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Sweeping the space of admissible quark mass matrices

Silke Falk,* Rainer Häußling,† and Florian Scheck‡
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We propose a new and efficient method of reconstructing quark mass matrices from their eigenvalues and a
complete set of mixing observables. By a combination of the principle of NNI bases which are known to cover
the general case, and of the polar decomposition theorem that allows us to convert arbitrary nonsingular
matrices to triangular form, we achieve a parametrization where the remaining freedom is reduced to one
complex parameter. While this parameter runs through the domain bounded by the circle with radiusR
5A(mt

22mu
2)/(mt

22mc
2) around the origin in the complex plane one sweeps the space of all mass matrices

compatible with the given set of data.
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I. INTRODUCTION

The four three-generation mass sectors of quarks and
tons belong to the deepest enigmas of the standard mod
strong and electroweak interactions. While there is a g
amount of experimental information of steadily increasi
accuracy, theoretical models of mass matrices and mix
matrices are scarce. In this unsatisfactory situation it se
of utmost importance to parametrize the available data
such a way that possible textures in the mass matrices
given charge sector become visible in an unambiguous m
ner. For instance, in the case of quarks, there are 10 data
the masses of the three charge12/3 quarks, the masses o
the three charge21/3 quarks, and four observables in th
Cabibbo-Kobayashi-Maskawa~CKM! matrix, to be com-
pared to 12 physically significant parameters in the m
matricesM (u) andM (d). Therefore, reconstructing mass m
trices from the data really amounts to finding an optim
parametrization that exhibits the remaining two-parame
freedom in a transparent way.

An important step in this direction was taken by Bran
et al. who realized that the class of so-called neare
neighbor-interaction~NNI! bases for chiral states are ec
nomical but still completely general@1#, and may hence be
used in attempts to reconstruct the mass matrices from
observed mass eigenvalues and the empirical mixing m
ces. These authors also gave an explicit procedure for
structing mass matrices in an NNI basis, for arbitrary m
sectors of quarks. Unfortunately, their analysis involves so
ing cubic equations. Although soluble in principle, the
equations are too cumbersome to solve and do not allow
a practical and efficient reconstruction.

In this paper we propose a new method of reconstruc
that avoids these shortcomings. We conjecture that
method and the appropriate parametrization are optima
the sense of concentrating the remaining freedom in a si
complex parameter whose domain of variation can be
stricted to the interior of a circle in the complex plane.
particular, we succeed in reconstructing the mass matr
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proper, up to unobservable changes of basis. This goes
yond, say, the work of Harayama and Okamura@2# who ex-
press the CKM matrix in terms of six parameters, with
two-parameter freedom. The way from their result to t
mass matrices seems involved and not well suited for a p
tical analysis.

We make use of the polar decomposition theorem for n
singular matrices@3#

M5TW,

whereT is a lower-triangular matrix andW is a unitary ma-
trix which, when applying this formula to three generatio
of chiral quarks, can be absorbed in the right-chiral fields.
in addition, we work in the class of NNI bases in which th
(21) element ofT is seen to vanish, we still cover the mo
general case but get rid of all redundant quantities. M
precisely, if

Ĥ (q)5M (q)M (q)†5T̂(q)T̂(q)†, q5u,d,

are the ‘‘squared’’ Hermitian mass matrices andD (q)

5diag(m1
2 ,m2

2 ,m3
2) with m1[mu or md etc. their diagonal

forms, then, in any NNI basis,

Ĥ (u)5U†D (u)U, Ĥ (d)5U†VCKMD (d)VCKM
† U.

The matrixU, which is known analytically@4#, depends on
two complex parameters, saya and b defined in Eq.~26!
below. These parameters are related through aquadratic
equation whose coefficients are elements of the matrix

VCKMD (d)VCKM
† ,

i.e. of a matrix that is obtained solely from experimen
data. Solving for one or the other of them, sayb5b(a),
reduces the set of admissible mass matrices to the expe
two-parameter freedom in the variablea. Progress achieved
in this way is twofold: On the one hand, parametrization
terms of, say,a is analytically simple and transparent. On th
other hand, the domain of variation ofa and the formulas for
the elements ofĤ (u) and Ĥ (d) are such that the space o
admissible mass matrices can be studied graphically and
merically, asa sweeps through all allowed values, in a qua
titatively reliable manner. Although we have not done th
yet, one can even follow the propagation of the error bars
the experimental input, in not too involved a procedure.
©2002 The American Physical Society11-1
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SILKE FALK, RAINER HÄUßLING, AND FLORIAN SCHECK PHYSICAL REVIEW D65 093011
The paper is organized as follows. In Sec. II we revi
the choice of NNI bases and recapitulate the relevance o
polar decomposition theorem for the problem at stake. S
tion III, which is the main body of our work, describes th
explicit construction of the matrixU as well as its parametri
zation in terms ofa, b, and the squared masses of theup
sector. The NNI condition is encoded in the quadratic eq
tion ~33! below. In Sec. IV we discuss symmetries helpful
solving that constraint, and consider some limiting case
order to illustrate the method. We also propose an expan
of the solutions in terms of a parameter which, due to
hierarchy in the quark masses, is numerically very small. T
final Sec. V gives two examples of how a conjectured text
of mass matrices can be checked against the data in a si
and transparent manner, by converting the mass matrice
the ~general! form studied here. It ends with a few conclu
sions.

II. GENERAL NEAREST-NEIGHBOR BASES AND
TRIANGULAR MATRICES

In the case of three generations the mass matricesM̂ (u)

andM̂ (d) in the so callednearest neighbor interaction~NNI!
basis are characterized by the following generic structure

M̂ (u), M̂ (d)5S 0 ! 0

! 0 !

0 ! !
D . ~1!

Here the ‘‘! ’’ entries appearing on the right-hand side~RHS!
of Eq. ~1! are arbitrary non-vanishing, complex numbe
The interpretation of this particular choice of the mass m
trices that is usually given by its proponents is the followin
the (11) and (22) elements are put equal to zero, while
ting the (33) element be different from zero, with the idea
describing an initial, no-interaction situation where tw
quarks are massless and only one is massive. Furtherm
only neighboring generations are allowed to interact, by
suming nonvanishing (12), (21), (23), and (32) elemen
but vanishing (13) and (31) elements.

However, it has been known for a long time that th
setting, although very tempting and intuitive at first sight,
ill defined unless it is supplemented by further assumptio
Indeed, Branco, Lavoura, and Mota showed in@1# that any
set of admissible mass matrices$M (u),M (d)% of the standard
model, i.e. any set of twocompletely arbitrarynon-singular
333 matrices, can be transformed to the form given in E
~1! without the need for any further assumption. In oth
words, in the framework of the minimal standard mod
where only left-chiral fermion fields participate in charg
current weak interactions, the mass matrices in Eq.~1! are
still completely general, the specific form~1! reflecting no
more than a specific choice of chiral basis. This fact
mainly due to the observation that weak interactions
quarks remain unchanged under the simultaneous tran
mations

M (u)→M̂ (u)5U†M (u)Vu ,

M (d)→M̂ (d)5U†M (d)Vd , ~2!
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of the mass matrices, whereU,Vu andVd are arbitrary uni-
tary 333 matrices: On the one hand, the unitariesVu andVd
act on the right-chiral fields (uR ,cR ,tR) and (dR ,sR ,bR),
respectively, and, hence, can be absorbed by a redefinitio
these unobservable fields, without loss of generality. On
other hand, the common unitary matrixU in Eq. ~2! which
acts on the left-chiral quark fields, drops out when calcu
ing the physical Cabibbo-Kobayashi-Maskawa~CKM! ma-
trix

VCKM5UL
(u)UL

(d)† . ~3!

In Eq. ~3! UL
(u) and UL

(d) are the unitary matrices which di
agonalize the ‘‘squared,’’ Hermitian mass matrices

H (q)5M (q)M (q)†, q5u,d, ~4!

of the up and down sector, respectively, viz.

UL
(u)H (u)UL

(u)†5diag~mu
2 ,mc

2 ,mt
2![D (u),

UL
(d)H (d)UL

(d)†5diag~md
2 ,ms

2 ,mb
2![D (d). ~5!

Thus, as proved in@1#, the structure~1! of the mass matrices
corresponds to no more than a special, physically admiss
choice of the electroweak basis. The interpretation sketc
above fully rests on this choice and will no longer be valid
other electroweak bases. Unless this special choice is sin
out by additional arguments that could stem, e.g., from ph
ics beyond the standard model, the above interpretation lo
its physical significance becausephysics, of course,must not
depend on the choice of basis.

There is an alternative derivation of the same conclus
which, at the same time, helps us to fix notations for o
subsequent calculations. As was shown in@4,5#, when deal-
ing with questions of reconstructing mass matrices from
experimental data, i.e. from four independent absolute va
of CKM matrix elements and the six quark masses, a m
economic but nevertheless physically completely general
rametrization of the quark mass matrices is given bytrian-
gular mass matrices,

T(u),T(d)5S ! 0 0

! ! 0

! ! !
D . ~6!

This parametrization results upon exploiting the polar d
composition theorem for non-singular, but otherwise ar
trary matrices:

M (q)5T(q)W(q), q5u,d, with W(q) unitary. ~7!

Again, the unitariesW(q), q5u,d, can be absorbed by
redefinition of the right-chiral quark fields, without loss o
generality.

At the level of the squared mass matricesĤ (q) the NNI
structure~1! of the mass matrices is equivalent to a vanish
(12) element@and—becauseĤ (q) is Hermitian—also a van-
ishing (21) element#:

Ĥ12
(q)505Ĥ21

(q) , q5u,d. ~8!
1-2
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SWEEPING THE SPACE OF ADMISSIBLE QUARK MASS . . . PHYSICAL REVIEW D 65 093011
Because ofĤ (q)5M̂ (q)M̂ (q)†5T̂(q)T̂(q)†, q5u,d, a straight-
forward calculation shows that within the triangular para
etrization the NNI condition~8! reads

T̂21
(q)50, q5u,d. ~9!

Mimicking for a moment the~invalid! interpretation men-
tioned in connection with the NNI structure~1!, Eq. ~9!
would suggest that there isno direct interaction between th
first and the second generation while, in the basis~1!, these
evidently do mix, and, in fact, mix strongly. Direct intera
tions seem to be present between the second and third
erations as well as between the first and third generat
only, due to the non-vanishing (32) and (31) elements
T̂(q), respectively, in contrast to Eq.~1! where seemingly
there is no direct coupling between first and third gene
tions.

These statements underpin once more that such an i
pretation is dependent on the electroweak basis chosen
the representation of the mass matrices and, hence, sh
better be avoided altogether.

Although it is unrelated to a specific physical picture
quark masses and mixings, bases that yield the NNI form
the mass matrices turn out to be very useful in the proces
reconstructing mass matrices from the observed quark m
ings and masses. Therefore, in what follows we shall m
extensive use of this class of bases. That is to say, we
from triangular mass matrices whose (21) elements are z
viz.

T̂(u)5S â 0 0

0 b̂ 0

k̂3eiŵ3 k̂2eiŵ2 ĝ
D ,

T̂(d)5S â8 0 0

0 b̂8 0

k̂38e
iŵ38 k̂28e

iŵ28 ĝ8
D . ~10!

Here and in the sequel the hat on the symbols refers to
choice of an NNI basis.

Possible phases can be absorbed into the right-chiral fi
and, hence, without loss of generality, the matrix eleme
â,b̂,ĝ and â8,b̂8,ĝ8 along the diagonals may be chosen
be real. In fact, also the phasesŵ2 andŵ3 could be dropped
by making use of the unitary matrixU in Eq. ~2! thereby
renderingT̂(u) real. In doing so, on the theoretical side w
are left with 12 parameters, 5 from the up sector and 7 fr
the down sector. These have to be confronted with 10 exp
mental data, i.e. 6 quark masses14 real observables in th
CKM matrix, leaving a freedom of two parameters. This
characteristic for an NNI basis.

III. AN EFFICIENT RECONSTRUCTION PROCEDURE

The authors of@1# give a detailed prescription for th
construction of mass matrices in an NNI basis, for arbitr
mass matrices: The main step consists in solving the eig
value problem
09301
-

en-
ns
f

-

er-
for
uld

of
of
x-
e
art
ro,

he

ds
ts

ri-

y
n-

~H (u)1kH (d)! i j uj 25lui2 ~11!

for the matrix H (u)1kH (d), where k denotes an arbitrary
complex number. Note thatk reflects the two-parameter free
dom within the class of NNI matrices. Once the second c
umn (ui2) of the unitary matrixU, which transforms the
arbitrary squared mass matrices~4! to NNI form @see Eq.~2!#
is determined according to Eq.~11!, the first column (ui1) is
calculated by means of

ui1}e i jkuj 2
! ul2

! ~H (u)! lk , ~12!

see@1#. Finally, the third column (ui3) follows from the uni-
tarity of U. It is easily checked that Eqs.~11! and~12! indeed
imply ui1

! (H (q)) i j uj 250 for q5u,d as required.
However, the prescription just outlined is not very we

suited when aiming at anexplicit construction of all NNI
mass matrices. This is simply due to the fact that in
interesting case of three generations the eigenvalue prob
~11! leads to a cubic equation. The solutions of this cu
equation are, of course, known in principle but the cor
sponding expressions are rather lengthy and involved
they complicate tremendously subsequent calculations
this paper we propose a different procedure which will
seen to result in much simpler expressions.

We start from the following observation@5#. Without loss
of generality we may assume that the squared mass matr
u quarks is already diagonal, that is, in other words, that
mixing has been shifted entirely to the down sector. Inde
this is achieved by exploiting once more the freedom c
tained in Eq.~2! by choosingU5UL

(u)† . With this choice we
obtain @using Eqs.~2!, ~3!, and~5!#

H (u)°UL
(u)H (u)UL

(u)†5D (u),

H (d)°UL
(u)H (d)UL

(u)†5UL
(u)UL

(d)†D (d)UL
(d)UL

(u)†

~13!

5VCKMD (d)VCKM
† .

Thus, in what follows, by this redefinition, the experimen
input will be coded in the form

H (u)5D (u), H (d)5VCKMD (d)VCKM
† . ~14!

Note thatH (d) is completelyfixed in terms of the experimen
tal input, i.e. the three quark masses of the down sector
four physically relevant parameters of the CKM matrix. L
us comment on this point in more detail: Because, in gene
normed eigenvectors are only fixed up to arbitrary phase
tors, instead ofU†5UL

(u) we can as well chooseU†

5P1UL
(u) in the above reasoning, withP1 a diagonal phase

matrix,

P15diag~eif1,eif2,eif3!. ~15!

With this choice the second substitution in Eq.~13! becomes

H (d)→Ĥ (d)5P1VCKMD (d)VCKM
† P1

†

5P1VCKMP2
†D (d)P2VCKM

† P1
† . ~16!
1-3
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In the last line,P2 again denotes a diagonal matrix conta
ing only phase factors,

P25diag~eif4,eif5,1!, ~17!

and the diagonal character ofD (d) has been used. Equatio
~16! shows that we are allowed to chooseany parametriza-
tion for VCKM that we would like to start with. The transitio
to any other parametrization ofVCKM is easily accomplished
by means of suitable choices of the phase matricesP1 and
P2.

Next, we have to tackle the task of finding the unita
matricesU which transform the squared mass matricesH (q)

to NNI form. Postponing for a moment the analysis of t
down sector, the corresponding condition forU in the up
sector simply reads

Ĥ (u)5U†D (u)U ⇔ D (u)5UĤ (u)U†. ~18!

In other words, at this stageU is given by those unitary
matrices that diagonalize the most general squared mass
trix Ĥ (u)5T̂(u)T̂(u)† whereT̂(u) is taken from Eq.~10! ~with
ŵ2505ŵ3, without loss of generality!. This is the first con-
dition for the matrixU.

An analytical expression for the matrixU is obtained by
restricting to the casek150 the general solution of the prob
lem of diagonalization that we had obtained earlier in@4#,
viz.

U5PS f ~mu!/n1 g~mu!/n1 h~mu!/n1

f ~mc!/n2 g~mc!/n2 h~mc!/n2

f ~mt!/n3 g~mt!/n3 h~mt!/n3

D , ~19!

where the functionsf (mi), g(mi), h(mi) and the denomina
tors nk are given by

f ~mi !5

g~mi !5

h~mi !5

2âk̂3~ b̂22mi
2!

2b̂k̂2~ â22mi
2!

~ â22mi
2!~ b̂22mi

2!
J ~ i 5u,c,t !

n1
25~ â22mu

2!~ b̂22mu
2!~mt

22mu
2!~mc

22mu
2!

n2
25~mc

22â2!~ b̂22mc
2!~mt

22mc
2!~mc

22mu
2!

n3
25~mt

22â2!~mt
22b̂2!~mt

22mc
2!~mt

22mu
2!.

The diagonal phase matrixP,

P5diag~21,eic2,eic3!, ~20!

represents the freedom of multiplying each eigenvector
Ĥ (u) with an arbitrary phase factor.1 As we are aiming atall
NNI mass matrices this freedom must be taken into acco
This will become clear also in a moment when we count
degrees of freedom explicitly. Furthermore, from the co
parison of the characteristic polynomials ofT̂(u)T̂(u)† and of

1The choice of the first phase, exp$ip%, is made for the sake o
convenience.
09301
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D (u) the parametersk̂2 andk̂3 are fixed in terms ofâ, b̂ and
the squared quark masses of the up sector by means o
relations

mu
2mc

2mt
25â2b̂2ĝ2 ~21!

mu
2mc

21mu
2mt

21mc
2mt

25â2b̂21b̂2ĝ21ĝ2â2

1â2k̂2
21b̂2k̂3

2 ~22!

mu
21mc

21mt
25â21b̂21ĝ21k̂2

21k̂3
2 . ~23!

As a consequence,U is a function of four real parameter
~and, of course, the masses of the up quarks!,

U5U~ â,b̂,c2 ,c3!. ~24!

See Appendix A for more details.
Next we turn to the down sector. In order to guarantee

NNI form in the down sector, too, the unitary matrixU, Eq.
~19!, has to satisfy one additional condition. WithĤ (d)

5U†H (d)U and setting U5(ui j ) and H (d)

5VCKMD (d)VCKM
† 5(hi j ), see Eq.~14!, this condition reads

~Ĥ (d)!125ui1
! hi j uj 25

!

0. ~25!

This yields the second condition for the matrixU. As this is
an equation for complex numbers, two out of the four para
etersâ,b̂,c2 andc3 are fixed this way, leaving a freedom o
two real parameters. This is characteristic for the NNI for
Please note that it is essential to take into account prop
the freedom parametrized inP, Eq. ~20!. Had we missed the
phase matrixP, U would have been completely determine
by Eq. ~25! and onlyone special set of NNI mass matrice
would have resulted, contrary to our purpose of reconstru
ing all NNI mass matrices.

The parametrization ofU, Eq. ~19!, in terms ofâ,b̂,c2
and c3 is not suited for constructing the solutions of E
~25!, simply because the resulting equation contains a co
plicated sum of cosines with argumentsc2 , c3, as well as
their differencec22c3. The practical reconstruction in thi
framework would not be simpler than within the origin
proposal of Branco, Lavoura and Mota. The situati
changes decisively if we use a new parametrization ofU in
terms of two complex numbers defined as follows:2

aª
u22

u12
, bª

u32

u12
. ~26!

In particular, the moduli and phases ofa andb are given by

uau5A~ b̂22mu
2!~mc

22â2!~mt
22mu

2!

~ â22mu
2!~ b̂22mc

2!~mt
22mc

2!
, ~27!

2The caseu1250 must be excluded at this point. However, as w
shall see below, this is no restriction: The case wherea tends to
infinity, a→`, is mapped, by a symmetry of the equations, to t
point a50; cf. Eq. ~37! below.
1-4
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ubu5A~ b̂22mu
2!~mt

22â2!~mc
22mu

2!

~ â22mu
2!~mt

22b̂2!~mt
22mc

2!
, ~28!

ca5H c2 for mu
2<â2<mc

2<b̂2<mt
2 ,

c21p for mu
2<b̂2<mc

2<â2<mt
2 ,

~29!
on
he
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r
re
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f
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en
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cb5c3 . ~30!

The two complex variablesa and b replace the four rea
variablesâ,b̂,c2 andc3. In fact, a straightforward calcula
tion shows thatU, Eq. ~19!, when expressed in terms of th
new variablesa andb reads as follows:
U5S ~mt
22mc

2!uauubu
N2

1

N1
2

uau2~mc
22mu

2!1ubu2~mt
22mu

2!

N1N2

2
~mt

22mu
2!ubua

N2uau
a

N1
2

a„ubu2~mt
22mc

2!2~mc
22mu

2!…

N1N2

~mc
22mu

2!uaub
N2ubu

b

N1

b„uau2~mt
22mc

2!1~mt
22mu

2!…

N1N2

D ~31!

with

N1
2511uau21ubu2 ~32!

N2
25uabu2~mt

22mc
2!21uau2~mc

22mu
2!21ubu2~mt

22mu
2!2.
ails
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As long as only the up sector is under considerationa andb
remain arbitrary and are not restricted at all. It is the sec
NNI condition ~25! that imposes a constraint on them: in t
new parametrization this condition takes the simple form o
quadraticequation, viz.

~mt
22mc

2!ab~h111ah121bh13!2~mt
22mu

2!b~h211ah22

1bh23!1~mc
22mu

2!a~h311ah321bh33!50. ~33!

Depending on whether Eq.~33! is solved fora5a(b) or for
b5b(a) the complex parameterb or the complex paramete
a remains free and, thus, we recover the two-parameter f
dom of the NNI reconstruction.

By means of the above formulas elementary calculati
yield all parameters of the NNI mass matrices in terms oa

andb. For instance, forb̂ we obtain

b̂25
mu

21uau2mc
21ubu2mt

2

11uau21ubu2
. ~34!

After insertion ofa5a(b) or b5b(a) according to Eq.~33!
this equation specifiesall admissible values for the param
eter b̂ in the NNI form of the mass matrices by varying th
unconstrained parameterb or a, respectively.

The results for all other parameters are quoted in App
dix B.
d

a

e-

s

-

IV. PARAMETER DEPENDENCIES, SYMMETRIES AND
EXPANSIONS

The results derived in the previous section, whose det
are spelled out in Appendix B, are completely general a
analytical in the sense that no approximations whatsoe
have been made. Furthermore, we conjecture that the pa
etrization and reduction to the complex parametera ~or, al-
ternatively, the parameterb) described in the previous sec
tion is the best one can do in reconstructing mass matr
from their eigenvalues and the CKM observables. In t
section we provide further support for this conjecture by g
ing some examples and by showing that it is possible
classify, in a procedure that is suitable for practical stud
the set of all mass matrices that are compatible with
given observables.

Generally speaking, due to the use of a~as we conjecture!
optimal parametrization the task of findingall mass matrices
in NNI form is reduced to the simple problem of solving
quadraticequation; see Eq.~33!. To begin with we note that
the left-hand side of Eq.~33! can be written as a scalar prod
uct

„~mt
22mc

2!ab,2~mt
22mu

2!b,~mc
22mu

2!a…~hi j !S 1

a

b
D

5~mt
22mc

2!ab~1,2m1 /a,m2 /b!~hi j !S 1

a

b
D

50, ~35!
1-5
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where the constantsm1 andm2 denote the ratios

m15
mt

22mu
2

mt
22mc

2
, m25

mc
22mu

2

mt
22mc

2
5m121. ~36!

When the condition~35! is written in this form and using the
fact thatĤ (d) is Hermitian, we see at once that if (a,b) is a
solution, so is (2m1 /a* ,m2 /b* ). The simultaneous subst
tution

S a

bD °S a852m1 /a*

b851m2 /b* D ~37!

maps the circle with radiusRa5Am1 in the complexa plane
onto itself ~by relating antipodes!, while in the complexb
plane every point of the circleAm2eifb is a fixed point. At
the same time, this substitution means interchanging the
and second columns ofU, Eq. ~31!. Therefore, if we restrict,
e.g.,a5ainner to the interior of the first circle, and calculat
b(ainner) from Eq. ~33! as well as the mass matrice
(Ĥ (u),(d)) inner, then the solution pertaining toaouter[a85
2m1 /ainner* and the corresponding value ofb8(aouter) yields
the mass matrices

~Ĥ (u),(d)!outer5U0
†~Ĥ (u),(d)! innerU0

with U05S 0 1 0

1 0 0

0 0 1
D .

In particular, for unprimed and primed parameters of the
angular matrices this is equivalent to

~a2! inner5~b2!outer, ~bk2! inner5~ak3!outer,

~g21k2
21k3

2! inner5~g21k2
21k3

2!outer,

and likewise for the primed quantities:

~a8 2 ! inner5~b8 2 !outer,

~b8k28e
iw28! inner5~a8k38e

iw38!outer,

~g8 2 1k28
21k38

2! inner5~g 8 2 1k28
21k38

2 !outer.

Clearly, this symmetry simplifies greatly any practical ana
sis.

Before turning to the general case we illustrate our f
mulas by a few special cases.

~i! If the parametera vanishes,a50, Eq. ~33! givesb(a
50)52h21/h23. For theu sector we then obtain
09301
st

i-

-

-

â25mc
2 , b̂25

mu
2uh23u21mt

2uh21u2

uh23u21uh21u2
,

k̂350, b̂k̂25
uh21uuh23u~mt

22mu
2!

uh23u21uh21u2
,

ĝ25
mu

2mt
2

b̂2
.

Similarly, for thed sector we find in this case

â8 2 5h22,

b̂8 2 5
h11uh23u21h33uh21u222Re~h12h13h23!

uh23u21uh21u2
,

â8k̂38e
iŵ385Auh23u21uh21u2

h12

uh12u
eic2,

b̂8k̂28e
iŵ285

uh21uuh23u

uh23u21uh21u2
S h332h111

h21h13

h23
2

h23h31

h21
D ,

ĝ825
md

2ms
2mb

2

â8 2 b̂8 2
.

This example illustrates the power and the simplicity of t
reconstruction procedure: Given the experimental data~14!,
with VCKM given in an arbitrary, but fixed parametrizatio
the above formulas yield all entries of the triangular matric
~10!, hence the mass matrices of theu and d sectors in an
NNI basis.

~ii ! If we set b50, hencea(b50)52h31/h32 the mass
matrix in theu sector is given by

â25mt
2 , b̂25

mu
2uh32u21mc

2uh31u2

uh32u21uh31u2
,

k̂350, b̂k̂25
uh31uuh32u~mc

22mu
2!

uh32u21uh31u2
,

1-6
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ĝ25
mu

2mc
2

b̂2
.

For thed sector we obtain the following expressions:

â8 2 5h33,

b̂8 2 5
h11uh32u21h22uh31u22h32h13h212h31h23h12

uh32u21uh31u2
,

â8k̂38e
iŵ3852Auh32u21uh31u2

h13

uh31u
eic3,

b̂8k̂28e
iŵ285

uh32uuh31u

uh32u21uh31u2 S h222h111
h31h12

h32
2

h32h21

h31
D ,

ĝ8 2 5
md

2ms
2mb

2

â82b̂8 2
.

As in the previous example this shows that it is possible
reconstruct the triangular matrices~10! from the data and,
from there, the squared mass matricesĤ (q)5T̂(q)T̂(q)†.

The two preceding examples are degenerate cases
cause, by settinga ~or b) equal to zero, hence fixingb(0) @or
a(0), respectively#, the remaining two-parameter freedom
partly ‘‘frozen.’’ The only freedom left over is contained i
the phasesc2 or c3, respectively, which come from th
phase matrix~20!. Also, the substitution~37! shows that two
more special cases can be obtained where one of the pa
eters is sent to infinity. We also remark in passing that,
though unrealistic in the light of the data, one can eas
study the even more degenerate case ofa andb both going to
zero, for instance via

a→0, b5
~mc

22mu
2!h31

~mt
22mu

2!h21

a→0.

In the procedure proposed by Brancoet al., this limit corre-
sponds to the casek50 in Eq. ~11!. While their analysis
needs more care in this case, ours can be extrapol
smoothly to (a50,b50) in the way described above. Thu
there is no obstruction against choosinga ~or b) anywhere in
the complex plane.

We now turn to the general case but keep in mind
actual values of the observables~quark masses and CKM
angles!. We first notice that with

~mu55.1 MeV, mc51350 MeV, mt5330000 MeV!,
~38!

~md58.9 MeV, ms5175 MeV, mb55600 MeV!
~39!

the first ratio ~36! is approximately 1 while the second
very small,
09301
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m1'121.6731025,

m25m121'1.6731025.

It seems appropriate to expand our formulas in terms ofm2
5m121. So, for a given value ofa, the two solutions
b1/2(a) of the quadratic equation~33! are given by

b1~a!5
h311ah32

h211a~h222h11!2a2h12

a m21O~m2
2!, ~40!

b2~a!5
h211a~h222h11!2a2h12

ah132h23
1O~m2!. ~41!

Whether or not this is a good approximation, in princip
depends on the range ofa and on the matrix elementshi j ,
hence on the experimental input. In order to estimate
quality it is useful to compare the product and the sum of
two approximate solutions to the product and the sum of
exactsolutions of the quadratic equation~33!. Thus, denoting
the above approximations bybi(a), the exact solutions by
bi

exact, we define

dPª
b1~a!b2~a!

b1
exact~a!b2

exact~a!
21,

dSª
b1~a!1b2~a!

b1
exact~a!1b2

exact~a!
21. ~42!

If the data are such thatdP anddS are small, and using the
fact that the ratiob1 /b2 is proportional tom2, estimates for
the approximate solutions are seen to be the following:

b1~a!

b1
exact~a!

'11dP2dS ,
b2~a!

b2
exact~a!

'11dS .

In practice, i.e. for realistic values of the experimental inp
the quantities~42!, as well as the modulus of the ratiob1 /b2
are very small. Indeed, with the masses~38!, ~39!, and with
the following data for the moduli of the CKM matrix ele
ments@6# ~assuming a positive value of theCP invariantJ):

uVudu50.9752, uVusu50.2213,

uVcdu50.2211, uVcsu50.9744, ~43!

the elements of the Hermitian matrixĤ (d)5(hi j )[(md
2

1ms
21mb

2)(ki j ) are found to be

k1156.14431025, k2252.58431023,

k3350.9973,

k125~1.0891 i2.080!31024,

k1353.352310232 i8.489031026,

k2354.062310221 i6.98831027.
1-7
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The quantitydP is easily seen to be

dP~a!52
k23

ak132k23
m2 .

As the numerical values of the elements ofĤ (d) are such that
uk23u/uk13u'12 this function is regular over the interior of th
circle with radiusRa5Am1 and may thus be estimated b
means of standard techniques of function theory. We find

udPu<1.8231025. ~44!

Due to the symmetry~37! this domain is sufficient to cove
all NNI solutions. EstimatingdS(a) is a bit more compli-
cated because, as a function ofa, it has two poles in that
same domain, very close to each other. Excluding a sm
circle around these poles one finds typically

udSu<0.023. ~45!

Also the ratiob1 /b2 as obtained from Eqs.~40! and ~41! is
estimated as follows:

Ub1

b2
U<0.032.

Given the experimental values~38!, ~39!, and~43!, dS , Eq.
~45! is the dominant uncertainty. Thus, in this framework t
expressions~40! and~41! are excellent approximations in th
interior of the circle with radiusRa except in a small neigh
borhood of the two poles ofb1(a), Eq. ~40!. Note that the
approximations are continuous in the parametera which is to
say that the reconstructed mass matricesĤ (u) and Ĥ (d) de-
pend on the remaining freedom in a continuous manner. T
is particularly relevant when studying the dependence of
mass matrices on the parametera and when comparing to
textures obtained from specific physical assumptions.

We illustrate the method by means of two examples
Figs. 1 and 2. These figures show the parametersâ2 and b̂2

as functions of the complex parametera and for the two
approximate solutionsb1/2(a), Eqs. ~40! and ~41!, with a
chosen from the interior of the circle with radiusRa . The
figures show clearly the smallness of the neighborhood of
two poles where the approximation breaks down. Note tha
in that region one wishes to use the exact solutionsb1/2

exactcare
must be taken in insuring continuity when the signs of squ
roots are chosen.

V. SOME EXAMPLES AND CONCLUSIONS

In a detailed numerical study@7# we have verified that the
procedure that we are proposing, from a practical point
view, is manageable and transparent, and that all depen
cies of the NNI parameters of the triangular matrices can
illustrated in a simple manner.
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Assumptions about specific textures of the mass matr
obtained on the basis of some physical conjecture may
may not be compatible with the data. The parametrizat
that we are proposing in this work is particularly well suite
for testing the consistency of any such model in a simple
transparent manner. We illustrate this statement by two
amples taken from the literature. Suppose@8# in an NNI basis

FIG. 1. ~a! The parameterâ2 as a function ofa ~real and imagi-
nary part! for the first solution~40!; ~b! same parameter for the
second solution~41!.
1-8
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the u sector is constrained to be, in addition to the N
condition,

Mmodel
(u) 5S 0 r 1 0

r 1 0 r 2

0 r 2 r 3

D , with r 1 ,r 2 ,r 3 real.

The corresponding Hermitian, squared form is

FIG. 2. ~a! The parameterb̂2 as a function ofa ~real and imagi-
nary part! for the first solution~40!; ~b! same parameter for th
second solution~41!.
09301
I

Hmodel
(u) 5S r 1

2 0 r 1r 2

0 r 1
21r 2

2 r 2r 3

r 1r 2 r 2r 3 r 2
21r 3

2
D

with r 3
25mu

21mc
21mt

222(r 1
21r 2

2). Comparing this toĤ (u)

5T̂(u)T̂(u)† we see that

â25r 1
2 , b̂25r 1

21r 2
2 , âk̂35r 1r 2 , b̂k̂25r 2r 3 .

Thus, by Eqs.~27!, ~28! the moduli ofa andb are fixed and
the constraint~33! is reduced to an equation for the pha
factorseica andeicb. It is then easy to decide whether or n
this equation has a solution and, thereby, whether or not
ansatz of the model is compatible with the data.

The second example@8# again makes use of an NNI bas
but now constrains thed sector further by assuming

Mmodel
(d) 5S 0 s1 0

s1 0 s2

0 s3 s3

D , with s1 ,s2 ,s3 real.

As in the previous example the remaining freedom is
duced to two phase factors which must obey the constr
~33!. As the latter contains the input data, i.e. quark mas
and CKM mixing angles, it is not cleara priori that the
model is admissible. We note in passing that according to@8#
both models, within the experimental error bars, can ind
be used to parametrize the data. This is checked in
framework by confirming that Eq.~33! has solutions of
modulus 1.

The point we wish to make by quoting these examples
the following: while in general it is difficult to test the com
patibility of a specific model ansatz with the data~within
their experimental error bars!, the model may always be
transformed to an NNI basis. By converting it to our gene
form in terms of the parametersa andb, its test in the light of
the data is reduced to checking the simple quadratic equa
~33!.

In summary, we found a new parametrization of squa
mass matrices in terms of the experimental input~eigenval-
ues and mixing observables! and one complex parameter th
allows us to sample the space of solutions in an analyt
and transparent manner. Indeed, from the input qu
masses, matrix elementshi j as obtained from the CKM data
Eq. ~14!, and a choice ofa @from whichb(a) is obtained via
Eq. ~33!, or vice versa#, the equations given in Appendix B
directly yield the mass matrices~10!. Thus, by varying the
parametera over the circle with radiusRa in the complex
plane, and using the symmetry~37! we scan the space of a
admissible mass matrices, up to unobservable chan
of basis.

We conjecture that this procedure of reconstructing
mass matrices, which are compatible with the data up
~unobservable! changes of bases, is optimal. We obtain
this result by combining the idea of using general NNI ba
1-9
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@1# with the polar decomposition theorem that allows us
restrict the general analysis to triangular matrices@4,5#. The
formulas that we obtained are sufficiently simple to han
so that they may be implemented in a reconstruction rou
that also takes account of the experimental error bars. A
natively, as demonstrated by the examples we gave,
method allows for a quick test of compatibility with the da
for any assumed texture in the mass matrices.

Finally, with our knowledge of neutrino oscillations an
of the corresponding mixing matrix increasing, it will eve
tually be possible to perform the analogous analysis of
leptonic mass matrices in the standard model.

APPENDIX A

This appendix gives some intermediate results which
skipped in the main text of Sec. III. We begin with the e
09301
e
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pressions fork̂2 and k̂3 in terms ofâ and b̂.
Insertingk̂2

2 according to Eq.~23! into Eq. ~22! and mak-
ing use of Eq.~21! leads after a straightforward calculatio
to

k̂3
25

~ â22mu
2!~mc

22â2!~mt
22â2!

â2~ b̂22â2!
. ~A1!

In a similar way we also get

k̂2
25

~ b̂22mu
2!~ b̂22mc

2!~mt
22b̂2!

b̂2~ b̂22â2!
. ~A2!

Defining U5:PV, where U is given by Eq.~19!, and V
5(v i j ) we thus obtain
ariables
v i15S 2A~ b̂22mu
2!~mc

22â2!~mt
22â2!

~mt
22mu

2!~mc
22mu

2!~ b̂22â2!

7A~ â22mu
2!~ b̂22mc

2!~mt
22â2!

~mt
22mc

2!~mc
22mu

2!~ b̂22â2!

1A~ â22mu
2!~mc

22â2!~mt
22b̂2!

~mt
22mc

2!~mt
22mu

2!~ b̂22â2!

D , v i25S 2A~ â22mu
2!~ b̂22mc

2!~mt
22b̂2!

~mt
22mu

2!~mc
22mu

2!~ b̂22â2!

6A~ b̂22mu
2!~mc

22â2!~mt
22b̂2!

~mt
22mc

2!~mc
22mu

2!~ b̂22â2!

1A~ b̂22mu
2!~ b̂22mc

2!~mt
22â2!

~mt
22mc

2!~mt
22mu

2!~ b̂22â2!

D
v i35SA ~ â22mu

2!~ b̂22mu
2!

~mt
22mu

2!~mc
22mu

2!
, 2A ~mc

22â2!~ b̂22mc
2!

~mt
22mc

2!~mc
22mu

2!
, A ~mt

22â2!~mt
22b̂2!

~mt
22mc

2!~mt
22mu

2!
D T

. ~A3!

In Eq. ~A3! the upper signs forv21 andv22 refer to the case

mu
2<â2<mc

2 , mc
2<b̂2<mt

2 ~case I!, ~A4!

whereas the lower signs pertain to the case

mc
2<â2<mt

2 , mu
2<b̂2<mc

2 ~case II!. ~A5!

In fact, this distinction of two cases easily follows from the positivity ofni
2 , i 51,2,3; see Eq.~19!. At the same time, this

argument shows that these two cases exhaust all possibilities.

APPENDIX B

In this appendix we quote the results for the parameters of the mass matrices in NNI form in terms of the complex v
a andb ~26!. For the up sector the expressions in question are obtained by means of Eq.~18! and insertingU according to Eq.
~31!, or, equivalently, by using Eq.~26! and Eqs.~A1!–~A3!:

â25
1

N2
2
„uau2ubu2mu

2~mt
22mc

2!21uau2mt
2~mc

22mu
2!21ubu2mc

2~mt
22mu

2!2
… ~B1!

b̂25
1

N1
2 ~mu

21uau2mc
21ubu2mt

2! ~B2!
1-10
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b̂k̂25
N2

N1
2

~B3!

âk̂35
N1

N2
2

uauubu~mt
22mc

2!~mt
22mu

2!~mc
22mu

2!. ~B4!

In addition,ĝ2 is determined from Eq.~21!, viz.

ĝ25
~mumcmt!

2

â2b̂2
. ~B5!

The results for the down sector follow from

Ĥ (d)5UH (d)U†,

whereH (d) is given in Eq.~14!. SettingH (d)5(hi j ) we thus get

â825
1

N2
2 $~mt

22mc
2!2uabu2h111~mt

22mu
2!2ubu2h221~mc

22mu
2!2uau2h3322~mt

22mu
2!~mt

22mc
2!ubu2Re~ah12!

12~mc
22mu

2!~mt
22mc

2!uau2Re~bh13!22~mc
22mu

2!~mt
22mu

2!Re~abh23!%, ~B6!

b̂825
1

N1
2 $h111uau2h221ubu2h3312„Re~ah12!1Re~bh13!1Re~abh23!…% ~B7!

b̂8k̂28e
i ŵ285

1

N1
2N2

$2@ uau2~mc
22mu

2!21ubu2~mt
22mu

2!2#~h111ah121bh13!2@ ubu2~mt
22mc

2!

2~mc
22mu

2!#a* ~h211bh221bh23!1@ uau2~mt
22mc

2!1~mt
22mu

2!#b* ~h311ah321bh33!% ~B8!

5
a~h311ah321bh33!2b~h211ah221bh23!

ab~mt
22mc

2!

N2

N1
2

~B9!

â8k̂38e
i ŵ385

1

N1N2
2uabu

$@ uau2~mc
22mu

2!1ubu2~mt
22mu

2!#@2uabu2~mt
22mc

2!h111aubu2~mt
22mu

2!h122buau2~mc
22mu

2!h13#

1@ ubu2~mt
22mc

2!2~mc
22mu

2!#@2a* uabu2~mt
22mc

2!h211uabu2~mt
22mu

2!h222a* buau2~mc
22mu

2!h23#

1@ uau2~mt
22mc

2!1~mt
22mu

2!#@b* uabu2~mt
22mc

2!h312ab* ubu2~mt
22mu

2!h321uabu2~mc
22mu

2!h33%, ~B10!

ĝ825
~mdmsmb!2

â82b̂8 2
. ~B11!

The second, alternative form~B9! of Eq. ~B8! is obtained by a few lines of calculations.
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