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Sweeping the space of admissible quark mass matrices
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We propose a new and efficient method of reconstructing quark mass matrices from their eigenvalues and a
complete set of mixing observables. By a combination of the principle of NNI bases which are known to cover
the general case, and of the polar decomposition theorem that allows us to convert arbitrary nonsingular
matrices to triangular form, we achieve a parametrization where the remaining freedom is reduced to one
complex parameter. While this parameter runs through the domain bounded by the circle withRadius
=/(m?—mZ)/(mZ—mZ) around the origin in the complex plane one sweeps the space of all mass matrices
compatible with the given set of data.
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[. INTRODUCTION proper, up to unobservable changes of basis. This goes be-
yond, say, the work of Harayama and Okam{2awho ex-

The four three-generation mass sectors of quarks and legpress the CKM matrix in terms of six parameters, with a
tons belong to the deepest enigmas of the standard model bFo-parameter freedom. The way from their result to the
strong and electroweak interactions. While there is a grediass matrices seems involved and not well suited for a prac-
amount of experimental information of steadily increasingtical analysis. N
accuracy, theoretical models of mass matrices and mixing Ve make use of the polar decomposition theorem for non-
matrices are scarce. In this unsatisfactory situation it seemr@ngular matrice$3]
of utmost importance to parametrize the available data in M=TW,
such a way that possible textures in the mass matrices of a
given charge sector become visible in an unambiguous marvhereT is a lower-triangular matrix anw is a unitary ma-
ner. For instance, in the case of quarks, there are 10 data, vil#fix Which, when applying this formula to three generations
the masses of the three Chargélg quarkS, the masses of of chiral quarks, can be absorbed in the right-chiral fields. If,
the three Charge_ 1/3 quarkS, and four observables in the in addition, we work in the class of NNI bases in which the
Cabibbo-Kobayashi-MaskawéCKM) matrix, to be com- (21) element ofT is seen to vanish, we still cover the most
pared to 12 phy5|Ca||y Signiﬁcant parameters in the masgeneral case but get rid of all redundant quantities. More
matricesM () andM (@ . Therefore, reconstructing mass ma- precisely, if

trices from the data really amounts to finding an optimal A@=m@OMm@T=F@F@  g=u,d,
parametrization that exhibits the remaining two-parameter
freedom in a transparent way. are the “squared” Hermitian mass matrices arf¥

An important step in this direction was taken by Brancozdiag(mi,mg,mg) with m;=m, or my etc. their diagonal
etal. who realized that the class of so-called nearestforms, then, in any NNI basis,
neighbor-interactionNNI) bases for chiral states are eco- A (U)W ~(d) gt (st
nomical but still completely generdl], and may hence be H=U'D™U, H™=UVcxmb™ VeV
used in attempts to reconstruct the mass matrices from t . L .
observed masz eigenvalues and the empirical mixing matrifhe matrixU, which is known analytlcall_)[4], erends on
ces. These authors also gave an explicit procedure for corﬁW0 complex parameters, sayandb defined in Eq.(26)

structing mass matrices in an NNI basis, for arbitrary mas?elow' These parameters are related throughuadratic

sectors of quarks. Unfortunately, their analysis involves solyfduation whose coefficients are elements of the matrix

ing cubic equations. Although soluble in principle, these VexuD Vi »
equations are too cumbersome to solve and do not allow for _ ) ) )
a practical and efficient reconstruction. i.e. of a matrix that is obtained solely from experimental

In this paper we propose a new method of reconstructioflata. Solving for one or the other of them, say b(a),

that avoids these shortcomings. We conjecture that thigeduces the set of admissible mass matrices to the expected

method and the appropriate parametrization are optimal ifivo-parameter freedom in the varialde Progress achieved

the sense of concentrating the remaining freedom in a singl# this way is twofold: On the one hand, parametrization in

complex parameter whose domain of variation can be reterms of, sayais analytically simple and transparent. On the

stricted to the interior of a circle in the complex plane. Inother hand, the domain of variation afand the formulas for

particular, we succeed in reconstructing the mass matricethe elements ofd“) and H® are such that the space of
admissible mass matrices can be studied graphically and nu-
merically, asa sweeps through all allowed values, in a quan-

*Email address: falk@thep.physik.uni-mainz.de titatively reliable manner. Although we have not done this
"Email address: haeussli@thep.physik.uni-mainz.de yet, one can even follow the propagation of the error bars of
*Email address: scheck@thep.physik.uni-mainz.de the experimental input, in not too involved a procedure.
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The paper is organized as follows. In Sec. Il we reviewof the mass matrices, whetg, V, andVy are arbitrary uni-
the choice of NNI bases and recapitulate the relevance of thiary 3X 3 matrices: On the one hand, the unitaNgsandV,
polar decomposition theorem for the problem at stake. Secct on the right-chiral fieldsugk,cr,tg) and dg,Sg,bRr),
tion 1, which is the main body of our work, describes the respectively, and, hence, can be absorbed by a redefinition of
explicit construction of the matril) as well as its parametri- these unobservable fields, without loss of generality. On the
zation in terms ofa, b, and the squared masses of tfg  other hand, the common unitary mattikin Eq. (2) which
sector. The NNI condition is encoded in the quadratic equaacts on the left-chiral quark fields, drops out when calculat-
tion (33) below. In Sec. IV we discuss symmetries helpful in ing the physical Cabibbo-Kobayashi-Maskay@KM) ma-
solving that constraint, and consider some limiting cases inrix
order to illustrate the method. We also propose an expansion
of the solutions in terms of a parameter which, due to the
hierarchy in the quark masses, is numerically very small. The . . . .
final Sec. V gives two examples of how a conjectured texturd” Ed- (3) u and uf® are the unitary matrices which di-
of mass matrices can be checked against the data in a simgigonalize the “squared,” Hermitian mass matrices

Verm=UMu (@1, @)

and transparent manner, by converting the mass matrices to H@=M@OM@T  g=u,d, (4)

the (general form studied here. It ends with a few conclu-

sions. of the up and down sector, respectively, viz.
UWHWYMWT=diagm2,mZ,m?)=DW,

Il. GENERAL NEAREST-NEIGHBOR BASES AND
TRIANGULAR MATRICES U@DH@OYDT=diagm3,m2,m2)=D. (5

In the case of three generations the mass matiiees Thus, as proved ifil], the structuré1) of the mass matrices
andM @ in the so callechearest neighbor interactiotNNI)  corresponds to no more than a special, physically admissible
basis are characterized by the following generic structure: choice of the electroweak basis. The interpretation sketched

0 0 above fully rests on this choice and will no longer be valid in
. A other electroweak bases. Unless this special choice is singled
M(“), MO=| « 0 x|, (1) out by additi i
y additional arguments that could stem, e.g., from phys
0 > ics beyond the standard model, the above interpretation loses
its physical significance becauphysics of coursemust not
Here the “«” entries appearing on the right-hand siRHS) depend on the choice of basis
of Eq. (1) are arbitrary non-vanishing, complex numbers. There is an alternative derivation of the same conclusion
The interpretation of this particular choice of the mass mawhich, at the same time, helps us to fix notations for our
trices that is usually given by its proponents is the following:subsequem calculations. As was showr4(g], when deal-
the (11) and (22) elements are put equal to zero, while leting with questions of reconstructing mass matrices from the
ting the (33) element be different from zero, with the idea ofexperimental data, i.e. from four independent absolute values
describing an initial, no-interaction situation where two of CKM matrix elements and the six quark masses, a most
quarks are massless and only one is massive. Furthermorggonomic but nevertheless physically completely general pa-
only neighboring generations are allowed to interact, by asrametrization of the quark mass matrices is giventdgn-
suming nonvanishing (12), (21), (23), and (32) elementsgular mass matrices
but vanishing (13) and (31) elements.

However, it has been known for a long time that this
setting, although very tempting and intuitive at first sight, is TW T@O=| *
ill defined unless it is supplemented by further assumptions.
Indeed, Branco, Lavoura, and Mota showed 1t that any

issi i (W) (@) . . .
set of a_dm|SS|bIe mafss matnc{lsm | M .} of the st.and:I;\rd This parametrization results upon exploiting the polar de-
model, i.e. any set of tweompletely arbitrarynon-singular o hosition theorem for non-singular, but otherwise arbi-
3X 3 matrices, can be transformed to the form given in eqrary matrices:

(1) without the need for any further assumption. In other

words, in the framework of the minimal standard model M@=T@OW®D,  q=u,d, with W unitary. (7)
where only left-chiral fermion fields participate in charged

current weak interactions, the mass matrices in @yare  Again, the unitariesV(®, g=u,d, can be absorbed by a
still completely general, the specific forfd) reflecting no redefini';ion of the right-chiral quark fields, without loss of
more than a specific choice of chiral basis. This fact isgenerality.

mainly due to the observation that weak interactions of At the level of the squared mass matridé&) the NNI
qguarks remain unchanged under the simultaneous transfostructure(1) of the mass matrices is equivalent to a vanishing

* 0
*

(6)

* O O

*x K

mations (12) elemenfand—becauséi(? is Hermitian—also a van-
MW MW =ytMWy, ishing (21) element
MO @ =ytm@y,, @) A9=0=RY, a=ud. (8)

093011-2



SWEEPING THE SPACE OF ADMISSIBLE QUARK MAS. .. PHYSICAL REVIEW D 65093011

Because oA @=M@M@T=T@OT®T g=u,d, a straight- (HW+ kH@);iu,=Nu; (12)
forward calculation shows that within the triangular param-
etrization the NNI condition(8) reads for the matrix HW+ xH®  where «k denotes an arbitrary

complex number. Note that reflects the two-parameter free-
dom within the class of NNI matrices. Once the second col-

Mimicking for a moment the(invalid) interpretation men- Umn (Uiz) of the unitary matrixU, which transforms the
tioned in connection with the NNI structur@l), Eq. (9)  arbitrary squared mass matridés to NNI form [see Eq(2)]
would suggest that there i® direct interaction between the 1S determined according to E¢L1), the first column (iy) is
first and the second generation while, in the bagjsthese calculated by means of
evidently do mix, and, in fact, mix strongly. Direct interac- uilocfijkuj*zul*z(H(u))lkv (12)
tions seem to be present between the second and third gen-
erations as well as between the first and third generationsee[1]. Finally, the third column ;5) follows from the uni-
only, due to the non-vanishing (32) and (31) elements otarity of U. It is easily checked that EqelL1) and(12) indeed
T@, respectively, in contrast to Eq1l) where seemingly imply ui*l(H(Q))ijuij for q=u,d as required.
there is no direct coupling between first and third genera- However, the prescription just outlined is not very well
tions. suited when aiming at aexplicit construction of all NNI
These statements underpin once more that such an intamass matrices. This is simply due to the fact that in the
pretation is dependent on the electroweak basis chosen fanteresting case of three generations the eigenvalue problem
the representation of the mass matrices and, hence, shoultll) leads to a cubic equation. The solutions of this cubic
better be avoided altogether. equation are, of course, known in principle but the corre-
Although it is unrelated to a specific physical picture of sponding expressions are rather lengthy and involved and
guark masses and mixings, bases that yield the NNI form ofhey complicate tremendously subsequent calculations. In
the mass matrices turn out to be very useful in the process dhis paper we propose a different procedure which will be
reconstructing mass matrices from the observed quark mixseen to result in much simpler expressions.
ings and masses. Therefore, in what follows we shall make We start from the following observatid®]. Without loss
extensive use of this class of bases. That is to say, we staof generality we may assume that the squared mass matrix of
from triangular mass matrices whose (21) elements are zera,quarks is already diagonal, that is, in other words, that the

TW=0, g=u,d. 9)

viz. mixing has been shifted entirely to the down sector. Indeed,
o 0 0 this is achieved by exploiting once more the freedom con-
A A tained in Eq.(2) by choosingJ =U " With this choice we
TW= 0 B 0, obtain[using Eqgs(2), (3), and(5)]
PIPTSRPSI HWUMHOYMT=pW),
a’ 0o 0 HO UOHEOY T = gy @OTp @Y @y T
Tl = 0 g 0 (10) (13

e ke Y = VD OViy, -
Here and in the sequel the hat on the symbols refers to they s in what follows, by this redefinition, the experimental

choice of an NNI basis. , , __input will be coded in the form
Possible phases can be absorbed into the right-chiral fields

; . . _ _ t
and, hence, without loss of generality, the matrix elements HW=DM, H®D=vuDDViy,. (14
a,B,y anda’,B',y" along the diagonals may be chosen to

be real. In fact, also the phases and o3 could be dropped 5 iy je. the three quark masses of the down sector and
by making use of the unitary matritd in Eq. (2) thereby (o, hhysically relevant parameters of the CKM matrix. Let
renderingT(" real. In doing so, on the theoretical side we us comment on this point in more detail: Because, in general,
are left with 12 parameters, 5 from the up sector and 7 fronhormed eigenvectors are only fixed up to arbitrary phase fac-
the down sector. These have to be confronted with 10 experyrs, instead ofUT=U" we can as well chooseJ?
mental data, i.e. 6 quark masseg real observables in the _ Plu(Lu) in the above reasoning, witR; a diagonal phase
CKM matrix, leaving a freedom of two parameters. This ismatrix,

characteristic for an NNI basis.

Note thatH(? is completelyfixed in terms of the experimen-

P,=diage'?1,e'%2 e'?%s), (15)

Il AN EFFICIENT RECONSTRUCTION PROCEDURE With this choice the second substitution in E&j3) becomes
The authors off1] give a detailed prescription for the

construction of mass matrices in an NNI basis, for arbitrary

mass matrices: The main step consists in solving the eigen- (@) N N
value problem =P1VermP2DPoVeywPy - (16)

HE@ [ = P:1VekmD (d)V;r:KM PI
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In the last line,P, again denotes a diagonal matrix contain- p) the parameters, and ,}3 are fixed in terms of, 3 and
ing only phase factors, the squared quark masses of the up sector by means of the
P,=diag €'%s,e'?s 1), (17)  relations
2.2 2 "27h202
and the diagonal character B{Y has been used. Equation MMtk iy '? 7 o @)
(16) shows that we are allowed to choomey parametriza- m3m§+ mﬁmt2+ m§m$=a2ﬂ2+/3272+ y’a?
tion for Vky that we would like to start with. The transition

. . . . . ~272, @202
to any other parametrization ®cyy, is easily accomplished Ta“kyt Bok3 (22)
Ik;y means of suitable choices of the phase matrRgsnd m§+ m§+mt2=2¥2+i32+ 3,2+ ;(54”“(%_ (23)
2.

Next, we have to tackle the task of finding the unitary As a consequencé) is a function of four real parameters
matricesU which transform the squared mass matrie£® (and, of course, the masses of the up quarks
to NNI form. Postponing for a moment the analysis of the

down sector, the corresponding condition 1drin the up U=U(a.B.12.¢3). (24)
sector simply reads See Appendix A for more details.
AuWw=ytpWy o pW=yfpWyt, (18 Next we turn to the down sector. In order to guarantee the

NNI form in the down sector, too, the unitary mattix Eq.

In other words, at this stagel is given by those unitary (19), has to satisfy one additional condition. WitH(®
matrices that diagonalize the most general squared mass maU'H@U  and  setting U=(u;) and H@

trix A =TWTWT whereTW is taken from Eq(10) with = VexmD @V = (h;j), see Eq(14), this condition reads
¢,=0= @3, without loss of generality This is the first con- A !
dition for the matrixU. (H®D) 1,=uf1hiju;=0. (25)

An analytical expression for the matrl is obtained by o -~ _ o

restricting to the case, =0 the general solution of the prob- This yields the second condition for the mattix As this is

lem of diagonalization that we had obtained earlief4, ~ &n equation for complex numbers, two out of the four param-

viz. etersa, B, i, and 5 are fixed this way, leaving a freedom of

two real parameters. This is characteristic for the NNI form.

Please note that it is essential to take into account properly

U=pP| f(me)/nz g(me)/ny h(meg)/ny |, (19  the freedom parametrized By Eq. (20). Had we missed the
f(m)/ns g(my)/ng h(m)/ns phase matrix?, U would have been completely determined

by Eg. (25 and onlyone special set of NNI mass matrices

where the function$(m;), g(m;), h(m;) and the denomina- Would have resulted, contrary to our purpose of reconstruct-

f(my)/ny g(my)/ng h(my)/ny

torsn, are given by ing all NNI mass matrices.
ma s o The parametrization of), Eq. (19), in terms ofa, 3, ¢,
f(my) =~ ars(B7—mp) and 5 is not suited for constructing the solutions of Eq.
g(m;) = —,8:<2(a2—mi2) (i=u,c,t) (25), simply because the resulting equation contains a com-
h(mi):(&z—m?)(ﬁz—mf) plicated sum of cosines with arguments, i3, as well as
their differencey,— 3. The practical reconstruction in this
n2=(a?—m2)(B2—m3)(m2—m2)(m2—m?) framework would not be simpler than within the original
) B T P, proposal of Branco, Lavoura and Mota. The situation
ns= (Mg — @) (B=—mg)(mg —mg)(mg—mg) changes decisively if we use a new parametrizatiok) o

- - terms of two complex numbers defined as folldivs:
n3=(m{— a®)(mf— B%)(m?—m)(m?—mp).

The diagonal phase matri, a;:E—ZZ, b::E—Sz_ (26)
P=diag —1,e'%2,e'"3), (20 e v

In particular, the moduli and phasesafndb are given by
represents the freedom of multiplying each eigenvector of

H with an arbitrary phase factdiAs we are aiming aall % 3 a2 2
NNI mass matrices this freedom must be taken into account. EE ({3 mu)(t“c ) (mg—my)
(a?=md)(B*=md)(mf—mg)

(27)

This will become clear also in a moment when we count the
degrees of freedom explicitly. Furthermore, from the com-
parison of the characteristic polynomials B#)TWT and of
The casel;»,=0 must be excluded at this point. However, as we
shall see below, this is no restriction: The case whetends to
The choice of the first phase, dip}, is made for the sake of infinity, a—c, is mapped, by a symmetry of the equations, to the
convenience. pointa=0; cf. Eq.(37) below.
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" \/(Bz—mﬁxm?—&z)(mi—mﬁ) o= Vs. @0

- < : (28)
(a?=m)(mf=B?)(mf—mg) _
The two complex variables and b replace the four real

Yo for mi=alsmi<pZ<=m?, variablesa, 8,1, and 5. In fact, a straightforward calcula-
Y= 2 2o 2~y 5 (29 tion shows thatJ, Eq. (19), when expressed in terms of the
Yot for mispismi<a’<=mg, new variablesx andb reads as follows:
|
(m2—m?)|allb] 1 |a|?(mZ—m?)+ |b|2(m?—m?)
N, Ny NN,
y (mi-mplbla a  a(bl*(m{—m})—(m;—mg)) D
- N,|a| N3 N1N,
(mi-mdlalb b b(lal*(mi—m3)+(mf-—md)
N,| b Ny N1N;
with
NZ=1+|a|?+|b|? (32)
N3 =|ab|(mf—mZ)?+a|2(mZ—m?)?+[b|*(mf - m}),
|
As long as only the up sector is under consideraiandb IV. PARAMETER DEPENDENCIES, SYMMETRIES AND
remain arbitrary and are not restricted at all. It is the second EXPANSIONS

NNI condition (25) that imposes a constraint on them: in the

new parametrization this condition takes the simple form of aareTzeerlfsglt)su??:\fd En:jhii Erez\illrzuiosne]crleotgi Whgr?:rgle;?::j
quadratic equation, viz. p pp , pletely g

analytical in the sense that no approximations whatsoever
have been made. Furthermore, we conjecture that the param-
etrization and reduction to the complex parametéor, al-
(mf—mg)ab(hlﬁ ah;,+ bhlg)—(mf—mﬁ)b(h21+ ah,, ternatively, the parametdr) described in the previous sec-
tion is the best one can do in reconstructing mass matrices
from their eigenvalues and the CKM observables. In this
section we provide further support for this conjecture by giv-

. . _ ing some examples and by showing that it is possible to
Depending on whether E33) is solved fora=a(b) or for classify, in a procedure that is suitable for practical studies,

b=Db(a) the complex parametdror the complex parameter o set of all mass matrices that are compatible with the
aremains free and, thus, we recover the two-parameter fre‘:given observables

dom of the NNI reconstruction. . Generally speaking, due to the use dfa we conjectune
_ By means of the above formulas elementary calculationg,,iima| parametrization the task of findia mass matrices
yield all parameters ofAthe NNI mass matrices in terms.of ;"\ form is reduced to the simple problem of solving a
andb. For instance, fo3 we obtain quadraticequation; see Eq33). To begin with we note that
the left-hand side of Eq33) can be written as a scalar prod-
uct

+bhyg) + (mZ—m?)a(hg,+ahg,+bhg)=0. (33

m;+|al?mZ+ |b|?m?
1+al?+|b|?

B?= (34)

1
((mf—m?)ab, — (mf—md)b,(mZ—mj)a)(h;)| a
b

After insertion ofa=a(b) or b=b(a) according to Eq(33)

this equation specifieall admissible values for the param- 1
eter 8 in the NNI form of the mass matrices by varying the =(mf—mZ)ab(1,— ui/a,uy/b)(hy)| @
unconstrained parametbror a, respectively. b
The results for all other parameters are quoted in Appen-
dix B. =0, (35
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where the constantg, and u, denote the ratios

2
u
2

mtz_mc

m2—m

2
_my=m c

2
- (36

M1 pm1—1.

M= 2
my —mg

When the conditiori35) is written in this form and using the

fact thatH(@ is Hermitian, we see at once that &,p) is a
solution, so is ¢ uq/a*,u,/b*). The simultaneous substi-

N

maps the circle with radiuR,= x; in the complexa plane
onto itself (by relating antipodes while in the complexb
plane every point of the circlg/u,e'? is a fixed point. At

[—

a
b

a uqla*
b'=+pu,/b*

37

the same time, this substitution means interchanging the first

and second columns &f, Eq. (31). Therefore, if we restrict,
e.0.,a= ajnner to the interior of the first circle, and calculate
b(ajme) from Eqg. (33) as well as the mass matrices
(HW-(@), ., then the solution pertaining tage=a'=
—u1/al e and the corresponding value bf(a,e) Yields
the mass matrices

( H (u)'(d))outer: Ug( H (u)'(d))innevu 0

o — O

10
0 0
0 1

PHYSICAL REVIEW D65 093011

mZ|hogl 2+ mf|hyyl?

"o 2 o
a‘=mg, B°=

¢ |hagl?+[hyyl?
- P |h21||h23|(mt2_m5)
K3:O, Koy= > > y

[hagl®+ [hyy

~, Memg
’y - 32

Similarly, for thed sector we find in this case

&,Zzhzza
B' 2 _ h11/h2g 2+ hag hog|2— 2Re(hy5h13h,)
[hogl+ [Nyl '
ST Al — hi, i
a' k3€'93=\|hyg“+|hy|* =€,
[hyd

Br;‘(reizpé_ |h21||h23| _ h21h13_h23h31

2 - 3 M1

2 | p, 22
|hg 2+ hyyl? has ha

In particular, for unprimed and primed parameters of the tri-

angular matrices this is equivalent to

(az)inner: (ﬁz)outerv (Bx2)inner= (@K3)outers

2 2 2 _ 2 2 2
(v + K5+ K3)inner= (¥ + K5+ K3) outers

and likewise for the primed quantities:

(a 2 Jinner= (B’ 2 )outers

. ’ . ’
(B’ Kée"#’z) inner= (& Kéel%)outer,

’
2

(v’ 2+ KkhP+ Ké z)inner:(’y’ 2+ Ké 2+ Ké 2)outer-
Clearly, this symmetry simplifies greatly any practical analy-
sis.

Before turning to the general case we illustrate our for-
mulas by a few special cases.

(i) If the parametern vanishesa=0, Eq.(33) givesb(a
=0)= —hy,/h,3. For theu sector we then obtain

mgmgm

12 _
o~ ZB! 2

This example illustrates the power and the simplicity of the
reconstruction procedure: Given the experimental {ad
with Vekm given in an arbitrary, but fixed parametrization,
the above formulas yield all entries of the triangular matrices
(10), hence the mass matrices of theand d sectors in an
NNI basis.

(i) If we setb=0, hencea(b=0)= —hs;/h3, the mass
matrix in theu sector is given by

n2

_ mZ] Nzl 2+ M| hayl?

|hagol+[hgyl?

~n _|h31||h32|(m§—mﬁ)

Kyp=
|hol+ [hgl?
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. m2m2 wi~1—1.67x105,
’y - "2 *
B to=p,—1~1.67x10°.
For thed sector we obtain the following expressions: It seems appropriate to expand our formulas in termg of
R =u,—1. So, for a given value of, the two solutions
a'?=hgs, b,;(a) of the quadratic equatiof83) are given by
hz;+ah
P h1alhaz 2+ hogl hag 2= hsohishps—haghoshy, b,(a)= 3 32 5 a,u2+(’)(,u§), (40)
- 2 2 ’ ha;+a(hy—hy) —athy,
N7+ [hayl
haita(hy,—hyy) —a’hy,
A his . by(a)= +0 . 41
a' kyelvs=— /|h32|2+|h31|2 ﬁeu/%, 2(a) ah;s—hys (o) (41
31l
Whether or not this is a good approximation, in principle,
<~y o |hggllhgy hsihy,  hgohy depends on the range afand on the matrix elements; ,
B' kye'f2=——r———| hpp—hy+ " Thay | hence on the experimental input. In order to estimate its

- 22
[hao2+[hgyl? haz

quality it is useful to compare the product and the sum of the
> 2 o two approximate solutions to the product and the sum of the
, o MgMsmy, exactsolutions of the quadratic equati@d3). Thus, denoting

Y the above approximations Ry (a), the exact solutions by

~127' 2 .
a'"p b we define
As in the previous example this shows that it is possible to by(a)bs(a)
reconstruct the triangular matricé$0) from the data and, P:;_ ,
~ A ~ exac! exac!
from there, the squared mass matriegd = T(@T (@, bP*ta)bs*ta)
The two preceding examples are degenerate cases be-
cause, by setting (or b) equal to zero, hence fixing(0) [or ' bi(a)+by(a)
a(0), respectively, the remaining two-parameter freedom is s*= bee @) + bSea) -1 (42)

partly “frozen.” The only freedom left over is contained in

the phasesy, or ¢, respectively, which come from the |f the data are such thal, and 55 are small, and using the
phase matrix20). Also, the substitutiort37) shows that two  fact that the ratid, /b, is proportional tou,, estimates for

more special cases can be obtained where one of the parafiz approximate solutions are seen to be the following:
eters is sent to infinity. We also remark in passing that, al-

though unrealistic in the light of the data, one can easily b,(a) b,(a)
study the_even more degenerate casa afidb both going to bl a) ~1+ 6p— Js, beTcta)w 1+ 6g.
zero, for instance via 1 2

(m2—m2)h In practice, i.e. for realistic values of the experimental input,
a0 b=— Y. 0o the quantitieg42), as well as the modulus of the ratq /b,
' (mtz— mﬁ)h21 are very small. Indeed, with the mas<88), (39), and with
the following data for the moduli of the CKM matrix ele-
In the procedure proposed by Branebal, this limit corre-  ments[6] (assuming a positive value of ti@&P invariant7):
sponds to the case=0 in Eq. (11). While their analysis

needs more care in this case, ours can be extrapolated |Vl =0.9752, |V, =0.2213,
smoothly to @=0,b=0) in the way described above. Thus,
there is no obstruction against choosipr b) anywhere in Vel =0.2211, [V, =0.9744, (43)

the complex plane. N - 5
We now turn to the general case but keep in mind théhe elements of the Hermitian matrik (Y= (h;;)=(mg

actual values of the observabléguark masses and CKM +mZ+ mﬁ)(kij) are found to be
angleg. We first notice that with 5 5
ky;=6.144<10°°,  ky,=2.584x10 3,

(m,=5.1 MeV, m,=1350 MeV, m;=330000 MeV,

(mg=8.9 MeV, m,=175 MeV, m,=5600 Me\) k1,=(1.089+i2.080 X 10" %,
(39
ki3=3.352<10 3-(8.4890x 105,
the first ratio(36) is approximately 1 while the second is
very small, Ky3=4.062<10 2+i6.988<10 "
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The quantitysp is easily seen to be

Sp(a)=— _ ks “
3 akyz—kps" %

As the numerical values of the elementstf) are such that
|ko4/|kq4 =~ 12 this function is regular over the interior of the
circle with radiusR,= /., and may thus be estimated by
means of standard techniques of function theory. We find

| 6p|<1.82x10°5. (44)

Due to the symmetry37) this domain is sufficient to cover
all NNI solutions. Estimatingdg(a) is a bit more compli-
cated because, as a function afit has two poles in that
same domain, very close to each other. Excluding a small
circle around these poles one finds typically

|64 =<0.023. (45)

Also the ratiob; /b, as obtained from Eq$40) and(41) is
estimated as follows:

by
—| =<0.032.

2

Given the experimental valug88), (39), and(43), ds, Eq.
(45) is the dominant uncertainty. Thus, in this framework the
expression$40) and(41) are excellent approximations in the 1.5¢+06 -
interior of the circle with radiufk, except in a small neigh-

borhood of the two poles db,(a), Eq. (40). Note that the
approximations are continuous in the paramatesich is to 1e-+06 -

g
7
i
il

TN
“\\\ .‘n“‘\\\\\;\
TN

o\
)

say that the reconstructed mass matrieé¥ and H(@ de- 3@&:&%}%&@&&?&%

pend on the remaining freedom in a continuous manner. This ::. ::‘i‘o“m“““s“\:““\‘“\‘\‘““

is particularly relevant when studying the dependence of the 1 A N

mass matrices on the parar_n_eteand_ when comparing to 0-% o ,X&&%%“%Mmm

textures obtained from specific physical assumptions. B .“;m»‘é X ““‘::::3:‘\‘3“‘:‘\3:\“\‘ s
We illustrate the method by means of two examples in 0.2 S, "o‘:'.‘:‘:‘ﬁ“‘" Eo8

Figs. 1 and 2. These figures show the parametérand 32 Re(a)
as functions of the complex paramet@rand for the two '
approximate solution®,,(a), Egs. (40) and (41), with a
chosen from the interior of the circle with radit,. The (b) T
figures show clearly the smallness of the neighborhood of the

two poles where the approximation breaks down. Note that if FiG. 1. (a) The paramete&? as a function of (real and imagi-

in that region one wishes to use the exact solutijf§”care  nary pari for the first solution(40); (b) same parameter for the
must be taken in insuring continuity when the signs of squargecond solutiorf41).

roots are chosen.

Assumptions about specific textures of the mass matrices
obtained on the basis of some physical conjecture may or

In a detailed numerical study] we have verified that the may not be compatible with the data. The parametrization
procedure that we are proposing, from a practical point othat we are proposing in this work is particularly well suited
view, is manageable and transparent, and that all dependefor testing the consistency of any such model in a simple and
cies of the NNI parameters of the triangular matrices can béransparent manner. We illustrate this statement by two ex-
illustrated in a simple manner. amples taken from the literature. Supp@8kin an NNI basis

V. SOME EXAMPLES AND CONCLUSIONS
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FIG. 2. (a) The parameteB? as a function ofa (real and imagi-
nary par} for the first solution(40); (b) same parameter for the

second solutiorf41).

the u sector is constrained to be,
condition,

0O rqy O
M| 11 0 T2, with
0 ry, rj

i
’lll"’lll”/”

"’ll/'l” ’ll i

i )
i ”'l,;;;;;,,,: .

0 l
'I', ,,'I'I,,é; 17”1
i
"

l,l: ":

'l:,z;n,/:m

A
/;,,,,,

7
Iri1ers

7%
it

%
st

The corresponding Hermitian, squared form is

-

-1

in addition to the NNI

r{,rp,rs real.

PHYSICAL REVIEW D 65093011

ra 0 rirs

2 2
HW. =1 0 ri+trs rorg
rfp Tofg ra+r3

with r3=m2+m?+m?—2(r2+r3). Comparing this td4

=TWTWT we see that

1. BP=rivrs, akg=rir,, Bro=rofs.
Thus, by Eqs(27), (28) the moduli ofa andb are fixed and
the constraini(33) is reduced to an equation for the phase
factorse'¥a ande'’b. It is then easy to decide whether or not
this equation has a solution and, thereby, whether or not the
ansatz of the model is compatible with the data.

The second examp[@] again makes use of an NNI basis

but now constrains thd sector further by assuming

0 s O
M@=l st 0 s |, with si,s,,5; real
0 s3 s;3

As in the previous example the remaining freedom is re-
duced to two phase factors which must obey the constraint
(33). As the latter contains the input data, i.e. quark masses
and CKM mixing angles, it is not cleaa priori that the
model is admissible. We note in passing that accordiri@}o
both models, within the experimental error bars, can indeed
be used to parametrize the data. This is checked in our
framework by confirming that Eq(33) has solutions of
modulus 1.

The point we wish to make by quoting these examples is
the following: while in general it is difficult to test the com-
patibility of a specific model ansatz with the ddiaithin
their experimental error barsthe model may always be
transformed to an NNI basis. By converting it to our general
form in terms of the parameteasandb, its test in the light of
the data is reduced to checking the simple quadratic equation
(33.

In summary, we found a new parametrization of squared
mass matrices in terms of the experimental infigenval-
ues and mixing observableand one complex parameter that
allows us to sample the space of solutions in an analytical
and transparent manner. Indeed, from the input quark
masses, matrix elemertt; as obtained from the CKM data,
Eq. (14), and a choice o [from whichb(a) is obtained via
Eq. (33), or vice vers4 the equations given in Appendix B
directly yield the mass matricg40). Thus, by varying the
parametera over the circle with radiu®k, in the complex
plane, and using the symmet{§7) we scan the space of all
admissible mass matrices, up to unobservable changes
of basis.

We conjecture that this procedure of reconstructing all
mass matrices, which are compatible with the data up to
(unobservable changes of bases, is optimal. We obtained
this result by combining the idea of using general NNI bases
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[1] with the polar decomposition theorem that allows us topressions foi, and k5 in terms ofa and 3.
restrict the general anegS|s to tnangglar mgtrlbe§]. The Insertingfé according to Eq(23) into Eq.(22) and mak-
formulas that we ob'galned are suﬁ|0|ently simple to hand_lemg use of Eq.(21) leads after a straightforward calculation
so that they may be implemented in a reconstruction routin
that also takes account of the experimental error bars. Alter-
natively, as demonstrated by the examples we gave, our N N Y VR
method allows for a quick test of compatibility with the data ;2:(“ —my)(Me—a”) (Mg —a) (A1)
for any assumed texture in the mass matrices. ’ a?(B?—a?) '

Finally, with our knowledge of neutrino oscillations and
of the corresponding mixing matrix increasing, it will even- In a similar way we also get
tually be possible to perform the analogous analysis of the
leptonic mass matrices in the standard model. . (B2—m?)(B2—m2)(m2— j?)

T RE-D ™
APPENDIX A

This appendix gives some intermediate results which ar®efining U=:PV, where U is given by Eg.(19), and V
skipped in the main text of Sec. lll. We begin with the ex- = (v;;) we thus obtain

(B2=mi)(m—a?)(m?—a?) (@?—mZ)(B2—mi)(mi— B?)
(mf—=md)(mZ—m)(B°—a?) (mg—m) (mg—mg) (B2~ a?)
(a?—m{)(B*—mo)(m{ — a?) | L B mime— a?) (i - B?)
o (me—m3)(me—m2)(FP—a?) | 0 (m?—m2)(mé—m2) (52— a?)
N \/<&2—m5)<m§—&2)<m$—232) L BB - m) (mi—a?)
(mZ—md)(mf—m3)(B%—a?) (mZ—md)(m?—m?)(B*— a?)
_( (&%~ m?)(B?—m)) (m?— a?) (32— m}) (m2—a?)(m?-p2) || 3
YN (2= m)(me—m2) (m?—m2)(m2—m2)’ (mf=mg)(mf—m3)/
In Eqg. (A3) the upper signs fov,; anduv,, refer to the case
mi<a’<m?, mi<p’<m? (case), (A4)
whereas the lower signs pertain to the case
m2<a’<=m?, ml<p’<m? (casel). (A5)

In fact, this distinction of two cases easily follows from the positivitynﬁf, i=1,2,3; see Eq(19). At the same time, this
argument shows that these two cases exhaust all possibilities.
APPENDIX B

In this appendix we quote the results for the parameters of the mass matrices in NNI form in terms of the complex variables
aandb (26). For the up sector the expressions in question are obtained by means(@8FEand insertindJ according to Eq.
(31), or, equivalently, by using Eq26) and Eqs.(Al)—(A3):

n 1
a?= — (|al?|b|?m3(mf — md)?+[a]?mf(mZ—mZ)?+ |b|?mZ(mf — mj)?) (B1)
2

" 1
B2= E(mﬁ+|a|2m§+|b|2mt2) (B2)
1
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o~ N

Bico=— (B3)
Nl

~n N

aK3=N—ilallbl(mf—mﬁ)(m?—mﬁ)(mi—mﬁ)- (B4)

2

In addition, 32 is determined from Eq21), viz.

~ (mumcmt)z
2 __
TR (59
The results for the down sector follow from
H@O=yH@OyT,
whereH® is given in Eq.(14). SettingH® = (h;;) we thus get
“ 1
a'?= E{(mf—m§)2|ab|2h11+(mt2—mﬁ)2|b|2h22+(m§—mﬁ)2|a|2h33—2(mt2—mﬁ)(mf—m§)|b|2Re(ah12)
2
+2(mZ—m?) (m?—m2)|a|?Re(bhy) — 2(mZ—m?) (m?—m?)Re(abhyy)}, (B6)
" 1
B'?= @{h11+|a|2h22+|b|2h33+ 2(Re(ahy,) + Re(bhyg) + Re(abhyg))} (B7)
1
Zs'kéei‘Pé:NzN {~[lal*(mZ—md)?+|b[>(m{ —m{)?](hyy+ahyy+bhyg) —[[b2(mf —m()
182
—(mZ—m{)Ja* (hay+ bhgytbhyg) +[|a]2(mf—m3) + (mf —mf) Jb* (hgy+ ahgy+bhag)} (B9)
_ a(hz;+ahsy+bhgg) —b(hy+ahys+bhyg) & B9)
ab(m?—m?) NZ
&'kge‘%:W{[laP(mi—mﬁH|b|2<m$—mﬁ)][—|ab|2(m$—m§>h11+a|b|2(m$—mﬁ)hlz—b|a|2<m§—mﬁ>h13]
1182

+[|b|A(mZ—mZ) — (mZ—m3) [ —a*|ab]2(m?—mZ)hyy+ |ab|(m? — m&)hy,—a* blal2(mZ—m?) hys)

+[|al?(mf—m?)+ (mZ—m3)1[b* |ab]?(mf —mZ)ha;— ab* [b|2(m? —m)hay+ [abl?(mZ—mi)hagt,  (B10)
2
~ mym<m,
7/,2:( dMsMp) . (B1D)
&rZB'Z

The second, alternative for(B9) of Eq. (B8) is obtained by a few lines of calculations.
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