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Supersymmetric scalar production in the electroweak Sudakov regime of lepton colliders
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We consider the production of supersymmeti$tJSY) scalar pairs at lepton colliders, for c.m. energies
much larger than the mass of the heaviest SW®¥l or virtua) particle involved in the process. In that energy
regime, we derive the leading and subleading terms of the electroweak Sudakov logarithms in the MSSM, first
working at one loop with physical states and then resumming to all orders with asymptotic expansions. We
show that the first order of the resummed expression reproduces the physical one loop approximation, and
compute systematically the possible effects on various observables both at one loop and to all orders. We
discuss the regimes and the observables where the one loop approximation can or cannot be trusted, working
in an energy range between 1 TeV and 4 TeV under a “light” SUSY mass assumption. As a by-product of our
analysis, we propose a determination of the MSSM parametg® &rowing how a relative accuraey25%
can be easily achieved in the region @#r 14, under reasonable experimental assumptions.
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I. INTRODUCTION of the asymptotic expansion. For the subleading terms,

_ ~ which depend both on the c.m. energ&? and the c.m.
The fact that the process of electron-positron annlhllatlorgcattering angled, a clean high energy resummation pre-
into a standard modelSM) fermion pair is dominated at scription now exist{5], but the corresponding “physical”
high energy by large electroweak logarithms of “Sudakov-tyo-loop calculation is not yet available. In spite of this, a
type” [1] has become nowadays completely established. Aftajr conclusion is that, at the moment, the electroweak Suda-
ter the first numerical calculations at one loop that evidentiy,, logarithms in the process of electron-positron annihila-
ated the unexpectedly large size of the leading quadratig,n are under control, provided that the simple one-loop

(DL) and subleading lined2,3] (SL) terms, a great amount expansion is replaced. in the TeV c.m. enerav ranae. by a
of theoretical work has been devoted to the task of comput P P ’ - dy range, oy

) . . more complete calculation. To be more precise, it should be
ing this type of effect beyond the one-loop order. This harOlrsTt]ressed, though, that the necessity of this replacement is

calculation becomes imperative if one wants to provide Aronalv dependent on the considered observable and ener

safe theoretical description of the process for c.m. energies ignd tggt forpa special set of quantitiesich as, e.q., forward- 9y,

the TeV range, where the truncation at one loop of the per: P ) qua ' €9, .
backward asymmetrigshe validity of a one loop expansion

turbative expansion would be certainly unreliap?g. . . . . .
In general, one can say that two types of approaches havBight be still acceptable at realistic collider energies. For an

been followed. The first one is based on the study of th&xhaustive discussion of this point we defer to a very recent
process in a suitable asymptotic energy region, where eithdt@Per(8]. S o
technical or theoretical simplifications are supposed to be AN important question in this subject is that of when the
valid. Although this definition is not compulsory, we shall “electroweak Sudakov regime” starts. Otherwise stated, at
refer to this energy range as that where an “electroweakvhich energy can one assume that an expansion of Sudakov
Sudakov regime” has settled. In this range, a resummation d¥P€ provides a “satisfactory” description of the various pro-
the Sudakov logarithms to all orders has been proposed H§ESSeS, i.e. one that reproduces th.e relevant experimental ob-
different groupg4]. For the specific case of a final fermion Servables at the requested theoretical accuracy3]im ten-
pair production, the results seem nowadays to agree, as thd@tive one loop analysis was prepared by fitting the numerical
oughly discussed in a very recent pafist, and for a de- Vvalues at va_rlable energy (_)f various quantities, rigorously
tailed comparison we defer to the existing literat[#es]. computed, with a logarithmic expansion “in the manner of
In the second approach, one has tried to make explicifudakov” that included, beyond the leading and the sub-
calculations of the Sudakov effects at two loops, workingleading terms[including the renormalization grougRG)
with “physica'” (|e not asymptotmprocesses and Comput_ Onej,' an unknown constant to be fitted. The r.esult showed
ing the high energy limits of the derived expressigg  that, in the; SM, an “electroweak Sudakov regime” was ac-
This second approach clearly provides a very important tegtially settling when the c.m. energy approached the typical
of the reliability of the first one, by comparison of the cor- value \/E=1 TeV, since the fitted parameters of the loga-
responding two-loop contributions. At the moment, this com-rithms were exactly the theoretical Sudakov ones. It also
parison has been successful for the leading logarithmic termshowed that, at such energies, the numerical value of the
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constant term, although smaller than those of the varioutgarithms and the fact that these logarithms are of the sub-
logarithms, was not negligible at the typical level of accu-leading(SL) kind and, in the generally adopted definition,
racy of a relative one perceftb be assumed from now on as “universal.” At the one loop level, working in the 't Hooft
the aimed experimental reach of future lepton colligleTee  ¢=1 gauge, they are only generated by vertex diagrams and
conclusion thus seems to be that, within the SM, electronnot by diagrams of box type. Therefore, they are independent
positron annihilation appears to enter a “Sudakov regime”of ¢, the c.m. scattering angle. From a formal point of view,
for c.m. energies of the TeV size to be hopefully reached bythey are strictly analogous to the sub-leading logarithms of
a future linear collider(LC) [9] or CERN Linear Collider Yukawa type that arise in the SM for final massive quark
(CLIC) [10] experiments. production, in practice for production of third family quark-
As a remark that appears, at this stage, somewhat formaintiquark pairs.
it can be finally noticed that the knowledge of the Sudakov For a more detailed numerical description, it was assumed
logarithms(and, also, of the well known and precisely deter-in [12] that the value of the heaviest SUSY madswas
mined RG one$11]) would be sufficient to predict thelope  equal to(approximately a few hundred GeV. Under this as-
(i.e., the variation with energyof each experimental observ- sumption, the numerical effects of the SUSY SL at one loop
ables in its “Sudakov regime” since clearly, in this calcula- began to be appreciablsay, of a relative few percenwvhen
tion, the constant terms will disappear. Within the SM, thisthe c.m. energy was in the TeV range, in particular they were
procedure would not provide particularly interesting consedefinitely visible in the supposed C|_|C\/62:3 TeV) re-
quences, although it could be always considered a valuablgion, where in conclusion the virtual effects of the MSSM,
overall test of the hard theoretical calculations. under this “light M” working assumption, would be clearly
All the previous statements and conclusions are strictlfexperimentally testable.
valid, as we said, in the SM theoretical framework. A spon-  An important feature to be clarified at this point is that of
taneous question that arises at this point is that of whethaghich information on certain SUSY parameters can be
the obtained picture remains valid in a theoretical extensiomchieved in this way. In general, the situation is complicated
of the SM, for which the same type of perturbative expansiorfor two reasons: in the first place, one does not know exactly
is supposed to be valid. A rather natural first candidate of thishe value ofM; secondly, the role of next-to-sub-leading con-
kind seems to be the minimal supersymmetric extension oftant SUSY terms in an asymptotic expansion is unknown
the SM(MSSM). Analogously, the rather natural processes(note that, differently from the SM case, a numerical fit of
to be considered seem to be the same ones that we haug constant term like that performed[B] would require the
previously listed, for which the Sudakov effect in the SM hasknowledge of all the SUSY parameters that might enter this
been fully computed. Here, the extra particles of the MSSMquantity, and results thus, in practice, hardly performable
might induce new virtual effects at the one-loop level, thus A possible approach that gets rid of the two previous dif-
modifying the coefficients of both the leading and the sub<iculties has been very recently propogéa]. It is based on
leading Sudakov logarithménd, of course, and in an al- the observation that, in the calculation of $lepeof experi-
ready known way, also those of the RG ones mental observables in a suitable “Sudakov regime,” both the
An important preliminary problem that arises at this pointconstant term and the unknown madéswould disappear,
is that of determining the c.m. energy at which the “SUSY and only the SUSY parameters that enter the coefficient of
electroweak Sudakov regime” starts. The latter energy ishe Sudakov logarithms would be relevant. In particular, it
fixed by the request of being sufficiently larger than the massyas shown in[13] that the process of top quark—top anti-
of the heaviest SUSY particle that appears in the diagramguark production would provide an unconventional way for
that generate Sudakov logarithms. Clearly, no precise answeleriving information, in the MSSM, on the fundamental pa-
can be given at the moment to this question. In spite of thigameters tag, in a range of values (20tanB<40) that is
shortage, one can still proceed in a correct general way byery hard to be experimentally explored in other known
first defining asM the unknown heaviest relevant SUSY \ays[14], in an energy ranggq?=3 TeV for a reasonable
mass and computing the Sudakov expansion at asymptotiight” (i.e. <500 GeV) M scenario.
energies\/¥>M. A next, more speculative step, would be  The conclusion of the previous analyses is that, in a c.m.
that of assuming a “lightM” situation characterized by energy range of the TeV size and in a reasonably light
“reasonable” M values, say below the TeV range. This scheme, virtual SUSY effects would play an important role
would allow us to make detailed numerical predictions in aat the future lepton colliders in SM pairs production. An
supposedly valid SUSY Sudakov regime, that might be easalmost obvious attitude is, at this point, that of noticing that,
ily modified as soon as supersymmetric particles were finallfor suchM values,direct SUSY pair production would be
detected. copious at such machines, and of asking whether the SUSY
The first investigation of SUSY Sudakov effects in thevirtual effects for these processes would be similar, or
process of electron-positron annihilation into(eharged  “worse,” or “better” (i.e. containing more interesting infor-
fermion-antifermion pair was recently performed at the per-mation on parametershan those of SM pairs creation.
turbative one-loop leve[12], and we defer the interested  The aim of this first paper is precisely that of analyzing in
reader to that reference for a detailed discussion of the varthis spirit the process of scalasfermion or Higgs bosgn
ous considered processes and observables. The two ma®SY pair production at lepton colliders, and of showing in
general results that were derived are the fact that virtuabome detail which relevant information on the MSSM pa-
SUSY exchanges in those processkesgenerate Sudakov rameters would be obtainable from their virtual effects, and
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in which possible energy range. Although the final conclu- o+ J‘?
sions are supposed to be valid for the special MSSM case, an '
analysis will be performed in a rather general way, so that 4
our conclusions might be easily generalized for a different /
type of SUSY model. In this paper, we will try to be as self K
contained as possible working in a first stage at a “physical”
one-loop level, then performing a resummation at sub- \
leading logarithmic order in amsymptoticregime, showing \
that the two expansiondo coincide at one loop. Having \
proved this equivalence, we shall perform our numerical B .
analyses in the two different formulations to show the rel- € f
evance of a logarithmic resummation in the “Sudakov re- ) e F
gime” and, in particular, in an energy regime that is within FIG. 1. Born diagram foe™e™ —ff.
the reach of théhopefully neay future lepton colliders, with
a special emphasis on a possible determination of the funda- iABO=j[ AY.Borny pZBorM] 23
mental MSSM parameter tgh

Technically speaking, this paper is organized as followswith
Section Il is devoted to a kinematical description of the pro-
cesses to be considered, to a definition of their Born observ- JBorn_ 8magQi—
ables and to a calculation of their expressions abite loop APET=— Tv(e )y¥puu(er) 22
level, computed in the asymptotic Sudakov regime. In Sec.
[ll, the sub-leading logarithmic order resummation is pre-

sented and a comparison with the one-loop expressions of Az,Bom:47m0[| Swa] o(e") v*p. 0%, oP
Sec. Il is performed. Section IV contains a discussion of the s\z,\,c\z}\,(q — ZO) 7*Pul GeLoPL
size of the virtual Sudakov numerical effects, both at one '

loop and resummed, in a “light1” assumption for a large +0sroPrIU(ET) 2.3

class of processes. In Sec. V the special role of the3tan

dependent Yukawa terms in the MSSM is established and theherep is the outgoing sfermion momentum; the outgo-
information derivable on ta@ from a measurement of the ing anti-sfermion momentum, g=p+p’, P, R =(1
slopes of certairspecialprocesses is exhibited. A final dis- ¥9°)/2, «q is the bare QED couplingzo— s/, sW is

cussion in Sec. VI will then conclude the paper. the bare Salam-Weinberg a”@'@eLo ZSW 1, geR,O
—ZSW I is the isospin third component of the final sfer-

IIl. SUSY SCALAR PRODUCTION AT THE ONE-LOOP mion ande is the sfermion electric charge in units |ef.
LEVEL It is rather convenient to introduce the chiral variables

The aim of this section is that of giving a general descrip-2L,r- At the Born level, they are defined as follows:
tion of SUSY scalar pair production at the one loop level, at g
c.m. energies sufficiently high to justify the use of a logarith- Born_ CTX¥0— 4 4 Born Born _
mic Sudakov expansion to describe the leading electroweak ATT= (@) yplal Pt ag T Prlu(er)

behavior of the experimental observables. This energy range (2.9
will be denoted, in our pragmatic definition, as the “elec-
troweak Sudakov regime” of the considered process. 3_ 2 z 2 _9a2y13

As a first process to be examined, we shall consider that aB"= —Q+ (i S\";Q';)ge"‘oz _ SwQrt (1725wl
of production of a (charged and neutra) sfermion- 2syCyy 2sy/Cyy
antisfermion pair; the treatment of Higgs pair production will (2.9
then be derivable with simple and straightforward modifica-
tions. The ConsideredNSfermions will be labeled by their Born_ (|?_5\2/\/Qf)9§m Qf
chirality and denoted af _g. All sleptons and squarks will ap =~ Q 7 2 2 (2.6
be considered, with the exception of selectrons. For the latter 2SwCw w
ones, the theoretical description would be slightly more in- i _ )
volved, due to the presence of an extrehannel exchange, Wg shall ﬂrst. treat, as we _sa|d, the processes of_ production
and we shall postpone it to a next dedicated p&p8l. of chiral sfermion-antisfermion pairs. The meaningful ob-

servables that we shall consider in this paper will be

The results obtained fdr_ g production will then be eas- (1) the production cross sections

ily extended to the case of charged or neutral Higgs bosons.

do &(T)
“dcosd

A. Born level

(2.7)

O'LR(f)—J dcosf| ———

At the Born level, the process is represented by the pho-
ton andZ exchange, depicted in Fig. 1. The corresponding
decomposition of the scattering amplitude will be with
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do m() 7Ta<2)B3 ~ placing bare parameters with physical ones, where special
d - 7 N3 sin2¢9|aLyR(f)|2 (2.9 finite gauge-invariant combinations of one-loop diagrams en-
cos q ter[16].

For the processes that we want to consider in this paper,
the possible approach to be followed in the MSSM is essen-
tially similar. This can be understood without long detailed
Waglgs Sorn proofs if one accepts the prescriptions of the theoretical

607 lagR"(H)%. (2.9  model, where by definition SUSY is broken in a “soft” way,
so that no new types of ultraviolet divergences appear with
Note that, at the Born level, all forward-backward asymme-€SPect to the SM. In particular, for the process that we are
tries defined with considering, the number of bare parameters that appear at
Born level is still equal to three, so that the definition of three
physical quantities must be sufficient to eliminate all ultra-

whereN is the number of colors an 2=1—4mf2/q2.
At Born level it writes

ot R"(H)=N

UEE,‘;(?)=( fl— JO )d cosé douw(t) (2.10  violet divergences. Two of these quantities remain the elec-
' o J-1 d cosé tric charge and th& mass. The third bare parameter can still
vanish bg .taken a$\2,\,, that.appears both i_n the coupling to the _
initial electron and in that to the final sfermions. For this

SFBEOMF) quantity, we could always assume a redefinition that ir’gplies
AEST,RG): L'gom — " =0. (2.1 an extra measurement at a suitable c.m. squared emgrgy

orr (F) and “shift” the q;z dependence in a one-loop expression,

where it will fix e.g., the kinematical point where to compute

boson to a pair of spinless particles, which cannot generatfén'te’ gauge-independent combinations of s‘,‘elf-erlerg|es, ver-
an asymmetric cos term. t!ces andzbozxes are ao!ded to a redefmed Born” term now
At higher perturbative orders, the forward-backwardfixed by si(c;). Alternatively, one can still perform a redefi-
asymmetries will not vanish in general. This fact will be nition at the “Z peak” and start from a Born term that only
stressed and exploited in the following part of the paper. contains the weak Salam-Weinberg angle measured at the
(2) The various longitudinal polarization asymmetries ~CERNe"e™ collider LEP1, SLAC Linear CollideSLO).
The price to pay will be that in the one-loop corrections a
o (f)—or(f) fraction of the terms will contain contributions to be theo-
LRT= (212 retically estimated at the correspondent “Z peak” c.m. en-

This is a well-known feature of the coupling of a vector

)+ or(f . . ) =
ou(h)+or(f) ergy where experimental information on the firfdl state
with their Born expressions does not exist. The point is that, in the asymptotic regime in
which we are interested, the dependence on these terms will
|aB0rn(’f)|2_ |aBorn(~f)|z be a part of an overall constant that in the logarithmic con-
Born L R . . . . .
- = — —, (2.13  tent will disappear. Thus, in practice, the same input param-
LR,f | Born H |2+| Born f |2 2 2
a_(f)|"+[ag™(f) eters;(M3) that entered the SM case can be taken as the
third theoretical input. This, we stress, will be perfectly ac-
B. General one-loop treatment ceptable to the extent that one is only interested in the deter-

mination of the leading logarithmic terms in a high energy
‘expansion, which is exactly our case. With our choice, the

eters, i.e. the electric charge, tZemass and the Salam- ; - - -

Weinberg angle, are b defi%ition bare ones, without unamphySICaI expressions that will appear at one loop will con-
bi Ig d % ,d h y | . M N o th ttain, in their so defined “physical” Born approximation, the
grltjl?rl::)z\ﬁveeolr?;log )I/:\I/((:—:‘? tmgzl:r']%?sl'm Cr);]/:Jns% bg rerior\‘/i)ésame expressions that were entering at the original Born
P P ' gutty level, with the bare parametess), Mg, 3\2,\, systemati-

In the SM case, the general procedures are well known. I laced b M 2(M2 d extra “

Briefly, the bare charge and tZemass are normally replaced ca y”rep aced bya, z S.'( 2) and extra -“correc-

by the correspondinghysical quantities, defined by mea- tions” generated by self-energies, vertices and boxes as de-

surements performed a?=0 (“photon peak’) and atg? picted in_ Fig. 2. The;e will bring contr_ibutions in the
_ M% (*Z peak”). For the bare Salam-Weinberg angﬁg, asymptotic energy region that might, or might not, generate

one possible convenient attitude is that of replacing it by th asymptotic logarithms to the various observables, in a way

corresponding effective squared s'sfe defined by measure- ‘that we shall now illustrate.
ments at theZ peak, and for a thorough discussion of the
related definitions we defer the reader to the existing litera-
ture [16]. With the three previous replacements and defini-  The class of diagrams that will generally contribute at one
tions, all the ultraviolet divergences at the one-loop level ardoop is shown in Fig. 2. To be more precise, we should add
automatically canceled, and the expressions of the variouthe statement that, in the two diagram®)2 2(c) of vertex
observables at one-loop may be written as a simple generaliype, also the various external self-energy insertions must be
zation of the corresponding Born quantities, by formally re-included. This will be fundamental in our approach, since the

In the previous Born expressions, all the involved param

C. Asymptotic behavior of the different one-loop diagrams
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K

ot Foe assume, again, a vanishing electron masdl “only” gen-

erate a lineafSL) Sudakov logarithm, essentially gauge
(i.e., not of Yukawa origin.

A similar picture is valid for the final vertices,
represented in Fig. (8: (SM virtual exchanges
[(abo)=(fyf), (fZF), (f'WF)(WFW)] and genuine
SUSY contributiong (abo)=(Fxf), (' x;"T").(x"Tx}).
(xi T'x;)]. Note that the diagrams with Higgs exchanges
e fooe f are now present, but vanish asymptotically and thus disap-

(2) (b) pear in our analysis. This time, contributions of Yukawa type
(only arising from the Higgsino component of the chargino
and neutralino couplingsmust be retained fothird family
final pairs, and we shall list them in our formulas with a
proper notation. Again, SM diagrams will generate both DL
and SL terms, while SUSY contributions will systematically
be of SL logarithmic gauge typ&@nd for the third family,
also of Yukawa typg

Finally, there will be diagrams of box type, represented in
Fig. 2(d). This time, a welcome simplification will appear,
since only SM virtual gaugs-channel exchangggabcd)

=(eZf2), (eyfy), (eZty), (eyfZ), (WWF'W)] do pro-

FIG. 2. Typical one loop diagrams fer e — fT. duce asymptotic Sudakov logarithnfall other SM boxes

vanish asymptotically, while all SUSY virtual box ex-

addition of those diagrams will cancel ultraviolet diver- changes have the typical property wnishing asymptoti-
gences of the “normal” vertices, making the overall contri- cally. This is a simple consequence of the spin structure of
butions ultraviolet finite. the corresponding diagrams that allows us to avoid perform-

At asymptotic energies, the role of the various figuresing several involved calculations in the final asymptotic nu-
becomes drastically different. From FigaRwe shall obtain  merical analysis. The surviving SM diagrams generate two
the known renormalization groufRG) linear logarithms.  kinds of contributions. One is of the universal DL kind, when
These will be generated from both SM and MSSM virtual haif of it is combined with a part of the finalW vertex to
pairs. Inside the SM component, _there will be a gaugeproduce a “universal’ (4 In?—In?g?) term and the other
dependent term due to virtual pairs of chargéts and  haf js combined with a part of the initialV\W vertex to
chargeq would-be SM Goldstone bosons, thgt mu;t be reﬁroduce a “universal” (3 Ir?—In%P) term. The other one is
tained in a generag-gauge €+ <) (our calculations will be of the nonuniversalkind, of SL origin and depending on

sgite(ranz;t;‘c daltlf):us(;ﬁ];()t;\rgengcv;E? d_';gyggggt; ,;eHboocgct?nls co rﬁ:_ose, where# is the c.m. scattering angle. All these results
tgribuq[io,ns must be computidThis gauge dependence will are essentially similar to the ones that were found in the case
be canceled, in a by nor\)/v weII-knogwn %v@gﬂ]p by a com- of SM final fermion pairs productiofil2], with the expected

i 2 [n2e2 ; i}
ponent(the “pinch” component[18]) of the corresponding difference thf'ﬂ a ne_w:(4 In_q In“q) unlver_sal ter_m ap
SM vertices, and we do not insist here on this fact, that haR€a'S, associated with the firsdalar SUSY pair that is pro-

already been exhaustively discussed in previous referenc ced. o o ) ]
[3]. In our notation, the RG contribution will thus indicate After this first qualitative discussion, that we hope to have

the subleadinglinean logarithm generated at one loop by Presented in a short and understandable way, we are now

the sum of the self-energies and of the “pinch” componentsfeady to write the various logarithmic contributions to the
of the vertices. considered process generated by the relevant one-loop dia-

In Fig. 2, the “nonpinch” SM component of the initial grams. We shall divide them in subsets that correspond es-
vertices must be selected, together with the genuinely supesentially to the four components of Fig.(Reeping in mind
symmetric one of the MSSM. This operation will lead to two the previous remarks on vertex “pinch” componéntsying
separate classes of contributions; the first one, coming frorto separate within each subset the specific constituents of
the vertices with SM virtual exchanges|(abc) different diagrams. The procedure will first list the effects on
=(yee), (Zeg, (Wwr), (vWW)] will generate both the two independent quantities g, defined by Eqs(2.4)—
quadratic(DL) and linear(SL) Sudakov logarithmgnote  (2.6); the effects on the various observables will follow.
that the SM would-be Goldstone bosons and all Higgs consince the list of equations will be rather long, we shall try to
tributions vanish due to théassumef vanishing electron  ejiminate, as much as possible, definitions and conventions.
masg. The genuine SUSY vertices, corresponding to Fig-1o render a check of our results realistically possible for the
2(b) with [(abg)=(xee), (x;"v»). (vxi x;)] (where interested reader, we specify here that our SUSY Feynman
we denote beiO and x;" neutralinos and charginos and we rules have been taken from Rosiek’s paffed].

¢ (d) /
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D. Logarithmic expansion at one loop of the scattering
amplitude

At one loop, with our choice of physical inputs, we shall
write the invariant scattering amplitude, for c.m. energy val-

uesg?>M§3,, in the following form:

Born 1loop dma— + -
A=A""T+A E—qz—v(e )y*pula PL+arPrlu(e”)

(2.14
with
a =afo+ gl 10op 2.15
ag=ap’"+a}'°°". (2.16

Note that we now write the Born terms as

(13—-s7Qnger sf(M%)Qfm—zsf)l?

ap®"=— Q¢+ =-

PHYSICAL REVIEW D55 093007

an N . SM 3 16N SuUS
47 |9 3t

9
AERPE ][1{10—1&,2’\] 1+42c?
+—2—z S 3 +
mstc?t T TINHI3 6 8

N SUS?

9
20— 40c?+32c}
5 N

alkt=

SM

1[13—18s?
4 6
(I7—s/Qp)a {
+

Axstcy

+(3-8sP)

SM

1—2c2—42c}

6

13— 2657+ 18s;'
6

N SuUs 2
— In
72

5 q—z) (2.21)

+

+(3—6s+8s))

The above one-loop logarithms are of course reproduced

25'2(:'2 25| cI by simply inserting in the Born expression for the cross sec-
(2.17  tion the running couplingg andg’ of SU(2)x U(1) whose
scale dependence is predicted by the MSBHKlinctions; see
. (1f-5fQ0ger_17-Qy sec Il 2 i . .
ap’"=—Q;+ - (2.18 The paramete” which appears in the previous equa-
2sfct ¢ tions will be fixed atu?=M2, which is a natural and con-
sistent choice in our approach. For further use we shall de-
with ge  =25(—1, ger=25. fine the coefficiente}F writing
1. Comp.lete asymptotic 1-loop r(-asult-s O a RS 2.22
We shall now write the separate contributions of the RG LREIPLR 7| 7LR

and Sudakov kind. For the Sudakov terms, we shall separate
the initial vertex contributions from the final ones and the

3. Initial gauge terms
SM virtual effects(“gauge”) from the SUSY ones. Box con-

tributions will be, in our separation, grouped into the “final 5 a q2 ,
” H . . in gauge orn 1_2 3 | I
gauge” component equatiorfg.20,(2.21) a ag 16773, C|”( s|) n z MJ
al loop_ +a|n gauge+ a|n SUSY+ afn ,gauge afn SUSY q2 q2
(2 19) +4SWCW 3 |nM—$—|n2M—§J
2. RG terms qz q2
+2¢3/3 In—2—ln2—2H (2.23
an SM 16N SuUs IVIW MW
alt= N 7] 43+ —
A 9 9 _ . 92 q
ag\,gauge aRom 4S| 3' a2 In2 :|
a 1[10-16¢c? 16msf Mz M7
+ 34+ —48)) ] 5| —————
s 2T T Qi1 4s )]ls{ 6 qz e
+4s?c? 3In—%—In —z” (2.29
X 14427 SM_ 1[13- 18s? (3—852)_N sus M? M?
8 4 6 "9 .
In the above equation, the mass, refers to the cutoff
(13—s2Qy) (257~ 1) a [ [ 20— 40c? + 32c} which separates in the photon exchange contribution the ul-
+ p 9 N traviolet from the infrared part. Since the main purpose of
TS C this paper is the determination of asymptotic electroweak
1_20| 4204 SM 13— 263|2 + 185,4 eff(_acts(neglectingl in particular soft_ photon em.ission effects
5 5 which are determined by QED onlyf the experimental cut
AE is smaller thenM,=M,,, we shall set from now on
N]SUS 9 M,=M;=M,y. With this choice we can check that for both
+(3—6s2+ 83{‘)? V] In(—z) (2.20 the left and right terms we can write
o

093007-6



SUPERSYMMETRIC SCALAR PRODUCTION INTH. .. PHYSICAL REVIEW D 65 093007

2

[ ] 2
in,gauge_ Born in gauge - q q
aLr a R —|CL, (2.25 almsusY= anml&Ts > ”m 5 J+2c|2 In—- ]
L (g neu ch
with (227
[ ] 2
ain,SUSY aBorn T« 452 In q (2 28
lo(lg+1) Y2 2 R R 16ms?c?| | M2 '
Cln ,gauge_ € 3In q |I’12 q L (Id neu
LR g —S 213"z "z, S .
| [ w but in practice we will take them equal to a common SUSY
(2.26 scaleMgysyand write
whereY,=2(Q.—12) and the quantum numbers required in a'LnRSUS = aEOR”‘ C'L”RSUSY (2.29
the calculation ofy, (ag) are those of leftright) electrons. ™
with
4. Initial SUSY terms 5
2
In the following equations we have introduced different c'“F§USY M+ £ In g .
SUSY scalesM¢,, M ey for the chargino and neutralino s% act]| M3ysy
contributions: (2.30
5. Final gauge terms
2 2 2
a|M98u9e= grs’ 4[[Qf3| +13(1- ZSW)](( —s7Qp)? 4|nq——|”2 T 7| +s{cfQf 4'”&24”2%D
Z Z Y b%
2.2 2 2 2
S Ci q q q q
+ Q——(2|f) 4In—2—ln2—2D ( 4(2|f) 4In——In? l
MW MW ?Lonly 167 Iv'W MW
13 g2 I 1+(213)cosb @ s o0 202 102 > I 1—cosf
471_5'4( )In 2 > - 417-S|40|4( ?—sfQpA(2st—1) nM 2 ™" T coso
L
I q2 1 cosf  «a 32 a2 1)) q2 I 1—cosé )3
Qf "2 N cose wsfcfo( 1 Swdln) (25 - )n M2, N 1+coso (239
2 2 2 2 2
alm9auge= —2—[Qf B (13-57Q¢)? 4|niz—|n2 @ +s2cQ?| 4 Iniz |nziz 4|nqT |n217
AT M2 M2 M? M2 712" Mg, M|~
f only
2 2
o« 5 q 1 cosé a5 97 1—cosé
wc\‘}\,(l ~siQ0) In N coss = InMglnlJrcosH
. 2a 5o | q2 1—cosé )3
_2Qf( s7Qy) nM M cosd (2.32

Identifying all gauge mass scales with,, as we did for the initial gauge terms, one can factorize the Born amplitudes and
write

fn, gaugL chgn

ag

Cfn gauge (2_33)
a
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l+1)  Y; 2 2
cfnoauoqf )= (f(f—) (4In 9 |n2q_2)
s? 4¢? My Mw
12y g?| 1—cosé
+| —+—]|In—|In—
25|2 4c|2 M2| 1+cosé
2
q
+————(21})| In—
4t (f)st | M2
1+213 coso
XIn—— (2.39
2
~ Y? q? q°
fn,gaug _ f _1n2
C qf )——(4In— In —)
L oaec?\ MG M
PP 2.3
c? "z "1+ cose (2.39
li+1)  YE 2 2
fngauge(f) f(f ) (4| 4 qz)
. Y | q° | 1—cosh -
2¢? an M+ coso (2.39
v q? q°
fn,gaugeF 12
c Ufr=— <4In— In )
R e\ MG M
. Y I q° n 1—cosé -
2c? an 1+cosf’ 2.37
6. Final SUSY terms
They are also written in the form
a‘anRSUSY aEcgnW CanRSUSY (2.38)
with
eSS, dy) =cfSYS Y, dy)
1{1e(1¢+1) Y2
12l T e T e
2 s 4c
1| mg  m q?
Tamiel|siPB In
8Mys| B cogp M2 sy
(2.39

PHYSICAL REVIEW D55 093007

CINSUSYT ) = ¢ SUSY )
1(1,(1;+1) Y?
Sl 2l T2 e
2 s; Ac
1 m? q2
(2.40
4MWS| szﬂ] susv
cInSUSYG ) = ¢ SUSYp)
B! |f(|f+1)+\(f2
2 s 4c?
1 mg q®
(2.4)
4MWS| COSZB] SUS\J
cINSUSYT ) = SUSYT )
I SISO G | s
2 S|2 4‘3|2 Méusv
(2.42
CINSUSYT ) = [ SUSYT )
_n0ry YR e
2 S|2 4C|2 Méusv.
(2.43

An important feature of our approach is that, in the
asymptotic regime, due to the unitarity properties of the
chargino and neutralino mixing matrices, the only remaining
parameters are tgh and the SUSY scale which appears in
the logarithmic terms. The role of tghwill be discussed in
detail in Sec. V.

E. Extension of the results to the case of charged or neutral
Higgs bosons

All the results written above fofLYRNfL,R directly apply to
the case of charged Higgs bosd#i$H ~ or of neutral Higgs
bosonsHJHY, ,, where the labelsg=1,2, b=1,2) refer
to

HO=HO, =h%, HI=A", HI=¢° (2449
(¢V is the neutral Goldstone bospmefiningp as the outgo-
ing H™ or H2 momentum ang’ the outgoingH ™ or HY,
momentum, and

for H'H™ Qi=—1, I{=—-3, Y{=-1,

for HOH? Q;=0, I$=3, Y{=-1.

In the case of charged Higgs bosons, the Born terms are

aEOH’I(H) — 4SI2C|2 , aSOFH(H) — 2_C|2

(2.45
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so that all initial gauge, initial SUSY, final gauge one loop 11,(1,+1) y2 9 92
terms can be taken from the sfermion case with the appro-¢{™92u9§ap) == % _f2 (4 In—2—ln2—2)
priate values of? andY; given above. The final SUSY and 4 Si 4c M Mw

heavy fermion terms are

1 q°
- (21})| In—
o 2B (Tost L M2
aanhSUSYE E?qrn_ CanhSUSY (2.46)
' N 1—cosé 1+ cosé
X|In +1In (2.53
2 2
with
1{1:(1+1) Y? g2 q?
fn,gaug — ff _f N2
CINSUSY ) = c[nSUSY ) CR Yab) 3 —3,2 P 4 Ian In Wv
| o1f0a+) YR (2.54
-l 2 2 * 4c2 and the final SUSY and heavy fermion terms can also be
! ! written as
3
2 2
— ———(mjtarf8+m? cot’ Born @
8s,2M\2N( gtarg+my ,3)] almSUSI al(_e,‘lg),Born; cInSUSY ap) (2.59
? ith
x| In— 247 M
MSUSY Can,SUSY(ab):CfRn,SUSY(ab)
(note the color factor 3 arising from the quark triangle loop, 1 1g(lyg+1) Yﬁ
which will enhance these contributions as compared to the 1732 — T 262
case of final squarks Si €
In the case of neutral Higgs bosons the Berexchange 3 2
is missing and th& exchange is multipliedwith respect to - (ab){|In q (2.56
the previous casgdy iA,, where 8s?M3, 2 Usy
. and
—sinfa—pB) —coda—p)
Aap= —coga—p) sina—p) | (2.48 HHA)= 1 sina cosﬁmz_ COSO(Sin,BmZ
sinB—a)| sikB Y  cogp ¢
The specific cases of use in this paper are (2.57
_ _ 1 cosacosp , sinasing ,
ete”" > HA: A= —sin(a—B) (2.49 f(hA)=— codf—a)| sieg Mt Tcogp M|,
(2.58

+ o= . _ _
e'e —hAA=—coda—p) (2.50 As one can observe, in the neutral Higgs case there appears

one more SUSY parametes) than in all other cases, which
would require a separate analysis that we feel is beyond the

with the corresponding Born terms purposes of this first paper. We shall treat the neutral Higgs
production in more general SUSY modékliso beyond the
_ o2 MSSM) in a dedicated forthcoming paper.
LB 1-25s RB 1
aab o= 2 2 Aab1 aab M= — 2Aab- (25])
4sic; 2¢;

F. Logarithmic expansion of the observable quantities

The logarithmic expansion of the various observables can

The initial gauge and initial SUSY one loop terms can alsope now straightforwardly derived from Eq2.22), (2.26),
be taken from the sfermion case with the appropriate valueg 30, (2.33, (2.39, (2.47), (2.53, (2.54, (2.56. At one

3 : : . : . .
of I and Yy given above. The final gauge terms are loop, we obtain the following expressions for the polarized
angular distributions:

fn,gauge_ L,R;Borng fn,gaug . 23
AR(an) = | B@p) 5 |CLR @b (252 ZUL'Rg :Ncolﬂ-g Psitola il (259
cos q s
with with the first order expansion
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|aL,R;f|2=|aE°|{-r} 1+ 26, q(f)] (2.60 dgnt box terms appearing in the a_bove cc_)ntributions called
o “final gauge.” The W box only contributes final scalar dou-
where blets (f, or charged, neutral Higgs bosongbeled with
o . “f_ only.” The y+Z contribute all final states. A simple
Sr(f)=|— {cRR(F)+c"grU9gf) + ¢["9aU9g f) analytical expression reads
in,SUSY fn,SUSY, 3 Y 2
FeLRTAD e R @80 ONE=-Za-am2)f | i
_ ' s a =
and the varioug| g(f) can be read off the corresponding Lo WAt only
previous Egs.(2.22, (2.26), (2.30, (2.33, (2.39, (2.47), 2
(2.53, (2.54, (2.56). +aPyminT (2.69
We can then consider the integrated observables. With this ‘ Mz
purpose, we define the Born quantifies
Born|2 3 @ 2
. lag®™ EN;ﬁ:_; (1—41n 2)a3j’{“|n% (2.70
) |aE0rn|2+ |agorn|2 z
2 292 where we used ,=M.,=Mj in the y+Z boxes.
sy +13¢(1—2s y e T2
= 5 [Qss 3’;( '4)] (2.62 Now we conclude thisunavoidly long Sec. I, where the
[QssP+13¢(1—257)1°+4s](I3:—Qy)? complete DL and SL terms have been computed at the one-
loop level. In the forthcoming Sec. Ill we shall perform a
EEGRE resummation of all the logarithmic terms sableadingoga-
pR,f:|a50m|2+|aBorn|2 rithmic accuracy in a convenient asymptotBudakoy re-
L R gime, and show that the calculatidoescoincide at the one-
- 4S|4(|3,f_Qf)2 069 loop level with that of Sec. II.
[Qrsf+155(1—25)]*+4s/ (135~ Qy)? . RESUMMATION OF SUBLEADING SUDAKOV

. . . . LOGARITHMS IN THE MSSM
and the integration of the relative 1 loop effects with respect

to the scattering anglaote that there are angular dependent In the previous section we have calculated one loop Suda-

parts in thes_ gr(f) due to box contributions kov logarithms in scalar production at a linelre ™ collider
L at large energies in the MSSM.
Nl =f d cosO SRl 8 of f 26 With the expected experlm_ental precision in the one per-
LRI el our(P)] (2.69 cent regime at such a machine, the need for a theoretical

treatment to the same accuracy was already discussed in the

kB 1 0 2 introduction. Recently, the treatment of electroweak Sudakov

NL R = JO - Ll dcosfsin [ 6, r(f)]. logarithms in the SM revealed the fact that for that purpose

(2.65 at least a two loop treatment to SL accuracy is indicated in

the TeV regimd4]. For SM processes a general method of

For reala,_ y the relative effect in the total cross section obtaining DL corrections to all orders was presented in Ref.

and the absolute shifts in the asymmetries are [4] (Fadin et al) in the context of the infrared evolution

equation method. If we assume that the mass scale of the

oo 3 sfermions or Higgs particles are not much larger than
— =22 [pL Nt + pr NRY (2.66 g9gs P g
3l ful ’/")1 k g P
5ALR,f:4P|_,fPR,fZ(NLu,f—Né{f) (2.67) O
3 L |
AFB,fE5AFB,f:§(PL,fNE,Bf+PRfNE‘fB)- \\\
(2.68 NG S P2

We stress that the_re IS No forwardibackward asym_met_ry al FiG. 3. Two loop corrections involving Yukawa couplings of
Born level for a pair of scalar particles. The contribution gcaiars to fermions. The Ward identity in E8.5) assures that, in
from angular independent terms cancel, thus this asymmetry,e Feynman gauge, the sum of both diagrams does not lead to
arises at 1-loop order and is only due to the angular depengdgitional SL logarithms at the two loop level. Only corrections to

the original one loop vertetsee Sec. Il need to be considered and
lead to the exponentiation of Yukawa terms in the MSSM to SL
'Notice thatpy ,=1/5 andpg ¢, = 4/5. accuracy.
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the weak scale, these results can be applied straightforwardle resummed as in the SN]. Box-type diagrams exchang-
to the MSSM since the gauge couplings are preserved undéng supersymmetric particles in tlsechannel do not contrib-
supersymmetry and no additional spin 1 particles are exute to SL angular terms. The same holds for all universal SL
changed. corrections which involve the exchange of SM partidleé

In case the superpartner masses are larger than 500 Gedihce they are properties of the external lines only.
additional double logarithms need to be taken into account in  New types of SL Sudakov corrections are, however, in-
a way outlined in Ref[4] (Fadinet al). In the following we  volved in the exchange of supersymmetric particles as dis-
assume that we can neglect such terms, i.e. that all MSSMussed in the previous sections at the one loop level. We
scalars have a mass below 500 GeV. begin with the corrections contributing in particular the

At the subleading level, the situation in general is lessyukawa terms from the final state corrections. In order to see
clear at higher orders. For SL angular dependent terms, theow these corrections enter into two loop SL calculations,
same reasoning as above goes through since they originate need to consider the diagrams displayed in Fig. 3. The
only from the exchange of spin 1 gauge bosons and can thumrresponding two loop amplitudes read

f dnl f d"k  (p1—P2), Tr[(G o+ Gjw)) (k= p1)2pa(k—p1+1) (G 0, + Gjw)K]
(3.1
(4m)"J) (4m)" (12=22)(po+ D2 (p1—1)2K2(k—py)2(k—py+1)?
f d"l f d'k (p1=P2), Tr[(Grw,+Gw) (k= p1+1) (G 0, + G w))k]4p1p2 3.2
(4m)") (4m)" (12=22)(pa+ D 2(pa—1)2K3(k—py+ 1% (py—1)? '

where we omit common factors and the scalar masses assulme soft. Thus we need to show that the UV logarithm origi-
ing mg~\ for clarity. The G,, denote the chiral Yukawa nating from thek integration is identicalup to the sigihin
couplings andw, ;=3 (1= ys). The gauge coupling is writ- both diagrams. We can therefore neglect the loop momentum
ten in the symmetric basis for clarity since we are considert inside the fermion loop. We find for the fermion loop vertex
ing a regime wheray®=(p;—p,)?>>M?, whereM is the  A*(p2,0,p?) belonging to Eq(3.1):

gauge boson mass. In any case, local gauge invariance is not

violated in the SM and for heavy particles in the high energy
limit, we can perform the calculation in a basis which is )
more convenient. For our purposes we need to investigatt
terms containing three large logarithms in those diagrams
Since the fermion loops at one loop only yield a single loga-
rithm it is clear that the gauge boson loop momentumust

FIG. 5. Two loop corrections involving SUSY couplings of sca-
FIG. 4. Higher order corrections to vertices with Yukawa cou- lars to fermions. The Ward identity in E3.5) assures that, in the
plings to SL accuracy. The graph is only schematic since in prinfFeynman gauge, the sum of both diagrams in each row does not
ciple the gauge bosons couple to all external legs in the procesgad to additional SL logarithms at the two loop level. Only correc-
Because of the discussion in the text the non-Abelian version ofions to the original one loop vertgsee Sec. I)l need to be con-
Gribov’s factorization theorem can be employed in the context ofsidered and lead to the exponentiation of gauge terms in the MSSM
the infrared evolution equation method. to SL accuracy.
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Tr[(Grw+Gjw) (K= p1) v (K= p1)(G o, + Gjo) K]
kz(k_pl)z(k_pl)z
4G, G, (2pt(k?— p1k) + Kk (p2— k2))
B 2(k—py)*

(3.3

This we need to compare with the self energy Idbfp?)
from Eq. (3.2):

d Tr(Gro +Gw)(k—pP1) (G +Gw)K]
IP1y k?(k—py)?

d 4G,Gi(pk—k?)

TP KA(k—py)?
2pf (k2= p1k) +k*(pi—K?
—4G,G, P ( 51 ) 4(p1 ) (3.4)
k“(k—py)
In short we can write
3.(p%)=A*(p3,0p3). (3.5
r?p 1

PHYSICAL REVIEW D55 093007

gauge symmetry. For the same reason the SM-Yukawa terms
were found to exponentiate in Refi6]. Also in an axial
gauge the corrections can be seen to factorize accordingly
since in this gauge DL terms originate only from on-shell
two point functions.

We are thus left with gauge boson corrections to the origi-
nal vertices in the on-shell renormalization scheme such as
depicted in Fig. 4. At high energies we can therefore employ
the non-Abelian version of Gribov’s bremsstrahlung theorem
in accordance with the SM ca$4| (Fadinet al.).

Analogously, it is easy to see that also the diagrams de-
picted in Fig. 5 form the initial state exchange of supersym-
metric scalar particles leading to Ward identities. For the
respective vertex and self energy contributions we have veri-
fied that the corresponding E@3.5) is satisfied. Thus the
same reasoning as above can be applied and the exponentia-
tion at the SL level is established.

For our purposes here we omit the soft photon regime for
now (which is determined by QED only if we impose an
experimental energy resolution below the weak sdélg
and focus only on the novel higher order Sudakov correc-
tions in the MSSM. For clarity and later convenience, we use
a common mass scale in all logarithms below. This is not

Thus, we have established a Ward identity for arbitraryfully correct to SL accuracy in the DL terms as discussed
Yukawa couplings of scalars to fermions and thus the idenbelow but can easily be rectified using the scales found in the
tity of the UV singular contributions. The relative sign is one loop calculation presented in the previous sections. In
such that the generated SL logarithms of the diagrams in Fighe high energy regime one then has the following result for
3 cancel each other. The existence of such an identity is nafermion production to SL accuracy relative to the Born

surprising since it expresses the fact that also the Yukaweross sectioh[with t=—(q%/2)(1—cosf), u=—(q%2)(1
sector is gauge invariant since supersymmetry preserves thiecosé)]:
2 2/ 2 202
g%(my) 2 gi(my) 1 g%(ms)
dor 7 = =doo o - ex ——fle (le-+1) Inq—2 In—— 1]+ =In——0
e’ e, ~fglg e’ e, pfp 477,2 m? 92(q2) CZ QZ(qZ)
12 2\\/2
9" (M)Ye-T ¢ q2(| g'3(m?) 1 g'%(m) +(gz(m?)l o
- —In—| In - —1n
16’772 c’ m% 972(q2) C72 g/2(q2) 8’772 ea
2
g'2md) Ye | 2 g (mq) g2 gi(m?)
— 3 n———7) |f (lf +1) In—2 Inﬁ—l
8m? 4 me g m:\ g%(a?) c?
12 2\\/2
9 mOYE 1 g2 g'Am) 1 g mp| [gm) g’ (m)Y
| Shz| I 1+ — |t 11,015, + 1)+
16m*  |¢’ me\ g'*(g?) ¢’ g'“(q") 8m® P F
202 2
Q> - . g* gi(mp) g ) 3 5t
><4|n;$+5efae;4_ﬁfﬁln;$— - In;? (tar?&WYe;YfB+4Te;T7B)InG
8081 -~ —u)
+ — 6437 IN——96,7In— 3.6
tar?GWYe—Y7B/4+T27T$B afln 7 = il 7 (3.6

2We denote the chirality,R by the indexa with —L=R.
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where the last line only contributes for left handéd electrons and th&l,u symbols denote the corresponding isospin
quantum number of. In addition we denote=g%(m?)Bo/47?, ¢’ =g'?(m:)By/4m?, whereg, g’ are theSU(2)
X U(1), gauge couplings. Here we assume that the asymptotic MBSWhctions can be used with

~ 3 Ng Nh ~, 5 Ny
Bo=7Ca=%5 ~5 Bo=—gNe™ g 3.7
2( m2 12 2
9°(m;) g'%(ms)
9%(9*) = o, 9'Aa)= T (3.8
1+8 J (mf)l a 1+ B! m?)I g
0 472 me ° 472 m?

f f

whereC,=2, ng=3, andn,=2. In practice, one has to use the relevant numbers of active particles in the loops. These terms

correspond to the RG-SL corrections just as in the case of the SM as discussed {6 Rais.now with the MSSM particle
spectrum contributing. They originate only from RG terms within loops without which the RG contribution would give a DL

correction. It must be mentioned that the one-loop RG corrections do not exponentiate and are omitted in the above expression.
They are, however, completely determined by the renormalization group in softly broken supersymmetric theories such as the

MSSM and sub-subleading at the higher than one loop order.
The generic term denoted ESQ e —f gy in Eq. (3.6) is a short hand notation for the overghitial and fina) one loop

SUSY corrections discussed in the previous section. The result ii3).is given for the chiral superpartners directly. In

principle, mixing effects need to be taken into account for the mass eigenstates of the third family as discussed in Sec. IV.
Equation(3.6) contains all SL terms to all orders under the assumptions stated above. In particular it provides an indepen-
dent check on the diagrammatic one-loop results derived in Sec. Il for all universal corrections from gauge bosons as well as

the angular dependent terms.

As mentioned above, to compare the asymptotic expari8ién(valid in an energy regime where the details of electroweak
symmetry breaking can be neglectedth a physicalone-loop calculation like the one that we performed in Sec. I, a number
of “minor” adjustments must be performed. In practice, one should use, rather than a commommasg gauge boson
masseM,, My orthe SUSY masM g 5yin the corresponding logarithms. After these replacements, the one-loop version
of Eq. (3.6) should reproduce the corresponding results of Sec. Il.

We have verified that the asymptotic expansion B) and the corresponding physical one-loop expressions of Sec. Il do

actually coincide. This can be verified in a reasonably simple way, which we do not show in detail here to avoid writing extra
long equations. The result can be considered, in our opinion, a satisfactory check of both the various theoretical arguments

presented in this section and of the detailed calculations of Sec. II.
In the case of charged Higgs production we have analogously

g?(mp) 9 [ gi(mp) 1 gi(mp)
do>r _=do™ _exp] — ——— 1o (le-+1)| = In— | -1|+=In
O B A e ) c* 9%(q?)
12/ 2\ 2
9T miYe [1 g2 g'%mf) 1 g%(mp)| [ g’(mg)
B 7o ke Ewrysr it Rer Ly 2 e (le; 1)
16 ¢’ mg\ 9"%(g%) ¢’ g'%(q) 8m® @

2
Lg%} Ye;)3| ¢ gim) q2(|n92<mﬁ>_ ) L g

e — =g+ D] S I | In—— i
gn?2 4 mg  4m? ¢ mil 0¥(g?) ¢ 9%9?)
g2 (MY)YRI 1 ? [ g'*(mf) 1 g’ (my| [g’(md)
-————— | Ih—|Ih——=-—-1]+—In Iy +1)
16772 C, mH g12(q2) C12 gIZ(qZ) 8772
12 2 2 2 2 2 2 2
9'“(my) Yy qQ°  ~ q° g°(my) q 1t 2, L
A=+ o —pyry-In—— In—| 8, | —5In=+2c; In—
gm2 4 mg el HH ma  4x?  m3| “Hl2cz u T g2
t
+ 8, rtarto, Inal } (3.9

where we denote=g2(m?)Bo /472, c'=g’'?(m3)Byl4m.
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The generic term denoted b@y e —HYH- in Eq.(3.9) is

PHYSICAL REVIEW D55 093007

kln

gauge’ k&sy: initial gauge and SUSY terms according

again a short hand notation for the one loop SUSY correcl© Eqs (2.26),(2.30.

tions discussed in the previous section.

kgauge final gauge terms, namely theindependent loga-

We emphasize again the independent nature of derivingthms in Egs.(2.31,(2.32 with My set toM.

the remaining results in Eq3.9) as they are directly ob-

kit y: final SUSY terms; these are the tarindependent

tained frome"e™ — ¢ ¢~ [2,6] if we neglect the mass dif- terms appearing in Eq$2.39—(2.43.
ference. A comparison with the one loop calculation confirms kY”k final “massive” SUSY terms; these are the t@n
again the corresponding contributions of the explicit dia- dependent terms proportional to 148rand 1/co$B respec-

grammatic calculation of Sec. Il.

tively in Egs.(2.39-(2.43.

Having checked the equality of the asymptotic resummed kB°* all the terms resulting from the angular integration
subleading expansion and of the physical one Ioop calculaef the # dependent termfnote that we are now separating

tion for all SUSY production processésoduloe, Ve O

box terms from final gauge ones, differently from what we

be considered later gnin the next sections we turn to a did in Egs.(2.31)—-(2.37]. _
discussion of the phenomenological importance of the one The following remarkable relations hold:
loop and resummed corrections particularly for a determina-

tion of tanp. def
klgnauge kg‘USY_ kl (4-4)
IV. NUMERICAL RESULTS
. . kSUSY_ Zk;r;uge (45)
Given the fact that we have now at our disposal both a
physical one-loop calculation andcansistentSL order re- and allow us to write the simpler expression
summation, we are in a position to compute all relevant ob-
servables in the two approximations and to identify, when- Sa RG 9 q? q?
ever this occurs, the importance of the extra resummation in100 —~ = (ksy+ SUS\N”—+ k W _|”W
the MSSM case. W z S
To summarize the numerical weight of the various contri- qz 9 2
butions to the one loop cross sections kL'ng —2In—|+| k'U¥ !
|v|§ M3 M, sirB
ete =T gff g ,H'H™ 4.1
L,R'L,R ( ) - mg q2 q2
. . o b K | In— +kB¥In—. (4.6)
we approximate the previous results by replacing in the loga- M\Z,\,cosz,B M2 'V'z
rithms My, M,, andM ; with M, and by using every-
where a single SUSY mass sciifigssyin place of the vari-  The numerical values &RS kin kin kYUY and
B SM» SUSY' gauge’ “t,b
ous M,+, M,o, and Mt. Under this approximation, we Box gre shown in Table I.
obtain In the case of the longitudinal and forward-backward
" ) asymmetries we compute instead the absolute percentual ef-
100_ KRS KRS )| _+ Kin qa fect 1005A and group the various contributions exactly as in
=( susy ” aug4-3 the previous equation. The numerical values of the coeffi-
Z cients forA g are also shown in Table I. In the caseffs,
, 2 2 2 only kB°%is nonzero and its values are
in q fn a q
+ susvan gaugd-4| —5 2 +k&ysyin— B ~ L .
S z S A B t, tr b, bg H~
v M m? 9 e ~1.3 -032 1.3 016 1.1
uk Yuk o
t 2 n2 + 2 2 (47)
My, sir?8 Mg cogB) M3
) We shall now illustrate the main results of our analysis in
Box|n J_ the following figures. We must anticipate at this point that
+ K= In— 4.2 o .
s the qualitative features of the various effects show a strong
difference between the two cases of
where (a) production of sleptons in generékith the exclusion
of selectrons anaze) and squarks of the first two families
L,(x)=nInx—In?x (43 and
RG LR - - o 0 VUK LB (b) production of squarks of the third family and of
and ksy, Ksysv: Kgauger Ksusy: Kgauger Ksusvikip » K°°*  charged Higgs bosons. One can already guess that the differ-
are numerical coefficients. Their detailed origin is the fol-ence will be due to the appearance, in the second case, of
Iowing contributions of SUSY Yukawa type, that will give rise to
k§v, Kk&Gsy: Renormalization group terms, Egs. relevant and possibly interesting effects to be discussed later
(2.20,(2.22). on.
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TABLE I. Numerical values of thé coefficients. They are de- Figure 6 shows the relative logarithmic effects at one loop

fined in Eq.(4.6) and represent the relative weights of the various(dashed ling and after resummation(full line) for
logarithmic one loop effects in the cross sections. The second patt ~ ~ ~ ; :
of the table shows their numerical values in the case ofdhg  “LR*  TLR»  Pul, PrLs cross sections at variable en

asymmetry. A dash denotes a contribution that is rigorously null and'9Y: while in Fig. 7 the same effecis arS shown for the first
not simply numerically negligible. two families of squarkgdenoted asu, d). Figures 8, 9

- correspond to the cases of the forward-backward asymme-
100Aa/o k&G K&Gsy K" kiliee KU kyU*  kB*  tries of the same processes. In all figures, the “logarithmic”
effect takes into account both the RG SL and the Sudakov

T -13 19 041 038 —0.25 -0.25 15

L DL,SL terms.

ER 10 063 020 0.067-051 As one sees from Figs. 69, the general feature is that the

b, -17 22 040 038 -0.25 -0.25 1.8 logarithmic effect at one loop in the energy region between 1

[ 1.0 063 020 0.017 —-0.51 TeV and 2 TeV is very close to the resummed effect, up to

H=* 063 16 037 041 —-0.76 —0.76 1.1 less than one percent differences that in our working assump-
tion should be experimentally invisible. This feature, that is

AA KRG | RG Kin - kfin KYuk pYuk jBox valid for both cross sections and forward-backward asymme-

LR SM SUSY gauge t b

tries, is intuitively related to the fact that the one-loop effects
are in these cases relatively “small,” although experimen-

T, —0.15 0.083 0.016 0.095 . . . .

- tally meaningful, being typically of several percent size. The

tr 0.084 same conclusions apply to the cases of the longitudinal po-
b, —-0.26 0.15 0.024 0.17  Jarization asymmetries of this first class of processes. In or-
br 0.084 der to avoid a too large number of figures, we have given the
H=* —059 033 0.076 0.37 corresponding effects in Table Il. The situation changes

when one moves to larger energies, 2 FeVg?<4 TeV
(the latter value is chosen as an optimistic “averaged” aim

slepton left slepton right

100 Ac/c
|
>
T

---- 1L

exp(...)
—-— exp(...), universal

100 Ac/c
|
=
T

Q (TeV)

FIG. 6. Cross section for production of slepton&€) or sneutrinos. “1L” is the totalrenormalization group and Sudakosne loop
virtual effect. “exp(...)" is the cross section resummed at subleading order including RG contributions. In the last curve, labeled
“exp( . ..), universal,” the angular dependent terms coming from boxes have been suppressed. In this and the following figures we denote

by Q the c.m. energy/g2.
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squark up left squark up right
10 T T T T T T T 6 T T T T T T
5 - |
L sk
0 _ -
g -5 r b 4k
Q10 + - .
O [ - - = AN ~
= o5t 1L T~ -4 37
exp(...) s
=20 - —-— exp(...), universal ~_ .1 L
25 |+ _
-30 i ! ! L 1
0 1 2 3 4 0
10 6.0
I 55
0 =
i 50 |
b Sr
©
<1 -10 45
= I
- 40 |
20 + |
i 35 F b
=25 - |
_30 I L 1 L 1 " 1 ' ] 3.0 L 1 " L ) 1 "
0 1 2 3 4 0 1 2 3 4
Q (TeV) Q (TeV)

FIG. 7. Cross section for production of up or down squarks in the first two generations. The labeling of the various curves is explained
in the caption of Fig. 6.

for CLIC experiments Here, for left-handed sleptons and coming pape); a different picture arise#\ priori, we know
squarks, the difference between one loop and resummatiahat SUSY Yukawa contributions will be effective in these
becomes appreciableyond the one percent leyednd a  cases, and they will depend on the farparameter. This
complete resummation appears necessary. statement is only true for cross sections, and does not hold
The conclusion of this first investigation is that, in the for forward-backward asymmetries, since the latter ones are
energy range of the TeV size, assuming a typical SUSY masgot affected by universalg-independent, contributions. To
of few hundred GeV, the perturbative treatment of SUSYeyidentiate whether this expectation is correct, we have de-
scalar production for the considered set of processes apPeqiRted in Figs. 108),12(a) the effects on the cross sections
to us to be totally satisfactory at the one-loop level, not re3or squarks and Higgs bosons production at two representa-
quiring extra resummations if the aimed experimental accUs e and sensibly different values t@ 10 and targ=40.

racy remains at the one percéand not at the one permi)le . .
level (we stress that, if the SUSY mass turned out to beAgam, we have drawn systematically the one lddpshed

larger, these conclusions can be simply rescaled at correg-nd re?rtllm;nedful(lj)beffekcts.dln Figs. 15*?)'12“]3)H"_Ve helive
spondingly larger c.m. energijed-or larger energies, a re- rawn the forward-backward asymmetries ol Higgs bosons

summation seems to be requested for left-handed scalars. 21d squarks production that, as we said, do not depend on
As a side remark that might be added, we have also dd@n/. Thefirst characteristic feature of Figs. &0,12(a) is
picted in Figs. 6-9 the separate resummed effects that woul@at now a more drastic difference exists between the energy
have been obtained by ignoring the Btdependent contri- region Jg?=1 TeV (possibly within the final aimed reach
butions of box origin. As one sees, the consequence of thief the LO) and that ofyq?=3-4 TeV (possibly within the
omission would have been catastrophic in the left sfermiorCLIC range. In the first case, the same previous conclusions
cases, in particular, the angular terms are the only ones thabout the reliability of a one-loop expansion are still, in our
contribute the forward-backward asymmetries. This confirmgvorking assumptions, essentially valioh fact, the relative
a previous observatidig] that stressed the relevance of thesedifference between the one-loop and the resummed effects is
“box-type” contributions in the Sudakov regime. always below the assumed visible one percent Jevighis
When we move to the production of either a third family reliability is totally lost when one reaches the3 TeV re-
of squarks or charged Higgs bosofee recall that neutral gime. In this case, the relative difference between the two
Higgs bosons production will be treated in detail in a forth-effects is well beyond the one percent level, particularly for
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slepton left slepton right
14 T T T 5.0 T T T
12
EIO -
S st
6 -
4 . ) . 1 . L n 2.0 . I . I R )
0 1 2 3 4 0 1 2 3 4
. TeV
sneutrino Q(TeV)
-4
-5 F
---- 1L
g6 exp(...)
5
87}
-8 F
-9 1 1 1
0 1 2 3 4

Q (TeV)

FIG. 8. Forward-backward asymmetry for production of sleptoAg) or sneutrinos. The labeling of the various curves is explained in
the caption of Fig. 6.

large tanB. In the extreme case of Higgs boson production at  Thesecondelevant feature of Figs. 18,12(a) is the fact
tanB=40, the relative difference between the two effects isthat a strong dependence on faappears in the logarithmic

of approximately five percent at 3 TeV. Similar features areeffect. This can be seen by comparison of the two curves that
valid for squark production as well. Thus, for third family correspond to ta=10 and ta3=40. As one notices, the
squarks and charged Higgs boson production in the CLICelativedifferencebetween the two effects is always “large”
energy regime, with a SUSY mass of a few hundred TeV(depending on the case again with an enhancement in the
stopping the theoretical calculation at the one loop |eve|—|igg5 boson cagewith the only exception of right top quark
would be in our opinion a theoretical catastrophe. It shoulthroduction[this can be qualitatively understood looking at
also be stressed that the resummed effect remains large agg. (2.40)]. This remarkable feature remains essentially true
sometimes spectacular. In particular, in the extreme case @4 the overall -4 TeV energy range, although it increases
charged Higgs boson production at far 40, it reaches the  ith energy. The previous observation suggests that, from a
35 percent value a{fg”=3 TeV. For squarks, the effect is gpecial analysis of cross sections, one might be able to derive
reduced butis still generally largom =5 to =15 depend-  jhteresting information on taf. In fact, this possibility was

ing on the casgsWe insist again on the fact that, as a con- 5644y considered in a previous paper devoted to top quark

sequence of the color fact.or in the qu:_:xrk Ioop_ i_n Fig)2 Sproduction[ZO], where it was proposed to exploit measure-
the process of charged Higgs production exhibits the mo ents of theslopeof the cross section to fix the tghvalue
sizeable SUSY Yukawa Sudakov effect, as we anticipated in . . :

In Sec. V we shall generalize the previous proposal to the

sec. I f ot K, bott k, charged Higgs b
In the case of forward-backward asymmetries, depicted jiyases of top squark, bottom squark, charged HIggs boson
production, and discuss in some detail the possible conse-

Figs. 11b),12(b), the situation is very similar to that of the i . N
sleptons and first families of squarks, as one can see. THENcES for a relative precise determination Qfﬂan .
only difference appears in the case of Higgs boson produc- A final comment has to _be add_ed conceming the mixing
tion. Here the difference between one-loop and resumme§Tects which affect the third family of squarks. The mass
effects becomes again visible in the CLilGut not in the LG~ €igenstates will no more bé, r but the combinations
regime. This fact is, in our opinion, accidental since wef,=coséf +singf, and f,=—sin6;f +coséf, . Experi-
could not find deeper physical motivations for it. mental results will be obtained for production of
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stop left stop right

-12 +

~14 b E

_16 " 1 ' 1 ' 1 " -3.5 " 1 " 1 " 1

sbottom left sbottom right
16 T T T T T T T 1.6 T T T T T T

Q (TeV) Q (TeV)

FIG. 9. Forward-backward asymmetry for production of up or down squarks in the first two generations. The labeling of the various
curves is explained in the caption of Fig. 6.

TABLE II. Absolute shift in the asymmetrj . We consider here two energies 1 and 3 TeV. For each
energy and final sparticle we show values. “1L" is the one loop contribution; “Res” is the contribution
resummed at subleading accuracy. The label &ianeans that thegenuinenon-universal angular contribu-

tions from boxes have been suppressed. About the sparticle labeling, we recalistaatls for a generic
sleptonu or 7 and thatu andd stand for squarks witA®=1/2 and—1/2 in the first two generations.

1TeVv 1 TeV 1 TeV 1 TeV 3TeV 3TeV 3 TeV 3 TeV
100AA R 1L Res 1L, no# Res, nod 1L Res 1L, no# Res, nod
TL -0.27 -0.17 —-2.4 —-2.3 -1.9 -1.6 —5.7 —-4.8
T -1 -0.99 -1 -0.97 -3 -2.6 -3 -25
> 0.53 0.89 -6 =59 —-15 —-1.3 —13 —-11
al_ —0.031 —0.0069 —0.57 —0.56 -0.36 -0.31 =14 —-1.2
I]R -1 —-0.98 -1 —-0.97 -2.9 —2.6 —-2.9 —-2.5
d, 0.011 0.055 -0.95 -0.93 -0.43 -0.37 -2.2 -1.9
aR -1 —0.98 -1 —-0.97 —-2.8 —-2.6 —2.8 —2.6
T, -0.032 —-0.017 —0.59 -0.57 -0.39 -0.34 -1.5 -1.2
1 -1.1 -0.98 -1.1 -0.97 -3.2 -2.5 -3.2 -25
EL 0.011 0.037 —0.99 —0.95 —-0.46 —0.43 —2.4 -2
BR -1 —-0.97 -1 —0.97 —-2.9 —2.6 —-2.9 —2.6
H* -0.3 -0.3 —-2.6 —2.4 —2.4 -2 -7.3 —-5.2
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stop left stop right
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FIG. 10. Cross section for production of third generation squéis squark and bottom squarkVe show the one looglL) and
resummed exp(. . .)] shifts at tan3=10,40.

Fify, Tofn, Tifa, Tof,. However, in the asymptotic for each flavort or b, separately. The experimental results
regime, the amplitudes for mass eigenstates can be expresseaah then be given for chiral states and compared with the
in terms of amplitudes for chirdl,R states in a simple way: theoretical predictions made throughout this paper.

A=A COF0;+ ArrSinte
HeT PRSI V. DETERMINATION OF tan B

Ago= AL SIN 0s+ AgrCOS b In the framework of the MSSM, we showed in a previous

paper[13] that the cross section for the proces®e™—qq,
with g being a third generation quatiop and bottoryy con-
(4.8 tains angular independent Sudakov logarithms of Yukawa
origin. These are terms depending on gaand on the SUSY
so that it should be straightforward to express the experimermassMSUSY, which are the only SUSY parameters surviv-
tal results in terms of the observables concerning the chirghg in the high energy limit of this process.
states that we considered in this paper. One has jUSt to invert To understand the reason for this pecu“ar feature we re-
the above equations, and one obtains call that the free parameters of the MSSM can be broadly
divided into three classesi) the ones belonging to the SM

A12: A21: (ARR_ ALL)Sin Gf COSHf

tan 20— 2A1; 4.9 sector,(ii) tang that is related to the two doublet structure of
an AL AL : the Higgs sector andiii) the (many SUSY soft breaking
mass terms.

As we discussed ifi13], an analysis of the slope of the

_ A11C0S 0y — Ag, Sint by

(4.10  effects in the observables as the energy is increased allows us
LL . . . e
cos 0 — Sirf 0 to extract the value of ta@ without any specific knowledge
of the other parameters. This very welcome feature is present
AsrCOLO: — A+ SirP o also in the processes considered in this paper; to be more
=2 rTl f (4.1  precise, it remains rigorously true when working in the one

cog 0 — Sirt s

loop approximation, and it is valid to subleading order accu-
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FIG. 11. Forward-backward asymmetry for production of third generation sq(tagksquark and bottom squarkVe show the one loop
(1L) and resummeflexp(. . . )] shifts. Here, all of the effects are due to the angular dependent terms coming from boxes and Yukawa terms
depending on tap cancel.

racy if one uses the complete resummed expressions. Theere,F,, is a function of taB only. The explicit form of its

remaining part of this section will be devoted to a numericaltang dependent terms can be obtained from the Yukawa

analysis with the specific aim of determining {&n terms and we write them here for clarity and convenience of
Let us denote byr,, n=1-5 the various cross sections the reader

for production oft, g, b, g or charged Higgs bosori™.
We define the relative SUSY effect on the cross sedtigas 1
o

2
the ratio ___a My 2
Fi=—— 4M\2NS\2N<tanzB+mbtan2ﬂ>, (5.3

2

 O0n(@®) -0 M)
= OSM(QZ) . (5.1 o 1 mtz

" [ Yy (5.4
T 2M{,sy, tart8

€n(q

This definition is useful as far as we can regard the SM

contributions as perfectly known terms. As we have already Fr —F~ (5.5
discussed, at energies around 1 TeV, this statement is cer- b '
tainly true because a one loop calculation is perfectly reliable

and reproduces the full effect, with resummation giving a

negligible additio_nal shift in the o_bserv_ables. Fp =— @ 12 . mﬁ tart, (5.6)
At one loop, in the asymptotic regime, we can param- R ™ 2M,Swy
etrizee, as
o 3 t2
2 Fue=—— +m2tar?,8>.
en(q2)=Fn(tan,8)Inq—2+Gn+-~-. (5.2) 4 ™ 4M\2,\,s\2,\,<tanz,8 b
Ms (5.7
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charged Higgs charged Higgs
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20T v FIG. 12. Cross sectiote) and
--- 1L
© exp(.) / i forward-backward asymmetrgb)
o // for production of charged Higgs
> 30 & ) bosons. For both observables we
g p / show the one loo1L) and re-
= = /! summed [exp(...)] shifts at
10 - K . tanB=10,40. For the asymmetry
a0 | ) we recall that there are no tgh
/ dependent Yukawa terms.
--- tanB=10, 1L \ K
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The constanG,, in Eq. (5.2) is a sub-subleading correction. ~ As usual, the experimentally measured quandfy; is

It does not increase with?, but depends on all mass ratios assumed to be a normal Gaussian random variable distrib-
of virtual particles. The omitted terms in E(.2) vanish in  uted around the value

the high energy limit.

To eliminateG,, we proceed as ifil3]. We assume that a a% 4
set of N independent measurements is available at c.m. en- Fa(tang*)In
ergies \02,\/a2, . .. /g4 and take the difference of each
measurement with respect to the one at lowest energy. Thgith standard deviation @, ;. After linearization around

, (5.1

q

resulting quantities, tangB=tanB*, minimization ofy? provides the best estimate
) ) of tang. This is an unbiased Gaussian estimation with mean
n,i= en(di) — €n(q), (5.8 tang* and standard deviation fixed by the conditian?
=1,ie.,
do not containG, and take the simple form b 1
5 _
q? F,Q(tan,B*)Inq'—;l
I
Sni=Fn(tanB*)in—, (5.9 stang=2| S a1
°n n,i Oni

(5.12
where tarB* is the true unknown value that describes the
experimental measurements. Under the simplifying assumptioa, ;= o, this formula re-
We now describe how precisely t@ncan be extracted. duces to

We denote by, (g?) the experimental error oa,(q?). For 1
each set _of explicit measure_m_elﬁt‘s,(qf)}, the best estimate Stang= 20( E F!(tang* )z>
for tang is the value that minimizes thg? sum n

2 2

itz X

Fa(tanB)In—=— 4y

N Np
2 o 1
tanB) = , .
x(tanf) Z’l r1§=:1 402, The function
(5.10

q2 -1/2
> =2 (5.13
: a1

—-1/2
T(tan/s)=<§) F,;(tanﬂ)z) , (5.14

where 5n,i = 5n(Qi2) and Oni= O'n(qiz) .
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ol —— Allo ]
————— without {,
6l —-—-- without b, |
" ———- without H' FIG. 13. This figure shows the behavior of the

7 function defined in Eq.(5.14. It increases
when the slope of the SUSY effects does not de-
pend much on tag. The four lines correspond to
the four possible choices discussed in Sec. V, that
is (i) all the five cross sections for production of
third generation squarks and charged Higgs
bosons(ii) without production oﬁR, (iii ) with-

out production ofbg, and (iv) without produc-
tion of charged Higgs bosoris™.

(tan B) 10

tan B

measures the dependence of the slope of SUSY effects able are available aN=10 equally spaced c.m. energies
tang. It is shown in Fig. 13 for four possible choices) all  around 1 TeV, between 0.8 TeV and 1.5 TeV. We remark that
the five cross sectiongiji) without production oftg, (i)  different curves associated with paifd,) depend only on
without production obg, (iv) without production of charged the combinqtiom/JN. In the figure, we also show horizon-
Higgs bosong *. tal dashed lines correspo_ndlng to relative errors equal to 1

In the best caséi), it is strongly peaked around tgh and 0.5. As one can see in the figure, values in the range
=6 and the combination of the various observables, espe-

cially the cross sections for production of right sfermions tanp<3, tangs>16 (5.19
(the ones with larger c8 coefficien) is crucial to keep the
function r(tanB) as small as possible. can be detected withN=10 c.m. energy values with a rela-

To understand the consequences of the shapewé plot  tive error smaller than 50%, that can be considered qualita-
in Fig. 14 the relative errof tang/tang computed under the tively as a “decent” accuracy. If a higher experimental pre-
optimistic assumption of a relative accuracy equal to 1% forcision (e.g., a few permille in the cross sectipnwere
all the five observables. The three curves correspond to thechievable, the same result could be obtained with a smaller
assumption that independent measurements for each obserwamber (N=3) of independent energy measurements. The

8 T T T T T T

7L — Allo

T without t,
| —-—-- without f,
| ———- without H FIG. 14. We plot in this figure the relative
error §tanB/tanB that can be derived in the de-
termination of tarB assuming a relative accuracy
of 1% on all the cross sections and the availabil-
4 ity of 10 measurements at equally spaced ener-
gies between 800 GeV and 1.5 TeV for all five
observables. Again, we consider the optimal sce-
nario when all the observables can be exploited
as well as what happens when a subset of them is
g removed. In the best case, values of ganl6

can be determined with a 50% relative accuracy.

3 tanf3/tanf
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3.0 : . . : . . :
— Allo

25+ b e without {, 1
—-—-- without §,
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20 FIG. 15. Relative errobtanB/tan as in the
@ previous figure, but assuming the availability of
g 10 measurements at equally spaced energies be-
‘% L5 i tween 800 GeV and 3.3 Teland again a relative
- 1% error on the measurementk the best case,

. values of tarB>11 can be determined if the rela-

L /7 R tive accuracy is around 50%, t@# 14 if it is

: 25%.
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0.0 : EE—————

20 25 30 35 40
tan

first region (tanB<<3) appears to be unfavored by the are largely improved with respect to those that could be with

present LEP combined data analysis, but the second origeasurements at 1 or 3 TeV only. To be more precise, with

(tanB>14) is indeed very interesting for the CERN Large 10 measurements extending from 800 GeV to 3.3 TeV, the

Hadron Collider(LHC) physics program. region tanB>11 can be accessible with 50% accuracy. This
The extension of the previous analysis to the case of &ound reduces to tge> 14 if the required accuracy is 25%.

Linear Collider working at an energy around 3 TéWLIC)  We stress that this is a quite interesting regias discussed

is not straightforward. In fact, the one loop expressions arén [14], where it is shown that a measurement of fais

no longer reliable and a resummation of higher order termgractically impossible from chargino or neutralino produc-

must be performed. To date, the best theoretical accuracy thtion when tan3>10 since the effects depend on cgkthat

can be reached in the MSSM is the subleading one discusségcomes flat fo3— /2. It could be achieved in the associ-

in this paper. The Yukawa terms are then given at all ordergited productions™ e —hrr or e"e”—Abb (with h andA

by combining the one loop Yukawa contributions with the peing theC P even and odd Higgs boson$ut only for very

resummed double logarithms of gauge origin. To this level ofiarge tang values ¢ 50).

accuracy, the relative SUSY Yukawa effect is thus unchanged

and the analysis can be repeated with the same formulas.

However, one must keep in mind that the subleading ap- VI. CONCLUSIONS

proximation can be enough to determine the gross size of the o .

virtual effects, but its validity must be checked in the analy- I this final section we shall draw a number of relevant

sis of finer details like the dependence on gaaf the omit- ~ conclusions. Before doing that, we feel though that some

ted constant terms. Notwithstanding these unavoidable rd2réliminary considerations are opportune.

marks, we can analyze what happens at 3 TeV in the In this paper we have derived the complete Suqakov one-

subleading approximation. Ioop expansion and the related all ord.ers subleading resum-
As we said above, the same expressions as in the 1 Teyation for SUSY scalar prodL_lctlon. Since both expressions

analysis can be applied. The need to eliminate any syglave be_en computed for_the f|r_st time, there are no different

subleading constant from the SUSY effects leads again t§2Pers In the I|tgrature W|th_ vyhlch to compare our results. It

Eq. (5.11. The effects thus depend on the logarithms of the!S: however, a highly non-trivial check that all SM, DL, and

ratios between the various measurement energies and ti®- t€rms(in particular the angular dependent contributions

lowest energyg,. Therefore the same results on the errord’® '|n.agreement with the results obtalne_:d in the symmetr}c

Stanp/tang that we derived around 1 TeV can be extendedasis in Sec. lIl. For the SL terms of genuine supersymmetric

to the rescaledwiden energy range origin obtained from the physical one-loop calculation that
we have performed, and that has led us to a large number of
[0.8,1.5 TeV—[2.7,4.5 TeV (5.19 equations and formulas, no such internal cross check is avail-
able.
with no additional remarks or changes. In spite of the lack of possible comparisons, however,

It might be interesting to discuss what would be the
change in such an analysis if data could be accumulated—
starting at 800 GeV and increasing the energy up to an upper®For completeness, we remark that here too, as in the previous
value around 3 TeV. In this case, shown in Fig. 15, the resultanalysis, there is a region at low t@rthat can be analyzed.
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there are a few other internal consistency checks of our resur one-loop calculations, we now proceed assuming that our
sults that serve to support their validity. Here we list a lim-results are correct and draw some final conclusions. Briefly,
ited number of them in the following order: first of all it seems to us that the process of SUSY scalar

(a) The box diagrams with @ exchange and the vertex production in its Sudakov regime, assuming that the latter
diagrams with initial electron and final scalan2riangle get ~ coincides with the TeV energy range for reasonably light
combined separately in a tricky way. One half of the boxSUSY masses, can be divided into two distinct categories.
must be summed with the initialV# vertex, the other one The first one includes slepton and first two family squark
with the final 2V vertex. After these summations. one getSproductlon. The second one includes the considered third
the correct universal factorss= (3 In—In?) for the initial family squark_and charged Higgs boson production. For all
state and_,= (4 In—In?) for the final state, although none of CaS€s: there is an energy dependence of the one-loop ap-
the separateW/W box, WW initial vertex, WW final vertex proximation, which begins to be unreliable when one crosses
contributions producés alone the L4’ terms the=1-2 TeV regionwhere it should still be satisfactory

(b) The overall MSSM “gauge” effect for the final scalar At CLIC; energies, the need of a proper resummation be-
pair, obtained by summing the diagrams with SM gaugecomes imperative and al! our one-loop results must be re-
bosons(i.e., photorz, W) to those with SUSY gauginos, is placed by pur'correspond.lng resummed expressions. The im-
proportional to anew combinationL ,= (2 In—In?). This is portant point is that in this procedure, tkgenerally large

the sameMSSM “gauge” combination, with thesamecoef- unreliable one-loop effects are replaced by reli_able re-
ficient that affects theespectivefermionic superpartners ei- summed effepts, that are sensibly reduced but st|II_rema|n
ther in the initial or in the final state cd* e~ annihilation. large and visible given the e>§pected level of experimental
One can easily check this statement for final sleptons lookin ccuracy. Independently of this fact, a strong fadepen-

at Eqs.(2.26),(2.30, (2.33—(2.43 of this paper. For final ence in the third family and charged Higgs boson produc-

quarks, one should compare the expressions of this pangn case(particularly effective in the charged Higgs boson

with the analogous ones given for quark production in thecase should allow us to achieve, via suitable measurements

: - ; : f the slope of the cross sections in the total energy range 1—
MSSM in a previous papdr2] reducing these expressions 0 ; C
to the opportune fornfwhich shall not be explicitly shown 4 TeV, a satisfactory determination of the SUSY parameter

hera. This equality is expecteds priori, since the contribu- tanB. This should be combined with other analogous inde-

tions are computed for vanishing particles-sparticles masse fendent measurements to be performed in other processes

where supersymmetry is supposed to be exact. As a cons uch as 9., neutrz_al H_iggs boson_produg)titm ob_ta_i_n a
quence, the pure overall gauge effects should be the sa ore precise determinatidian analysis of this possibility is
within the same supermultiplet. already in progresf21]). o

(©) In the MSSM, the finalukawaeffects for top squark Finally, we believe to have shown in this example that
and bottom squark production at lepton colliders are thdN€re exists a realistic energy range, to be hopefully covered
same as those for top and bottom production. This can bl & not too far future, where virtual corrections of the

o ; ; - MSSM can becoméarge. Given the previous experience at
also verified by comparing the expressions of this paper wit . .
the corresponding ones of previous referer{degs13. This lower energies around hundred GeV where SUSY virtual ef-

equality is highly nontrivial in a technical sense, since in thefeCtS were systematically small, we believe that this fact

two cases quite different diagrams contribite particular, would provide a clean and fundamen.tal test of the validity qf
virtual Higgs bosons vertices do not contribute for squarkthe MSSM at future lepton colliders, In case supersymmetric
production, while the corresponding SM scaldscontrib- ~ Particles were detected somewnhere in thepefully) near

ute for top, bottom final paijys We interpret it as a conse- future.

guence of the MSSM origin of Yukawa couplings, carried by

the Higgsino, which is the SUSY superpartner of the Higgs

boson and lies therefore in the same supermultiplet. This work was partially supported by EU contract HPRN-
Having shown the three nontrivial consistency checks ofCT-2000-00149.
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