have

Ar„B
2~pB!→p1~p1!p2~p1!p2~p2!…

52h̃0@~s2u!Grpp~ t !1~s2t !Grpp~u!#.

~A5!

Note thatGrpp(s) is the pion vector form factor, for which a
Breit-Wigner form is used in Ref.@9#. As discussed in Sec
VI, we replace

Grpp~x!5
gr

x2M r
21 iGrM r

→ 2Fr~x!

f rg
, ~A6!

where f rg is the electromagnetic coupling constant of ther
meson, determined from

G~r→e1e2!5
4pa2

3M r
3

f rg
2 , ~A7!

where G(r→e1e2) is, in turn, extracted frome1e2

→p1p2 data ats5M r
2 , as described in Ref.@68#. For the

‘‘solution B’’ fit of Ref. @21# we have f rg50.122

6We thank J. Tandean for discussions on this point.
D

at
R

09400
.
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60.001 GeV2 @68#. The two forms are compared in Fig. 4
In Ref. @16# the parametersgr55.8 andGr5150 MeV are
chosen—we use the valueM r5769.3 MeV @69# for the r
meson mass, as it is not reported in Ref.@16#.

To determineh i , h̄0, we introduce

^r2~pr ,e!ud̄gmuu0&5 f rem* , ~A8!

qm^r1~pr ,e!uūgm~12g5!buB̄0~pB!&

52 i 2M r~e* •q!A0
B→r~q2!, ~A9!

whereq5pB2pr , and recall Eqs.~23! and ~24!, to find

h15
GF

A2
Flua12l ta41l t

a6Mp
2

m̂~mb1m̂!
G f pM rA0

B→r~Mp
2 !,

~A10!

h25
GF

A2
@lua12l ta4# f rF1

B→p~M r
2!, ~A11!

h052
GF

2A2
H Flua21l ta42l t

a6Mp
2

m̂~mb1m̂!
G

3 f pM rA0
B→r~Mp

2 !1@lua21l ta4# f rF1
B→p~M r

2!J ,

~A12!

h̃05
GF

2 H Flua12l ta41l t

a6Mp
2

m̂~mb1m̂!
G f pM rA0

B→r~Mp
2 !

1@lua21l ta4# f rF1
B→p~M r

2!J , ~A13!

where we neglect electroweak penguin contributions, as w
as all isospin-violating effects. Our expressions agree w
those of Ref.@9# and Ref.@15#.
n-

ev.

y

@1# BABAR Collaboration, B. Aubertet al., Phys. Rev. Lett.87,
091801~2001!.

@2# Belle Collaboration, K. Abeet al., Phys. Rev. Lett.87, 091802
~2001!.

@3# A.J. Buras, hep-ph/0109197, note Fig. 3.
@4# N. Cabibbo, Phys. Rev. Lett.10, 531 ~1963!; M. Kobayashi

and T. Maskawa, Prog. Theor. Phys.49, 652 ~1973!.
@5# H.J. Lipkin, Y. Nir, H.R. Quinn, and A. Snyder, Phys. Rev.

44, 1454~1991!.
@6# A.E. Snyder and H.R. Quinn, Phys. Rev. D48, 2139~1993!.
@7# BABAR Collaboration, ‘‘The BaBar physics book: Physics

an asymmetric B factory,’’ edited by P.F. Harrison and H.
Quinn, SLAC-R-0504.

@8# E791 Collaboration, M. Aitalaet al., Phys. Rev. Lett.86, 770
~2001!.

@9# A. Deandrea and A.D. Polosa, Phys. Rev. Lett.86, 216~2001!.
@10# U.-G. Meißner and J.A. Oller, Nucl. Phys.A679, 671 ~2001!.
.

@11# J.A. Oller, E. Oset, and A. Ramos, Prog. Part. Nucl. Phys.45,
157 ~2000!.

@12# CLEO Collaboration, C.P. Jessopet al., Phys. Rev. Lett.85,
2881 ~2000!.

@13# BABAR Collaboration, B. Aubertet al., hep-ex/0107058.
@14# M. Bauer, B. Stech, and M. Wirbel, Z. Phys. C34, 103~1987!.
@15# A. Ali, G. Kramer, and C.D. Lu, Phys. Rev. D58, 094009

~1998!.
@16# A. Deandrea, R. Gatto, M. Ladisa, G. Nardulli, and P. Sa

torelli, Phys. Rev. D62, 036001~2000!.
@17# Y.H. Chen, H.Y. Cheng, B. Tseng, and K.C. Yang, Phys. R

D 60, 094014~1999!.
@18# C.D. Lu and M.Z. Yang, hep-ph/0011238.
@19# H.R. Quinn and J.P. Silva, Phys. Rev. D62, 054002~2000!.
@20# T.D. Lee,Particle Physics And Introduction To Field Theor

~Harwood, Chur, Switzerland, 1981!, p. 274ff.
@21# S. Gardner and H.B. O’Connell, Phys. Rev. D57, 2716~1998!;
4-16



ol

da

. B

na

od

s

-

v,

hys.

ier,

,

s.

RESCATTERING AND CHIRAL DYNAMICS IN B→rp DECAY PHYSICAL REVIEW D 65 094004
62, 019903~E! ~1998!, and references therein.
@22# V. Cirigliano, G. Ecker, and H. Neufeld, Phys. Lett. B513, 361

~2001!.
@23# B. Kubis and U.-G. Meißner, Nucl. Phys.A671, 332 ~2000!;

A692, 647~E! ~2000!.
@24# J.M. Flynn and L. Randall, Phys. Lett. B224, 221~1989!; 235,

412~E! ~1989!.
@25# S. Gardner, Phys. Rev. D59, 077502~1999!; hep-ph/9906269.
@26# A.J. Buras and L. Silvestrini, Nucl. Phys.B569, 3 ~2000!.
@27# S. Gardner and G. Valencia, Phys. Lett. B466, 355 ~1999!.
@28# S. Gardner and G. Valencia, Phys. Rev. D62, 094024~2000!.
@29# CLEO Collaboration, D. Cronin-Hennessy et al.,

hep-ex/0001010; A. Satpathy, hep-ex/0101021; BABAR C
laboration, B. Aubertet al., Phys. Rev. Lett.87, 151802
~2001!.

@30# M. Beneke, G. Buchalla, M. Neubert, and C.T. Sachraj
Nucl. Phys.B606, 245 ~2001!.

@31# H. Leutwyler, Phys. Lett. B378, 313 ~1996!. Note that (ms

2m̂)/(md2mu)540.863.2.
@32# M. Gronau and D. London, Phys. Rev. Lett.65, 3381~1990!.
@33# J. Charles, Phys. Rev. D59, 054007~1999!.
@34# D. Pirjol, Phys. Rev. D60, 054020~1999!.
@35# Y. Grossman and H.R. Quinn, Phys. Rev. D58, 017504

~1998!.
@36# M. Gronau, D. London, N. Sinha, and R. Sinha, Phys. Lett

514, 315 ~2001!.
@37# J. Charles, A. Le Yaouanc, L. Oliver, O. Pene, and J.C. Ray

Phys. Lett. B425, 375 ~1998!; 433, 441~E! ~1998!.
@38# E687 Collaboration, P.L. Frabettiet al., Phys. Lett. B407, 79

~1997!.
@39# Y.I. Azimov, N.G. Uraltsev, and V.A. Khoze, Yad. Fiz.45,

1412 ~1987!.
@40# G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. M

Phys.68, 1125~1996!.
@41# M. Diehl and G. Hiller, J. High Energy Phys.06, 067 ~2001!.
@42# G. Buchalla, A.J. Buras, and M.K. Harlander, Nucl. Phy

B337, 313 ~1990!.
@43# Y.Y. Keum, H.N. Li, and A.I. Sanda, Phys. Rev. D63, 054008

~2001!.
@44# A.J. Buras, inProbing the Standard Model of Particle Inter

actions, edited by F. David and R. Gupta~Elsevier, Amster-
dam, 1999!, hep-ph/9806471.

@45# G.P. Lepage and S.J. Brodsky, Phys. Lett.87B, 359 ~1979!;
Phys. Rev. Lett.43, 545 ~1979!; 43, 1625~E! ~1979!; G.R.
Farrar and D.R. Jackson,ibid. 43, 246 ~1979!.

@46# G.P. Lepage and S.J. Brodsky, Phys. Rev. D22, 2157~1980!.
@47# D.V. Bugg, I. Scott, B.S. Zou, V.V. Anisovich, A.V. Sarantse

T.H. Burnett, and S. Sutlief, Phys. Lett. B353, 378 ~1995!.
@48# Crystal Barrel Collaboration, A. Abeleet al., Phys. Lett. B

380, 453 ~1996!.
09400
-

,

l,

.

.

@49# J. Gasser and H. Leutwyler, Ann. Phys.~N.Y.! 158, 142
~1984!.

@50# J. Gasser and U.-G. Meißner, Nucl. Phys.B357, 90 ~1991!.
@51# J. Bijnens, G. Colangelo, and P. Talavera, J. High Energy P

05, 014 ~1998!.
@52# T.N. Truong, Phys. Rev. Lett.61, 2526 ~1988!; A. Dobado,

M.J. Herrero, and T.N. Truong, Phys. Lett. B235, 134 ~1990!.
@53# J.A. Oller and E. Oset, Phys. Rev. D60, 074023~1999!.
@54# M. Jamin, J.A. Oller, and A. Pich, Nucl. Phys.B587, 331

~2000!.
@55# S.N. Cherry and M.R. Pennington, hep-ph/0111158.
@56# J.F. Donoghue, J. Gasser, and H. Leutwyler, Nucl. Phys.B343,

341 ~1990!.
@57# F. Guerrero and J.A. Oller, Nucl. Phys.B537, 459 ~1999!;

B602, 641~E! ~1999!.
@58# N. Kaiser, Eur. Phys. J. A3, 307 ~1998!.
@59# J. Gasser and H. Leutwyler, Nucl. Phys.B250, 465 ~1985!.
@60# J.A. Oller and E. Oset, Nucl. Phys.A620, 438 ~1997!;

A652~E!, 407 ~1997!.
@61# O. Babelon, J.L. Basdevant, D. Caillerie, and G. Menness

Nucl. Phys.B113, 445 ~1976!.
@62# S.J. Brodsky and G.R. Farrar, Phys. Rev. Lett.31, 1153~1973!;

Phys. Rev. D11, 1309~1975!; V.A. Matveev, R.M. Muradyan,
and A.N. Tavkhelidze, Lett. Nuovo Cimento Soc. Ital. Fis.7,
719 ~1973!.

@63# J.A. Oller, E. Oset, and J.E. Palomar, Phys. Rev. D63, 114009
~2001!.

@64# N.I. Muskhelishvili, Tr. Tbilisi Mat. Inst.10, 1 ~1958! @in Sin-
gular Integral Equations, edited by J. Radox~Noordhoff,
Groningen, The Netherlands, 1953!#; R. Omnés, Nuovo Ci-
mento8, 316 ~1958!.

@65# M.F. Heyn and C.B. Lang, Z. Phys. C7, 169 ~1981! and ref-
erences therein.

@66# T.N. Pham and T.N. Truong, Phys. Rev. D14, 185 ~1976!;
Phys. Rev. D16, 896 ~1977!.

@67# M.M. Nagels et al., Nucl. Phys. B147, 189 ~1979!; O.
Dumbrajset al., ibid. B216, 277 ~1983!.

@68# S. Gardner and H.B. O’Connell, Phys. Rev. D59, 076002
~1999!.

@69# Particle Data Group, D.E. Groomet al., Eur. Phys. J. C15, 1
~2000!.

@70# B. Hyams et al., Nucl. Phys. B64, 134 ~1973! @in p-p
Scattering-1973, edited by P. K. Williams and V. Hagopian
AIP Conf. Proc. No. 13~AIP, New York, 1973!, p. 206#; W.
Ochs, Ph.D. thesis, University of Munich, 1974.

@71# S.D. Protopopescuet al., Phys. Rev. D7, 1279~1973!.
@72# V. Bernard, N. Kaiser, and U.-G. Meißner, Nucl. Phys.B364,

283 ~1991!.
@73# L. Wolfenstein, Phys. Rev. Lett.51, 1945~1983!.
@74# R. Gatto, G. Nardulli, A.D. Polosa, and N.A. Tornqvist, Phy

Lett. B 494, 168 ~2000!.
@75# N. Paver and Riazuddin, hep-ph/0107330.
4-17


