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Role of the ’t Hooft interaction in the calculation of the mixing angles
of the h„547… and h8„958… mesons

C. M. Shakin* and Huangsheng Wang
Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York, Brooklyn, New York

~Received 30 August 2001; published 12 April 2002!

Recent work has shown that the singlet-octet mixing angles of theh~547! andh8(958) are different. That
may be demonstrated either in extended chiral perturbation theory or by analysis of a large body of experi-
mental data. The conclusion is that theh~547! is almost entirely of octet character, while theh8(958) is mainly
of singlet character with about 10% octet component. It is possible to calculate the mixing angles and decay
constants in our generalized Nambu–Jona-Lasinio~NJL! model, which includes a covariant model of confine-
ment. Our model is able to give a good account of the mass values of theh~547!, h8(958), h~1295!, and
h~1440! mesons.~We also provide predictions for the mass values of a large number of radially excited states.!
It is well known that the UA(1) symmetry is broken, so that we only have eight pseudo Goldstone bosons,
rather than the nine we would have otherwise. In the NJL model that feature may be introduced by including
the ’t Hooft interaction in the Lagrangian. That interaction reduces the energy of the octet state somewhat and
significantly increases the energy of the singlet state, making it possible to fit the mass values of theh~547! and
h8(958) in the NJL model when the ’t Hooft interaction is included. In this work, we derive the equations of
a covariant random phase approximation that may be used to study the nonet of pseudoscalar mesons. We
demonstrate that a consistent treatment of the ’t Hooft interaction leads to excellent results for the singlet-octet
mixing angles.~The values obtained for the singlet and octet decay constants are also quite satisfactory.! It may
be seen that the difference between the up~or down! constituent quark mass and the strange quark mass
induces singlet-octet mixing that is too large. However, the ’t Hooft interaction contains singlet-octet coupling
that enters into the theory with a sign opposite to that of the term arising from the difference of the quark mass
values, leading to quite satisfactory results. In this work we present the wave function amplitudes for a number
of states of the eta mesons.~The inclusion of pseudoscalar–axial-vector coupling is important for our analysis
and results in the need to specify eight wave function amplitudes for each state of the eta mesons.! We present
the values of the various constants that parametrize our generalized NJL model and which give satisfactory
values of the eta meson masses, decay constants, and mixing angles. It is found that the calculated mass values
for the h~1295! and h~1440! are quite insensitive to variation of the parameters of the model whose values
have largely been fixed in our earlier studies of other light mesons.

DOI: 10.1103/PhysRevD.65.094003 PACS number~s!: 14.40.Aq, 12.39.Fe
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I. INTRODUCTION

The description ofh-h8 mixing has attracted a good de
of attention over the years. There is a large body of work
which it is assumed that only a single mixing angle may
used@1–6#. Recently, an extended form of chiral perturb
tion theory has been developed which is based upon the
that at largenc theh8 becomes a ninth Goldstone boson a
an expansion in 1/nc becomes useful@7,8#. Other closely
related theoretical methods have also been developed@9,10#.
The theoretical analysis clearly shows that two mixi
angles are required. There is also a body of work wh
shows that the analysis of experimental data requires
mixing angles@11–14#.

For the moment, we may limit our discussion to a cons
eration of the properties of theh~547! andh8~958!. There are
four fundamental singlet and octet decay constants, wh
we denote asf̃ h

(0) , f̃ h
(8) , f̃ h8

(0) and f̃ h8
(8) . Rather than quote

values for these constants, various mixing schemes pro
alternative parametrizations. For example, we may write

*Electronic address: CASBC@CUNYVM.CUNY.EDU
0556-2821/2002/65~9!/094003~18!/$20.00 65 0940
n
e

ea

h
o

-

h

de

uh&5cosuhuh8&2sinuhuh0&, ~1.1!

uh8&5sinuh8uh8&1cosuh8uh0&, ~1.2!

and introduce decay constants for the statesuh8& and uh0&
such that

f̃ h
~8!5F8 cosuh , ~1.3!

f̃ h
~0!52F0 sinuh , ~1.4!

f̃ h8
~8!

5F8 sinuh8 , ~1.5!

and

f̃ h8
~0!

5F0 cosuh8 . ~1.6!

One possible point of view is that the mixing angle is ener
dependent leading touhÞuh8 @12#. Another parametrization
used by Leutwyler@7#, Kaiser and Leutwyler@8#, and others
is

f̃ h
~8!5F̂8 cosu8 , ~1.7!
©2002 The American Physical Society03-1
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f̃ h
~0!52F̂0 sinu0 , ~1.8!

f̃ h8
~8!

5F̂8 sinu8 , ~1.9!

and

f̃ h8
~0!

5F̂0 cosu0 . ~1.10!

We may relate these representations using the equations

tanu85
sinuh8
cosuh

, ~1.11!

tanu05
sinuh

cosuh8
, ~1.12!

F̂05F0Asin2 uh1cos2 uh8 , ~1.13!

and

F̂85F8Asin2 uh81cos2 uh . ~1.14!

There is a problem in our use of Eqs.~1.1! and~1.2!, since
we have calculated orthogonal statesuh& and uh8&. Then, if
we assume that the statesuh0& anduh8& are the same in Eqs
~1.1! and ~1.2!, we obtain a contradiction ifuhÞuh8 , since
then ^huh8&5sin(uh2uh8). Therefore, the relations of Eqs
~1.7!–~1.10! are to be preferred when we make use of o
model. However, we can discard Eqs.~1.1! and~1.2! and use
Eqs. ~1.3!–~1.6! and Eqs.~1.7!–~1.10! as alternative repre
sentations of the four fundamental quantitiesf̃ h

(8) , f̃ h
(0) , f̃ h8

(8) ,

and f̃ h8
(0) , which appear on the left-hand sides of Eqs.~1.3!–

~1.6! and Eqs.~1.7!–~1.10!. We may then use Eqs.~1.11!–
~1.14! to pass between the two representations of the f
fundamental decay constants.

In this work we will calculate the mixing angles of theh
andh8. It is clear that any theoretical description of theh8
wave function requires a model of confinement. Therefo
we will use an extended version of the Nambu–Jona-Las
~NJL! model that we have generalized to include a covari
model of confinement. This model and various applicatio
have been described in a number of publications@15–20#.

In our model the constituent quark masses are parame
Ideally, we should solve the Bethe-Salpeter equation al
with the Schwinger-Dyson equation. In our Euclidean-sp
calculation@21#, we could solve the one-body~Hartree! as-
pect of the problem at the same time as the two-body as
~Bethe-Salpeter equation! and demonstrate that our mod
exhibits chiral symmetry. At present, we do not know how
make a corresponding calculation in Minkowski space, if
include our model of confinement. However, our model h
many useful applications as may be seen in earlier and in
present work.

The Lagrangian of our model is
09400
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L5q̄~ i ]”2m0!q1
GS

2 (
i 50

8

@~ q̄l iq!21~ q̄ig5l iq!2#

2
GV

2 (
i 50

8

@~ q̄gml iq!21~ q̄gmg5l iq!2#

1
GD

2
$det@ q̄~11g5!q#1det@ q̄~12g5!q#%1Ltensor

1Lconf, ~1.15!

Here, the fourth term is the ’t Hooft interaction,Ltensor de-
notes interactions added to study tensor mesons@16#, while
Lconf denotes our model of confinement. In Eq.~1.15! m0 is
the current quark mass matrixm05diag(mu

0,md
0,ms

0), the l i

( i 51,...,8) are the Gell-Mann matrices, andl05A2/3I, with
I being the unit matrix in flavor space. For the Minkowsk
space calculations reported here, and in our earlier work,
found it useful to neglect energy transfer by the confini
field in the meson rest frame. For example, if we start w
the potential VC(r )5kr exp@2mr# and form the Fourier
transform, we have the form of the interaction used in
meson rest frame:

VC~kW2kW8!528pkF 1

@~kW2kW8!21m2#2

2
4m2

@~kW82kW8!21m2#3G . ~1.16!

Herem is a small parameter used to soften the infrared s
gularities ofVC. If m is small enough, the potential approx
mates a linear potential with ‘‘string tension’’k over the
range ofr relevant for our problem.~Since we use Lorentz
vector confinement, our value ofk differs from that usually
quoted for a Lorentz-scalar model of confinement.! The po-
tential of Eq.~1.16! may be put in a covariant form, if we us
the four-vectorsk̂m and k̂8m,

k̂m5km2
~k•P!Pm

P2 , ~1.17!

and

k̂8m5k8m2
~k8•p!Pm

P2 , ~1.18!

since, whenPW 50, we havek̂m5@0,kW # and k̂8m5@0,kW8#.
The parameters of the Lagrangian may be fixed in

study of various light mesons. For example, we may obt
values forGV andk in a study of the vector mesonsr andv.
Including thef~1020! in our study leads to a value of th
constituent mass of the strange quark. In the present w
we fix the values ofGS andGD by studying the properties o
the h mesons.

We do not attempt to derive our Lagrangian from fir
principles, although the form of the ’t Hooft interaction ma
be obtained from the study of instanton dynamics in QCD
3-2



ng

lu
to

es

n

os

ty
ull

he

n
ne
on
n

ie

o
ion
e-
n

he
ng

se

um
iza-
at-

e
udy
e in
that
the
m
e-
set

at
ese
e

le-
in

n
ns
n-

be
ns
ent
on
ke
that
me-
c-
for
of

ctet
o-

and
all’’
ight
s in

the

tio

in

-

s

ROLE OF THE ’t HOOFT INTERACTION IN THE . . . PHYSICAL REVIEW D 65 094003
is worth noting that, when calculating the effective coupli
constants in the singlet, octet, and mixed channels~G00,
G88, andG08! in the study of pseudoscalar mesons, the va
of GS in each channel is modified by a term proportional
the product ofGD and various quark vacuum condensat
~See Sec. X.! SinceGS is of order 1/nc andGD is of order
(1/nc)

3, the correction term is of order (1/nc)
2. That is,GS

is modified at the next order in 1/nc when calculatingG00,
G88, andG08.

While it may be possible to derive the full Lagrangia
including the term proportional toGS from the study of in-
stanton dynamics, that has not been done. For the purp
of this work we use the SU~3!-flavor version of the NJL
model that has been used by many researchers. The utili
our Lagrangian lies in its application in studies of the f
range of light mesons, with a fixed parameter set.~An at-
tempt to derive our Lagrangian from QCD is beyond t
scope of our paper.!

It is useful to obtain the wave functions of various meso
by first calculating vertex functions. It is possible to defi
several vertex functions in the study of pseudoscalar mes
We may define functions that correspond to the use of o
the confining interaction, as in Figs. 1~a! and 1~b!. Here the

vertex functions were denoted asḠ5(P,k) and ḠL
m(P,k),

where the latter function was needed when we stud
pseudoscalar–axial-vector mixing@17#. Note that, when we
wish to construct wave functions, we solve the homogene
equation of Fig. 1~b! rather than the inhomogeneous equat
of Fig. 1~a!. In the present work we will solve the homog
neous equation that is given in a schematic representatio
Fig. 1~c!. In this case we include the NJL interaction, or t
NJL interaction plus the confining interaction. The resulti

vertex functions will be denoted asḠP(P,k) and ḠA
m(P,k).

FIG. 1. ~a! Schematic representation of the equation for
confinement vertex. HereVC denotes the confining field.~b! The
homogeneous version of the equation shown in~a!. ~c! A represen-

tation of the homogeneous equation for the vertexĜ that includes
the effects of both confinement and the short-range NJL interac
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~The bar over the vertex function is a reminder that the
functions have a Dirac matrix structure.! These various ver-
tex functions may be used to define a number of vacu
polarization integrals, as seen in Fig. 2. Once these polar
tion integrals have been defined, it is a relatively simple m

ter to obtain equations for the vertex functionsḠP(P,k) and

ḠA
m(P,k).
The organization of our work is as follows. In Sec. II w

define various vertex functions that are needed in our st
of pesudoscalar mesons. We consider the general cas
which the quark and antiquark masses are different, so
the formalism may be used to calculate the properties of
kaon. In Secs. III and IV we introduce a series of vacuu
polarization functions. The first set of these functions is d
fined in the absence of a confinement model. The second
of polarization functions is defined in terms of the vertex th
describes the effects of confinement. The third set of th
functions is only introduced to facilitate a derivation of th
relativistic random phase approximation~RPA! equations
which are to be used in this work.~A discussion of nonrela-
tivistic RPA equations, appropriate to the study of partic
hole excitations in nuclei or nuclear matter, may be found
Refs. @22# and @23#.! The third set of vacuum polarizatio
functions are functionals of the unknown vertex functio
that include the effects of both the NJL interaction and co
finement. Alternatively, these polarization functions may
written in terms of the wave functions that are the solutio
of the RPA equations that we solve. In Sec. V we pres
relativistic RPA equations suitable for the study of the pi
and the kaon and their radial excitations. We ta
pseudoscalar–axial-vector coupling into account, since
is an important feature in any study of the pseudoscalar
sons. In Sec. VI we introduce normalized RPA wave fun
tions for the pion and kaon and also provide expressions
the decay constants. In Sec. VII we turn to a consideration
both pseudoscalar–axial-vector coupling and singlet-o
mixing. The resulting wave functions have eight comp
nents, since the vertex structure could be proportional tog5
or g0g5 in the meson rest frame and one has both singlet
octet states. Each of these states has a ‘‘large’’ and ‘‘sm
component in the sense of the RPA. We present the e
coupled equations needed in our study of the eta meson

n.

FIG. 2. The three types of polarization functions considered

this work: ~a! The functionĴ(P), defined in the absence of a con
finement model;~b! the functionJ(P), which includes either of the
confinement vertex functionsG5

12 or GL
12 in its definition; ~c! the

function J̃(P), defined in terms of either of the vertex function
GP

12 or GA
12 .
3-3
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Sec. VII. In Sec. VIII we present the wave functions of t
h~547!, h8(958), h~1295!, and h~1440! mesons and two
other states found at 1653 and 1698 MeV. In Sec. IX
introduce normalized wave functions for the eta mesons
provide expressions for the octet and singlet decay consta
In Sec. X we present our results for the various mixi
angles and decay constants defined for theh~547! and
h8(958). Finally, Sec. XI contains some further discuss
and conclusions.

II. VERTEX FUNCTIONS FOR THE CONFINING
INTERACTION

In this section we review various relations that serve
define the vertex functions that satisfy an equation of
form given in Fig. 1~a!. We define a pseudoscalar verte
matrix @17#

Ḡ5,ab~P,k!5g52 i E d4k8

~2p!4@grSa~P/21k8!

3Ḡ5,ab~P,k8!Sb~2P/21k8!gr#

3VC~kW2kW8!, ~2.1!

where Sa(P/21k)5@P” /21k”2ma1 ih#21, etc. We define
the functionsG5

12 andG5
21 :

La
~1 !~kW !Ḡ5,ab~P,k!Lb

~2 !~2kW !

5G5,ab
12 ~P,k!La

~1 !~kW !g5Lb
~2 !~2kW !, ~2.2!

and

La
~2 !~2kW !Ḡ5,ab~P,k!Lb

~1 !~kW !

5G5,ab
21 ~P,k!La

~2 !~2kW !g5Lb
~1 !~kW !, ~2.3!

where

La
~1 !~kW !5

k” a1ma

2ma
~2.4!

and

Lb
~2 !~2kW !5

k”̃ b1mb

2mb
. ~2.5!

Here,ka
m5@Ea(kW ),kW # and k̃b

m5@2Eb(kW ),kW #.
09400
e
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We also define a longitudinal matrix vertex@17#

ḠL,ab
m ~P,k!5

PmP”

P2 g52 i E d4k8

~2p!4 grSa~P/21k8!

3ḠL,ab
m ~P,k8!Sb~2P/21k8!grVC~kW2kW8!

~2.6!

and introduce the functionGL,ab
12 (P,k):

La
~1 !~kW !GW L,ab

m ~P,k!Lb
~2 !~2kW !

5
Pm

AP2
GL,ab

12 ~P,k!La
~1 !~kW !g5Lb

~2 !~2kW !.

~2.7!

There is a corresponding equation definingḠL,ab
21 (P,k). It is

useful to write

ḠL,ab
m ~P,k!5

Pm

AP2
ḠL,ab~P,k!, ~2.8!

so that Eq.~2.7! becomes

La
~1 !~kW !ḠL,ab~P,k!Lb

~2 !~2kW !

5GL,ab
12 ~P,k!La

~1 !~kW !g5Lb
~2 !~2kW !, ~2.9!

etc. We find that

GL,ab
12 ~P,k!5S mbEa~kW !1maEb~kW !

mamb1Ea~kW !Eb~kW !1kW2
D

2E d3k8

~2p!3

~mamb!2

4Ea~kW8!Eb~kW8!

3
VC~kW2kW8!

mamb1Ea~kW !Eb~kW !1kW2

3C~kW ,kW8!
GL,ab

12 ~P,k8!

P02Ea~kW8!2Eb~kW8!

~2.10!

with
C~kW ,kW8!5
1

ma
2mb

2 $mb
2@Ea~kW !Ea~kW8!2kW•kW8#1ma

2@Eb~kW !Eb~kW8!2kW•kW8#12mamb@2Ea~kW !Eb~kW !2kW22Ea~kW8!Eb~kW8!2kW82

1 1
2 Ea~kW !Eb~kW8!1kW•kW81 1

2 Ea~kW8!Eb~kW !#22@Ea~kW !Eb~kW !1kW2#@Ea~kW8!Eb~kW8!1kW82#22ma
2mb

2%. ~2.11!
3-4
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We also have

GL,ab
21 ~P,k!52S mbEa~kW !1maEb~kW !

mamb1Ea~kW !Eb~kW !1kW2
D 1E d3k8

~2p!3

~mamb!2

4Ea~kW !Eb~kW8!

VC~kW2kW8!

mamb1Ea~kW !Eb~kW !1kW2

3C~kW ,kW8!
GL,ab

21 ~P,k8!

P01Ea~kW8!1Eb~kW8!
. ~2.12!
t

.
o

ou
r
e

n.

in

ns
@In Eqs.~2.10! and ~2.12! we have corrected a misprint tha
appeared in Ref. @17#.# We note the relation
GL,ab

21 (2P0,ukW u)52GL,ab
12 (P0,ukW u). The functions

G5,ab
12 (P,k) and G5,ab

21 (P,k) satisfy equations similar to Eqs
~2.10!–~2.12!, except that the inhomogeneous terms are b
equal to unity @17#. Therefore, we haveG5,ab

21 (2P0,ukW u)
5G5,ab

12 (P0,ukW u).
These vertex functions may be used to define vari

vacuum polarization functions that are free of the singula
ties that would appear in a theory without confinement wh
the quark and antiquark go on mass shell.~See Fig. 2.! We
describe various polarization functions in the next sectio

III. VACUUM POLARIZATION FUNCTIONS

We start with a definition of the polarization functions
the absence of confinement@17#

2 i Ĵab
PP~P!5~21!2ncTrE d4k

~2p!4

3@ ig5iSa~P/21k!ig5iSb~2P/21k!#,

~3.1!

2 i Ĵm,ab
PA ~P!5~21!2ncTrE d4k

~2p!4

3@ iSa~P/21k!ig5iSb~2P/21k!gmg5#,

~3.2!

2 i Ĵm,ab
AP ~P!5~21!2ncTrE d4k

~2p!4

3@ iSa~P/21k!gmg5iSb~2P/21k!ig5#,

~3.3!

and

2 i Ĵmn,ab
AA ~P!5~21!2ncTrE d4k

~2p!4

3@ iSa~P/21k!gmg5iSb~2P/21k!gng5#.

~3.4!
09400
th

s
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n

Herenc53 is the number of colors. We also define@17#

Ĵm,ab
PA ~P!5 iJab

PA~P2!
Pm

AP2
, ~3.5!

Ĵm,ab
AP ~P!5 iJab

AP~P2!
Pm

AP2
, ~3.6!

and

Ĵmn,ab
AA ~P!52g̃mn~P!ĴT,ab

AA ~P2!2
PmPn

P2 ĴL,ab
AA ~P2!,

~3.7!

with g̃mn5gmn2PmPn /P2. Note also that ĴAP(P2)
52 ĴPA(P2) andPmg̃mn5g̃mnPn50.

We now include the confinement vertex in the definitio
of the polarization integrals. We define

2 iJab
PP~P2!5~21!2ncE d4k

~2p!4 Tr@ ig5iSa~P/21k!

3 i Ḡ5,ab~P,k!iSb~2P/21k!#. ~3.8!

We find, with PW 50,

Jab
PP~P2!522ncE d3k

~2p!3

@Ea~kW !Eb~kW !1kW21mamb#

Ea~kW !Eb~kW !

3F G5,ab
12 ~P0,ukW u!

P02Ea~kW !2Eb~kW !
2

G5,ab
21 ~2P0,ukW u!

P01Ea~kW !1Eb~kW !
G ,

~3.9!

which may be written as
3-5
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Jab
PP~P2!522ncE d3k

~2p!3

@Ea~kW !Eb~kW !1kW21mamb#

Ea~kW !Eb~kW !

3G5,ab
12 ~P0,ukW u!F 1

P02Ea~kW !2Eb~kW !

2
1

P01Ea~kW !1Eb~kW !
G . ~3.10!

Values obtained forJnn
PP(P2) andJss̄

PP(P2) are shown in Figs.

3 and 4.~A Gaussian regulator of the form exp@2kW2/a2#, with
a50.605 GeV, was used when calculating these functio!

We now define

FIG. 3. The functionJnn̄
PP(P2). Here k50.055 GeV2 and mu

50.364 GeV.

FIG. 4. The functionJss̄
PP(P2). Here k50.055 GeV2 and ms

50.565 GeV.
09400
.

2 iJab
PA~P2!5~21!2ncE d4k

~2p!4 Tr@ iSa~P/21k!

3 i Ḡ5~P,k!iSb~2P/21k!g0g5# ~3.11!

and

2 iJm,ab
AP ~P2!5~21!2ncE d4k

~2p!4 Tr@ iSa~P/21k!

3 i ḠL,m~P,k!iSb~2P/21k!ig5#.

~3.12!

We use Eqs.~2.8! and ~2.9! to find

Jab
PA~P2!522ncE d3k

~2p!3

@maEb~kW !1mbEa~kW !#

Ea~kW !Eb~kW !

3F G5,ab
12 ~P0,ukW u!

P02Ea~kW !2Eb~kW !
1

G5,ab
21 ~2P0,ukW u!

P01Ea~kW !1Eb~kW !
G .

~3.13!

Using the relationG5,ab
21 (2P0,ukW u)5G5,ab

12 (P0,ukW u), the last
relation may be written

Jab
PA~P2!522ncE d3k

~2p!3

@mb~kW !Ea~kW !1maEb~kW !#

Ea~kW !Eb~kW !

3G5,ab
12 ~P0,ukW u!F 1

P02Ea~kW !2Eb~kW !

1
1

P01Ea~kW !1Eb~kW !
G . ~3.14!

We note thatJab
PA(0)50.

In a similar fashion, we find

Jab
AP~P2!52ncE d3k

~2p!3

@mamb1kW21Ea~kW !Eb~kW !#

Ea~kW !Eb~kW !

3GL,ab
12 ~P0,ukW u!F 1

P02Ea~kW !2Eb~kW !

1
1

P01Ea~kW !1Eb~kW !
G ~3.15!

and
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Jab
AA~P2!52ncE d3k

~2p!3

@mbEa~kW !1maEb~kW !#

Ea~kW !Eb~kW !

3GL,ab
12 ~P0,ukW u!F 1

P02Ea~kW !2Eb~kW !

2
1

P01Ea~kW !1Eb~kW !
G , ~3.16!

where we have used the relationGL
21(2P0,ukW u)

52GL
12(P0,ukW u). Relations such as those given in Eq

~3.5!–~3.7! may also be written for the functionsJm
PA(P),

Jm
AP(P), andJmn

AA(P).

IV. VERTEX FUNCTIONS FOR THE SUM OF THE NJL
AND THE CONFINING INTERACTIONS

We now include the NJL interaction in addition to th
confining interaction in the equation for the vertex function
as in Figs. 5 and 6. We define a new set of polarizat
intergrals by replacingG5,ab

12 (P0,ukW u) by GP,ab
12 (P0,ukW u) and

GL,ab
12 (P0,ukW u) by GA,ab

12 (P0,ukW u), etc., in the expression
given in Sec. III. With this procedure we obtain the vacuu
polarization functions appearing in Fig. 2~c!. We denote
these new polarization functions asJ̃PP,J̃PA,J̃AA, etc. Thus,

FIG. 5. A schematic representation of the equation forḠP(P,k).

FIG. 6. A schematic representation of the equation forḠA(P,k).
09400
.

,
n

J̃ab
PP~P2!522ncE d3k

~2p!3

@Ea~kW !Eb~kW !1kW21mamb#

Ea~kW !Eb~kW !

3GP,ab
12 ~P0,ukW u!F 1

P02Ea~kW !2Eb~kW !

2
1

P01Ea~kW !1Eb~kW !
G ~4.1!

522ncE d3k

~2p!3

@Ea~kW !Eb~kW !1kW21mamb#

Ea~kW !Eb~kW !

3@f̃P
1~P0,ukW u!1f̃P

2~P0,ukW u!#, ~4.2!

where we have defined

f̃P
1~P0,ukW u!5

GP,ab
12 ~P0,ukW u!

P02Ea~kW !2Eb~kW !
~4.3!

and

f̃P
2~P0,ukW u!52

GP,ab
21 ~2P0,ukW u!

P01Ea~kW !1Eb~kW !
,

52
GP,ab

12 ~P0,ukW u!

P01Ea~kW !1Eb~kW !
.

~4.4!

Since we will be dealing with bound-state wave function
we will write f̃P

1(Pi
0,ukW u) as f̃P,i

1 (k) and f̃P
2(Pi

0,ukW u) as

f̃P,i
2 (k), wherek5ukW u.
Similarly, we define J̃ab

PA(P2) by the replacement o

G5,ab
12 (P0,ukW u) by GP,ab

12 (P0,ukW u), etc. Thus,

J̃ab
PA~P2!522ncE d3k

~2p!3

@mbEa~kW !1maEb~kW !#

Ea~kW !Eb~kW !

3@f̃P,i
1 ~k!2f̃P,i

2 ~k!#. ~4.5!

We also have

J̃ab
AP~P2!52ncE d3k

~2p!3

@mamb1kW21Ea~kW !Eb~kW !#

Ea~kW !Eb~kW !

3@f̃A,i
1 ~k!2f̃A,i

2 ~k!#, ~4.6!

where

f̃A,i
1 ~k!5

GA,ab
12 ~Pi

0,ukW u!

Pi
02Ea~kW !2Eb~kW !

~4.7!
3-7
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and

f̃A,i
2 ~k!5

GA,ab
21 ~2Pi

0,ukW u!

Pi
01Ea~kW !1Eb~kW !

52
GA,ab

12 ~Pi
0,ukW u!

Pi
01Ea~kW !1Eb~kW !

. ~4.8!

With these definitions we may write

J̃ab
AA~P2!52ncE d3k

~2p!3

@mbEa~kW !1maEb~kW !#

Ea~kW !Eb~kW !

3GA,ab
12 ~P0,ukW u!F 1

P02Ea~kW !2Eb~kW !

2
1

P01Ea~kW !1Eb~kW !
G ~4.9!

52ncE d3k

~2p!3

@mbEa~kW !1maEb~kW !#

Ea~kW !Eb~kW !

3@f̃A,i
1 ~k!1f̃A,i

2 ~k!#. ~4.10!

V. PROPERTIES OF THE PION AND KAON: COUPLED
EQUATIONS FOR THE WAVE FUNCTION

AMPLITUDES fP
¿
„k…, fP

À
„k…, fA

¿
„k…, AND fA

À
„k…

With the array of definitions made in the previous se
tions, we may easily obtain the coupled equations rela
fP

1 , fP
2 , fA

1 , andfA
2 . The equation for the vertex func

tions in the presence of both the NJL interaction and
confining interaction is indicated in a schematic fashion
Figs. 5 and 6. For the moment, let us consider only the N

interaction and Fig. 5. In general, we may writeḠ5ḠP

1ḠA . Taking matrix elements ofḠP between the projector
La

(1)(kW ) and Lb
(2)(2kW ) and canceling a common factor o

L (1)(kW )g5L (2)(2kW ), we obtain an equation that couple
GP

12(P0,k) to GA
12(P0,k):

GP
12~P0,k!5e2k2/2a2

J̃PP~P2!GP2e2k2/2a2
J̃AP~P2!GP

~5.1!

522ncGPe2k2/2a2E d3k8

~2p!3

F~k8!e2k82/2a2

Ea~k8!Eb~k8!

3F GP
12~Pi

0,k8!

P02Ea~k8!2Eb~k8!

2
GP

12~Pi
0,k8!

P01Ea~k8!1Eb~k8!
G

09400
-
g

e

L

22ncGPe2k2/2a2E d3k8

~2p!3

F~k8!e2k82/2a2

Ea~k8!Eb~k8!

3F GA
12~Pi

0,k8!

P02Ea~k8!2Eb~k8!

1
GA

12~Pi
0,k8!

P01Ea~k8!1Eb~k8!
G . ~5.2!

Since the NJL interaction requires regulation we have
placed the coupling constantGP by exp@2k2/2a2#
3GP exp@2k82/2a2#. This replacement corresponds to th
regularization procedure we used in our earlier work@15–
18#. Here,GP is the interaction to be used when calculati
the properties of the pion and kaon. The value ofGP depends
uponGS , GD , and the value of the quark vacuum conde
sates@24#. In Eq. ~5.1! we have introduced the function

F~k!5@Ea~kW !Eb~kW !1kW21mamb#. ~5.3!

We also define

G~k!5maEb~kW !1mbEa~kW !. ~5.4!

It is useful to introduce a degree of symmetry in the inter
tion we will derive by defining

fP,i
1 ~k!5

kAF~k!

A2Ea~kW !Eb~kW !

f̃P,i
1 ~k!, ~5.5!

and

fP,i
2 ~k!5

kAF~k!

A2Ea~kW !Eb~kW !

f̃P,i
2 ~k!, ~5.6!

with similar definitions forfA
1(k) andfA

2(k).

Thus Eq. ~5.2! may be rewritten, withk5ukW u and k8

5ukW8u, as

@Pi
02Ea~k!2Eb~k!#fP,i

1 ~k!5E dk8@HN
PP~k,k8!fP,i

1 ~k8!

1HN
PP~k,k8!fP,i

2 ~k8!

1HN
PA~k,k8!fA,i

1 ~k8!

2HN
PA~k,k8!fA,i

2 ~k8!#.

~5.7!

Here,HN
PP(k,k8) is a symmetric function,

HN
PP~k,k8!52

nc

p2

G88kk8AF~k!F~k8!e2k2/2a2
e2k82/2a2

AEa~k!Eb~k!Ea~k8!Eb~k8!
,

~5.8!

while
3-8
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HN
PA~k,k8!52

nc

p2 GVAF~k!F~k8!

3
kk8e2k2/2a2

e2k82/2a2

AEa~k!Eb~k!Ea~k8!Eb~k8!
, ~5.9!

and

HN
AP~k,k8!52

nc

p2 G88AF~k!/F~k8!

3
G~k8!kk8e2k2/2a2

e2k82/2a2

AEa~k!Eb~k!Ea~k8!Eb~k8!
. ~5.10!

We also obtain

HN
AA~k,k8!5

nc

p2 GVkk8AF~k!/F~k8!G~k8!

3
e2k2/2a2

e2k82/2a2

AEa~k!Eb~k!Ea~k8!Eb~k8!
. ~5.11!

In these equations the exponential factors are the Gaus
regulators.~For our work we have useda50.605 GeV.!

We may obtain another equation by writing

GP
12~P0,k!52@P01Ea~kW !1Eb~kW !#fP

2~P0,k!
~5.12!

on the left-hand side of Eq.~5.2!.
We may also use the relation~see Fig. 6!

ḠA~P,k!52e2k2/2a2
J̃PA~P2!GVg0g5

1e2k82/2a2
J̃AA~P2!GVg0g5 ~5.13!
la

09400
ian

and form the matrix element betweenLa
(1)(kW ) and

Lb
(2)(2kW ). Thus,

GA
12~P0,k!52e2k2/2a2

J̃PA~P2!GV1e2k2/2a2
J̃AA~P2!GV .

~5.14!

Here ĴPP(P2), ĴPA(P2), and ĴAA(P2) differ from the func-
tions defined in Sec. IV, since they include the regula
exp@2k82/2a2# in the integral defining these functions. If w
put

GA
12~P0,k!5@P02Ea~kW !2Eb~kW !#fA

1~P0,k!

or

GA
12~P0,k!52@P01Ea~kW !1Eb~kW #fA

2~P0,k!,
~5.15!

we obtain a total of four equations relatingfP
1 , fP

2 , fA
1 ,

andfA
2 .

Before writing these equations, we consider the confin
interaction. Our treatment of the confinement is such that
neglect pair production by the confining field in the mes
rest frame so that, if we construct a matrix of the interact
terms, the confining interaction appears only in the diago
elements. We may identify the contribution of the confini
interaction by using the equations satisfied byG5

12(P,k) and
GL

12(P,k) given previously. To that end, it is useful to writ

C~kW ,kW8!5C0~k,k8!1kW•kW8C1~k,k8! ~5.16!

and define

Vl
C~k,k8!5

1

2 E dx Pl~x!VC~kW2kW8!, ~5.17!

wherePl(x) is a Legendre function. We find the symmetr
interaction
HC~k,k8!52
1

4p2

~mamb!2kk8$C0~k,k8!V0
C~k,k8!1kk8C1~k,k8!V1

C~k,k8!%

AF~k!F~k8!AEa~k!Eb~k!Ea~k8!Eb~k8!
. ~5.18!
Note that the confining interaction does not require regu
ization.

We may then write the four coupled equations forfP
1 ,

fP
2 , fA

1 , andfA
2 as

E dk8„$@Ea~k8!1Eb~k8!#d~k2k8!1HN
PP~k,k8!

1HC~k,k8!%fP,i
1 ~k8!

1HN
PP~k,k8!fP,i

2 ~k8!1HN
PA~k,k8!fA,i

1 ~k8!
r- 2HN
PA~k,k8!f̃A,i

2 ~k8!…

5Pi
0fP,i

1 ~k!, ~5.19!

E dk8„2HN
PP~k,k8!fp,i

1 ~k8!

2$@Ea~k8!1Eb~k8!#d~k2k8!

1HN
PP~k,k8!1HC~k,k8!%fP,i

2 ~k8!

2HPA~k,k8!fA,i
1 ~k8!1HPA~k,k8!fA,i

2 ~k8!…
3-9
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5Pi
0fP,i

2 ~k!, ~5.20!

E dk8„HN
AP~k,k8!fP,i

1 ~k8!2HN
AP~k,k8!fP,i

2 ~k8!

1$@Ea~k8!1Eb~k8!#d~k2k8!

1HN
AA~k,k8!1HC~k,k8!%fA,i

1 ~k8!

1HN
AA~k,k8!fA,i

2 ~k8!…

5Pi
0fA,i

1 ~k!, ~5.21!

and

E dk8„2HN
AP~k,k8!fP,i

1 ~k8!1HAP~k,k8!fP,i
2 ~k8!

2HN
AA~k,k8!fA,i

1 ~k8!

2$@Ea~k8!1Eb~k8!#d~k2k8!1HN
AA~k,k8!

1HC~k,k8!%fA,i
2 ~k8!…

5Pi
0fA,i

2 ~k!. ~5.22!

Note that for any solution withPi
0.0 there is another

solution with the energy2Pi
0. If the first solution has a wave

function characterized byfP
1 , fP

2 , fA
1 , andfA

2 , the sec-
ond solution is obtained by the transformationfP

1→fP
2 ,

fP
2→fP

1 , fA
1→2fA

2 , fA
2→2fA

1 , andPi
0→2Pi

0.

VI. CALCULATION OF NORMALIZED WAVE FUNCTIONS
AND PION AND KAON DECAY CONSTANTS

We may define normalized wave functions by multiplyin
fP

1(k), fP
2(k), fA

1(k), andfA
2(k) by a normalization fac-

tor ANi , where

1

Ni
5

1

2Mi

2nc

p2 E dk$ufP,i
1 ~k!u22ufP,i

2 ~k!u2%, ~6.1!

whereMi is the mass of the meson. Here we have conside
the case in whichfA

1(k) and fA
2(k) are small and the

masses of the quark and antiquark are equal.@The minus sign
that appears in Eq.~6.1! is a characteristic of calculation
made in the RPA.#

In the case thatfA
1(k) and fA

2(k) are significant, the
appropriate normalization factor is

1

Ni
5

1

2Mi

2nc

p2 E dk$ufP,i
1 ~k!1bab~k!fA,i

1 ~k!u2

2ufP,i
2 ~k!1bab~k!fA,i

2 ~k!u2%, ~6.2!

where

bab~k!5
@Ea~k!1ma#@Eb~k!1mb#2kW2

@Ea~k!1ma#@Eb~k!1mb#1kW2
. ~6.3!

Whenma5mb5m, bab(k)5m/E(k). We may define
09400
d

fP,N
1 ~k!5ANifP,i

1 ~k!, ~6.4!

fP,N
2 ~k!5ANifP,i

2 ~k!, ~6.5!

etc.
WhenmaÞmb , a calculation of the meson decay consta

yields

f K,i5
nc

&Mip
2 E k dk

@maEb~k!1mbEa~k!#

AEa~k!Eb~k!F~k!

3ANi$@fP,i
1 ~k!2fP,i

2 ~k!#1@fA,i
1 ~k!1fA,i

2 ~k!#%.

~6.6!

Note that in the chiral limit (Mi→0) the term in curly brack-
ets also vanishes, such that the decay constant remains fi
Further, in the casema5mb5m, we have the simple form

f p,i5
nc

p2Mi
E k dkS m

E~k! DANi

3$@fP,i
1 ~k!2fP,i

2 ~k!#1@fA,i
1 ~k!1fA,i

2 ~k!#%,

~6.7!

sinceF(k)→2E2(k) when the quark masses are equal.

VII. WAVE FUNCTIONS FOR PSEUDOSCALAR MESONS
WITH SINGLET-OCTET MIXING

We make use of the equations depicted in Figs. 5 and
is again useful to define polarization functionsJ̃PP(P2),
J̃PA(P2), and J̃AA(P2), which have the confinement verte
functions G5,ab

12 (P0,k) and GL,ab
12 (P0,k) replaced by

GP,ab
12 (P0,k) andGA,ab

12 (P0,k). For the study of theh mesons
we will need GP,nn̄

12 (P0,k), GP,ss̄
12 (P0,k), GA,nn̄

12 (P0,k), and
GA,ss̄

12 (P0,k). We will also introduce the singlet and octe
versions of these functions,GP,0

12(P0,k), GP,8
12(P0,k),

GA,0
12(P0,k), andGA,8

12(P0,k).
In this work we will pass between the singlet-octet rep

sentation and thenn̄, ss̄ representation. We may use a matr
M to connect these representations:

S lnn̄

lss̄
D5M S l8 /&

l0 /& D . ~7.1!

Here

M5
1

)
S 1 &

2& 1 D , ~7.2!

so that

lnn̄5
l8

A6
1

l0

)
~7.3!

and
3-10



io

e

uce

s
rite

ith

ROLE OF THE ’t HOOFT INTERACTION IN THE . . . PHYSICAL REVIEW D 65 094003
lss̄52
l8

)
1

l0

A6
. ~7.4!

We may write a vertex for theh mesons of the form

Ḡh~k!5GP,nn̄
12 ~k!g5lnn̄1GP,ss̄

12 ~k!g5lss̄1GA,nn̄
12 ~k!g0g5lnn̄

1GA,ss̄
12 ~k!g0g5lss̄, ~7.5!

where we have anticipated forming the express

L (1)(k)Ḡh(k)L (2)(2kW ). We also define a series of wav
function amplitudes:

fP,nn̄
1 ~k!5

kGP,nn̄
12 ~k!

P022Eu~k!
, ~7.6!

fP,nn̄
2 ~k!52

kGP,nn̄
12 ~k!

P012Eu~k!
, ~7.7!

fP,ss̄
1 ~k!5

kGP,ss̄
12 ~k!

P022Es~k!
, ~7.8!

fP,ss̄
2 ~k!52

kGP,ss̄
12 ~k!

P012Es~k!
, ~7.9!

fA,nn̄
1 ~k!5

kGA,nn̄
12 ~k!

P022Eu~k!
, ~7.10!

fA,nn̄
2 ~k!52

kGA,nn̄
12 ~k!

P012Eu~k!
, ~7.11!
09400
n

fA,ss̄
1 ~k!5

kGA,ss̄
12 ~k!

P022Es~k!
, ~7.12!

and

fA,ss̄
2 ~k!52

kGA,ss̄
12 ~k!

P012Es~k!
. ~7.13!

Once we have defined these functions, we may introd
fA,0

1 (k), fP,8
1 (k), fP,0

2 (k), fP,8
2 (k), fA,0

1 (k), fA,8
1 (k),

fA,0
2 (k), andfA,8

2 (k). We choose to solve for the function
in the singlet-octet representation. To that end, we w
Eu(k)5@kW21mu

2#1/2, Es(k)5@kW21ms
2#1/2, and define

E00~k!5
2

)
@2Eu~k!1Es~k!#, ~7.14!

E88~k!5
2

)
@Eu~k!12Es~k!#, ~7.15!

and

E08~k!5
2)

3
@Eu~k!2Es~k!#, ~7.16!

with E80(k)5E08(k).
We then need to solve the following eight equations, w

the functions Hi j
PP(k,k8), Hi j

PA(k,k8), Hi j
AP(k,k8),

Hi j
AA(k,k8), Hi j

PP(C)(k,k8), andHi j
AA(C)(k,k8) defined in the

Appendix. ~Here, i and j are each either 0 or 8.! The equa-
tions are
E dk8$@E00~k!d~k2k8!1G00H00
PP~k,k8!1H00

PP~C!~k,k8!#fP,0
1 ~k8!

1@E08~k!d~k2k8!1G08H88
PP~k,k8!#fP,8

1 ~k8!1G00H00
PP~k,k8!fP,0

2 ~k8!

1G08H88
PP~k,k8!fP,8

2 ~k8!2G00H00
PA~k,k8!fA,0

1 ~k8!2G08H88
PA~k,k8!fA,8

1 ~k8!

1G00H00
PA~k,k8!fA,0

2 ~k8!1G08H88
PA~k,k8!fA,0

2 ~k!%5P0fP,0
1 ~k!, ~7.17!

E dk8$@G80H00
PP~k,k8!1E80~k!d~k2k8!#fP,0

1 ~k8!1@E88~k!d~k2k8!1G88H88
PP~k,k8!

1H88
PP~C!~k,k8!#fP,8

1 ~k8!1@G80H00
PP~k,k8!#fP,0

2 ~k8!1G88H88
PP~k,k8!fP,8

2 ~k8!

2G80H00
PA~k,k8!fA,0

1 ~k8!2G88H88
PA~k,k8!fA,8

1 ~k8!1G80H00
PA~k,k8!fA,0

2 ~k8!

1G88H88
PA~k,k8!fA,8

2 ~k8!%5P0fP,8
1 ~k!, ~7.18!
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E dk8$2G00H00
PP~k,k8!fP,0

1 ~k8!2G08H88
PP~k,k8!fP,8

1 ~k8!

2@E00~k!d~k2k8!1G00H00
PP~k,k8!1H00

PP~C!~k,k8!#fP,0
2 ~k8!2@E08~k!d~k2k8!

1G08H88
PP~k,k8!#fP,8

2 ~k8!1G00H00
PA~k,k8!fA,0

1 ~k8!1G08H88
PA~k,k8!fA,8

1 ~k8!

2G00H00
PA~k,k8!fA,0

2 ~k8!2G08H88
PA~k,k8!fA,8

2 ~k8!%5P0fP,0
2 ~k!, ~7.19!

E dk8$2G80H00
PP~k,k8!fP,0

1 ~k8!2G88H88
PP~k,k8!fP,8

1 ~k8!

2G80H00
PP~k,k8!fP,0

2 ~k8!2@E88~k!d~k2k8!1G88H88
PP~k,k8!

1H88
PP~C!~k,k8!#fP,8

2 ~k8!1G80H00
PA~k,k8!fA,0

1 ~k8!1G88H88
PA~k,k8!fA,8

1 ~k8!

2G80H00
PA~k,k8!fA,0

2 ~k8!2G88H88
PA~k,k8!fA,8

2 ~k8!%5P0fP,8
2 ~k!, ~7.20!

E dk8$2GVH00
AP~k,k8!fP,0

1 ~k8!1GVH00
AP~k,k8!fP,0

2 ~k8!1@E00d~k2k8!

1GVH00
AA~k,k8!1H00

AA~C!~k,k8!#fA,0
1 ~k8!1@E08~k!d~k2k8!1GVH08

AA~k,k8!#fA,8
1 ~k8!

1GVH00
AA~k,k8!fA,0

2 ~k8!1GVH08
AA~k,k8!fA,8

2 ~k8!%5P0fA,0
1 ~k!, ~7.21!

E dk8$2GVH88
AP~k,k8!fP,8

1 ~k8!1GVH88
AP~k,k8!fP,8

2 ~k8!1@E80d~k2k8!

1GVH80
AA~k,k8!#fA,0

1 ~k8!1@E88~k!d~k2k8!1GVH88
AA~k,k8!1H88

AA~C!~k,k8!#fA,8
1 ~k8!

1GVH80
AA~k,k8!fA,0

2 ~k8!1GVH88
AA~k,k8!fA,8

2 ~k8!%5P0fA,8
1 ~k!, ~7.22!

E dk8$GVH00
AP~k,k8!fP,0

1 ~k8!2GVH00
AP~k,k8!fP,0

2 ~k8!2GVH00
AA~k,k8!fA,0

1 ~k8!

2GVH08
AA~k,k8!fA,8

1 ~k8!2@E00~k!d~k2k8!1GVH00
AA~k,k8!1H00

AA~C!~k,k8!#fA,0
2 ~k8!

2@E08~k!d~k2k8!2GVH08
AA~k,k8!#fA,8

2 ~k8!%5P0fA,0
2 ~k!, ~7.23!

and

E dk8$GVH88
AP~k,k8!fP,8

1 ~k8!2GVH88
AP~k,k8!fP,8

2 ~k8!2GVH80
AA~k,k8!fA,0

1 ~k8!

2GVH88
AA~k,k8!fA,8

1 ~k8!2@E80~k!d~k2k8!1GVH80
AA~k,k8!#fA,0

2 ~k8!

2@E88~k!d~k2k8!1GVH88
AA~k,k8!1H88

AA~C!~k,k8!#fA,8
2 ~k8!%5P0fA,8

2 ~k!. ~7.24!
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VIII. WAVE FUNCTIONS FOR THE h„547… AND h8„958…
AND THEIR RADIAL EXCITATIONS

The energies of states bound in the confining field
shown in Fig. 7. The first column gives the energies of
nn̄ states~1.216, 1.550, 1.811, 2.015, 2.200, 2.359, 2.4
2.610, and 2.712 GeV!, while the third column gives the
energies of thess̄ states~1.559, 1.838, 2.072, 2.258, 2.42
2.573, and 2.698 GeV!. The two cross-hatched regions ind
cate the continuum of the model for thenn̄ and ss̄ states,
09400
e
e
,

respectively.~For example, for thenn̄ states, the continuum
threshold isEnn̄

cont52mu1k/me52.751 GeV.! Each of the
states in columns one and three is doubly degenerate, w
wave function associated with either ag5 or ag0g5 vertex in
the meson rest frame.

The second column shows the results obtained upon
diagonalization of the RPA Hamiltonian.~Here we show only
the positive-energy states.! The arrows give some indicatio
of how various states are distributed into the levels of c
3-12
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umn 2. The 13S0 nn̄ state bound in the confining field tha
has ag5 vertex is found with about 75% probability in the
lowest state of column 2 and with about 25% probability
the next excitation. The two lowest energy states in colum
represent theh~547! and h8(958). The distribution of the

FIG. 7. The first and third columns of levels show thenn̄ andss̄
states bound in the confining field, respectively. The second col
shows the 28 levels found when the RPA Hamiltonian is brou
into diagonal form. The various arrows show the parentage of
resulting states. Theh~547! has about 75% of the 11S0 nn̄ state
that has theg5 vertex and about 25% of the 11S0 ss̄ state that has
the g5 vertex. These percentages are reversed for theh8~958!. The
1 1S0 nn̄ and ss̄ states with theg0g5 vertex are fragmented ove
many states. Theh~1295! andh~1440! are almost entirely of 21S0

nn̄ character.

FIG. 8. The wave function for theh~547! found at 555 MeV.
The various components arefP,nn̄

1 (k) ~solid, N1!, fP,nn̄
2 (k) ~dash,

N2!, fA,nn̄
1 (k) ~dot, N3!, fA,nn̄

2 (k) ~dash dot,N4!, fP,ss̄
1 (k) ~dash

dot dot, S1!, fP,ss̄
2 (k) ~short dash,S2!, fA,ss̄

1 (k) ~short dot,S3!,
andfA,ss̄

2 (k) ~short dash dot,S4!.
09400
2

1 3S0 ss̄ state has 21% probability in theh~547! and 79% in
the h~958!. Thenn̄ andss̄ 1 3S0 states bound in the confin
ing field that have theg0g5 vertex are highly fragmented
over many of the states in column 2. The wave functio
fP,nn̄

1 (k), fP,nn̄
2 (k), fA,nn̄

1 (k),..., etc., for theh~547! are
shown in Fig. 8. Here,fP,nn̄

2 (k) (N2) andfP,ss̄
2 (k) (S2) are

rather large in a state with a relatively small mass such as
h~547!. The wave function of theh~547! has dominant com-
ponentsfP,nn̄

1 (k) (N1) andfP,ss̄
1 (k) (S1).

In Fig. 9 we show the wave function of theh8(958)
which we find at 949 MeV. HerefP,ss̄

1 (k) (S1) andfP,nn̄
1 (k)

(N1) are the dominant components. In Figs. 8 and 9 we a
see a small amplitude for the 13S0 fA,ss̄

1 (k) (N3) compo-
nent, which we stated had a rather fragmented distribut
In Fig. 10 we show theh~1295!, which we find at 1319 MeV.
~See Table I.! This state is dominated by the 23S0 nn̄ state,
with the componentfA,nn̄

1 (k) (N3) larger thanfP,nn̄
1 (k)

(N1). We see that the ‘‘small components’’ are indeed sm
for the more massive mesons.

n
t
e

FIG. 9. The wave function of theh8~958! found at 949 MeV.
~Symbols the same in Fig. 8.!

FIG. 10. The wave function of theh~1295! found at 1319 MeV.
~Symbols the same as in Fig. 8.!
3-13
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TABLE I. Results of numerical calculation using the parameter sets given in Table II. Here we have
k50.55 GeV2 andm50.010 GeV. The various angles and decay constants were defined in the Introdu

The values foru0 , u8 , F̂0 , andF̂8 were obtained using Eqs.~1.11!–~1.14! and the values given in Ref.@12#
for uh , uh8 , F0 , andF8 , which are reproduced in the table. If one fixesF8 at the chiral perturbation theory
value of 1.28f p5169 MeV, the values given in Ref.@12# for a fit to experimental data areuh5(26.9
62.1)°, uh85(224.662.3)°, andF05(1.3460.07)f p517769 MeV. When fitting experimental data fo

the hg and h8g transition form factors, Feldman and Kroll@13# find u8522.2°, u0529.1°, andF̂ (0)/ f p

51.20 after fixingF̂ (8)/ f p51.28.

Ref. @12# Set I Set II Set III Set IV

mh(547) ~MeV! — 538 536 527 555
mh8(958) ~MeV! — 911 942 963 949
mh(1295) ~MeV! — 1319 1318 1317 1319
mh(1440) ~MeV! — 1414 1416 1419 1411

f̃ h
(8) ~MeV! — 177.2 178.6 180.9 163

f̃ h
(0) ~MeV! — 27.59 24.51 18.95 52.8

f̃ h8
(8) ~MeV! — 284.26 284.64 280.97 2105

f̃ h8
(8) ~MeV! — 159.2 157.3 156.0 150

F8 ~MeV! (1.3260.06)f p

517468 MeV
179.3 180.3 181.9 170

F0 ~MeV! (1.3760.07)f p

518169 MeV
180.3 178.2 174.2 190

uh (25.762.7)° 28.81° 27.82° 26.26° 216.1°
uh8 (224.662.3)° 228.0° 228.0° 226.4° 238.2°
u0 (27.062.7)° 29.83° 28.76° 26.94° 219.4°
u8 (221.562.4)° 225.4° 225.4° 224.1° 232.8°

u02u8 16.4° Ref.@10# 15.6° 16.6° 17.2° 13.4°

F̂0 ~MeV! (1.2160.07)f p

516069 MeV
161 159 157 158

F̂8 ~MeV! 188611 196 198 198 194

GD ~GeV25! — 2180 2200 2220 2161.6 (G0850)
el

th

e
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In Fig. 11 we show the wave function of theh~1440!,
which we find at 1411 MeV. Here the state is almost entir
the 2 3S0 nn̄ state that has theg5 vertex (N1). In Fig. 12 we
show the wave function of the state at 1653 MeV. Here
nn̄ components account for 96% of the norm, withfA,nn̄

1 (k)

(N3) larger thanfP,nn̄
1 (k) (N1). These components aris

from the 33S0 nn̄ state bound in the confining field, as in
dicated in Fig. 7. In Fig. 13 we show the wave functions
the state found at 1698 MeV. Here the 23S0 ss̄states play an
important role, withfA,ss̄

1 (k) (N3) being the dominant com
ponent.~See Fig. 7.!

On the right-hand side of Fig. 7 we show the experime
tally observed states:h~547!, h8(958), h~1295!, and
h~1440!. These are in good correspondence with the f
lowest energy states of our model.

IX. NORMALIZATION OF WAVE FUNCTIONS AND
CALCULATION OF DECAY CONSTANTS

We may define a normalization factor for each state
massMi :
09400
y

e

f

-

r

f

1

Ni
5

nc

2p2Mi
E dkH F S fP,nn̄

1 ~k!1
mu

Eu~k!
fA,nn̄

1 ~k! D 2

2S fP,nn̄
2 ~k!1

mu

Eu~k!
fA,nn̄

2 ~k! D 2G1F S fP,ss̄
1 ~k!

1
ms

Es~k!
fA,ss̄

1 ~k! D 2

2S fP,ss̄
2 ~k!1

ms

Es~k!
fA,ss̄

2 ~k! D 2G J ,

~9.1!

where the various wave functions are those for the statei.
We calculate the singlet and octet decay constants

terms of the divergence of the currents

Am
~8!~x!5q̄~x!gmg5l8q~x!/& ~9.2!

and

Am
~0!~x!5q̄~x!gmg5l0q~x!/&. ~9.3!

We find
3-14
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f̃ h,i
~8!5A2

3

nc

p2

ANi

Mi
E dk kH S mu

Eu~k! D
3@fP,nn̄

1 ~k!2fP,nn̄
2 ~k!1fA,nn̄

1 ~k!1fA,nn̄
2 ~k!#

2S ms

Es~k! D @fP,ss̄
1 ~k!2fP,ss̄

2 ~k!1fA,ss̄
1 ~k!

1fA,ss̄
2 ~k!#&J ~9.4!

and

FIG. 11. The wave function of theh~1440! found at 1411 MeV.
~Symbols the same as in Fig. 8.!

FIG. 12. The wave function of the state found at 1653 MeV
our calculation.~Symbols the same as in Fig. 8.!
09400
f̃ h,i
~0!5A2

3

nc

p2

ANi

Mi
E dk kH S mu

Eu~k! D
3@fP,nn̄

1 ~k!2fP,nn̄
2 ~k!1fA,nn̄

1 ~k!1fA,nn̄
2 ~k!#&

1S ms

Es~k! D @fP,ss̄
1 ~k!2fP,ss̄

2 ~k!

1fA,ss̄
1 ~k!1fA,ss̄

2 ~k!#J . ~9.5!

X. RESULTS OF NUMERICAL COMPUTATIONS

The parametersGS andGD appear in our Lagrangian. Th
parameters needed for a study of the eta mesons areG00,
G88, andG08 @24#. For these mesons, we have

G005GS1
GD

2
C00, ~10.1!

G885GS1
GD

2
C88, ~10.2!

and

G085
GD

2
C08, ~10.3!

where

C0052
2

3
~2^ūu&1^ s̄s&!, ~10.4!

C8852
1

3
~^s̄s&24^ūu&!, ~10.5!

and

FIG. 13. The wave function of the state found at 1698 MeV
our calculation.~Symbols the same as in Fig. 8.!
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C085
&

3
~^ūu&2^s̄s&!. ~10.6!

We take^s̄s&/^ūu&51.689, as determined in Ref.@25#. We
also put ^ūu&52(0.248 GeV)3520.01525 GeV3 and ob-
tain C0050.03750 GeV3, C88520.01175 GeV3, and C08
520.01214 GeV3. We remark that̂ ūu& appears multiplied
by GD , so that the relevant parameter is the product of th
quantities.~See the Appendix.!

We have calculatedf̃ h
(8) , f̃ h

(0) , f̃ h8
(8) , and f̃ h8

(0) using the
expressions given in Sec. IX. The definitions of other de
constants and mixing angles were given in the Introducti
Our results are shown in Table I, where comparison is m
with the parameters that were determined in Ref.@12# using
experimental data. We note that the results for set IV are
consistent, since we have putG0850, even though we have
GD52166.6 GeV25. ~See Table II.! As can be seen from
Table I, the values ofuh anduh8 ~or u0 andu8! are too large
when we use the parameters of set IV. We have prese
these results, however, since we are interested in demon
ing how a proper treatment of the singlet-octet mixing in
cated by the ’t Hooft interaction yields quite good results

To clarify the observation, we see that inspection of E
~7.17! and~7.18! shows that the mixing betweenfP,0

1 (k) and
fP,8

1 (k) depends upon the quantityE08(k)d(k2k8)
1G08H88

PP(k,k8) or, equivalently, E80(k)d(k2k8)

TABLE II. Parameters used for the calculations reported upo
Table I.

Set I Set II Set III Set IV

GS ~GeV22! 11.84 11.84 11.84 11.57
GD ~GeV25! 2180.0 2200.0 2220.0 2161.6
GV ~GeV22! 13.00 13.00 13.00 13.00
mu ~GeV! 0.364 0.364 0.364 0.364
ms ~GeV! 0.585 0.585 0.585 0.585

G00 ~GeV22! 8.465 8.090 7.715 8.54
G88 ~GeV22! 12.90 13.02 13.13 12.52
G08 ~GeV22! 20.4458 20.4953 20.5483 0

TABLE III. The first column shows the expressions for the va
ous pseudoscalar coupling taken from Ref.@24#. We use GS

511.84 GeV22, GD52200 GeV25, a520.01524 GeV3, and g
520.02575 GeV3 to obtain the values in the second column.~See
set II of Table II.!

Effective pseudoscalar coupling G00, G08, andG88

constants@24# (GeV22)

G005GS2
GD

3
~a1b1g! 11.8423.7558.09

G885GS2
GD

6
~g22a22b! 11.8411.17513.01

G0852
&

12
GD~2g2b2a! 20.4953
09400
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e

ot
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1G80H00
PP(k,k8). From Eq. ~7.16! we see thatE08(k)

5E80(k) is negative. We note thatG085G80 is also negative,
as areH88

PP(k,k8) andH00
PP(k,k8). @See the Appendix, where

we may see thatH88
PP(k,k8)5H00

PP(k,k8).# Therefore, the in-
clusion of the ’t Hooft interaction reduces the mixing in
duced by the presence ofE08(k), since G08H88

PP(k,k8) is
positive. That feature may be seen in the results given
Table I. For example, let us consider the results of param
set IV. We see that if we putG0850, we haveu05219.4°
andu85232.8°, which are significantly larger in magnitud
than the values ofu0 andu8 obtained from fits to empirica
data, or from theoretical analysis. However, if we make
more consistent calculation with finite values ofG08 ~see
Tables II and III!, the values ofu0 and u8 are brought into
agreement with the theoretical or empirical values@12#. ~The
values ofGD52180,2200, or2220 GeV25 correspond to
generally suggested values of that parameters. For exam
in Ref. @24# we find the choiceGD52185 GeV25.!

In Table I we have compared our values with those o
tained from an analysis of experimental data@12#. We may
also make contact with the theoretical results of exten
chiral perturbation theory and other studies. For example
Table I of Ref. @14# we find that u85221.0° and u0
522.7° for the theoretical scheme put forth in Ref.@13#.
For the phenomenological scheme of Ref.@13#, the values
given areu85221.2° andu0529.2°. We see that the cal
culated values presented in our Table I foru8 andu0 are in
closer correspondence with the phenomenological schem
Ref. @13# than with the theoretical scheme. In addition, w
note that extended chiral perturbation theory givesu8.
220.5° andu0.4° @7,8#. The values ofu02u8 obtained
from our values ofu8 and u0 are also consistent with th
value ofu02u85216.4° calculated in Ref.@10# by a some-
what different theoretical method than that used in Refs.@7#,
@8#. We see that the values obtained using chiral perturba
theory foru02u8 are quite close to the values of215.6° or
216.6° given in our Table I forGD52180 and 2200
GeV25, respectively.

XI. DISCUSSION

In the absence of a confining interaction, the NJL mo
does not allow for a description of radially excited state
The model leads to a separable interaction in each cha
such that the vertex function is proportional to the regula
@See Eqs.~5.1! and ~5.12!.# To deal with this problem,
Volkov and collaborators have introduced additional se
rable interactions in each channel. These new terms allow
a description of radially excited states@26–28#. More closely
related to our work are the results described in Refs.@29–
32#. In Refs. @29,30# the authors include a confineme
model that has scalar, pseudoscalar, and vector confining
teractions. They solve the Bethe-Salpeter equation and
scribe a large number of light meson states. However, t
do not include pseudoscalar–axial-vector coupling in th
formalism. Other work related to ours may be found in R
@33#, where meson spectra are calculated using many-b
techniques based upon the RPA. That work is part of a co
prehensive program to investigate hadron structure using

n
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ROLE OF THE ’t HOOFT INTERACTION IN THE . . . PHYSICAL REVIEW D 65 094003
effective Lagrangian obtained from QCD@34#.
In the present work we have shown how to derive rela

istic RPA equations that may be used to calculate the p
erties of radially excited states of pseudoscalar mesons.
RPA representation of the wave function components is s
to be particularly well suited if one wishes to provide
physical description of the states in terms of theirnn̄ or ss̄
components. It is also easy to see the relative importanc
the g5 and g0g5 vertices. It is worth noting that the devia
tions from ideal mixing are due to the presence of the
Hooft interaction. We find thatnn̄-ss̄ mixing is most impor-
tant for theh~547! andh8(958). The other states are main
eithernn̄ or ss̄ states.

In this work we have demonstrated that the ’t Hooft inte
action exhibits two important features.@That interaction
breaks the UA(1) symmetry that the Lagrangian would ha
in the limit of zero current quark masses and reduces
number of Goldstone bosons from nine to eight.#

The first feature that has been emphasized in applicat
of the NJL model is the fact that one may fit the energies
theh~547! andh8(958), if the strength of the ’t Hooft inter
action is chosen appropriately. The second feature that
describe in this work has not been noted previously. We h
found that the singlet-octet coupling induced by the ’t Ho
interaction, which is proportional to the parameterG08, is of
the correct magnitude to compensate for the singlet-o
coupling introduced by functionE08(k), such as to bring the
values of the mixing angles into the range specified by
tended chiral perturbation theory~u0.4°, u8.220° @7,8#!
or by fits to experimental data@12,14#.

Ideally, we would like to maintain chiral symmetry an
covariance in our generalized NJL model. We have emp
sized covariance in our work, rather than symmetry. T
leads to some problems in the description of the radial e
tations of the pion@35#. However, our description of the et
mesons including the radially excited states is quite satis
tory, indicating that chiral symmetry constraints may be le
important than the covariance of the formalism and a pro
treatment of pseudoscalar–axial-vector coupling. Finally,
note that one may consult Ref.@36# for an extensive discus
sion of largenc in chiral perturbation theory.

APPENDIX

In this appendix we define the various interaction e
ments needed to construct the eight equations given as
~7.17!–~7.24!. We begin by working in thenn̄-ss̄ represen-
tation and first consider thenn̄ space. Then we have
. B

.
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Hnn̄
PP~k,k8!52

2nc

p2 kk8e2k2/2a2
e2k82/2a2

,

~A1!

Hnn̄
PA~k,k8!52

2nc

p2 kk8e2k2/2a2
e2k82/2a2

, ~A2!

Hnn̄
AP~k,k8!5Hnn̄

PA~k,k8!, ~A3!

Hnn̄
AA~k,k8!5

nc

p2

2mu

Eu~k!
kk8e2k2/2a2

e2k82/2a2
,

~A4!

Hnn̄
PP~C!~k,k8!52

1

p2 kk8
@mu

22Eu~k!Eu~k8!#V0~k,k8!

Eu~k!Eu~k8!
,

~A5!

and

Hnn̄
AA~C!~k,k8!5Hnn̄

PP~C!~k,k8!. ~A6!

Here, withx5cosu,

V0~k,k8!5
1

2 E21

1

dx VC~kW2kW8!. ~A7!

The various elements, such asHss̄
PP(k,k8), are obtained by

replacingmu andEu(k) with ms andEs(k) in the equations
presented above.

We may then define

H00
PP~k,k8!5

1

3
@2Hnn̄

PP~k,k8!1Hss̄
PP~k,k8!#, ~A8!

H08
PP~k,k8!5

A2

3
@Hnn̄

PP~k,k8!2Hss̄
PP~k,k8!#,

~A9!

and

H88
PP~k,k8!5

1

3
@Hnn̄

PP~k,k8!12Hss̄
PP~k,k8!#, ~A10!

with H80
PP(k,k8)5H08

PP(k,k8). Values for the other interac
tion terms in Eqs.~7.17!–~7.24! may be found by using re
lations of the form given in Eqs.~A8!–~A10!. We see that
H00

PP(k,k8)5H88
PP(k,k8) and thatH08

PP(k,k8)50.
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