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Supersymmetric scalar production in the electroweak Sudakov regime of lepton colliders

M. Beccaria,1,2 M. Melles,3 F. M. Renard,4 and C. Verzegnassi5,6

1Dipartimento di Fisica, Universita` di Lecce, Via Arnesano, 73100 Lecce, Italy
2INFN, Sezione di Lecce, Lecce, Italy

3Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
4Physique Mathe´matique et The´orique, UMR 5825, Universite´ Montpellier II, F-34095 Montpellier Cedex 5, France

5Dipartimento di Fisica Teorica, Universita` di Trieste, Strada Costiera 14, Miramare (Trieste), Italy
6INFN, Sezione di Trieste, Trieste, Italy

~Received 20 December 2001; published 30 April 2002!

We consider the production of supersymmetric~SUSY! scalar pairs at lepton colliders, for c.m. energies
much larger than the mass of the heaviest SUSY~real or virtual! particle involved in the process. In that energy
regime, we derive the leading and subleading terms of the electroweak Sudakov logarithms in the MSSM, first
working at one loop with physical states and then resumming to all orders with asymptotic expansions. We
show that the first order of the resummed expression reproduces the physical one loop approximation, and
compute systematically the possible effects on various observables both at one loop and to all orders. We
discuss the regimes and the observables where the one loop approximation can or cannot be trusted, working
in an energy range between 1 TeV and 4 TeV under a ‘‘light’’ SUSY mass assumption. As a by-product of our
analysis, we propose a determination of the MSSM parameter tanb showing how a relative accuracy.25%
can be easily achieved in the region tanb*14, under reasonable experimental assumptions.
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I. INTRODUCTION

The fact that the process of electron-positron annihilat
into a standard model~SM! fermion pair is dominated a
high energy by large electroweak logarithms of ‘‘Sudako
type’’ @1# has become nowadays completely established.
ter the first numerical calculations at one loop that evide
ated the unexpectedly large size of the leading quadr
~DL! and subleading linear@2,3# ~SL! terms, a great amoun
of theoretical work has been devoted to the task of comp
ing this type of effect beyond the one-loop order. This ha
calculation becomes imperative if one wants to provide
safe theoretical description of the process for c.m. energie
the TeV range, where the truncation at one loop of the p
turbative expansion would be certainly unreliable@2#.

In general, one can say that two types of approaches h
been followed. The first one is based on the study of
process in a suitable asymptotic energy region, where ei
technical or theoretical simplifications are supposed to
valid. Although this definition is not compulsory, we sha
refer to this energy range as that where an ‘‘electrow
Sudakov regime’’ has settled. In this range, a resummatio
the Sudakov logarithms to all orders has been proposed
different groups@4#. For the specific case of a final fermio
pair production, the results seem nowadays to agree, as
oughly discussed in a very recent paper@5#, and for a de-
tailed comparison we defer to the existing literature@4,6#.

In the second approach, one has tried to make exp
calculations of the Sudakov effects at two loops, worki
with ‘‘physical’’ ~i.e. not asymptotic! processes and compu
ing the high energy limits of the derived expressions@7#.
This second approach clearly provides a very important
of the reliability of the first one, by comparison of the co
responding two-loop contributions. At the moment, this co
parison has been successful for the leading logarithmic te
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of the asymptotic expansion. For the subleading ter

which depend both on the c.m. energyAq2 and the c.m.
scattering angleu, a clean high energy resummation pr
scription now exists@5#, but the corresponding ‘‘physical’
two-loop calculation is not yet available. In spite of this,
fair conclusion is that, at the moment, the electroweak Su
kov logarithms in the process of electron-positron annih
tion are under control, provided that the simple one-lo
expansion is replaced, in the TeV c.m. energy range, b
more complete calculation. To be more precise, it should
stressed, though, that the necessity of this replacemen
strongly dependent on the considered observable and en
and that for a special set of quantities~such as, e.g., forward
backward asymmetries! the validity of a one loop expansio
might be still acceptable at realistic collider energies. For
exhaustive discussion of this point we defer to a very rec
paper@8#.

An important question in this subject is that of when t
‘‘electroweak Sudakov regime’’ starts. Otherwise stated,
which energy can one assume that an expansion of Sud
type provides a ‘‘satisfactory’’ description of the various pr
cesses, i.e. one that reproduces the relevant experimenta
servables at the requested theoretical accuracy? In@3#, a ten-
tative one loop analysis was prepared by fitting the numer
values at variable energy of various quantities, rigorou
computed, with a logarithmic expansion ‘‘in the manner
Sudakov’’ that included, beyond the leading and the s
leading terms@including the renormalization group~RG!
ones#, an unknown constant to be fitted. The result show
that, in the SM, an ‘‘electroweak Sudakov regime’’ was a
tually settling when the c.m. energy approached the typ

valueAq251 TeV, since the fitted parameters of the log
rithms were exactly the theoretical Sudakov ones. It a
showed that, at such energies, the numerical value of
©2002 The American Physical Society07-1
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constant term, although smaller than those of the vari
logarithms, was not negligible at the typical level of acc
racy of a relative one percent~to be assumed from now on a
the aimed experimental reach of future lepton colliders!. The
conclusion thus seems to be that, within the SM, electr
positron annihilation appears to enter a ‘‘Sudakov regim
for c.m. energies of the TeV size to be hopefully reached
a future linear collider~LC! @9# or CERN Linear Collider
~CLIC! @10# experiments.

As a remark that appears, at this stage, somewhat for
it can be finally noticed that the knowledge of the Sudak
logarithms~and, also, of the well known and precisely dete
mined RG ones@11#! would be sufficient to predict theslope
~i.e., the variation with energy! of each experimental observ
ables in its ‘‘Sudakov regime’’ since clearly, in this calcul
tion, the constant terms will disappear. Within the SM, th
procedure would not provide particularly interesting con
quences, although it could be always considered a valu
overall test of the hard theoretical calculations.

All the previous statements and conclusions are stri
valid, as we said, in the SM theoretical framework. A spo
taneous question that arises at this point is that of whe
the obtained picture remains valid in a theoretical extens
of the SM, for which the same type of perturbative expans
is supposed to be valid. A rather natural first candidate of
kind seems to be the minimal supersymmetric extension
the SM ~MSSM!. Analogously, the rather natural process
to be considered seem to be the same ones that we
previously listed, for which the Sudakov effect in the SM h
been fully computed. Here, the extra particles of the MSS
might induce new virtual effects at the one-loop level, th
modifying the coefficients of both the leading and the su
leading Sudakov logarithms~and, of course, and in an a
ready known way, also those of the RG ones!.

An important preliminary problem that arises at this po
is that of determining the c.m. energy at which the ‘‘SUS
electroweak Sudakov regime’’ starts. The latter energy
fixed by the request of being sufficiently larger than the m
of the heaviest SUSY particle that appears in the diagra
that generate Sudakov logarithms. Clearly, no precise ans
can be given at the moment to this question. In spite of
shortage, one can still proceed in a correct general way
first defining asM the unknown heaviest relevant SUS
mass and computing the Sudakov expansion at asymp

energiesAq2@M . A next, more speculative step, would b
that of assuming a ‘‘lightM ’’ situation characterized by
‘‘reasonable’’ M values, say below the TeV range. Th
would allow us to make detailed numerical predictions in
supposedly valid SUSY Sudakov regime, that might be e
ily modified as soon as supersymmetric particles were fin
detected.

The first investigation of SUSY Sudakov effects in t
process of electron-positron annihilation into a~charged!
fermion-antifermion pair was recently performed at the p
turbative one-loop level@12#, and we defer the intereste
reader to that reference for a detailed discussion of the v
ous considered processes and observables. The two
general results that were derived are the fact that vir
SUSY exchanges in those processesdo generate Sudakov
09300
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logarithms and the fact that these logarithms are of the s
leading ~SL! kind and, in the generally adopted definitio
‘‘universal.’’ At the one loop level, working in the ’t Hooft
j51 gauge, they are only generated by vertex diagrams
not by diagrams of box type. Therefore, they are independ
of u, the c.m. scattering angle. From a formal point of vie
they are strictly analogous to the sub-leading logarithms
Yukawa type that arise in the SM for final massive qua
production, in practice for production of third family quark
antiquark pairs.

For a more detailed numerical description, it was assum
in @12# that the value of the heaviest SUSY massM was
equal to~approximately! a few hundred GeV. Under this as
sumption, the numerical effects of the SUSY SL at one lo
began to be appreciable~say, of a relative few percent! when
the c.m. energy was in the TeV range, in particular they w
definitely visible in the supposed CLIC (Aq2.3 TeV) re-
gion, where in conclusion the virtual effects of the MSSM
under this ‘‘light M ’’ working assumption, would be clearly
experimentally testable.

An important feature to be clarified at this point is that
which information on certain SUSY parameters can
achieved in this way. In general, the situation is complica
for two reasons: in the first place, one does not know exa
the value ofM; secondly, the role of next-to-sub-leading co
stant SUSY terms in an asymptotic expansion is unkno
~note that, differently from the SM case, a numerical fit
the constant term like that performed in@3# would require the
knowledge of all the SUSY parameters that might enter t
quantity, and results thus, in practice, hardly performable!.

A possible approach that gets rid of the two previous d
ficulties has been very recently proposed@13#. It is based on
the observation that, in the calculation of theslopeof experi-
mental observables in a suitable ‘‘Sudakov regime,’’ both
constant term and the unknown massM would disappear,
and only the SUSY parameters that enter the coefficien
the Sudakov logarithms would be relevant. In particular
was shown in@13# that the process of top quark–top an
quark production would provide an unconventional way
deriving information, in the MSSM, on the fundamental p
rameters tanb, in a range of values (20,tanb,40) that is
very hard to be experimentally explored in other know
ways@14#, in an energy rangeAq2.3 TeV for a reasonable
‘‘light’’ ~i.e. ,500 GeV) M scenario.

The conclusion of the previous analyses is that, in a c
energy range of the TeV size and in a reasonably lightM
scheme, virtual SUSY effects would play an important ro
at the future lepton colliders in SM pairs production. A
almost obvious attitude is, at this point, that of noticing th
for such M values,direct SUSY pair production would be
copious at such machines, and of asking whether the SU
virtual effects for these processes would be similar,
‘‘worse,’’ or ‘‘better’’ ~i.e. containing more interesting infor
mation on parameters! than those of SM pairs creation.

The aim of this first paper is precisely that of analyzing
this spirit the process of scalar~sfermion or Higgs boson!
SUSY pair production at lepton colliders, and of showing
some detail which relevant information on the MSSM p
rameters would be obtainable from their virtual effects, a
7-2
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in which possible energy range. Although the final conc
sions are supposed to be valid for the special MSSM case
analysis will be performed in a rather general way, so t
our conclusions might be easily generalized for a differ
type of SUSY model. In this paper, we will try to be as s
contained as possible working in a first stage at a ‘‘physic
one-loop level, then performing a resummation at s
leading logarithmic order in anasymptoticregime, showing
that the two expansionsdo coincide at one loop. Having
proved this equivalence, we shall perform our numeri
analyses in the two different formulations to show the r
evance of a logarithmic resummation in the ‘‘Sudakov
gime’’ and, in particular, in an energy regime that is with
the reach of the~hopefully near! future lepton colliders, with
a special emphasis on a possible determination of the fu
mental MSSM parameter tanb.

Technically speaking, this paper is organized as follo
Section II is devoted to a kinematical description of the p
cesses to be considered, to a definition of their Born obs
ables and to a calculation of their expressions at theone loop
level, computed in the asymptotic Sudakov regime. In S
III, the sub-leading logarithmic order resummation is p
sented and a comparison with the one-loop expression
Sec. II is performed. Section IV contains a discussion of
size of the virtual Sudakov numerical effects, both at o
loop and resummed, in a ‘‘lightM ’’ assumption for a large
class of processes. In Sec. V the special role of the tab
dependent Yukawa terms in the MSSM is established and
information derivable on tanb from a measurement of th
slopes of certainspecialprocesses is exhibited. A final dis
cussion in Sec. VI will then conclude the paper.

II. SUSY SCALAR PRODUCTION AT THE ONE-LOOP
LEVEL

The aim of this section is that of giving a general descr
tion of SUSY scalar pair production at the one loop level,
c.m. energies sufficiently high to justify the use of a logari
mic Sudakov expansion to describe the leading electrow
behavior of the experimental observables. This energy ra
will be denoted, in our pragmatic definition, as the ‘‘ele
troweak Sudakov regime’’ of the considered process.

As a first process to be examined, we shall consider
of production of a ~charged and neutral! sfermion-
antisfermion pair; the treatment of Higgs pair production w
then be derivable with simple and straightforward modific
tions. The considered sfermions will be labeled by th
chirality and denoted asf̃ L,R . All sleptons and squarks wil
be considered, with the exception of selectrons. For the la
ones, the theoretical description would be slightly more
volved, due to the presence of an extrat-channel exchange
and we shall postpone it to a next dedicated paper@15#.

The results obtained forf̃ L,R production will then be eas
ily extended to the case of charged or neutral Higgs bos

A. Born level

At the Born level, the process is represented by the p
ton andZ exchange, depicted in Fig. 1. The correspond
decomposition of the scattering amplitude will be
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iABorn5 i @Ag,Born1AZ,Born# ~2.1!

with

Ag,Born52
8pa0Qf

q2 v̄~e1!gmpmu~e2! ~2.2!

AZ,Born5
4pa0@ I f

32sW
2 Qf #

sW
2 cW

2 ~q22MZ,0
2 !

v̄~e1!gmpm@geL,0
Z PL

1geR,0
Z PR#u~e2! ~2.3!

wherep is the outgoing sfermion momentum,p8 the outgo-
ing anti-sfermion momentum, q5p1p8, PL,R5(1
7g5)/2, a0 is the bare QED couplinga05e0

2/4p, sW
2 is

the bare Salam-Weinberg angle,geL,0
Z 52sW

2 21, geR,0
Z

52sW
2 , I f

3 is the isospin third component of the final sfe
mion andQf is the sfermion electric charge in units ofueu.

It is rather convenient to introduce the chiral variabl
aL,R . At the Born level, they are defined as follows:

ABorn[
8pa0

q2 v̄~e1!gmpm@aL
BornPL1aR

BornPR#u~e2!

~2.4!

aL
Born52Qf1

~ I f
32sW

2 Qf !geL,0
Z

2sW
2 cW

2
52

sW
2 Qf1~122sW

2 !I f
3

2sW
2 cW

2

~2.5!

aR
Born52Qf1

~ I f
32sW

2 Qf !geR,0
Z

2sW
2 cW

2
5

I f
32Qf

cW
2 . ~2.6!

We shall first treat, as we said, the processes of produc
of chiral sfermion-antisfermion pairs. The meaningful o
servables that we shall consider in this paper will be

~1! the production cross sections

sL,R~ f̃ !5E
21

1

d cosuFdsL,R~ f̃ !

d cosu
G ~2.7!

with

FIG. 1. Born diagram fore1e2→ fD f̃ .
7-3
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dsL,R~ f̃ !

d cosu
5N

pa0
2b3

8q2 sin2uuaL,R~ f̃ !u2 ~2.8!

whereN is the number of colors andb25124mf̃
2/q2.

At Born level it writes

sL,R
Born~ f̃ !5N

pa0
2b3

6q2 uaL,R
Born~ f̃ !u2. ~2.9!

Note that, at the Born level, all forward-backward asymm
tries defined with

sL,R
FB ~ f̃ !5S E

0

1

2E
21

0 D d cosuFdsL,R~ f̃ !

d cosu
G ~2.10!

vanish

AFB;L,R
Born ~ f̃ !5

sL,R
FB,Born~ f̃ !

sL,R
Born~ f̃ !

[0. ~2.11!

This is a well-known feature of the coupling of a vect
boson to a pair of spinless particles, which cannot gene
an asymmetric cosu term.

At higher perturbative orders, the forward-backwa
asymmetries will not vanish in general. This fact will b
stressed and exploited in the following part of the paper.

~2! The various longitudinal polarization asymmetries

ALR, f̃5
sL~ f̃ !2sR~ f̃ !

sL~ f̃ !1sR~ f̃ !
~2.12!

with their Born expressions

ALR, f̃
Born

5
uaL

Born~ f̃ !u22uaR
Born~ f̃ !u2

uaL
Born~ f̃ !u21uaR

Born~ f̃ !u2
. ~2.13!

B. General one-loop treatment

In the previous Born expressions, all the involved para
eters, i.e. the electric charge, theZ mass and the Salam
Weinberg angle, are by definition bare ones, without una
biguously defined physical meanings. Moving to the n
perturbative one-loop level, this ambiguity must be remov
In the SM case, the general procedures are well kno
Briefly, the bare charge and theZ mass are normally replace
by the correspondingphysical quantities, defined by mea
surements performed atq250 ~‘‘photon peak’’! and atq2

5MZ
2 ~‘‘ Z peak’’!. For the bare Salam-Weinberg anglesW

2 ,
one possible convenient attitude is that of replacing it by
corresponding effective squared sinesl

2 , defined by measure
ments at theZ peak, and for a thorough discussion of t
related definitions we defer the reader to the existing lite
ture @16#. With the three previous replacements and defin
tions, all the ultraviolet divergences at the one-loop level
automatically canceled, and the expressions of the var
observables at one-loop may be written as a simple gene
zation of the corresponding Born quantities, by formally
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placing bare parameters with physical ones, where spe
finite gauge-invariant combinations of one-loop diagrams
ter @16#.

For the processes that we want to consider in this pa
the possible approach to be followed in the MSSM is ess
tially similar. This can be understood without long detail
proofs if one accepts the prescriptions of the theoret
model, where by definition SUSY is broken in a ‘‘soft’’ way
so that no new types of ultraviolet divergences appear w
respect to the SM. In particular, for the process that we
considering, the number of bare parameters that appea
Born level is still equal to three, so that the definition of thr
physical quantities must be sufficient to eliminate all ultr
violet divergences. Two of these quantities remain the e
tric charge and theZ mass. The third bare parameter can s
be taken assW

2 , that appears both in theZ coupling to the
initial electron and in that to the final sfermions. For th
quantity, we could always assume a redefinition that imp
an extra measurement at a suitable c.m. squared energqf̃

2

and ‘‘shift’’ the qf̃
2 dependence in a one-loop expressio

where it will fix e.g., the kinematical point where to compu
finite, gauge-independent combinations of self-energies,
tices and boxes are added to a redefined ‘‘Born’’ term n
fixed bysl

2(qf̃
2). Alternatively, one can still perform a redefi

nition at the ‘‘Z peak’’ and start from a Born term that on
contains the weak Salam-Weinberg angle measured at
CERN e1e2 collider LEP1, SLAC Linear Collider~SLC!.
The price to pay will be that in the one-loop corrections
fraction of the terms will contain contributions to be the
retically estimated at the correspondent ‘‘Z peak’’ c.m. e
ergy where experimental information on the finalf̃ fD state
does not exist. The point is that, in the asymptotic regime
which we are interested, the dependence on these terms
be a part of an overall constant that in the logarithmic co
tent will disappear. Thus, in practice, the same input para
eter sl

2(MZ
2) that entered the SM case can be taken as

third theoretical input. This, we stress, will be perfectly a
ceptable to the extent that one is only interested in the de
mination of the leading logarithmic terms in a high ener
expansion, which is exactly our case. With our choice,
physical expressions that will appear at one loop will co
tain, in their so defined ‘‘physical’’ Born approximation, th
same expressions that were entering at the original B
level, with the bare parametersa0 , M0Z , sW

2 systemati-
cally replaced bya, MZ , sl

2(MZ
2) and extra ‘‘correc-

tions’’ generated by self-energies, vertices and boxes as
picted in Fig. 2. These will bring contributions in th
asymptotic energy region that might, or might not, gener
asymptotic logarithms to the various observables, in a w
that we shall now illustrate.

C. Asymptotic behavior of the different one-loop diagrams

The class of diagrams that will generally contribute at o
loop is shown in Fig. 2. To be more precise, we should a
the statement that, in the two diagrams 2~b!, 2~c! of vertex
type, also the various external self-energy insertions mus
included. This will be fundamental in our approach, since
7-4
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SUPERSYMMETRIC SCALAR PRODUCTION IN THE . . . PHYSICAL REVIEW D 65 093007
addition of those diagrams will cancel ultraviolet dive
gences of the ‘‘normal’’ vertices, making the overall cont
butions ultraviolet finite.

At asymptotic energies, the role of the various figur
becomes drastically different. From Fig. 2~a! we shall obtain
the known renormalization group~RG! linear logarithms.
These will be generated from both SM and MSSM virtu
pairs. Inside the SM component, there will be a gau
dependent term due to virtual pairs of chargedW’s and
charged would-be SM Goldstone bosons, that must be
tained in a generalj-gauge (j5” `) ~our calculations will be
systematically performed in the Feynman–’t Hooftj51
gauge, and thus all the SM would-be Goldstone bosons c
tributions must be computed!. This gauge dependence wi
be canceled, in a by now well-known way@17#, by a com-
ponent~the ‘‘pinch’’ component@18#! of the corresponding
SM vertices, and we do not insist here on this fact, that
already been exhaustively discussed in previous refere
@3#. In our notation, the RG contribution will thus indica
the subleading~linear! logarithm generated at one loop b
the sum of the self-energies and of the ‘‘pinch’’ compone
of the vertices.

In Fig. 2, the ‘‘nonpinch’’ SM component of the initia
vertices must be selected, together with the genuinely su
symmetric one of the MSSM. This operation will lead to tw
separate classes of contributions; the first one, coming f
the vertices with SM virtual exchanges@(abc)
[(gee), (Zee), (Wnn), (nWW)# will generate both
quadratic ~DL! and linear ~SL! Sudakov logarithms@note
that the SM would-be Goldstone bosons and all Higgs c
tributions vanish due to the~assumed! vanishing electron
mass#. The genuine SUSY vertices, corresponding to F
2~b! with @(abc)[(x i

0ẽẽ), (x i
1ñ ñ), (ñx i

1x j
1)# ~where

we denote byx i
0 andx i

1 neutralinos and charginos and w

FIG. 2. Typical one loop diagrams fore1e2→ fD f̃ .
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assume, again, a vanishing electron mass!, will ‘‘only’’ gen-
erate a linear~SL! Sudakov logarithm, essentially ofgauge
~i.e., not of Yukawa! origin.

A similar picture is valid for the final vertices
represented in Fig. 2~c!: ~SM virtual exchanges

@(abc)[( f̃ g f̃ ), ( f̃ Z f̃), ( f̃ 8W f̃8)(W f̃8W)# and genuine

SUSY contributions@(abc)[( f̃ x i
0 f̃ ), ( f̃ 8x i

1 f̃ 8),(x i
0 f̃ x j

0),

(x i
1 f̃ 8x j

1)#. Note that the diagrams with Higgs exchang
are now present, but vanish asymptotically and thus dis
pear in our analysis. This time, contributions of Yukawa ty
~only arising from the Higgsino component of the chargi
and neutralino couplings! must be retained forthird family
final pairs, and we shall list them in our formulas with
proper notation. Again, SM diagrams will generate both D
and SL terms, while SUSY contributions will systematica
be of SL logarithmic gauge type~and for the third family,
also of Yukawa type!.

Finally, there will be diagrams of box type, represented
Fig. 2~d!. This time, a welcome simplification will appea
since only SM virtual gauges-channel exchanges@(abcd)

[(eZ f̃Z), (eg f̃ g), (eZ f̃g), (eg f̃ Z), (nW f̃8W)# do pro-
duce asymptotic Sudakov logarithms~all other SM boxes
vanish asymptotically!, while all SUSY virtual box ex-
changes have the typical property ofvanishingasymptoti-
cally. This is a simple consequence of the spin structure
the corresponding diagrams that allows us to avoid perfo
ing several involved calculations in the final asymptotic n
merical analysis. The surviving SM diagrams generate t
kinds of contributions. One is of the universal DL kind, whe
half of it is combined with a part of the finalWW vertex to
produce a ‘‘universal’’ (4 lnq22ln2q2) term and the other
half is combined with a part of the initialWW vertex to
produce a ‘‘universal’’ (3 lnq22ln2q2) term. The other one is
of the nonuniversalkind, of SL origin and depending on
cosu, whereu is the c.m. scattering angle. All these resu
are essentially similar to the ones that were found in the c
of SM final fermion pairs production@12#, with the expected
difference that a new.(4 lnq22ln2q2) universal term ap-
pears, associated with the finalscalarSUSY pair that is pro-
duced.

After this first qualitative discussion, that we hope to ha
presented in a short and understandable way, we are
ready to write the various logarithmic contributions to t
considered process generated by the relevant one-loop
grams. We shall divide them in subsets that correspond
sentially to the four components of Fig. 2~keeping in mind
the previous remarks on vertex ‘‘pinch’’ components!, trying
to separate within each subset the specific constituent
different diagrams. The procedure will first list the effects
the two independent quantitiesaL,R , defined by Eqs.~2.4!–
~2.6!; the effects on the various observables will follow
Since the list of equations will be rather long, we shall try
eliminate, as much as possible, definitions and conventio
To render a check of our results realistically possible for
interested reader, we specify here that our SUSY Feynm
rules have been taken from Rosiek’s paper@19#.
7-5



ll
al

G
ra
he
-
al

ced
ec-

a-
-
de-

ul-
of
ak
ts

h

BECCARIA, MELLES, RENARD, AND VERZEGNASSI PHYSICAL REVIEW D65 093007
D. Logarithmic expansion at one loop of the scattering
amplitude

At one loop, with our choice of physical inputs, we sha
write the invariant scattering amplitude, for c.m. energy v
uesq2@MW

2 , in the following form:

A5ABorn1A1 loop[
4pa

q2 v̄~e1!gmpm@aLPL1aRPR#u~e2!

~2.14!

with

aL5aL
Born1aL

1 loop ~2.15!

aR5aR
Born1aR

1 loop . ~2.16!

Note that we now write the Born terms as

aL
Born52Qf1

~ I f
32sl

2Qf !geL

2sl
2cl

2
52

sl
2~MZ

2!Qf1~122sl
2!I f

3

2sl
2cl

2

~2.17!

aR
Born52Qf1

~ I f
32sl

2Qf !geR

2sl
2cl

2
5

I f
32Qf

cl
2 ~2.18!

with geL52sl
221, geR52sl

2 .

1. Complete asymptotic 1-loop results

We shall now write the separate contributions of the R
and Sudakov kind. For the Sudakov terms, we shall sepa
the initial vertex contributions from the final ones and t
SM virtual effects~‘‘gauge’’! from the SUSY ones. Box con
tributions will be, in our separation, grouped into the ‘‘fin
gauge’’ component equations~2.20!,~2.21!:

aL,R
1 loop5aL,R

RG1aL,R
in,gauge1aL,R

in,SUSY1aL,R
f n,gauge1aL,R

f n,SUSY.
~2.19!

2. RG terms

aL
RG5F2aQf

4p H S 32

9
N27D SM

1S 31
16N

9 D SUSYJ
1

a

2psl
2cl

2 @2I f
31Qf~124sl

2!#H 1

3 F10216cl
2

6
N

1
1142cl

2

8 GSM

2
1

4 F13218sl
2

6
1~328sl

2!
2N

9 GSUSYJ
1

~ I f
32sl

2Qf !~2sl
221!a

8psl
4cl

4 H F20240cl
2132cl

4

9
N

1
122cl

2242cl
4

6 GSM

1F13226sl
2118sl

4

6

1~326sl
218sl

4!
2N

9 GSUSYJ G lnS q2

m2D ~2.20!
09300
-

te

aR
RG5F2aQf

4p H S 32

9
N27D SM

1S 31
16N

9 D SUSYJ
1

a

psl
2cl

2 @ I f
322sl

2Qf #H 1

3 F10216cl
2

6
N1

1142cl
2

8 GSM

2
1

4 F13218sl
2

6
1~328sl

2!
2N

9 GSUSYJ
1

~ I f
32sl

2Qf !a

4psl
2cl

4 H F20240cl
2132cl

4

9
N

1
122cl

2242cl
4

6 GSM

1F13226sl
2118sl

4

6

1~326sl
218sl

4!
2N

9 GSUSYJ G lnS q2

m2D . ~2.21!

The above one-loop logarithms are of course reprodu
by simply inserting in the Born expression for the cross s
tion the running couplingsg andg8 of SU(2)3U(1) whose
scale dependence is predicted by the MSSMb functions; see
Sec. III.

The parameterm2 which appears in the previous equ
tions will be fixed atm25MZ

2 , which is a natural and con
sistent choice in our approach. For further use we shall
fine the coefficientscL,R

RG writing

aL,R
RG[FaL,R

Born a

pGcL,R
RG . ~2.22!

3. Initial gauge terms

aL
in,gauge5FaL

Born a

16psl
2cl

2G H ~122sl
2!2F3 ln

q2

MZ
2 2 ln2

q2

MZ
2G

14sW
2 cW

2 F3 ln
q2

Mg
2 2 ln2

q2

Mg
2G

12cW
2 F3 ln

q2

MW
2 2 ln2

q2

MW
2 G J ~2.23!

aR
in,gauge5FaR

Born a

16psl
2cl

2G H 4sl
4F3 ln

q2

MZ
2 2 ln2

q2

MZ
2G

14sl
2cl

2F3 ln
q2

Mg
2 2 ln2

q2

Mg
2G J . ~2.24!

In the above equation, the massMg refers to the cutoff
which separates in the photon exchange contribution the
traviolet from the infrared part. Since the main purpose
this paper is the determination of asymptotic electrowe
effects~neglecting in particular soft photon emission effec
which are determined by QED only! if the experimental cut
DE is smaller thenMZ.MW , we shall set from now on
Mg5MZ5MW . With this choice we can check that for bot
the left and right terms we can write
7-6
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aL,R
in,gauge[FaL,R

Born a

pGcL,R
in,gauge ~2.25!

with

cL,R
in,gauge5

1

4 S I e~ I e11!

sl
2

1
Ye

2

4cl
2D F3 ln

q2

MW
2 2 ln2

q2

MW
2 G
~2.26!

whereYe52(Qe2I e
3) and the quantum numbers required

the calculation ofaL(aR) are those of left~right! electrons.

4. Initial SUSY terms

In the following equations we have introduced differe
SUSY scalesMch , Mneut for the chargino and neutralin
contributions:
09300
t

aL
in,SUSY5FaL

Born 2a

16psl
2cl

2G H F ln
q2

Mneut
2 G12cl

2F ln
q2

Mch
2 G J
~2.27!

aR
in,SUSY5FaR

Born 2a

16psl
2cl

2G4sl
2F ln

q2

Mneut
2 G ~2.28!

but in practice we will take them equal to a common SUS
scaleMSUSYand write

aL,R
in,SUSY[FaL,R

Born a

pGcL,R
in,SUSY ~2.29!

with

cL,R
in,SUSY52

1

4 S I e~ I e11!

sW
2

1
Ye

2

4cl
2D F ln

q2

MSUSY
2 G .

~2.30!
and
5. Final gauge terms

aL
f n,gauge5

2a

8psl
4cl

4 H @Qfsl
21I f

3~122sW
2 !#S ~ I f

32sl
2Qf !

2F4 ln
q2

MZ
2 2 ln2

q2

MZ
2G1sl

2cl
2Qf

2F4 ln
q2

Mg
2 2 ln2

q2

Mg
2G D

1S FQf

sl
2cl

2

2
2~2I f

3!
cl

2

4 GF4 ln
q2

MW
2 2 ln2

q2

MW
2 G D

f̃ Lonly
J 2S a

16psl
4 ~2I f

3!F4 ln
q2

MW
2

2 ln2
q2

MW
2 G

2
a

4psl
4 ~2I f

3!ln
q2

MW
2

ln
11~2I f

3!cosu

2 D
f̃ Lonly

2
a

4psl
4cl

4 ~ I f
32sl

2Qf !
2~2sl

221!2 ln
q2

MZ
2

ln
12cosu

11cosu

2
a

p
Qf

2 ln
q2

Mg
2

ln
12cosu

11cosu
1

a

psl
2cl

2 Qf~ I f
32sW

2 qf !~2sl
221!ln

q2

MgZ
2

ln
12cosu

11cosu
~2.31!

aR
f n,gauge5

2a

4psl
2cl

4@Qf2I f
3#H ~ I f

32sl
2Qf !

2F4 ln
q2

MZ
2 2 ln2

q2

MZ
2G1sl

2cl
2Qf

2F4 ln
q2

Mg
2 2 ln2

q2

Mg
2G1S cl

2

2 F4 ln
q2

MW
2 2 ln2

q2

MW
2 G D

f̃ Lonly
J

2
a

pcW
4 ~ I f

32sl
2Qf !

2 ln
q2

MZ
2

ln
12cosu

11cosu
2

a

p
Qf

2 ln
q2

Mg
2

ln
12cosu

11cosu

1
2a

pcl
2 Qf~ I f

32sl
2Qf !ln

q2

MgZ
2

ln
12cosu

11cosu
. ~2.32!

Identifying all gauge mass scales withMW as we did for the initial gauge terms, one can factorize the Born amplitudes
write

aL,R
f n,gauge[FaL,R

Born a

pGcL,R
f n,gauge ~2.33!
7-7
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cL
f n,gauge~ f̃ L!5

1

4 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D S 4 ln

q2

MW
2 2 ln2

q2

MW
2 D

1S I f
3

2sl
2

1
Yf

4cl
2D F ln

q2

M2G ln
12cosu

11cosu

1
1

4aL
Born~ f̃ L!sl

4 ~2I f
3!F ln

q2

M2G
3 ln

112I f
3 cosu

2
~2.34!

cL
f n,gauge~ f̃ R!5

Yf
2

16cl
2 S 4 ln

q2

MW
2 2 ln2

q2

MW
2 D

1
Yf

2cl
2 F ln

q2

M2G ln
12cosu

11cosu
~2.35!

cR
f n,gauge~ f̃ L!5

1

4 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D S 4 ln

q2

MW
2 2 ln2

q2

MW
2 D

1
Yf

2cl
2 F ln

q2

M2G ln
12cosu

11cosu
~2.36!

cR
f n,gauge~ f̃ R!5

Yf
2

16cl
2 S 4 ln

q2

MW
2 2 ln2

q2

MW
2 D

1
Yf

2cl
2 F ln

q2

M2G ln
12cosu

11cosu
. ~2.37!

6. Final SUSY terms

They are also written in the form

aL,R
f n,SUSY[FaL,R

Born a

pGcL,R
f n,SUSY ~2.38!

with

cL
f n,SUSY~ ũL ,d̃L!5cR

f n,SUSY~ ũL ,d̃L!

5H 2
1

2 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D

2
1

8MW
2 sl

2 F mu
2

sin2b
1

md
2

cos2b
G J F ln

q2

MSUSY
2 G
~2.39!
09300
cL
f n,SUSY~ ũR!5cR

f n,SUSY~ ũR!

5H 2
1

2 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D

2
1

4MW
2 sl

2

mu
2

sin2bJ F ln
q2

MSUSY
2 G ~2.40!

cL
f n,SUSY~ d̃R!5cR

f n,SUSY~ d̃R!

5H 2
1

2 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D

2
1

4MW
2 sl

2

md
2

cos2bJ F ln
q2

MSUSY
2 G ~2.41!

cL
f n,SUSY~ l̃ L!5cR

f n,SUSY~ l̃ L!

52
1

2 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D F ln

q2

MSUSY
2 G

~2.42!

cL
f n,SUSY~ l̃ R!5cR

f n,SUSY~ l̃ R!

52
1

2 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D F ln

q2

MSUSY
2 G .

~2.43!

An important feature of our approach is that, in th
asymptotic regime, due to the unitarity properties of t
chargino and neutralino mixing matrices, the only remain
parameters are tanb and the SUSY scale which appears
the logarithmic terms. The role of tanb will be discussed in
detail in Sec. V.

E. Extension of the results to the case of charged or neutral
Higgs bosons

All the results written above forf! L,Rf̃ L,R directly apply to
the case of charged Higgs bosonsH1H2 or of neutral Higgs
bosonsHa

0Hb12
0 , where the labels (a51,2, b51,2) refer

to

H1
05H0, H2

05h0, H3
05A0, H4

05w0 ~2.44!

(w0 is the neutral Goldstone boson!, definingp as the outgo-
ing H2 or Ha

0 momentum andp8 the outgoingH1 or Hb12
0

momentum, and
for H1H2 Qf521, I f

352 1
2 , Yf521,

for H0H08 Qf50, I f
35 1

2 , Yf521.
In the case of charged Higgs bosons, the Born terms

aL
Born~H !5

1

4sl
2cl

2 , aR
Born~H !5

1

2cl
2 ~2.45!
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so that all initial gauge, initial SUSY, final gauge one lo
terms can be taken from the sfermion case with the ap
priate values ofI f

3 andYf given above. The final SUSY an
heavy fermion terms are

aL,R
f n,SUSY[FaL,R

Born a

pGcL,R
f n,SUSY ~2.46!

with

cL
f n,SUSY~H !5cR

f n,SUSY~H !

5H 2
1

2 S I H~ I H11!

sl
2

1
YH

2

4cl
2D

2
3

8sl
2MW

2 ~md
2 tan2b1mu

2 cot2b!J
3F ln

q2

MSUSY
2 G ~2.47!

~note the color factor 3 arising from the quark triangle loo
which will enhance these contributions as compared to
case of final squarks!.

In the case of neutral Higgs bosons the Borng exchange
is missing and theZ exchange is multiplied~with respect to
the previous cases! by iAab where

Aab5S 2sin~a2b! 2cos~a2b!

2cos~a2b! sin~a2b!
D . ~2.48!

The specific cases of use in this paper are

e1e2→HA:Aab52sin~a2b! ~2.49!

e1e2→hA:Aab52cos~a2b!
~2.50!

with the corresponding Born terms

aab
L,Born5

122sl
2

4sl
2cl

2
Aab , aab

R,Born52
1

2cl
2

Aab. ~2.51!

The initial gauge and initial SUSY one loop terms can a
be taken from the sfermion case with the appropriate va
of I f

3 andYf given above. The final gauge terms are

aL,R;(ab)
f n,gauge[Fa(ab)

L,R;Born a

pGcL,R
f n,gauge~ab! ~2.52!

with
09300
o-

,
e

o
s

cL
f n,gauge~ab!5

1

4 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D S 4 ln

q2

MW
2 2 ln2

q2

MW
2 D

2
1

2aL;(ab)
Born ~ f̃ L!sl

4 ~2I f
3!F ln

q2

M2G
3F ln

12cosu

2
1 ln

11cosu

2 G ~2.53!

cR
f n,gauge~ab!5

1

4 S I f~ I f11!

sl
2

1
Yf

2

4cl
2D S 4 ln

q2

MW
2 2 ln2

q2

MW
2 D

~2.54!

and the final SUSY and heavy fermion terms can also
written as

aL,R;(ab)
f n,SUSY[Fa(ab)

L,R;Born a

pGcL,R
f n,SUSY~ab! ~2.55!

with

cL
f n,SUSY~ab!5cR

f n,SUSY~ab!

5H 2
1

2 S I H~ I H11!

sl
2

1
YH

2

4cl
2D

2
3

8sl
2MW

2
f ~ab!J F ln

q2

MSUSY
2 G ~2.56!

and

f ~HA!5
1

sin~b2a! Fsina cosb

sin2b
mu

22
cosa sinb

cos2b
md

2G
~2.57!

f ~hA!52
1

cos~b2a! Fcosa cosb

sin2b
mu

21
sina sinb

cos2b
md

2G .
~2.58!

As one can observe, in the neutral Higgs case there app
one more SUSY parameter (a) than in all other cases, which
would require a separate analysis that we feel is beyond
purposes of this first paper. We shall treat the neutral Hi
production in more general SUSY models~also beyond the
MSSM! in a dedicated forthcoming paper.

F. Logarithmic expansion of the observable quantities

The logarithmic expansion of the various observables
be now straightforwardly derived from Eqs.~2.22!, ~2.26!,
~2.30!, ~2.33!, ~2.38!, ~2.47!, ~2.53!, ~2.54!, ~2.56!. At one
loop, we obtain the following expressions for the polariz
angular distributions:

dsL,R; f

d cosu
5Ncol

pa2b3

8q2 sin2uuaL,R; f u2 ~2.59!

with the first order expansion
7-9
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uaL,R; f u25uaL,R; f
Born u2@112dL,R~ f !# ~2.60!

where

dL,R~ f !5Fa

pG$cL,R
RG~ f !1cL,R

in,gauge~ f !1cL,R
f n,gauge~ f !

1cL,R
in,SUSY~ f !1cL,R

f n,SUSY~ f !% ~2.61!

and the variouscL,R
i ( f ) can be read off the correspondin

previous Eqs.~2.22!, ~2.26!, ~2.30!, ~2.33!, ~2.38!, ~2.47!,
~2.53!, ~2.54!, ~2.56!.

We can then consider the integrated observables. With
purpose, we define the Born quantities1

rL, f5
uaL

Bornu2

uaL
Bornu21uaR

Bornu2

5
@Qfsl

21I 3,f~122sl
2!#2

@Qfsl
21I 3,f~122sl

2!#214sl
4~ I 3,f2Qf !

2
~2.62!

rR, f5
uaR

Bornu2

uaL
Bornu21uaR

Bornu2

5
4sl

4~ I 3,f2Qf !
2

@Qfsl
21I 3,f~122sl

2!#214sl
4~ I 3,f2Qf !

2
~2.63!

and the integration of the relative 1 loop effects with resp
to the scattering angle@note that there are angular depende
parts in thedL,R( f ) due to box contributions#

NL,R; f
full 5E

21

1

d cosu sin2u@dL,R~ f !# ~2.64!

NL,R; f
FB 5S E

0

1

2E
21

0 D d cosu sin2u@dL,R~ f !#.

~2.65!

For realaL,R the relative effect in the total cross sectio
and the absolute shifts in the asymmetries are

ds

s
52

3

4
@rL, fNL, f

full 1rR, fNR, f
full # ~2.66!

dALR, f54rL, frR, f

3

4
~NL, f

full 2NR, f
full ! ~2.67!

AFB, f[dAFB, f5
3

2
~rL, fNL, f

FB1rR fNR f
FB!.

~2.68!

We stress that there is no forward-backward asymmetr
Born level for a pair of scalar particles. The contributio
from angular independent terms cancel, thus this asymm
arises at 1-loop order and is only due to the angular dep

1Notice thatrL, f R
51/5 andrR, f R

54/5.
09300
is

t
t

at

try
n-

dent box terms appearing in the above contributions ca
‘‘final gauge.’’ TheW box only contributes final scalar dou
blets (f̃ L or charged, neutral Higgs bosons! labeled with
‘‘ f̃ L only.’’ The g1Z contribute all final states. A simple
analytical expression reads

3

2
NL, f

FB52
a

p
~124 ln 2!H F 1

8sl
4

1

aL, f
Born

ln
q2

MW
2 G

f̃ L only

1aL, f
Born ln

q2

MZ
2J ~2.69!

3

2
NR, f

FB52
a

p
~124 ln 2!aR, f

Born ln
q2

MZ
2

~2.70!

where we usedMg5MgZ5MZ in the g1Z boxes.
Now we conclude this~unavoidly! long Sec. II, where the

complete DL and SL terms have been computed at the o
loop level. In the forthcoming Sec. III we shall perform
resummation of all the logarithmic terms tosubleadingloga-
rithmic accuracy in a convenient asymptotic~Sudakov! re-
gime, and show that the calculationdoescoincide at the one-
loop level with that of Sec. II.

III. RESUMMATION OF SUBLEADING SUDAKOV
LOGARITHMS IN THE MSSM

In the previous section we have calculated one loop Su
kov logarithms in scalar production at a lineare1e2 collider
at large energies in the MSSM.

With the expected experimental precision in the one p
cent regime at such a machine, the need for a theore
treatment to the same accuracy was already discussed i
introduction. Recently, the treatment of electroweak Suda
logarithms in the SM revealed the fact that for that purpo
at least a two loop treatment to SL accuracy is indicated
the TeV regime@4#. For SM processes a general method
obtaining DL corrections to all orders was presented in R
@4# ~Fadin et al.! in the context of the infrared evolution
equation method. If we assume that the mass scale of
sfermions or Higgs particles are not much larger th

FIG. 3. Two loop corrections involving Yukawa couplings o
scalars to fermions. The Ward identity in Eq.~3.5! assures that, in
the Feynman gauge, the sum of both diagrams does not lea
additional SL logarithms at the two loop level. Only corrections
the original one loop vertex~see Sec. III! need to be considered an
lead to the exponentiation of Yukawa terms in the MSSM to
accuracy.
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the weak scale, these results can be applied straightforwa
to the MSSM since the gauge couplings are preserved u
supersymmetry and no additional spin 1 particles are
changed.

In case the superpartner masses are larger than 500
additional double logarithms need to be taken into accoun
a way outlined in Ref.@4# ~Fadinet al.!. In the following we
assume that we can neglect such terms, i.e. that all MS
scalars have a mass below 500 GeV.

At the subleading level, the situation in general is le
clear at higher orders. For SL angular dependent terms,
same reasoning as above goes through since they orig
only from the exchange of spin 1 gauge bosons and can
su

e

s
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a

m
a

u
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be resummed as in the SM@5#. Box-type diagrams exchang
ing supersymmetric particles in thes-channel do not contrib-
ute to SL angular terms. The same holds for all universal
corrections which involve the exchange of SM particles@6#
since they are properties of the external lines only.

New types of SL Sudakov corrections are, however,
volved in the exchange of supersymmetric particles as
cussed in the previous sections at the one loop level.
begin with the corrections contributing in particular th
Yukawa terms from the final state corrections. In order to
how these corrections enter into two loop SL calculatio
we need to consider the diagrams displayed in Fig. 3. T
corresponding two loop amplitudes read
E dnl

~4p!nE dnk

~4p!n

~p12p2!n Tr @~Grv r1Glv l !~k”2p” 1!2p” 2~k”2p” 11 l”!~Grv r1Glv l !k” #

~ l 22l2!~p21 l !2~p12 l !2k2~k2p1!2~k2p11 l !2
~3.1!

E dnl

~4p!nE dnk

~4p!n

~p12p2!n Tr @~Grv r1Glv l !~k”2p” 11 l”!~Grv r1Glv l !k” #4p1p2

~ l 22l2!~p21 l !2~p12 l !2k2~k2p11 l !2~p12 l !2
~3.2!
gi-

tum
x

a-

not
c-

SM
where we omit common factors and the scalar masses as
ing ms;l for clarity. The Gr ,l denote the chiral Yukawa
couplings andv r ,l5

1
2 (16g5). The gauge coupling is writ-

ten in the symmetric basis for clarity since we are consid
ing a regime whereq25(p12p2)2@M2, where M is the
gauge boson mass. In any case, local gauge invariance i
violated in the SM and for heavy particles in the high ene
limit, we can perform the calculation in a basis which
more convenient. For our purposes we need to investig
terms containing three large logarithms in those diagra
Since the fermion loops at one loop only yield a single log
rithm it is clear that the gauge boson loop momentuml must

FIG. 4. Higher order corrections to vertices with Yukawa co
plings to SL accuracy. The graph is only schematic since in p
ciple the gauge bosons couple to all external legs in the proc
Because of the discussion in the text the non-Abelian version
Gribov’s factorization theorem can be employed in the contex
the infrared evolution equation method.
m-

r-

not
y

te
s.
-

be soft. Thus we need to show that the UV logarithm ori
nating from thek integration is identical~up to the sign! in
both diagrams. We can therefore neglect the loop momen
l inside the fermion loop. We find for the fermion loop verte
Lm(p1

2,0,p1
2) belonging to Eq.~3.1!:

-
-
s.

of
f

FIG. 5. Two loop corrections involving SUSY couplings of sc
lars to fermions. The Ward identity in Eq.~3.5! assures that, in the
Feynman gauge, the sum of both diagrams in each row does
lead to additional SL logarithms at the two loop level. Only corre
tions to the original one loop vertex~see Sec. III! need to be con-
sidered and lead to the exponentiation of gauge terms in the MS
to SL accuracy.
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Tr @~Grv r1Glv l !~k”2p” 1!gm~k”2p” 1!~Grv r1Glv l !k” #

k2~k2p1!2~k2p1!2

5
4GrGl„2p1

m~k22p1k!1km~p1
22k2!…

k2~k2p1!4
. ~3.3!

This we need to compare with the self energy loopS(p1
2)

from Eq. ~3.2!:

]

]p1m

Tr @~Grv r1Glv l !~k”2p” 1!~Grv r1Glv l !k” #

k2~k2p1!2

5
]

]p1m

4GrGl~p1k2k2!

k2~k2p1!2

54GrGl

2p1
m~k22p1k!1km~p1

22k2!

k2~k2p1!4
. ~3.4!

In short we can write

]

]p1m
S~p1

2!5Lm~p1
2,0,p1

2!. ~3.5!

Thus, we have established a Ward identity for arbitra
Yukawa couplings of scalars to fermions and thus the id
tity of the UV singular contributions. The relative sign
such that the generated SL logarithms of the diagrams in
3 cancel each other. The existence of such an identity is
surprising since it expresses the fact that also the Yuk
sector is gauge invariant since supersymmetry preserve
09300
y
-

g.
ot
a

the

gauge symmetry. For the same reason the SM-Yukawa te
were found to exponentiate in Refs.@6#. Also in an axial
gauge the corrections can be seen to factorize accordi
since in this gauge DL terms originate only from on-sh
two point functions.

We are thus left with gauge boson corrections to the or
nal vertices in the on-shell renormalization scheme such
depicted in Fig. 4. At high energies we can therefore emp
the non-Abelian version of Gribov’s bremsstrahlung theor
in accordance with the SM case@4# ~Fadinet al.!.

Analogously, it is easy to see that also the diagrams
picted in Fig. 5 form the initial state exchange of supersy
metric scalar particles leading to Ward identities. For t
respective vertex and self energy contributions we have v
fied that the corresponding Eq.~3.5! is satisfied. Thus the
same reasoning as above can be applied and the expone
tion at the SL level is established.

For our purposes here we omit the soft photon regime
now ~which is determined by QED only if we impose a
experimental energy resolution below the weak scale@6#!
and focus only on the novel higher order Sudakov corr
tions in the MSSM. For clarity and later convenience, we u
a common mass scale in all logarithms below. This is
fully correct to SL accuracy in the DL terms as discuss
below but can easily be rectified using the scales found in
one loop calculation presented in the previous sections
the high energy regime one then has the following result
sfermion production to SL accuracy relative to the Bo
cross section2 @with t52(q2/2)(12cosu), u52(q2/2)(1
1cosu)#:
ds
e

2a
1 e

a
2→ fD2b f̃ b

SL
5ds

e
2a
1 e

a
2→ fD2b f̃ b

Born
expH 2

g2~mf̃
2
!

4p2
I e

a
2~ I e

a
211!F1

c
ln

q2

mf̃
2 S ln

g2~mf̃
2
!

g2~q2!
21D 1

1

c2
ln

g2~mf̃
2
!

g2~q2!
G

2

g82~mf̃
2
!Ye

a
2

2

16p2 F 1

c8
ln

q2

mf̃
2 S ln

g82~mf̃
2
!

g82~q2!
21D 1

1

c82
ln

g82~mf̃
2
!

g82~q2!
G1S g2~mf̃

2
!

8p2
I e

a
2~ I e

a
211!

1
g82~mf̃

2
!

8p2

Ye
a
2

2

4
D 3 ln

q2

mf̃
2 2

g2~mf̃
2
!

4p2
I f̃ b

~ I f̃ b
11!F1

c
ln

q2

mf̃
2 S ln

g2~mf̃
2
!

g2~q2!
21D 1

1

c2
ln

g2~mf̃
2
!

g2~q2!
G

2
g82~mf̃

2
!Yf̃ b

2

16p2 F 1

c8
ln

q2

mf̃
2 S ln

g82~mf̃
2
!

g82~q2!
21D 1

1

c82
ln

g82~mf̃
2
!

g82~q2!
G1S g2~mf̃

2
!

8p2
I f̃ b

~ I f̃ b
11!1

g82~mf̃
2
!

8p2

Yf̃ b

2

4 D
34 ln

q2

mf̃
2 1 d̃e

2a
1 e

a
2→ fD2b f̃ b

ln
q2

mf̃
2 2

g2~mf̃
2
!

8p2
ln

q2

mf̃
2 F ~ tan2uwYe

a
2Yf̃ b

14Te
a
2

3
Tf̃ b

3
!ln

t

u

1
da,Ldb,L

tan2uwYe
a
2Yf̃ b

/41Te
a
2

3
Tf̃ b

3 S dd, f̃ ln
2t

q2
2du, f̃ ln

2u

q2 D G J ~3.6!

2We denote the chiralityL,R by the indexa with 2L5R.
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where the last line only contributes for left handed~L! electrons and thed,u symbols denote the corresponding isosp
quantum number off̃ . In addition we denotec5g2(mf̃

2)b̃0 /4p2, c85g82(mf̃
2)b̃08/4p2, where g, g8 are theSU(2)L

3U(1)y gauge couplings. Here we assume that the asymptotic MSSMb functions can be used with

b̃05
3

4
CA2

ng

2
2

nh

8
, b̃0852

5

6
ng2

nh

8
~3.7!

g2~q2!5
g2~mf̃

2
!

11b̃0

g2~mf̃
2
!

4p2
ln

q2

mf̃
2

, g82~q2!5
g82~mf̃

2
!

11b̃08
g82~mf̃

2
!

4p2
ln

q2

mf̃
2

~3.8!

whereCA52, ng53, andnh52. In practice, one has to use the relevant numbers of active particles in the loops. These
correspond to the RG-SL corrections just as in the case of the SM as discussed in Refs.@6# but now with the MSSM particle
spectrum contributing. They originate only from RG terms within loops without which the RG contribution would give
correction. It must be mentioned that the one-loop RG corrections do not exponentiate and are omitted in the above ex
They are, however, completely determined by the renormalization group in softly broken supersymmetric theories suc
MSSM and sub-subleading at the higher than one loop order.

The generic term denoted byd̃e
2a
1 e

a
2→ fD2b f̃ b

in Eq. ~3.6! is a short hand notation for the overall~initial and final! one loop

SUSY corrections discussed in the previous section. The result in Eq.~3.6! is given for the chiral superpartners directly.
principle, mixing effects need to be taken into account for the mass eigenstates of the third family as discussed in S

Equation~3.6! contains all SL terms to all orders under the assumptions stated above. In particular it provides an in
dent check on the diagrammatic one-loop results derived in Sec. II for all universal corrections from gauge bosons a
the angular dependent terms.

As mentioned above, to compare the asymptotic expansion~3.6! ~valid in an energy regime where the details of electrowe
symmetry breaking can be neglected! with a physicalone-loop calculation like the one that we performed in Sec. II, a num
of ‘‘minor’’ adjustments must be performed. In practice, one should use, rather than a common massmf̃ , the gauge boson
massesMW , MZ or the SUSY massMSUSYin the corresponding logarithms. After these replacements, the one-loop ve
of Eq. ~3.6! should reproduce the corresponding results of Sec. II.

We have verified that the asymptotic expansion Eq.~3.6! and the corresponding physical one-loop expressions of Sec.
actually coincide. This can be verified in a reasonably simple way, which we do not show in detail here to avoid writin
long equations. The result can be considered, in our opinion, a satisfactory check of both the various theoretical a
presented in this section and of the detailed calculations of Sec. II.

In the case of charged Higgs production we have analogously

dse
2a
1 e

a
2→H1H2

SL
5dse

2a
1 e

a
2→H1H2

Born
expH 2

g2~mH
2 !

4p2
I e

a
2~ I e

a
211!F1

c
ln

q2

mH
2 S ln

g2~mH
2 !

g2~q2!
21D 1

1

c2
ln

g2~mH
2 !

g2~q2!
G

2

g82~mH
2 !Ye

a
2

2

16p2 F 1

c8
ln

q2

mH
2 S ln

g82~mH
2 !

g82~q2!
21D 1

1

c82
ln

g82~mH
2 !

g82~q2!
G1S g2~mH

2 !

8p2
I e

a
2~ I e

a
211!

1
g82~mH

2 !

8p2

Ye
a
2

2

4
D 3 ln

q2

mH
2

2
g2~mH

2 !

4p2
I H~ I H11!F1

c
ln

q2

mH
2 S ln

g2~mH
2 !

g2~q2!
21D 1

1

c2
ln

g2~mH
2 !

g2~q2!
G

2
g82~mH

2 !YH
2

16p2 F 1

c8
ln

q2

mH
2 S ln

g82~mH
2 !

g82~q2!
21D 1

1

c82
ln

g82~mH
2 !

g82~q2!
G1S g2~mH

2 !

8p2
I H~ I H11!

1
g82~mH

2 !

8p2

YH
2

4 D 4 ln
q2

mH
2

1 d̃e
2a
1 e

a
2→H1H2ln

q2

mH
2

2
g2~mH

2 !

4p2
ln

q2

mH
2 F da,LS 1

2cw
2

ln
t

u
12cw

2 ln
2t

q2 D
1da,R tan2uw ln

t

uG J ~3.9!

where we denotec5g2(mH
2 )b̃0 /4p2, c85g82(mH

2 )b̃08/4p2.
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The generic term denoted byd̃e
2a
1 e

a
2→H1H2 in Eq. ~3.9! is

again a short hand notation for the one loop SUSY corr
tions discussed in the previous section.

We emphasize again the independent nature of deriv
the remaining results in Eq.~3.9! as they are directly ob
tained frome1e2→f1f2 @2,6# if we neglect the mass dif
ference. A comparison with the one loop calculation confir
again the corresponding contributions of the explicit d
grammatic calculation of Sec. II.

Having checked the equality of the asymptotic resumm
subleading expansion and of the physical one loop calc
tion for all SUSY production processes~modulo ẽ, ñe to
be considered later on!, in the next sections we turn to
discussion of the phenomenological importance of the
loop and resummed corrections particularly for a determi
tion of tanb.

IV. NUMERICAL RESULTS

Given the fact that we have now at our disposal bot
physical one-loop calculation and aconsistentSL order re-
summation, we are in a position to compute all relevant
servables in the two approximations and to identify, whe
ever this occurs, the importance of the extra resummatio
the MSSM case.

To summarize the numerical weight of the various con
butions to the one loop cross sections

e1e2→ f̃ L,Rf̃ L,R* ,H1H2 ~4.1!

we approximate the previous results by replacing in the lo
rithms MW , Mg , and MgZ with MZ and by using every-
where a single SUSY mass scaleMSUSYin place of the vari-
ous Mx1, Mx0, and M f̃ . Under this approximation, we
obtain

100
ds

s
5~kSM

RG1kSUSY
RG ! ln

q2

m2
1kgauge

in L3S q2

MZ
2D

1kSUSY
in ln

q2

MS
2

1kgauge
f n L4S q2

MZ
2D 1kSUSY

f n ln
q2

MS
2

1S kt
Yuk

mt
2

MW
2 sin2b

1kb
Yuk

mb
2

MW
2 cos2b

D ln
q2

MS
2

1kBox ln
q2

MZ
2

~4.2!

where

Ln~x!5n ln x2 ln2x ~4.3!

and kSM
RG , kSUSY

RG , kgauge
in , kSUSY

in , kgauge
f n , kSUSY

f n ,kt,b
Yuk, kBox

are numerical coefficients. Their detailed origin is the f
lowing:

kSM
RG , kSUSY

RG : Renormalization group terms, Eq
~2.20!,~2.21!.
09300
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-
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-

kgauge
in , kSUSY

in : initial gauge and SUSY terms accordin
to Eqs.~2.26!,~2.30!.

kgauge
f n : final gauge terms, namely theu independent loga-

rithms in Eqs.~2.31!,~2.32! with MW set toMZ .
kSUSY

f n : final SUSY terms; these are the tanb independent
terms appearing in Eqs.~2.39!–~2.43!.

kt,b
Yuk: final ‘‘massive’’ SUSY terms; these are the tanb

dependent terms proportional to 1/sin2b and 1/cos2b respec-
tively in Eqs.~2.39!–~2.43!.

kBox: all the terms resulting from the angular integratio
of the u dependent terms@note that we are now separatin
box terms from final gauge ones, differently from what w
did in Eqs.~2.31!–~2.37!#.

The following remarkable relations hold:

kgauge
in 52kSUSY

in 5
def

kin ~4.4!

kSUSY
f n 522kgauge

f n ~4.5!

and allow us to write the simpler expression

100
ds

s
5~kSM

RG1kSUSY
RG !ln

q2

m2
1kinFL3S q2

MZ
2D 2 ln

q2

MS
2G

1kgauge
f in FL4S q2

MZ
2D 22 ln

q2

MS
2G1S kt

Yuk
mt

2

MW
2 sin2b

1kb
Yuk

mb
2

MW
2 cos2b

D ln
q2

MS
2

1kBox ln
q2

MZ
2

. ~4.6!

The numerical values ofkSM
RG , kSUSY

RG , kin, kgauge
f n , kt,b

Yuk, and
kBox are shown in Table I.

In the case of the longitudinal and forward-backwa
asymmetries we compute instead the absolute percentua
fect 100dA and group the various contributions exactly as
the previous equation. The numerical values of the coe
cients forALR are also shown in Table I. In the case ofAFB ,
only kBox is nonzero and its values are

AFB : kBox5H t̃ L t̃ R b̃L b̃R H6

21.3 20.32 1.3 0.16 1.1.
~4.7!

We shall now illustrate the main results of our analysis
the following figures. We must anticipate at this point th
the qualitative features of the various effects show a str
difference between the two cases of

~a! production of sleptons in general~with the exclusion
of selectrons andñe) and squarks of the first two familie
and

~b! production of squarks of the third family and o
charged Higgs bosons. One can already guess that the d
ence will be due to the appearance, in the second cas
contributions of SUSY Yukawa type, that will give rise t
relevant and possibly interesting effects to be discussed
on.
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TABLE I. Numerical values of thek coefficients. They are de
fined in Eq.~4.6! and represent the relative weights of the vario
logarithmic one loop effects in the cross sections. The second
of the table shows their numerical values in the case of theAFB

asymmetry. A dash denotes a contribution that is rigorously null
not simply numerically negligible.

100 Ds/s kSM
RG kSUSY

RG kin kgauge
f n kt

Yuk kb
Yuk kBox

t̃ L
21.3 1.9 0.41 0.38 20.25 20.25 1.5

t̃ R
1.0 0.63 0.20 0.067 20.51

b̃L
21.7 2.2 0.40 0.38 20.25 20.25 1.8

b̃R
1.0 0.63 0.20 0.017 20.51

H6 20.63 1.6 0.37 0.41 20.76 20.76 1.1

DALR kSM
RG kSUSY

RG kin kgauge
f in kt

Yuk kb
Yuk kBox

t̃ L
20.15 0.083 0.016 0.095

t̃ R
0.084

b̃L
20.26 0.15 0.024 0.17

b̃R
0.084

H6 20.59 0.33 0.076 0.37
im

09300
Figure 6 shows the relative logarithmic effects at one lo
~dashed line! and after resummation~full line! for

m̃L,R , t̃L,R , ñm,L , ñt,L , cross sections at variable en
ergy, while in Fig. 7 the same effects are shown for the fi

two families of squarks~denoted asũ, d̃). Figures 8, 9
correspond to the cases of the forward-backward asym
tries of the same processes. In all figures, the ‘‘logarithm
effect takes into account both the RG SL and the Suda
DL,SL terms.

As one sees from Figs. 6–9, the general feature is that
logarithmic effect at one loop in the energy region betwee
TeV and 2 TeV is very close to the resummed effect, up
less than one percent differences that in our working assu
tion should be experimentally invisible. This feature, that
valid for both cross sections and forward-backward asymm
tries, is intuitively related to the fact that the one-loop effe
are in these cases relatively ‘‘small,’’ although experime
tally meaningful, being typically of several percent size. T
same conclusions apply to the cases of the longitudinal
larization asymmetries of this first class of processes. In
der to avoid a too large number of figures, we have given
corresponding effects in Table II. The situation chang
when one moves to larger energies, 2 TeV&Aq2&4 TeV
~the latter value is chosen as an optimistic ‘‘averaged’’ a

rt

d

abeled
e denote
FIG. 6. Cross section for production of sleptons (5” ẽ) or sneutrinos. ‘‘1L’’ is the total~renormalization group and Sudakov! one loop
virtual effect. ‘‘exp( . . . )’’ is the cross section resummed at subleading order including RG contributions. In the last curve, l
‘‘exp( . . . ), universal,’’ the angular dependent terms coming from boxes have been suppressed. In this and the following figures w
by Q the c.m. energyAq2.
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FIG. 7. Cross section for production of up or down squarks in the first two generations. The labeling of the various curves is e
in the caption of Fig. 6.
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for CLIC experiments!. Here, for left-handed sleptons an
squarks, the difference between one loop and resumma
becomes appreciable~beyond the one percent level! and a
complete resummation appears necessary.

The conclusion of this first investigation is that, in th
energy range of the TeV size, assuming a typical SUSY m
of few hundred GeV, the perturbative treatment of SU
scalar production for the considered set of processes app
to us to be totally satisfactory at the one-loop level, not
quiring extra resummations if the aimed experimental ac
racy remains at the one percent~and not at the one permille!
level ~we stress that, if the SUSY mass turned out to
larger, these conclusions can be simply rescaled at co
spondingly larger c.m. energies!. For larger energies, a re
summation seems to be requested for left-handed scalar

As a side remark that might be added, we have also
picted in Figs. 6–9 the separate resummed effects that w
have been obtained by ignoring the SLu-dependent contri-
butions of box origin. As one sees, the consequence of
omission would have been catastrophic in the left sferm
cases, in particular, the angular terms are the only ones
contribute the forward-backward asymmetries. This confir
a previous observation@8# that stressed the relevance of the
‘‘box-type’’ contributions in the Sudakov regime.

When we move to the production of either a third fam
of squarks or charged Higgs bosons~we recall that neutra
Higgs bosons production will be treated in detail in a for
09300
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coming paper!, a different picture arises.A priori, we know
that SUSY Yukawa contributions will be effective in thes
cases, and they will depend on the tanb parameter. This
statement is only true for cross sections, and does not h
for forward-backward asymmetries, since the latter ones
not affected by universal,u-independent, contributions. T
evidentiate whether this expectation is correct, we have
picted in Figs. 10~a!,12~a! the effects on the cross section
for squarks and Higgs bosons production at two represe
tive and sensibly different values tanb510 and tanb540.
Again, we have drawn systematically the one loop~dashed!
and resummed~full ! effects. In Figs. 11~b!,12~b! we have
drawn the forward-backward asymmetries of Higgs bos
and squarks production that, as we said, do not depend
tanb. The first characteristic feature of Figs. 10~a!,12~a! is
that now a more drastic difference exists between the ene
region Aq2.1 TeV ~possibly within the final aimed reac
of the LC! and that ofAq2.3 –4 TeV ~possibly within the
CLIC range!. In the first case, the same previous conclusio
about the reliability of a one-loop expansion are still, in o
working assumptions, essentially valid~in fact, the relative
difference between the one-loop and the resummed effec
always below the assumed visible one percent level!. This
reliability is totally lost when one reaches the.3 TeV re-
gime. In this case, the relative difference between the
effects is well beyond the one percent level, particularly
7-16
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FIG. 8. Forward-backward asymmetry for production of sleptons (5” ẽ) or sneutrinos. The labeling of the various curves is explained
the caption of Fig. 6.
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large tanb. In the extreme case of Higgs boson production
tanb540, the relative difference between the two effects
of approximately five percent at 3 TeV. Similar features a
valid for squark production as well. Thus, for third fami
squarks and charged Higgs boson production in the C
energy regime, with a SUSY mass of a few hundred T
stopping the theoretical calculation at the one loop le
would be in our opinion a theoretical catastrophe. It sho
also be stressed that the resummed effect remains large
sometimes spectacular. In particular, in the extreme cas
charged Higgs boson production at tanb540, it reaches the
35 percent value atAq253 TeV. For squarks, the effect i
reduced but is still generally large~from .5 to .15 depend-
ing on the cases!. We insist again on the fact that, as a co
sequence of the color factor in the quark loop in Fig. 2~c!,
the process of charged Higgs production exhibits the m
sizeable SUSY Yukawa Sudakov effect, as we anticipate
Sec. II.

In the case of forward-backward asymmetries, depicte
Figs. 11~b!,12~b!, the situation is very similar to that of th
sleptons and first families of squarks, as one can see.
only difference appears in the case of Higgs boson prod
tion. Here the difference between one-loop and resumm
effects becomes again visible in the CLIC~but not in the LC!
regime. This fact is, in our opinion, accidental since w
could not find deeper physical motivations for it.
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Thesecondrelevant feature of Figs. 10~a!,12~a! is the fact
that a strong dependence on tanb appears in the logarithmic
effect. This can be seen by comparison of the two curves
correspond to tanb510 and tanb540. As one notices, the
relativedifferencebetween the two effects is always ‘‘large
~depending on the case again with an enhancement in
Higgs boson case!, with the only exception of right top quark
production@this can be qualitatively understood looking
Eq. ~2.40!#. This remarkable feature remains essentially tr
in the overall 124 TeV energy range, although it increas
with energy. The previous observation suggests that, fro
special analysis of cross sections, one might be able to de
interesting information on tanb. In fact, this possibility was
already considered in a previous paper devoted to top qu
production@20#, where it was proposed to exploit measur
ments of theslopeof the cross section to fix the tanb value.
In Sec. V we shall generalize the previous proposal to
cases of top squark, bottom squark, charged Higgs bo
production, and discuss in some detail the possible con
quences for a relative precise determination of tanb.

A final comment has to be added concerning the mix
effects which affect the third family of squarks. The ma
eigenstates will no more bef̃ L,R but the combinations
f̃ 15cosuf f̃L1sinuf f̃L and f̃ 252sinuf f̃L1cosuf f̃L . Experi-
mental results will be obtained for production o
7-17
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TABLE II. Absolute shift in the asymmetryALR . We consider here two energies 1 and 3 TeV. For each
energy and final sparticle we show values. ‘‘1L’’ is the one loop contribution; ‘‘Res’’ is the contribution
resummed at subleading accuracy. The label ‘‘nou ’’ means that thegenuinenon-universal angular contribu-

tions from boxes have been suppressed. About the sparticle labeling, we recall thatl̃ stands for a generic

sleptonm̃ or t̃ and thatũ and d̃ stand for squarks withT351/2 and21/2 in the first two generations.

1 TeV 1 TeV 1 TeV 1 TeV 3 TeV 3 TeV 3 TeV 3 TeV
100 DALR 1L Res 1L, nou Res, nou 1L Res 1L, nou Res, nou

l̃ L
20.27 20.17 22.4 22.3 21.9 21.6 25.7 24.8

l̃ R
21 20.99 21 20.97 23 22.6 23 22.5

ñ 0.53 0.89 26 25.9 21.5 21.3 213 211

ũL
20.031 20.0069 20.57 20.56 20.36 20.31 21.4 21.2

ũR
21 20.98 21 20.97 22.9 22.6 22.9 22.5

d̃L
0.011 0.055 20.95 20.93 20.43 20.37 22.2 21.9

d̃R
21 20.98 21 20.97 22.8 22.6 22.8 22.6

t̃ L
20.032 20.017 20.59 20.57 20.39 20.34 21.5 21.2

t̃ R
21.1 20.98 21.1 20.97 23.2 22.5 23.2 22.5

b̃L
0.011 0.037 20.99 20.95 20.46 20.43 22.4 22

b̃R
21 20.97 21 20.97 22.9 22.6 22.9 22.6

H6 20.3 20.3 22.6 22.4 22.4 22 27.3 25.2

FIG. 9. Forward-backward asymmetry for production of up or down squarks in the first two generations. The labeling of the
curves is explained in the caption of Fig. 6.
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FIG. 10. Cross section for production of third generation squarks~top squark and bottom squark!. We show the one loop~1L! and
resummed@exp( . . . )# shifts at tanb510,40.
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f̃ 1f! 1 , f̃ 2f! 2 , f̃ 1f! 2 , f̃ 2f! 1. However, in the asymptotic
regime, the amplitudes for mass eigenstates can be expre
in terms of amplitudes for chiralL,R states in a simple way

A115ALL cos2u f1ARRsin2u f

A225ALL sin2u f1ARRcos2u f

A125A215~ARR2ALL!sinu f cosu f
~4.8!

so that it should be straightforward to express the experim
tal results in terms of the observables concerning the ch
states that we considered in this paper. One has just to in
the above equations, and one obtains

tan 2u f5
2A12

A222A11
~4.9!

ALL5
A11cos2u f2A22sin2u f

cos2u f2sin2u f

~4.10!

ARR5
A22cos2u f2A11sin2u f

cos2u f2sin2u f

~4.11!
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for each flavort̃ or b̃, separately. The experimental resu
can then be given for chiral states and compared with
theoretical predictions made throughout this paper.

V. DETERMINATION OF tan b

In the framework of the MSSM, we showed in a previo
paper@13# that the cross section for the processe1e2→qq̄,
with q being a third generation quark~top and bottom!, con-
tains angular independent Sudakov logarithms of Yuka
origin. These are terms depending on tanb and on the SUSY
massMSUSY, which are the only SUSY parameters survi
ing in the high energy limit of this process.

To understand the reason for this peculiar feature we
call that the free parameters of the MSSM can be broa
divided into three classes:~i! the ones belonging to the SM
sector,~ii ! tanb that is related to the two doublet structure
the Higgs sector and~iii ! the ~many! SUSY soft breaking
mass terms.

As we discussed in@13#, an analysis of the slope of th
effects in the observables as the energy is increased allow
to extract the value of tanb without any specific knowledge
of the other parameters. This very welcome feature is pre
also in the processes considered in this paper; to be m
precise, it remains rigorously true when working in the o
loop approximation, and it is valid to subleading order acc
7-19
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FIG. 11. Forward-backward asymmetry for production of third generation squarks~top squark and bottom squark!. We show the one loop
~1L! and resummed@exp( . . . )# shifts. Here, all of the effects are due to the angular dependent terms coming from boxes and Yukaw
depending on tanb cancel.
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racy if one uses the complete resummed expressions.
remaining part of this section will be devoted to a numeri
analysis with the specific aim of determining tanb.

Let us denote bysn , n51 –5 the various cross section
for production oft̃ L,R , b̃L,R or charged Higgs bosonsH6.
We define the relative SUSY effect on the cross sectionsn as
the ratio

en~q2!5
On~q2!2O n

SM~q2!

O n
SM~q2!

. ~5.1!

This definition is useful as far as we can regard the S
contributions as perfectly known terms. As we have alrea
discussed, at energies around 1 TeV, this statement is
tainly true because a one loop calculation is perfectly relia
and reproduces the full effect, with resummation giving
negligible additional shift in the observables.

At one loop, in the asymptotic regime, we can para
etrizeen as

en~q2!5Fn~ tanb!ln
q2

MS
2

1Gn1•••. ~5.2!
09300
he
l

y
er-
le

-

Here,Fn is a function of tanb only. The explicit form of its
tanb dependent terms can be obtained from the Yuka
terms and we write them here for clarity and convenience
the reader

F t̃ L
52

a

p

1

4MW
2 sW

2 S mt
2

tan2b
1mb

2 tan2b D , ~5.3!

F t̃ R
52

a

p

1

2MW
2 sW

2

mt
2

tan2b
, ~5.4!

Fb̃L
5F t̃ L

, ~5.5!

Fb̃R
52

a

p

1

2MW
2 sW

2
mb

2 tan2b, ~5.6!

FH652
a

p

3

4MW
2 sW

2 S mt
2

tan2b
1mb

2 tan2b D .

~5.7!
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FIG. 12. Cross section~a! and
forward-backward asymmetry~b!
for production of charged Higgs
bosons. For both observables w
show the one loop~1L! and re-
summed @exp( . . . )# shifts at
tanb510,40. For the asymmetry
we recall that there are no tanb
dependent Yukawa terms.
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The constantGn in Eq. ~5.2! is a sub-subleading correction
It does not increase withq2, but depends on all mass ratio
of virtual particles. The omitted terms in Eq.~5.2! vanish in
the high energy limit.

To eliminateGn we proceed as in@13#. We assume that a
set of N independent measurements is available at c.m.
ergiesAq1

2,Aq2
2, . . . ,AqN

2 and take the difference of eac
measurement with respect to the one at lowest energy.
resulting quantities,

dn,i5en~qi
2!2en~q1

2!, ~5.8!

do not containGn and take the simple form

dn,i5Fn~ tanb* !ln
qi

2

q1
2

, ~5.9!

where tanb* is the true unknown value that describes th
experimental measurements.

We now describe how precisely tanb can be extracted
We denote bysn(q2) the experimental error onen(q2). For
each set of explicit measurements$dn(qi

2)%, the best estimate
for tanb is the value that minimizes thex2 sum

x2~ tanb!5(
i 51

N

(
n51

NO FFn~ tanb!ln
qi 11

2

q1
2

2dn,iG 2

4sn,i
2

,

~5.10!

wheredn,i[dn(qi
2) andsn,i[sn(qi

2).
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As usual, the experimentally measured quantitydn,i is
assumed to be a normal Gaussian random variable dis
uted around the value

Fn~ tanb* !ln
qi 11

2

q1
2

, ~5.11!

with standard deviation 2sn,i . After linearization around
tanb5tanb* , minimization ofx2 provides the best estimat
of tanb. This is an unbiased Gaussian estimation with me
tanb* and standard deviation fixed by the conditionDx2

51, i.e.,

d tanb52S (
n,i

S Fn8~ tanb* !ln
qi 11

2

q1
2

sn,i

D 2D 21/2

.

~5.12!

Under the simplifying assumptionsn,i[s, this formula re-
duces to

d tanb52sS (
n

Fn8~ tanb* !2D 21/2

3S (
i

ln2
qi 11

2

q1
2 D 21/2

. ~5.13!

The function

t~ tanb!5S (
n

Fn8~ tanb!2D 21/2

, ~5.14!
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FIG. 13. This figure shows the behavior of th
t function defined in Eq.~5.14!. It increases
when the slope of the SUSY effects does not d
pend much on tanb. The four lines correspond to
the four possible choices discussed in Sec. V, t
is ~i! all the five cross sections for production o
third generation squarks and charged Hig

bosons,~ii ! without production oft̃ R , ~iii ! with-

out production ofb̃R , and ~iv! without produc-
tion of charged Higgs bosonsH6.
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measures the dependence of the slope of SUSY effect
tanb. It is shown in Fig. 13 for four possible choices:~i! all
the five cross sections,~ii ! without production of t̃ R , ~iii !
without production ofb̃R , ~iv! without production of charged
Higgs bosonsH6.

In the best case~i!, it is strongly peaked around tanb
56 and the combination of the various observables, es
cially the cross sections for production of right sfermio
~the ones with larger cot2b coefficient! is crucial to keep the
function t(tanb) as small as possible.

To understand the consequences of the shape oft, we plot
in Fig. 14 the relative errord tanb/tanb computed under the
optimistic assumption of a relative accuracy equal to 1%
all the five observables. The three curves correspond to
assumption that independent measurements for each ob
09300
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r
he
rv-

able are available atN510 equally spaced c.m. energie
around 1 TeV, between 0.8 TeV and 1.5 TeV. We remark t
different curves associated with pairs (N,s) depend only on
the combinations/AN. In the figure, we also show horizon
tal dashed lines corresponding to relative errors equal t
and 0.5. As one can see in the figure, values in the rang

tanb,3, tanb.16 ~5.15!

can be detected withN510 c.m. energy values with a rela
tive error smaller than 50%, that can be considered qua
tively as a ‘‘decent’’ accuracy. If a higher experimental pr
cision ~e.g., a few permille in the cross sections! were
achievable, the same result could be obtained with a sma
number (N.3) of independent energy measurements. T
-
y
il-
er-
e
e-
ed

is

y.
FIG. 14. We plot in this figure the relative
error d tanb/tanb that can be derived in the de
termination of tanb assuming a relative accurac
of 1% on all the cross sections and the availab
ity of 10 measurements at equally spaced en
gies between 800 GeV and 1.5 TeV for all fiv
observables. Again, we consider the optimal sc
nario when all the observables can be exploit
as well as what happens when a subset of them
removed. In the best case, values of tanb.16
can be determined with a 50% relative accurac
7-22
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FIG. 15. Relative errord tanb/tanb as in the
previous figure, but assuming the availability o
10 measurements at equally spaced energies
tween 800 GeV and 3.3 TeV~and again a relative
1% error on the measurements!. In the best case
values of tanb.11 can be determined if the rela
tive accuracy is around 50%, tanb.14 if it is
25%.
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first region (tanb,3) appears to be unfavored by th
present LEP combined data analysis, but the second
(tanb.14) is indeed very interesting for the CERN Larg
Hadron Collider~LHC! physics program.

The extension of the previous analysis to the case o
Linear Collider working at an energy around 3 TeV~CLIC!
is not straightforward. In fact, the one loop expressions
no longer reliable and a resummation of higher order te
must be performed. To date, the best theoretical accuracy
can be reached in the MSSM is the subleading one discu
in this paper. The Yukawa terms are then given at all ord
by combining the one loop Yukawa contributions with t
resummed double logarithms of gauge origin. To this leve
accuracy, the relative SUSY Yukawa effect is thus unchan
and the analysis can be repeated with the same formu
However, one must keep in mind that the subleading
proximation can be enough to determine the gross size o
virtual effects, but its validity must be checked in the ana
sis of finer details like the dependence on tanb of the omit-
ted constant terms. Notwithstanding these unavoidable
marks, we can analyze what happens at 3 TeV in
subleading approximation.

As we said above, the same expressions as in the 1
analysis can be applied. The need to eliminate any s
subleading constant from the SUSY effects leads again
Eq. ~5.11!. The effects thus depend on the logarithms of
ratios between the various measurement energies and
lowest energyq1. Therefore the same results on the er
d tanb/tanb that we derived around 1 TeV can be extend
to the rescaled~wider! energy range

@0.8,1.5# TeV→@2.7,4.5# TeV ~5.16!

with no additional remarks or changes.
It might be interesting to discuss what would be t

change in such an analysis if data could be accumula
starting at 800 GeV and increasing the energy up to an up
value around 3 TeV. In this case, shown in Fig. 15, the res
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are largely improved with respect to those that could be w
measurements at 1 or 3 TeV only. To be more precise, w
10 measurements extending from 800 GeV to 3.3 TeV,
region tanb.11 can be accessible with 50% accuracy. T
bound reduces to tanb.14 if the required accuracy is 25%
We stress that this is a quite interesting region3 as discussed
in @14#, where it is shown that a measurement of tanb is
practically impossible from chargino or neutralino produ
tion when tanb.10 since the effects depend on cos 2b that
becomes flat forb→p/2. It could be achieved in the assoc
ated productionse1e2→ht̃ t̃ or e1e2→Ab̄b ~with h andA
being theCP even and odd Higgs bosons!, but only for very
large tanb values (;50).

VI. CONCLUSIONS

In this final section we shall draw a number of releva
conclusions. Before doing that, we feel though that so
preliminary considerations are opportune.

In this paper we have derived the complete Sudakov o
loop expansion and the related all orders subleading res
mation for SUSY scalar production. Since both expressi
have been computed for the first time, there are no differ
papers in the literature with which to compare our results
is, however, a highly non-trivial check that all SM, DL, an
SL terms~in particular the angular dependent contribution!
are in agreement with the results obtained in the symme
basis in Sec. III. For the SL terms of genuine supersymme
origin obtained from the physical one-loop calculation th
we have performed, and that has led us to a large numbe
equations and formulas, no such internal cross check is a
able.

In spite of the lack of possible comparisons, howev

3For completeness, we remark that here too, as in the prev
analysis, there is a region at low tanb that can be analyzed.
7-23



r

x

ox

ts

f

r
g

s

-

in

ap
th
s

se
n
a

th
b
it

h

ar

-
by
g

o

our
fly,
lar

tter
ht

ies.
rk

hird
all
ap-

ses

be-
re-
im-

re-
ain
tal

uc-
n
nts
1–

ter
e-
sses

at
red
e
t
ef-
act
of
tric

N-

BECCARIA, MELLES, RENARD, AND VERZEGNASSI PHYSICAL REVIEW D65 093007
there are a few other internal consistency checks of our
sults that serve to support their validity. Here we list a lim
ited number of them in the following order:

~a! The box diagrams with 2W exchange and the verte
diagrams with initial electron and final scalar 2W triangle get
combined separately in a tricky way. One half of the b
must be summed with the initial 2W vertex, the other one
with the final 2W vertex. After these summations, one ge
the correct universal factorsL35(3 ln2ln2) for the initial
state andL45(4 ln2ln2) for the final state, although none o
the separate (WW box, WW initial vertex,WW final vertex!
contributions produces alone theL3 , L4 terms.

~b! The overall MSSM ‘‘gauge’’ effect for the final scala
pair, obtained by summing the diagrams with SM gau
bosons~i.e., photon,Z,W) to those with SUSY gauginos, i
proportional to anew combinationL25(2 ln2ln2). This is
the sameMSSM ‘‘gauge’’ combination, with thesamecoef-
ficient that affects therespectivefermionic superpartners ei
ther in the initial or in the final state ofe1e2 annihilation.
One can easily check this statement for final sleptons look
at Eqs.~2.26!,~2.30!, ~2.33!–~2.43! of this paper. For final
quarks, one should compare the expressions of this p
with the analogous ones given for quark production in
MSSM in a previous paper@12# reducing these expression
to the opportune form~which shall not be explicitly shown
here!. This equality is expected,a priori, since the contribu-
tions are computed for vanishing particles-sparticles mas
where supersymmetry is supposed to be exact. As a co
quence, the pure overall gauge effects should be the s
within the same supermultiplet.

~c! In the MSSM, the finalYukawaeffects for top squark
and bottom squark production at lepton colliders are
same as those for top and bottom production. This can
also verified by comparing the expressions of this paper w
the corresponding ones of previous references@12,13#. This
equality is highly nontrivial in a technical sense, since in t
two cases quite different diagrams contribute~in particular,
virtual Higgs bosons vertices do not contribute for squ
production, while the corresponding SM scalarsdo contrib-
ute for top, bottom final pairs!. We interpret it as a conse
quence of the MSSM origin of Yukawa couplings, carried
the Higgsino, which is the SUSY superpartner of the Hig
boson and lies therefore in the same supermultiplet.

Having shown the three nontrivial consistency checks
r,
.

C.
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our one-loop calculations, we now proceed assuming that
results are correct and draw some final conclusions. Brie
first of all it seems to us that the process of SUSY sca
production in its Sudakov regime, assuming that the la
coincides with the TeV energy range for reasonably lig
SUSY masses, can be divided into two distinct categor
The first one includes slepton and first two family squa
production. The second one includes the considered t
family squark and charged Higgs boson production. For
cases, there is an energy dependence of the one-loop
proximation, which begins to be unreliable when one cros
the.1–2 TeV region~where it should still be satisfactory!.
At CLIC energies, the need of a proper resummation
comes imperative and all our one-loop results must be
placed by our corresponding resummed expressions. The
portant point is that in this procedure, the~generally! large
unreliable one-loop effects are replaced by reliable
summed effects, that are sensibly reduced but still rem
large and visible given the expected level of experimen
accuracy. Independently of this fact, a strong tanb depen-
dence in the third family and charged Higgs boson prod
tion case~particularly effective in the charged Higgs boso
case! should allow us to achieve, via suitable measureme
of the slope of the cross sections in the total energy range
4 TeV, a satisfactory determination of the SUSY parame
tanb. This should be combined with other analogous ind
pendent measurements to be performed in other proce
~such as e.g., neutral Higgs boson production! to obtain a
more precise determination~an analysis of this possibility is
already in progress@21#!.

Finally, we believe to have shown in this example th
there exists a realistic energy range, to be hopefully cove
in a not too far future, where virtual corrections of th
MSSM can becomelarge. Given the previous experience a
lower energies around hundred GeV where SUSY virtual
fects were systematically small, we believe that this f
would provide a clean and fundamental test of the validity
the MSSM at future lepton colliders, in case supersymme
particles were detected somewhere in the~hopefully! near
future.
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