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Recent work has shown that the singlet-octet mixing angles of;{6é7) and »'(958) are different. That
may be demonstrated either in extended chiral perturbation theory or by analysis of a large body of experi-
mental data. The conclusion is that thé&47) is almost entirely of octet character, while th&(958) is mainly
of singlet character with about 10% octet component. It is possible to calculate the mixing angles and decay
constants in our generalized Nambu-Jona-LagiNi#L) model, which includes a covariant model of confine-
ment. Our model is able to give a good account of the mass values of(846), »'(958), 7(1295, and
7(1440 mesons(We also provide predictions for the mass values of a large number of radially excited states.
It is well known that the (1) symmetry is broken, so that we only have eight pseudo Goldstone bosons,
rather than the nine we would have otherwise. In the NJL model that feature may be introduced by including
the 't Hooft interaction in the Lagrangian. That interaction reduces the energy of the octet state somewhat and
significantly increases the energy of the singlet state, making it possible to fit the mass valueg(6#hand
7'(958) in the NJL model when the 't Hooft interaction is included. In this work, we derive the equations of
a covariant random phase approximation that may be used to study the nonet of pseudoscalar mesons. We
demonstrate that a consistent treatment of the 't Hooft interaction leads to excellent results for the singlet-octet
mixing angles(The values obtained for the singlet and octet decay constants are also quite satistaatany.
be seen that the difference between the(apdown constituent quark mass and the strange quark mass
induces singlet-octet mixing that is too large. However, the 't Hooft interaction contains singlet-octet coupling
that enters into the theory with a sign opposite to that of the term arising from the difference of the quark mass
values, leading to quite satisfactory results. In this work we present the wave function amplitudes for a number
of states of the eta mesonFhe inclusion of pseudoscalar—axial-vector coupling is important for our analysis
and results in the need to specify eight wave function amplitudes for each state of the eta nVésgmesent
the values of the various constants that parametrize our generalized NJL model and which give satisfactory
values of the eta meson masses, decay constants, and mixing angles. It is found that the calculated mass values
for the 7(1295 and 7(1440 are quite insensitive to variation of the parameters of the model whose values
have largely been fixed in our earlier studies of other light mesons.
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I. INTRODUCTION |77>=C030,7| 7g) —Sin 977| ,70>, 1.1
The description ofp- " mixing has attracted a good deal |7")=siné,,|ng)+cosb,| 7o), (1.2

of attention over the years. There is a large body of work in
which it is assumed that only a single mixing angle may beand introduce decay constants for the statgg and|7)
used[1-6]. Recently, an extended form of chiral perturba- such that
tion theory has been developed which is based upon the idea =)
that at largen. the »' becomes a ninth Goldstone boson and f, =Fgcosb,, 13
an expansion in b, becomes useful7,8]. Other closely _
related theoretical methods have also been develghéad]. f(y,o)z —Fosing,, (1.9
The theoretical analysis clearly shows that two mixing
angles are required. There is also a body of work which 7(118,)=F8 sing,,, (1.5
shows that the analysis of experimental data requires two
mixing angleg11-14. and

For the moment, we may limit our discussion to a consid-
eration of the properties of the(547) and 7' (958). There are T(no,)= Focosé,, . (1.6
four fundamental singlet and octet decay constants, which

we denote ag@, 7® F© andT® . Rather than quote One possible point of view is that the mixing angle is energy
L ometants e i - dent leading t6,+ 6, [12]. Another parametrization
values for these constants, various mixing schemes providéependen 916,70, - P

alternative parametrizations. For example, we may write  used by Leutwylef7], Kaiser and Leutwylef8], and others
is

. F@) _ P
* Electronic address: CASBC@CUNYVM.CUNY.EDU f, =Fgcosdg, (1.7
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TO=_F,sing,, (1.9 o Ged, o
(R L=qlio—m*)a+ 5> 2, [(@\'e)*+(Tiys')’]
T =Fgsingg, (1.9 8
7 GV T M )2 L (A iN)2
- = 2 [@"N'a)*+(@y*ys\'9)?]
and 1=0
Go B
Nf‘(rlo'): 'EO cosby. (]_.]_0) + T{de[q(l'l' 75)('1] + de{q(l_ 75)q]}+ ﬁtensor

We may relate these representations using the equations * Leont (119

Here, the fourth term is the 't Hooft interactiofi;epso, de-

sing,, notes interactions added to study tensor me$a6k while
tands="—osp (11D £ - denotes our model of confinement. In Eg.15 m° is
7 the current quark mass matrir®=diagm®,m3,mY), the \;
. (i=1,...,8) are the Gell-Mann matrices, ang= \/2/3l, with
sing, . . o . .
tan o= , (1.12 1 being the unit matrix in flavor space. For the Minkowski-
cosd,, space calculations reported here, and in our earlier work, we
found it useful to neglect energy transfer by the confining
,‘:0: Fom , (1.13 field in the.mescon rest frame. For example, if we star'g with
the potential V~(r)=«r exd —ur] and form the Fourier
and transform, we have the form of the interaction used in the
meson rest frame:
Fg=Fg\sir? 6, +cog 0, . (1.14 1

VC(E— |2')= —SWKlif
[(K—=K")?+u?]?

2

There is a problem in our use of Eq4.1) and(1.2), since
we have calculated orthogonal states and|’). Then, if
we assume that the statleg) and|7g) are the same in Egs. -
(1.1) and (1.2, we obtain a contradiction i, # 6, , since [(K'—K')2+ pu?]3
t(ge;)]ﬁgzcg arsént(g”belgnp?égr]reerg f\?\;ﬁé;hﬁer?:i:;fenig Echs)'urHere wis a srCnaII parameter used to soften the infrared sin-
model. However, we can discard E¢$.1) and(1.2) and use gularities ofV*. If u is small enough, the potential approxi-

Egs. (1.3—(1.6) and Eqs.(1.7—(1.10 as alternative repre- mates a linear potential with “string tensiork over the
sentations of the four fundamental uantiﬁé@ 70) F®) range ofr relevant for our problem(Since we use Lorentz-
q iy Tyt vector confinement, our value &f differs from that usually

andf(,lo,), which appear on the left-hand sides of Es3)~  quoted for a Lorentz-scalar model of confinemgfite po-
(1.6) and Egs.(1.7—(1.10. We may then use Eq$l.1)— tential of Eq.(1.16) may be put in a covariant form, if we use
(1.14 to pass between the two representations of the foughe four-vectork® andk’#,

fundamental decay constants.

4p

. (1.1

In this work we will calculate the mixing angles of thg N (k-P)P*
and 7'. Itis clear that any theoretical description of thé k#=k*— T pz (1.17
wave function requires a model of confinement. Therefore,
we will use an extended version of the Nambu—Jona-Lasini@and
(NJL) model that we have generalized to include a covariant ,
model of confinement. This model and various applications fruporn_ KPIPE (118
have been described in a number of publicatigis-20. pz '

In our model the constituent quark masses are parameters. R R R R R
Ideally, we should solve the Bethe-Salpeter equation alongince, wherP=0, we havek*=[0k] andk’#=[0k"].
with the Schwinger-Dyson equation. In our Euclidean-space The parameters of the Lagrangian may be fixed in the
calculation[21], we could solve the one-bodyHartreg as-  study of various light mesons. For example, we may obtain
pect of the problem at the same time as the two-body aspew#tlues forG,, andx in a study of the vector mesopsand w.
(Bethe-Salpeter equatiprand demonstrate that our model Including the ¢(1020 in our study leads to a value of the
exhibits chiral symmetry. At present, we do not know how toconstituent mass of the strange quark. In the present work,
make a corresponding calculation in Minkowski space, if wewe fix the values o5 andGp by studying the properties of
include our model of confinement. However, our model haghe » mesons.
many useful applications as may be seen in earlier and in the We do not attempt to derive our Lagrangian from first
present work. principles, although the form of the 't Hooft interaction may
The Lagrangian of our model is be obtained from the study of instanton dynamics in QCD. It

094003-2



ROLE OF THE 't HOOFT INTERACTION IN THE . .. PHYSICAL REVIEW D 65 094003

P/24k P72k P/2+k A

iJPy) P Q
P = < o+ VC
-P/2+k -P/2+k ) -P/24k i J(P2) P.. Q P
(a)

P/2+k o P2k iJ(PY P.. -
< ! FIG. 2. The three types of polarization functions considered in
P24k ~ -Pr2+k this work: (a) The functionJ(P), defined in the absence of a con-
(b) finement model(b) the functionJ(P), which includes either of the
! confinement vertex functiorZ ~ or I';" ™ in its definition; (c) the
Pl Pt PR o, functionJ(P), defined in terms of either of the vertex functions

L2

v POk -P/2+k

IR Pr2:+I (The bar over the vertex function is a reminder that these
(c) functions have a Dirac matrix structurd.hese various ver-
tex functions may be used to define a number of vacuum
confinement vertex. Her&® denotes the confining fieldb) The EgLair#Zt:u?;]lsmr:gg;aéséeis dseef?nne:jn :?i%'az'rggt?\?e}hi?r?‘ plc(;lanl]’laZ:I ]
homogeneous version of the equation showian(c) A represen- 9 ’ Ively P

tation of the homogeneous equation for the vetffeshat includes  t€r to obtain equations for the vertex functidns(P, k) and
the effects of both confinement and the short-range NJL interactionl” 4 (P, k).

The organization of our work is as follows. In Sec. Il we
is worth noting that, when calculating the effective coupling define various vertex functions that are needed in our study
constants in the singlet, octet, and mixed chanri@s, ~ ©f Pesudoscalar mesons. We consider the general case in
Ggg, andGyg) in the study of pseudoscalar mesons, the valudvhich the quark and antiquark masses are different, so that
of Gg in each channel is modified by a term proportional tothe formalism may be used to calculate the properties of the
the product ofGp and various quark vacuum condensates k@on. In Secs. lll and IV we introduce a series of vacuum
(See Sec. ¥.SinceGs is of order 1h, and Gy, is of order p_olan_zatlon functions. The flrs_t set of these functions is de-
(1/n,)3, the correction term is of order (1/)2. That is,Gs fined m_the_ absence_: of a conf_mem_ent model. The second set
is modified at the next order infJ when calculatingGo, of polgnzatlon functions is deflned in terms of Fhe vertex that
Gagg, andGyg. describes the effects of confinement. The third set of these

While it may be possible to derive the full Lagrangian functions is only introduced to facilitate a derivation of the
including the term proportional t&g from the study of in- relgthlstlc random phase_ approxmatlc(REA) equations
stanton dynamics, that has not been done. For the purpos@@'c_h are to be “?ed in this Wo_rkA discussion of nonrelz_i-
of this work we use the S(@3)-flavor version of the NJL tivistic R.PA. equgtlons, gppropnate to the siudy of paruclg—
model that has been used by many researchers. The utility le excitations in nuclei or.nuclear matter, may be .fou_nd n
our Lagrangian lies in its application in studies of the full efs.. [22] and [23]'). The third set of vacuum polarlzatlpn
range of light mesons, with a fixed parameter $8n at- functions are functionals of the unknown vertex functions
tempt to derive our Lé\grangian from QCD is beybnd thethat include the effects of both the NJL interaction and con-
scope of our paper finement. Alternatively, these polarization functions may be

Itis useful to obtéin the wave functions of various mesonswritten in terms of the wave functions that are the solutions

by first calculating vertex functions. It is possible to defineOfIth.e. R.PAR(;iunatlons_ that we ts)lolvfe. I?] Sec.dV v¥ehpre§ent
several vertex functions in the study of pseudoscalar meson& 3“‘{('?'0 K equadtlo?hs suna d'e | ort ‘?tstF“ y OV;[/ € ?'?(n
We may define functions that correspond to the use of onl)?n € Kaon an €ir radial - excitations. Ve lake
the confining interaction, as in Figs(al and ib). Here the pseudoscalar—axial-vector coupling into account, since that

i P is an important feature in any study of the pseudoscalar me-
vertex functions were denoted a%(P.,k) and I't(P.k),  gsons. In Sec. VI we introduce normalized RPA wave func-

where the latter function was needed when we studiegions for the pion and kaon and also provide expressions for
pseudoscalar—axial-vector mixig7]. Note that, when we  the decay constants. In Sec. VIl we turn to a consideration of
wish to construct wave functions, we solve the homogeneougoty pseudoscalar—axial-vector coupling and singlet-octet
equation of Fig. ib) rather than the inhomogeneous equationyixing. The resulting wave functions have eight compo-
of Fig. 1(a). In the present work we will solve the homoge- nents since the vertex structure could be proportionaisto
neous equation that is given in a schematic representation iy ,, . in the meson rest frame and one has both singlet and
Fig. 1(c). In this case we include the NJL interaction, or the y.tet states. Each of these states has a “large” and “small”
NJL interaction plus the confining interaction. The resultingcomponem in the sense of the RPA. We present the eight
vertex functions will be denoted d3:(P,k) andI'4(P,k). coupled equations needed in our study of the eta mesons in

FIG. 1. (a) Schematic representation of the equation for the

094003-3



C. M. SHAKIN AND HUANGSHENG WANG PHYSICAL REVIEW D65 094003

Sec. VII. In Sec. VIII we present the wave functions of the We also define a longitudinal matrix vert€k7]
7(547), 1'(958), (1299, and 7(1440 mesons and two
other states found at 1653 and 1698 MeV. In Sec. IX we pup e
introduce normalized wave functions for the eta mesons and 1 (P,K)= —5 y5—i f YPS,(PI2+K')
provide expressions for the octet and singlet decay constants. =2’ P? (2m)* "
In Sec. X we present our results for the various mixing — R
angles and decay constants defined for #®47) and XT ap(Pk")Sp(—P/2+k") y,VE(k—K')
7' (958). Finally, Sec. XI contains some further discussion (2.6
and conclusions.
and introduce the functioh,” ;,(P,k):
II. VERTEX FUNCTIONS FOR THE CONFINING

INTERACTION . .
. . . . . AT o(PRAS(—K)
In this section we review various relations that serve to

define the vertex functions that satisfy an equation of the P e )
form given in Fig. 1a). We define a pseudoscalar vertex :\/ﬁFL,ab(P,k)Aa (K)ysAp (=K).
matrix [17]
2.7
41,1 —
Tsan(PK) = yo—i f S, (PI2+K) There is a corresponding equation definlig,,(P.k). It is
’ (2m) useful to write
X g ap(P.K') Sy~ P2+K') 7, ]
I — P
C ’ —
XV=(k=k"), (2.1 Ff,ab(P,k)—\/?FL,ab(P,k), (2.8
where S,(P/2+Kk)=[P/2+ k—m,+in] !, etc. We define
the functionsl'y ~ andT'; * : so that Eq(2.7) becomes
ALK T an(PLROAL T (—K) ASRTL an(PRAL (k)
=Tin(PROAS R ysA L (—K), (2.2 =T a(PRA (K ysA L (—K), (2.9
and etc. We find that
AT (—R)Tsan(PK)AS(K) L MyEa(K) + muEp(K)
' ' (P k)= .
=Tsab(P AL (—R) 7ML (K), (2.3 MaMy+ Ea(k)Ep(l) +k
where _J d’k”  (mymp)?
(2m)° 4E (K" Ey(K")
k,+m
(F ()= 2 CiL_ L’
AL R =5 2.4 y VE(K—K")
and MaMy+ E4(K) Ep(K) + k2
- TPk
8 XC(KK') — LarlPAD
. kytm P —E. (k") —EL(k’
AL (—R)= bt My 2.5 a(K") —Ep(k")
2m, (2.10
Here,k“=[E(k),k] andk{=[ — Ey(K),K]. with

> 1 > Lo . Lo . - > T
CkK) = 7 MG Ea(K)Ea(K') = K-K'1+MZ[En(K)En(k") — k-K']+2mamp[ — Ba(K)En(K) — k*~ Ea(k ) En(K') —K'2
a''b

+3EL(KEp(K ) +K-K'+ 3 Eo(K")Ep(K)]— 2[ E4(K)Ep(K) + K[ Ea(K ) Ep(K') + k' 2] —2m2m2}. (2.11
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We also have

MpEa(K) +MyEp(K)

d3k’

PHYSICAL REVIEW D 65 094003

(mm)? VE(k—K")

FLa(PR=— e ) |
mamy+ E,,(K) Ep(K) + K2

'L ap(P.K")

X C(k,k") 2 —.
PO+ E, (k") +EL(k")

[In Egs.(2.10 and(2.12 we have corrected a misprint that
appeared in Ref. [17].] We note the relation
T 2o(—POIK) = =T (PO IK)). The functions
I .p(P.k) andT5 4 (P.k) satisfy equations similar to Egs.

(2.10—(2.12, except that the inhomogeneous terms are both

equal to unity[17]. Therefore, we haves,(— P k)
=I5 (P IKI).

(2m)° 4E (K)Ep(K') mamy+ E(K)Ep(K) + K2

(2.12

Heren.=3 is the number of colors. We also defifie/]

These vertex functions may be used to define various

vacuum polarization functions that are free of the singulari-
ties that would appear in a theory without confinement when

the quark and antiquark go on mass shkee Fig. 2. We
describe various polarization functions in the next section.

Ill. VACUUM POLARIZATION FUNCTIONS

We start with a definition of the polarization functions in
the absence of confinemeit7]

R d*k
—iJ;’E(P)z(—l)zncTrf 2t
X [1y5iSa( P2+ K)i y5iSp(— P/2+K)],
(3.2

. d*k
—iazf;b(P):(—l)chTrf 2

X[1Sa(P12+K)iy5iSp( = PI2+K) v, ¥s],

(3.2
.’\AP d4k
_IJﬂ‘ab(P)Z(—l)chTrf (ZT)4
X[1S4(P/2+K) v, v51Sp(— P12+ K)iys],
(3.3
and
.AAA d4k
_I‘],uv,ab(P):(_l)anTrf W
X[1Sa(PI2+K) v, vs5iSp(—PI2+K) v, y5].
(3.9

A . P
TasP =Py 5. (35
i (P):iJAF’(Fﬂ)i (3.6
w,ab ab \/EZ' .
and
R . P,P,.
Junan(P)==0,,(P)I7/an(P?) = =52~ I 5u(P?),
(3.7

with §,,=g,,—P,P,/P? Note also that JAP(P?)
=—JPA(P?) andP,g*'=Gg**P,=0.

We now include the confinement vertex in the definitions
of the polarization integrals. We define

d*k
—iJ;’g(PZ):(—l)sz (ZT)Jr[i v5iSa(P/2+k)
XiTg ap(P,K)iSy(— P/2+K)]. (3.9

We find, with P=0,

d3k [Ea(K)Ep(K)+K2+m,m,]
(2m)® Ea(K)Ep(K)

JEP(P?)= —2an

2P 1K) T5an(—POIK)
PO—E4(K)—Ep(k) PO+E4(k)+Ep(k)
(3.9

which may be written as
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FIG. 3. The functionJ’X(P?). Here x=0.055 GeV and m,
=0.364 GeV.

d3k [E(K)Ep(K)+Kk2+m,my]
(2m)° E.(K)Ep(K)

JZE(P2>=-—2ncf

XTg (PO [K))

PO—E,(K) — Ep(K)
1

- —|. (3.10
PO+ E,(k)+EL(k)

Values obtained fodF (P?) andJEE(P?) are shown in Figs.
3 and 4.(A Gaussian regulator of the form gxpk%a?], with

a=0.605 GeV, was used when calculating these functjons.

We now define

1.0
0.8—-
0.6—.
04

0.2

0.0 1

(PY (GeV?)

-0.2 -

s§

0.4

JF

-0.6

-0.8

1.0 | T N TN AU IO NP PR BT
0 1 2 3 4 5 6 7 8

P2 (GeV?)

FIG. 4. The functionJ=F'(P?). Here x=0.055 GeV and mq
=0.565 GeV.
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—iJPAP?)=(-1)2n JLAkTr[iS (P/2+k)
ab c (271_)4 a
XiTs(P,K)iSp(— P2+ K) voys] (3.1D

and

,a

K
—iIA (PP =(~ 1)2an (ZdT)‘lTr[iSa( P/2+Kk)

XiTL,(P,K)iSp(— P/2+K)iys].
(3.12

We use Eqs(2.8) and(2.9) to find

a3k [MuEp(K) +myEa(K)]
(2m)? Ea(K)Ep(K)

IEN(P?) = —2nCJ

L5 an(— PO,[K|)
PO+ E,(K)+Ey(K) |
(3.13

T2 6P IK)
PO~ E4(k)—Ep(k)

Using the relationl's ;,(— P°,[K|) =T 5(PC|K|), the last
relation may be written

a3k [My(K)Ea(K)+mMaEy(K)]
(2m)* E(K)Ep(K)

J§Q(P2)=—2ncf

X T ap(PO,|K])

PO—E4(K)—Ep(k)

1
+

(3.19

PO+ E,(K)+Ep(K) |

We note thatlf/}(0)=0.
In a similar fashion, we find

d3k [mump+k2+E,(K)Ep(K)]
(2m)® E.(K)Ey(K)

9EP7 =2n |

XTI 2p(POIK))

PO—E,(K)—Ey(K)
1
PO+ EL(K) + Ep(K)

+ (3.19

and
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_ P/2+k
-P/2+k
Yo¥s
Ys s s Pk
+ @ Ve
i -P/2+k

FIG. 5. A schematic representation of the equationﬁp(P,k).

dk [MyEa(

(2m)®

K)+M,Ep(K)]
Ea(K)Ep(K)

ey =2n. [

XTI (P IK))

—Ea(K)—Ep(K)
3 1
PO+ E, (K)+Ey(K) |

(3.16

where we have used the relatiod’] *(—P°k|)

(3.5—(3.7) may also be written for the functions"(P),
IAP(P), andJ40(P).

IV. VERTEX FUNCTIONS FOR THE SUM OF THE NJL
AND THE CONFINING INTERACTIONS

We now include the NJL interaction in addition to the

confining interaction in the equation for the vertex functions,

as in Figs. 5 and 6. We define a new set of polarizatio
intergrals by replacing™s .,(P°,|K|) by T'p 25(P°|K|) and
T 6(POIK)) by TAau(P%IK)), etc., in the expressions

given in Sec. Ill. With this procedure we obtain the vacuum

polarization functions appearing in Fig(c2 We denote
these new polarization functions a8, JPA J*A etc. Thus,

_ Pr2+k v
In (PK) < - ¢ s
P24k -Gy
Yo¥s
-Gy

To¥s o os Pk
+ {;‘ Ve
s—«— -P/2+k

FIG. 6. A schematic representation of the equationEQ(P,k).

—T 7 (P°|K|). Relations such as those given in Egs.

PHYSICAL REVIEW D 65 094003

d®k [EL(K)Ep(K)+k2+m,m]

3§§<P2>=-—2ncf

(2m)° Ea(K)Ep(K)
P ab( PO |k|) N R
—Ea(k)—Ep(k)
1
— - - 4.1
PO+ E,(k)+Ey(k)

d®k [EL(K)Ep(K)+k2+m,my]

—2n0j

(2m)° Ea(K)Eb(K)
X[pa (PO, [K)+ép (PO[KD]1, 4.2)
where we have defined
~ . PO |k
¢;(PO,||(|)= Pab( | | (43)
—Ea(k)—Ep(k)
and
~ . PO |k
¢;(PO,|k|):_ Pab( | | ,
PO+ EL(K) + Ep(K)
_ o an( PO K]
PO+ E(K)+Ey(K)
(4.4

Since we will be dealing with bound-state wave functions,
we will write @5 (PP,K|) as ép (k) and $5(PP,|K|) as
¢p.i(K), wherek=|K|.

Similarly, we defined5N(P?) by the replacement of

rrsab(Po |k]) by | R PO |K|), etc. Thus,

dk  [MyEa(K) +mMaEL(K)]

3EePa=-2n |

(2m)°  Eu(KELK)
X[ pi(K) = pi(K)]. (4.5
We also have
3 2 " "
jsg( PZ) — 2ncJ' d k3 [mamb+ k j— Ea(If)Eb(k)]
(2m) Ea(K)Ey(K)
X[bai(K)—bai(K)], (4.6)
where
- a k)
i) =— Caas(PIK 4.7

—Ea(k)—Ep(k)
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and

I‘A ab |k|)
PP+ Eq(K) + Ep(K)

bpi(k)=

_ Dla(PLIKD s
PO+ E,(K)+ Ep(K) '

With these definitions we may write

Ak [MyEL(K) +mMaEn(K)]
(2m)? EL(K)Ep(K)

Py =2n. |

X T p an(P°,[KD)

PO~ E4(k)—Ep(k)
1

PO+ E,(K)+Ep(K)

4.9

_ZH-[ d®k [MpEq(K)+m,Ep(K)]
J@m® E(RELR)

X[Pai(K)+ b, (K]

(4.10

V. PROPERTIES OF THE PION AND KAON: COUPLED
EQUATIONS FOR THE WAVE FUNCTION
AMPLITUDES &7 (k), ¢p(K), ¢ (k), AND ¢, (k)

With the array of definitions made in the previous sec-
tions, we may easily obtain the coupled equations relating
ép, dp, ba, and g, . The equation for the vertex func-

PHYSICAL REVIEW D65 094003

d3k/ F(k/)e—k'2/2a2
(2m)% Eq(k")Ep(K")

2 2
_zncGPe kIZaJ

Ix (PPK)

{ “EL(K)—En(K))
I (PMK)
TP EL (KT Eg(K)|’

(5.2

Since the NJL interaction requires regulation we have re-
placed the coupling constanGp by exg—k¥2a?]

X Gp exd —k'?/2a?]. This replacement corresponds to the
regularization procedure we used in our earlier wptk—
18]. Here,Gp, is the interaction to be used when calculating
the properties of the pion and kaon. The valué&gfdepends
uponGg, Gp, and the value of the quark vacuum conden-
sateq 24]. In Eq. (5.1) we have introduced the function

F(K) =[Ea(K)Ep(K) + K+ mmy]. (5.3
We also define
G(k) =m,Ep(K) + myEa(K). (5.4)

It is useful to introduce a degree of symmetry in the interac-
tion we will derive by defining

KVF(k) ~
bp i (K) = ———=—=0p;(K), (5.5
V2E,4(K)Ep(K)
and
KVF(k) ~
¢;,i(k):—¢|;,i(k
V2E,(K)Ep(K)

), (5.6

tions in the presence of both the NJL interaction and the
confining interaction is indicated in a schematic fashion inwith similar definitions forg, (k) and ¢, (k). i
Figs. 5 and 6. For the moment, let us consider only the NJL Thus Eq. (5.2 may be rewritten, withk=|k| and k'

interaction and Fig. 5. In general we may wrifé:Fp

+FA Taking matrix elements df p between the projectors
Ag’)(k) and A( )( k) and canceling a common factor of [Pio—
A(+)(IZ)75A(‘)(—IZ), we obtain an equation that couples

't (PO.K) to T}~ (POk):

—e k2/2a2’jA P( pz) Gp
(5.1

I“;—( Po,k) — e—kZ/ZaZjPP(PZ)G

d3k/ F(k/)e—k'2/2a2

_ K120
2ncGee (2m)° Eo(K)Ey(K)

IE(PYK)

[ —Ea(k")—Ep(k")
I~ (P.K)

- PO+ Ea(k')+Eb(k')}

=|k’|, as

Eak%—Eakﬂ¢§Ak%=fdkTHEWKkU¢EKkU
+HRP(kK') g i (K')
+HRAKK ) A (k')
—HRAKK ) (K.

(5.7

Here,HLP(k,k’) is a symmetric function,

k K’ ) _ ne G88kk/ F(k)F(k ) —k2/2a e_k/2/2a
( TR \/Ea(k JER(K)Ea(K")ER(K")

(5.9

while
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ROLE OF THE 't HOOFT INTERACTION IN THE . ..

HEA K K') = — 25 Gy F(RF(K)

kk'e™ k2/2aze— k'2/242

(5.9

>< b
VEa(K)Ep(K)Ea(k ) Ep(K")
and

Ne

HR"(k.K') = = —5 GegVF (K)/F (k')

G( kr ) kk/ e*k2/2azef k'2/2a2
VEa(K)Ep(K) Ea(k ) Ep(k')

(5.10

We also obtain

HAA(k, k') = %Cvakk’\/F(k)/F(k’)G(k’)

e k2/2a2e— k'2/2a2

X :
VEL(K)Ep(K)Ea(k ) Ep(K")

(5.1

PHYSICAL REVIEW D 65 094003

and form the matrix element between("”(k) and
A{(—K). Thus,

1"; ~( PO, k) =——g kZ/ZaZ'jPA( PZ)GV+ e k2/2a2'jAA( PZ)GV )
(5.19

Here JPP(P?), JPA(P?), andJ*A(P?) differ from the func-

tions defined in Sec. IV, since they include the regulator

exfd —k'?/2a?] in the integral defining these functions. If we
put

' (POk)=[P°—EL(K)—Ey(K)]ha (P°k)

or
T} (PO k)= —[P+E,(K)+En(k]da (PO,K),
(5.15
we obtain a total of four equations relatim@E , dp qﬁX ,
and ¢, .

Before writing these equations, we consider the confining
interaction. Our treatment of the confinement is such that we
neglect pair production by the confining field in the meson
rest frame so that, if we construct a matrix of the interaction

In these equations the exponential factors are the Gaussiggrms, the confining interaction appears only in the diagonal

regulators(For our work we have used=0.605 GeV)
We may obtain another equation by writing

57 (PO,k) = =[PP+ E4(K) +Ep(K) 1 ¢p5 (PO,K)

(5.12
on the left-hand side of Ed5.2).
We may also use the relatigqeee Fig. 6
T(P.k) = —e K122 FPA(P2) G, gy
+e K 2a"GAN PH)Gyyovs (5.13

elements. We may identify the contribution of the confining
interaction by using the equations satisfiedky (P,k) and
'~ (P,k) given previously. To that end, it is useful to write

C(Kk,k")=Co(k, k") +k-Kk'Cy(k,k") (5.16

and define
C ' 1 C/iL_ L'
V7 (k,k )=§ dx PR(x)V*(k—k"), (5.17

whereP|(x) is a Legendre function. We find the symmetric
interaction

Ho(kk')=—~—

1 (Mamy) 2K {Co(k, K IVS(k,K") Kk Cy(k, K )WVE(K,K')}

Note that the confining interaction does not require regular-

ization.
We may then write the four coupled equations & ,

5.1
4 VF(K)F(K') VEA(K) Ep(K)Ea(K ) Ep(k') 519
[
—HRAKKK ) Pa (k)
=PY¢} (k) (5.19

¢p . da, andg, as

J dK ({[Ea(K') +Ep(k")]18(k—K") +H"(k,K)

+He(k,K)} g (K
+HRP(k,K) pp (k) +HRAKK ) (K"

| rEack g )
—{[Ea(k")+Ep(kK")]8(k—k')
+HRP(k,k) +He(k,k )} bp i (K")
—HPAKK" ) (K ) +HPAKK ) i (K'))
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=PPp(K), (5.20 b (k)= \Nigg i(K), (6.4
| kP 0K 9 (k) P ) 6 () don (k)= VN, (). 65
, , , etc.
HEa(k) +Ep(k")]6(k—k") Whenm,# m,, a calculation of the meson decay constant
+HRAGGK) +H(k K ) i (') yields
+HRAK K ) i (K) Ne [MaEp(K) +MpEq(K)]
fK,i=—2f k dk
=P (K, (5.21) V2Mi7r VEa(K)Ep(K)F(K)
XANH{L b1 (K) = b i () ]+ [ a1 (K) + i (K) T

and
(6.6)
dk’ (= HRP(k, K ) o (k) +HAP(K K" ) b (K
J (—HN )dei(K) ( )op.i(k) Note that in the chiral limit 1;— 0) the term in curly brack-
—HAAKK' ) b (K ets also vanishes, such that the decay constant remains finite.
N AT Al Further, in the casen,=m,=m, we have the simple form

—{[Ea(k') +Ep(k")18(k—K") + HRAKK)

Ne m
+He(k.k)} (k) fmi:—szif"dk(m>N
=PPéai(k). (522 AL ()= by () 1+ {84, + (T},
Note that for any solution wittP?>0 there is another (6.7)

solution with the energy- Pio. If the first solution has a wave
function characterized byp , ¢p, ¢», ande, , the sec-
ond solution is obtained by the transformatigip — ¢p ,

sinceF (k) — 2E?(k) when the quark masses are equal.

VII. WAVE FUNCTIONS FOR PSEUDOSCALAR MESONS

- + + - -+ 0 . _po
$p—de, ba— = bas Pa—— ¢a, ANAPI— P WITH SINGLET-OCTET MIXING
VI. CALCULATION OF NORMALIZED WAVE FUNCTIONS We make use of the equations depicted in Figs. 5 and 6. It
AND PION AND KAON DECAY CONSTANTS is again useful to define polarization functiod§P(P?),

We may define normalized wave functions by multiplying JPA(PZ)! a”qr{AA(Ez)v which ha}rv_e th(()a confinement vertex
#5(K), én(K), ¢1(K), and e, (K) by a normalization fac- functions I's,,(P°.k) and I'[,,(P",k) replaced by
tor \N;, where '} 2o(P°.K) andl' 5 ,(P°,K). For the study of they mesons

we will needI'y, ~(P°k), I'y (P°k), T'x +(P°k), and
1 1 2n 2= 2 ', {P°k). We will also introduce the singlet and octet
N, 2M; 7 f dklge ("I (O (63 versions of these functionsI';5(P%k), T'pz(P%K),

: Lo (PYK), andl' 5 g (P°,K).
whereM; is the mass+of the meson. Here we have considered™|'iiq work we will pass between the singlet-octet repre-
the case in whichg, (k) and ¢, (k) are small and the gentation and then, ssrepresentation. We may use a matrix
masses of the_quark and_ antiquark are _ec[ﬂ'dde minus sign  \1 1o connect these representations:
that appears in Eq6.1) is a characteristic of calculations

made in the RPA. = Ng/V2
In the case thaipx (k) and ¢, (k) are significant, the N ):M(Ao/‘@)' (7.9
appropriate normalization factor is 5
1—12n°fdk 5k K)o (K)|2 e
N, 2M, a2 {|pp.i(K)+ Ban(K) pai(K)| L ( L ﬁ)
_ _ M=— : (7.2
~|¢p i (K)+ Bap(K) i (K[}, (6.2 v3i—v2 1
where so that
[Ea(k) + Mal[Ep(k) +my] —K? Ns A
Bap(k)= —————————— (6.3 e (7.3
[Ea(K)+mal[ Ep(K)+my]+K? G
Whenmy=my=m, B,,(k)=m/E(k). We may define and
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+ -
L )\8 )\O + _ kFA,STS( k)
A= — 7 % (7.4 dpsdk)= PO 2E,K)’ (7.12
We may write a vertex for they mesons of the form and
T, (K) =5 2K ysh it I'p (k) vk st T (K Yo Ysham )
- ndK)=— g 7.1
+T a0 sdK) v0Yshss, (7.9 $asdl) =" B0 2E (k) (7.13

where we have anticipated forming the expressionOnce we have defined these functions, we may introduce
AMRT (K)A(—K). We also define a series of wave dadK), ¢pe(k), dpo(k), dpg(k), dao(k), dagk),

function amplitudes: dao(K), and ¢, g(k). We choose to solve for the functions
in the singlet-octet representation. To that end, we write
KL (k) Eu(k) =[K2+m2]Y2, Eg(k)=[k?>+mZ2]*2 and define
+ _ ,nn
¢P,nﬁ(k)_ PO_ZEu(k) ' (76)
2
Eoo(k) = —[2E,(k) +Es(K) ], (7.14
) KIS (k) ROV R °
p nn(K)=— POF2E,(K)’ (7.7
2
) K224 Eos(k) = ——[Ey(K)+2E5(K)], (7.19
¢p K= PO 2E.(K)’ (7.9
and
KT 3 oK)
b dK) == =%, 7.9 2v3
Pl PaE N 9 Eog(k)= 5~ [Eu(k) —Es(K)], (7.16
. KT 5 (k) with Ego(K) =Eoa(k).
Pann(K)= PO—2E,(k)’ (7.10 We then need to solve the following eight equations, with

the functions HEP(kk'), HiAkk), HiP(kk),
- HiAKkK'), HEPO(k k'), andHAM O (kk') defined in the
G nn(K)=— Kan0 (711  Appendix.(Here,i andj are each either O or BThe equa-
A PO+ 2E(k)’ ' tions are

f dk'{[Eqo(K) 8(k—K')+ GgoHg (k,k') +HEF (kK" 1p oK)
+[Eog(K)8(k— k') + GogHgg (kK)o o(k') + GogHbg (K k') ¢bp oK)
+GogHba (kK" ) dp o(k') = GogHbe'(k, k") da o k') — GogHEa (K, k") da o(K')

+GogHg (KK ) da (k') +GogHEg (K k') oK)} = PPt o(K), (7.17)

f dk'{[ GgoHpg (K.k') +Egg(K) S(k—k') 1bp (k') +[Egg(K) S(k—k') + GggH g (k,K")
+HES O (kK )] pp (k') +[GeoHpg (K k') 1bp o k') + GegHig (K, k') dpp o(K')
— GgoH (kK" ) i o(k') — GagHEa (k') b (k') + GagHig (k. K') o k')
+GggHga (K.K') dpg(k')}=POphp oK), (7.18
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f dk'{—GoHeg (k,K') dp (k') —GogHEg (kK" ) b (k')
—[Eoo(k) 8(K—K") + GogHog (k,k") +HEG C(k,k ) bp o( k') —[ Eg(K) S(k—K)
+GogHEg (KK 1dp g(K')+GogH B (K, K') b o(K') + GogH g (K, k') da oK)
—GooH (K, K") oK) — GogHla (K, K') ba gk )= PP o(K), (7.19

| A= BB K 0 oK)~ G BE ) 5 (K
—GgHbg (k,k') dp oK) —[Ega(K) S(k—K') + GggH e (k,K")
+HET (kK ) 1dp (k') +GeaHpg (kK ) bp o(K') + GaaH g (K, k') o(K')
—GgoHg (K, K') da (k') —GagHgg (KK ) gk )} =P2php g(k), (7.20

J dk'{—GyHGg (kK" ) o(k') +GyHog (KK ) dbp o( k') + [ Eged(k— k')

+GyHa (kK )+ HH (kK" ) 1A o k') + [ Eg(K) 8(k— k) + GyHpa(k,k ) Tbp (k')
+GyHp (K K" ) dao(k')+GyHOE(K K" ) gk’ )} =Pa oK), (7.20)

f dk'{—GyHas (k,k") g o(K')+GyHas (k,K') dp o(k') + [ Egod(k—k')

+GyHE (KK ) 1A o k') +[Egg(k) 8(k—k') + GyHas(k, k') +Has @ (k,k ) A oK)
+GyHES (K K)o k') +GyHEg (K K" ) da gk )} =PPoha oK), (7.22

f dk'{GyHos (kK)o k') = GyHog (KK ) b o(K') — GyH o (K, k') da o k)

—GyHAs (kK" ) da o(k') —[EqolK) (k— k') + GyHag(k,k") + Hog © (k,k") 1 o k')

—[Eog(K) 8(k—k') = GyHoa(k,k') Tpa (k') } = POb oK), (7.23
and
f dk'{GyHEs (k. K') b o(K') —GyHgg (Kik') o k') = GyH g (ki) b k')
—GyHEA(K.K) A oK) —[Ego(K) S(k—k') + GyHEN (KK ) Tha o(K')
—[Egg(k) 8(k—K") +GyHgg'(k,k") + Hgg @(k,k) Tpa oK)} = POcba o(K). (7.24)
[
VIIl. WAVE FUNCTIONS FOR THE = 7(547) AND 7' (958 respectively(For example, for thenn states, the continuum
AND THEIR RADIAL EXCITATIONS threshold iSEL2"=2m,+ x/ue=2.751 GeV) Each of the

The energies of states bound in the confining field arétates in columns one and three is doubly degenerate, with a
shown in Fig. 7. The first column gives the energies of thevave function associated with eithetya or ayoys vertex in
nn states(1.216, 1.550, 1.811, 2.015, 2.200, 2.359, 2.489the meson rest frame.
2.610, and 2.712 GeV while the third column gives the The second column shows the results obtained upon the
energies of thess states(1.559, 1.838, 2.072, 2.258, 2.423, diagonalization of the RPA HamiltoniatHere we show only
2.573, and 2.698 Ge)VThe two cross-hatched regions indi- the positive-energy state¢she arrows give some indication
cate the continuum of the model for tmn and ss states, of how various states are distributed into the levels of col-
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0.08 - N
30F ) ) s1
s 0.06 |- ! N
25F — = )
20 — =

/

/ - -0.04 : ' ; ' ; ' : ]
0.0 05 1.0 15 2.0
. k (GeV)

- s B FIG. 9. The wave function of the)' (958 found at 949 MeV.
o (Symbols the same in Fig.)8.

Mass (GeV)

0o
¢F’ nn(k ' ¢P,ss(k)’ ¢A,nn(k)’ <l:'A,ss(k)

e — I .
FIG. 7. The first and third columns of levels show theandss 1S ssstate ha321%£r02ablllty in the(547) _and 79% n

states bound in the confining field, respectively. The second cqumH1e 77,(958)' Thenn andss1 7S, states bO‘%“d in the confin-

shows the 28 levels found when the RPA Hamiltonian is broughtIng field that have they07_5 vertex are highly fragmentgd

into diagonal form. The various arrows show the parentage of th@Ver Many of the Sta'ies in column 2. The wave functions

resulting states. Thei547) has about 75% of the 1S, nn state ~ Pp n(K), dp in(K), @a n(K),..., etc., for the 5(547) are

that has theys vertex and about 25% of the 'S, ssstate that has  shown in Fig. 8. Hereg, +(K) (N2) ande, (k) (S2) are

the s vertex. These percentages are reversed fonfk@58. The  rather large in a state with a relatively smail mass such as the

1 'S, nn andss states with they,ys vertex are fragmented over 7(547). The wave function of they547) has dominant com-
many states. The(1295 and 7(1440 are almost entirely of 25, ponents¢+ (k) (N1) and ¢+ (k) (S1)
P,nn P,ss .

nn character. In Fig. 9 we show the wave function of thg’(958)

which we find at 949 MeV. Here, <(K) (S1) ande} ()

(N1) are the dominant components. In Figs. 8 and 9 we also

see a small amplitude for the 3B, 4’/:,5‘5(") (N3) compo-
ent, which we stated had a rather fragmented distribution.
n Fig. 10 we show the)(1295, which we find at 1319 MeV.

(See Table ). This state is dominated by the®%, nn state,

with the componentp, (k) (N3) larger thang} (k)

umn 2. The 13S, nn state bound in the confining field that
has ays vertex is found with about 75% probability in the-
lowest state of column 2 and with about 25% probability in
the next excitation. The two lowest energy states in column
represent thep(547) and »'(958). The distribution of the

0.08 - .
(N1). We see that the “small components” are indeed small
0.06 for the more massive mesons.
3 i
2 004 0.16 -
3 014 ;N3
= 002 _ L
g < o2}
= 2 L
< 000 € 010 |-
o = 0.8
< 002 2
3 - < 006
& -0.04 e G % 0.04
< 0.0z
-0.06 : L : L : L : I =
0.0 0.5 1.0 1.5 2.0 “é 0.00
k (GeV) < 002 I
FIG. 8. The wave function for they547) found at 555 MeV. -0.0400 : 0'5 . 1'0 . 1'5 . 2'0
The various components a&;,nﬁ(k) (solid, N1), ¢p +(k) (dash, ‘ ' K (GeV) ' ‘
N2), ¢, w(K) (dot,N3), ¢, (k) (dash dotN4), ¢p (k) (dash
dot dot, S1), ¢p K) (short dashS2), ¢X’S—S(k) (short dot,S3), FIG. 10. The wave function of thg(1295 found at 1319 MeV.
and ¢, (k) (short dash dot34). (Symbols the same as in Fig.) 8.
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TABLE I. Results of numerical calculation using the parameter sets given in Table Il. Here we have used
xk=0.55 Ge\f and x=0.010 GeV. The various angles and decay constants were defined in the Introduction.
The values ford,, 65, Fo, andFg were obtained using Eqél.11)—(1.14 and the values given in RefL2]
for 9,, 6, , Fo, andFg, which are reproduced in the table. If one fi¥ggat the chiral perturbation theory
value of 1 28,=169 MeV, the values given in Ref12] for a fit to experimental data aré,=(—6.9
+2.1)°, 0,,=(—24.6-2.3)°, andF,=(1.34=0.07)f ,=177+9 MeV. When fitting experimental data for

the y and ' y transition form factors, Feldman and KrdlL3] find #3=22.2°, §,=—9.1°, andli(o)/f,,

=1.20 after fixingF®)/f_=1.28.

Ref.[12] Set | Set Il Set Il Set IV
m,](547) (MeV) — 538 536 527 555
mﬂ,(958) (MeV) — 911 942 963 949
m,,(1295) (MeV) — 1319 1318 1317 1319
m,,(1440) (MeV) — 1414 1416 1419 1411
F® (Mev) — 177.2 178.6 180.9 163
<0> (MeV) — 27.59 24.51 18.95 52.8
(8> (MeV) — —-84.26 —84.64 —-80.97 -105
(8) (MeV) — 159.2 157.3 156.0 150
Fy (MeV) (1.32+0.06)f ,, 179.3 180.3 181.9 170
=174+8 MeV
Fo (MeV) (1.37+0.07)f . 180.3 178.2 174.2 190
=181+9 MeV
0, (=5.7x2.7)° —-8.81° —7.82° —6.26° —-16.1°
0, (—24.6£2.3)° —28.0° —28.0° —26.4° —38.2°
0o (—7.0£2.7)° —-9.83° -8.76° —6.94° —19.4°
Og (—21.5+2.4)° —25.4° —25.4° —24.1° —-32.8°
09— Og 16.4° Ref[10] 15.6° 16.6° 17.2° 13.4°
Fo (MeV) (1.21+0.07)f . 161 159 157 158
=160+9 MeV
Es (MeV) 188+ 11 196 198 198 194
Gp (GeV o) — —180 —-200 —-220 —~161.6 Ggg=0)
In Fig. 11 we show the wave function of thg(1440), 1 Ne N m, . 2
which we find at 1411 MeV. Here the state is almost entlrely—I 222M, f ((ﬁp,nn E(k) ¢A,nﬁ(k))

the 23S, nn state that has thes vertex (N1). In Fig. 12 we

show the wave function of the state at 1653 MeV. Here the

nn components account for 96% of the norm, vv:jztﬁ’nn{k)

(N3) larger thand);nﬁ(k) (N1). These components arise m 2 m 2

from the 3°S, nn state bound in the confining field, as in- +E (Sk) ¢;s§k)) —(¢P’S§k)+ ?‘:‘()¢A’S§k)) H

dicated in Fig. 7. In Fig. 13 we show the wave functions of s s

the state found at 1698 MeV. Here thé g, ssstates play an (9.

important role, with¢;s—s(k) (N3) being the dominant com-

ponent.(See Fig. 7. where the various wave functions are those for the state
On the right-hand side of Fig. 7 we show the experimen- We calculate the singlet and octet decay constants in

tally observed states:#(547), 75'(958), 7(1295, and terms of the divergence of the currents

7(1440. These are in good correspondence with the four

2

_ m, _ +
_( d’P,nﬁ(k)"— md)Ann{k) ¢PS§(k)

lowest energy states of our model. Af)(x):a(x) 7M75)\8q(x)/\f2 (9.2)
and
IX. NORMALIZATION OF WAVE FUNCTIONS AND
CALCULATION OF DECAY CONSTANTS 0) _ 0
AD(X) =T(X) 7, ¥sAq(x)/V2. 9.3

We may define a normalization factor for each state of
massM; : We find
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FIG. 11. The wave function of the(1440 found at 1411 MeV. FIG. 13. The wave function of the state found at 1698 MeV in
(Symbols the same as in Fig,)8. our calculation(Symbols the same as in Fig. 8.

~ ¢ VN
(0)
NERL: fdk4 db
X[ d)l;rnn{ k) — ¢;n# k) + ¢A,n# k) + ¢;nn{ k)]v2

T8= f dkk(( My )

X[ﬁb;,nn{k) - d’;nﬁk) + ¢Xnn{k) + ¢;n# k)]

mg . B
E«(k) ) [(bP,sé k) — (bP,sé k)

mg N B .
—<Es(k))[%,sék)—¢>p,sék>+¢A,sék) + K+ d)A’Sgk)]]. (9.5
+ sék)]‘/f] (9.4) X. RESULTS OF NUMERICAL COMPUTATIONS

The parameter&g andGp appear in our Lagrangian. The
parameters needed for a study of the eta meson&gge
Ggg, andGgg [24]. For these mesons, we have

and

Gp
Goo=Gst —-

5 Coo, (10.1

014 [
012 N3 Ggg=Ggt
0.10 - o
0.08 |
0.06 |
0.04 |
0.02 |-,
0.00 -
-0.02
-0.04 H
-0.06 £\ /:
008L
040 [ 2

-0.12 ; COO:_ §(2<UU>+<§S>), (104)
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1
k (GeV) Cag=— 5 ((s5)—4(uU)), (10.5

FIG. 12. The wave function of the state found at 1653 MeV in
our calculation(Symbols the same as in Fig.) 8. and

D
7C881 (10.2

and

Gog=—5 Cos, (10.3

where

¢P,nn(k)’ ¢P,ss(k)’ ¢A,nn(k)’ (bA,ss(k)

(&3]
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TABLE Il. Parameters used for the calculations reported upon in+ GsngoP(k:k')- From Eq. (7.16 we see thatEgg(k)
Table I. =Egy(K) is negative. We note th&@ps= Ggois also negative,
as areHgq (k,k') andH5F(k,k"). [See the Appendix, where

Set | Setll  Setlll SetlV. e may see thatiBP(k,k') =H P (k,k').] Therefore, the in-
Gs (GeV?) 11.84 11.84 11.84 11.57 clusion of the 't Hooft interaction reduces the mixing in-
Gp (GeV'®  —1800 -2000 -2200 -161.6 duced by the presence &y(k), since GogHgg (K,K') is
Gy (Gev?) 13.00 13.00 13.00 13.00 positive. That feature may be seen in the results given in
m, (GeV) 0.364 0.364 0.364 0.364 Table I. For example, let us consider the results of parameter
ms (GeV) 0.585 0.585 0.585 0585  set V. We see that if we puByg=0, we havefy=—19.4°
Gyo (GeV?) 8.465 8.090 7.715 8.54 and f#g= —32.8°, which are significantly larger in magnitude
Ggg (GEV ) 12.90 13.02 13.13 1252  than the values of, and Og obtained from fits to empirical
Gos (GeV'2)  —0.4458 —0.4953 —0.5483 0 data, or from theoretical analysis. However, if we make a

more consistent calculation with finite values Gfg (see
Tables Il and 1), the values off, and 65 are brought into
3 agreement with the theoretical or empirical val{i£g]. (The
C08:§(<UU>—<§S>)- (10.6  values ofGp=— 180, —200, or—220 GeV * correspond to
generally suggested values of that parameters. For example,
in Ref.[24] we find the choiceGp=—185 GeV °.)
We take(ss)/(uu)=1.689, as determined in R¢R25]. We In Table | we have compared our values with those ob-
also put{uu)=—(0.248 GeV§=—0.01525 GeV and ob- tained from an analysis of experimental dft2]. We may
tain Coy=0.03750 GeV, Cgg=—0.01175GeV, and Cog  also make contact with the theoretical results of extended
=—0.01214 GeV. We remark tha{uu) appears multiplied chiral perturbation theory and other studies. For example, in
by Gp, so that the relevant parameter is the product of thes@able | of Ref.[14] we find that §g=—21.0° and 6,
quantities.(See the Appendix. =—2.7° for the theoretical scheme put forth in REE3].
We have calculatea(ﬂa), ?(770)’ F®  andT® using the For the phenomenological scheme of Ref3], the values

expressions given in Sec. IX. The definitions of other decayiVen arefg=—21.2° andfp=—9.2°. We see that the cal-
constants and mixing angles were given in the Introductionculated values presented in our Table | #arand 6, are in
Our results are shown in Table I, where comparison is madg/0Ser correspondence with the phenomenological scheme of
with the parameters that were determined in R&2] using Ref. [13] than with the t_heoretlcal sc_heme. In adqmon, we
experimental data. We note that the results for set IV are ndtoté that extended chiral perturbation theory givis=
consistent, since we have pGtg=0, even though we have —20.5° andf=4° [7,8]. The values off,— 05 obtained
Gp=—166.6 GeV 5. (See Table I). As can be seen from from our values offg and 6, are aI;o consistent with the
Table |, the values of,, and 6, (or 6, and 6g) are too large value of o~ 0= —16.4° calculated in Ref10] by a some-
when we use the parameters of set IV. We have presentéﬁhat different theoretical methogl than t_hat us_ed in Réfk. _
these results, however, since we are interested in demonstragl- We see that the values obtained using chiral perturbation
ing how a proper treatment of the singlet-octet mixing indi-theory for 6,— 65 are quite close to the values 6f15.6° or
cated by the 't Hooft interaction yields quite good results. _16-65° given in our Table | forGp=—180 and —200

To clarify the observation, we see that inspection of EqsGeV "~ respectively.
(7.17) and(7.18 shows that the mixing betweepy, (k) and
dpo(k) depends upon the quantityEgg(k)S(k—k') XI. DISCUSSION

+GoeHgs (kk') o, equivalently, Ego(k)S(k—k') In the absence of a confining interaction, the NJL model
does not allow for a description of radially excited states.
TABLE Ill. The first column shows the expressions for the vari- The model leads to a separab|e interaction in each channel
ous pseudoscalar coupling taken from RE24]. We useGs  sych that the vertex function is proportional to the regulator.
=11.84GeV? Gp=-200GeV®, a=-0.01524GeV, andy  [See Egs.(5.1) and (5.12.] To deal with this problem,
= —0.02575 GeV to obtain the values in the second colurtBee  \plkov and collaborators have introduced additional sepa-
set Il of Table Il) rable interactions in each channel. These new terms allow for
a description of radially excited statg26—28§. More closely

Effective pseudoscalar coupling Goo: Gos: aznngg related to our work are the results described in REZ9—
constantg 24] (Gev™?) 32]. In Refs.[29,30 the authors include a confinement
G model that has scalar, pseudoscalar, and vector confining in-
Goo=Gs— ?D(a+ﬁ+y) 11.84-3.75=8.09 tergctions. They solve the' Bethe-Salpeter equation and de-
scribe a large number of light meson states. However, they
Gp do not include pseudoscalar—axial-vector coupling in their
G — (y— Dy — 11.84+1.17=13.01 . .
Cos=Cs~ 5 (y=2a72p) formalism. Other work related to ours may be found in Ref.

5 [33], where meson spectra are calculated using many-body
Gog=— 15CGo(2y— B~ a) —0.4953 techniques based upon the RPA. That work is part of a com-
prehensive program to investigate hadron structure using an
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effective Lagrangian obtained from Q{BA4]. op Ne S,

In the present work we have shown how to derive relativ- ~ H(K,K')=— ?kk'e_k f2a’gmkH2e”,
istic RPA equations that may be used to calculate the prop- (A1)
erties of radially excited states of pseudoscalar mesons. The
RPA representation of the wave function components is seen Ne PP,
to be particularly well suited if one wishes to provide a  HIZ(k,k')=——5 kk'e K/2a"g k2% (A2)
physical description of the states in terms of their or ss 7

components. It is also easy to see the relative importance of AP '\ PA ,

the y5 and yqys5 vertices. It is worth noting that the devia- Hin (kK =Hg(k.k’), (A3)
tions from ideal mixing are due to the presence of the 't

Hooft interaction. We find thatn-ssmixing is most impor- HAA K k') = n_°2 2m, Kk’ e~ K*I2a®g—K'?12a°

tant for then(547) and ' (958). The other states are mainly e 7 Ey(K) ’

eithernn or ss states. (A4)

In this work we have demonstrated that the 't Hooft inter- 5 , ,
action exhibits two important feature$That interaction pr(o(k K')=— 1 KK’ (M~ Eu(K)Eu(k") ]Vo(k,k")
breaks the W(1) symmetry that the Lagrangian would have nn ' 2 E,(K)E, (k") '
in the limit of zero current quark masses and reduces the (A5)
number of Goldstone bosons from nine to eight.

The first feature that has been emphasized in application%nd
of the NJL model is the fact that one may fit the energies of
the 7(547) and 5’ (958), if the strength of the 't Hooft inter-
action is chosen appropriately. The second feature that WE
describe in this work has not been noted previously. We have
found that the singlet-octet coupling induced by the 't Hooft 111 o
interaction, which is proportional to the parame®yg, is of Vo(k,K")= Ef dx Ve(k—K'). (A7)
the correct magnitude to compensate for the singlet-octet -1
coupling introduced by functioEqg(k), such as to bring the . P 1) .
values of the mixing angles into the range specified by ex:rhe various elements, S_UCh H%(k’k ) are obtalneq by
tended chiral perturbation theotyo=4°, 5= — 20° [7,8)) replacingm, andE (k) with mg andE(k) in the equations
or by fits to experimental dafd.2,14. presented above. .

Ideally, we would like to maintain chiral symmetry and We may then define
covariance in our generalized NJL model. We have empha- 1
sized covariance in our work, rather than symmetry. That HS’OP(k,k’)z—[2HE§(k,k’)+HSP;P(k,k’)], (A8)
leads to some problems in the description of the radial exci- 3
tations of the pior{35]. However, our description of the eta
mesons including the radially excited states is quite satisfac- HPP(K k)= ‘/_E[pr(k k')—HP(k K')]
tory, indicating that chiral symmetry constraints may be less o8 ™ 3 - e ssh ’
important than the covariance of the formalism and a proper (A9)
treatment of pseudoscalar—axial-vector coupling. Finally, we
note that one may consult R¢86] for an extensive discus- and
sion of largen, in chiral perturbation theory.

AA(C) 1\ 1y PP(C) ’
HARO (k) =HPP Ok k). (A6)

nn

ere, withx=cosé,

1
Hg’;(k,k')z§[H§§(k,k’)+2H§(k,k’)], (A10)
APPENDIX
In this appendix we define the various interaction ele-with HES (k,k')=Hgg (k,k’). Values for the other interac-

ments needed to construct the eight equations given as Edg#n terms in Eqs(7.17)—(7.24 may be found by using re-
(7.17—(7.24). We begin by working in thein-ssrepresen- lations of the form given in Eq94A8)—(A10). We see that

tation and first consider then space. Then we have Heg(k,k')=Hgg (k,k') and thatH{g (k,k’)=0.
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