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Supersymmetry and Lorentz violation
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Supersymmetric field theories can be constructed that violate LorentZ Biidsymmetry. We illustrate this
with some simple examples related to the original Wess-Zumino model.
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A major development in fundamental theoretical physicssues that result from treating the nonlocal underlying theory
during the past century has been the understanding of thes a local field theory emerge at a high-energy scale deter-
central role played by spacetime symmetries in nature. Commined by the Planck ma$3].
ventional spacetime symmetries, including Lorentz &iRIT In this work, we consider an issue unaddressed in the
invariance, are now deeply ingrained in modern theoriediterature: the existence of fully supersymmetric theories in-
such as the standard model of particle physics and generabrporating violation of Lorentz symmetry. For simplicity,
relativity. Recent research includes investigations of largewe restrict attention here to globétigid) supersymmetry
spacetime symmetries, notably supersymméirly and of  and consider only renormalizable models conserving energy
the possibility that small violations of conventional space-and momentumA priori, even the existence of such theories
time symmetry could arise in an underlying theory at theis unclear, and in fact we find the simultaneous presence of
Planck scalg2]. supersymmetry and Lorentz violation provides a strong re-

The essence of spacetime supersymmetry is the existenstriction on possible models.
of transformations between bosons and fermions that yield a For definiteness, we perform the analysis in the context of
translation operator upon anticommutation: the Wess-Zumino model in four spacetime dimensifBis

This model involves a scalar field, a pseudoscalaB, a

[P,.P,]1=[P,.Q]=0, {Q,a}ZZV“F’M, (1)  Majorana fermiony;, an auxiliary scalaF, and an auxiliary

pseudoscalaG. The associated Lagrangidly,; can be writ-
where the energy-momentum 4-vec®y, generates space- ten as
time translations, the spino®@ generates supersymmetry
transformations, ang* are the Dirac matrices. Many super- Lwz= Lyt LmT Ly, )
Symmetl’iC Lorentz-invariant models exist. HOWeVer, if SU'Where the kineticy mass, and interaction terms are
persymmetry is relevant to nature, experiment suggests it

must be broken. Much of the phenomenology of supersym- Li=3% (9,Ad*A+ 8MBa“B+iZM/+ F2+G?),
metry conducted today is therefore within the context of the o
(minimal) supersymmetric standard modé&]| in which soft Lo=m(—3¢4y+AF+BG),

supersymmetry-breaking but Lorentz-preserving interactions

are added by hand. Soft interactions are superrenormalizable, g 2 o2 — .

while nonrenormalizable terms are taken to be suppressed by Ly= E [F(A"=B%)+2GAB- y(A—iysB)y].

powers of the Planck scale or some other large scale associ- ®)

ated with new physics. Soft terms can be motivated by stud-

ies of more fundamental theories and could arise from sponfo facilitate contact with existing studies of the Lorentz-

taneous breaking of supersymmetft]. Their physical violating standard-model extension, we adopt the conven-

implications at low energies can be analyzed in the frametions of Ref.[5] throughout this work.

work of supersymmetric standard-model extensions includ- Consider the special Lorentz-violating buCPT-

ing supersymmetry-breaking terms. preserving extension of the Wess-Zumino model given by
In a related vein, the physical implications of the breakingthe Lagrangian

of conventional spacetime symmetries can be investigated

using a general standard-model exteng®n Its Lagrangian

contains terms violating Lorentz ar@PT symmetry. Like \yhere

the supersymmetry-breaking effects described above, these

terms could arise from spontaneous symmetry violation. The Liorentz= Ky, d“AI"A+K,,,04BI"B

nonlocal character of string theories offers a potential source 1

for these terms with a natural origin in spontaneous Lorentz T 2Ku K (9"APPAT I"BI"B)

breaking[6] and provides strong motivation for investigating +Lik, " (5)

their physical implications at low energy. The renormalizable 218w VY '

sector of the standard-model extension is a local field theoryvithout loss of generalityk,,, can be taken as a real, sym-

that would dominate Lorentz- andP T-violating effects in  metric, traceless, and dimensionless coefficient determining

low-energy physics. The requisite causality or positivity is-the magnitude of Lorentz violation, which is assumed small

L= Lwz+ Liorentzs 4
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in the chosen observer inertial frame. The coefficikpy  Rationalizing the denominator of this propagator gives
transforms as a 2-tensor under observer Lorentz transforma- ,

tions changing the observer inertial frame but is unaffected S (p)=i Pu(v*+kyy")+m )
by particle Lorentz transformations, which boost or rotate FP p?+ 2pHp7k,, K, K php”’

local field configurations within a fixed inertial franfig].

Direct calculation reveals that the model given by Hgs.  using the symmetry ok,,. Consequently, the scalar and
and(5) is invariant up to a total derivative under the follow- fermionic propagators have the same structure. We therefore
ing set of modified infinitesimal supersymmetry transforma-anticipate divergence cancellations and nonrenormalization
tions: theorems generalizing the usual results.

Note also that the Lorentz violation of the theory is physi-
SA=ey, SB=ieys, cal. The interactions eliminate the possibility of a trivializing
field redefinition[5]. If £, were absent one might consider,
Sp=—(10+iK,,,y*0")(A+iysB)e+(F+iysG)e, for example, a S|multan~eous nonlocal field redefinition of the
form f(x)— f(x") =expk,,x“3)f(x) of all fields in the su-
5F=—?(it9+ikw7’“<9”)dh permultiplet, which for suitabld?w would eliminate the
terms in L gentz While leaving unaffected the mass terms
Ly. However, with £, present the same field redefinition
merely replace, yeni; With xX-dependent Lorentz-violating

interactions. Similarly, attempting to absorb the Lorentz vio-

In this equation,e is a constant Majorana spinor. These lation into a redefinition of coordinates and momenta has no
transformation laws are observer covariant, so the supersyms

metry is independent of the observer inertial frame. How_phyrsf:gall_grzencttz’-c;g|;etli¥1grg?:\’”Trjgr;ZZ X/Ii?:atlr%r; (ljr;t((z)tréea r:ng(ténc.
ever, the presence &f,, implies the transformations are re- P g

alized differently on particles with different orientations and described in a superfield formulation. Define

8G=e(ysh+K,,,y5y"3") . (6)

boosts, as is to be expected in a theory with Lorentz viola- 1 1
tion. Note that the usual Wess-Zumino transformations are ¢=—=(A+iB), F=-—=F-iG). (10)
recovered in the limik ,,—0. \/5 \/E
The commutator of two supersymmetry transformations ) ,
(6) yields In terms of these complex scalars, the left-chiral superfield
appropriate for the modg#H) is
[61,0,]=2i €17 €20, + 21K . €17 €20", @) D(x,0)= $(x)+ V20 (x)+ 1 0(1— ¥5) 0F(X)
which involves the generator of translations. A modified su- 1 _
persymmetry algebra therefore exists. A superspace realiza- +5l Oysy"0(d,+K,,d") d(X)

tion of this superalgebra is discussed below.

The Lagrangian(4) thus provides an explicit example of P
an interacting model with both exact supersymmetry and ——=000(H+K,,y"3") P (X)
Lorentz violation. We know of no other supersymmetric, \/5
CPT-preserving, and Lorentz-violating extension of the L =2 2
minimal Wess-Zumino multiplet. The possible supersymme- —5(00)°(9,1K,,0") h(X). (1D
try transformation laws are strongly restricted by various fac- . _— .
tors, including the linearity ine and the fields, the small Eere, th? su4bscr|p1tr(]jencz)tes prOJectlodn With (1= ys). The
number of physical Lorentz-violating terms for Majorana agrangian(4) can then be expressed as
spinors, the properties of coefficients for Lorentz violation,
and the requirement of closure of the induced supersymme-
try algebra.

£:¢*(D|D+(%m¢2|F+%g(D3|F+HC), (12)

Th 4 inth . ¢ . where the symbolf, and|¢ refer to projections onto thB-
f N prefence h.l” In the sup?frsymmeftncl_trans orr.nalltu.)n and F-type components of théholomorphig functions of
orces a relationship on the coefficients for Lorentz vio at'ondb(x, 0). The theory can therefore be represented as an action

in Eq. (5). This is analogous to the common mass and comy superspace.

mon.couplin_gs tha.t are a standard consequence of supersym- superspace realizatia@ of the supersymmetry genera-
metric theories. Without the supersymmetry, each of the f'V%rs can be obtained via a coset-space construgibror a

terms in Eq.(5) could have different coefficients, a variety ;
that is reflected in the form of the general Lorentz—violatingSuE;e(rjy;;]met:y_(;g(nffg)rmgti'zr;ofrz(;(o’ eb)e generated as
1 = 6 L L

standard-model extension. Physical consequences of the 8o

lationship among the coefficients in E¢p) are to be ex- e upe gy

pected. For example, the fermionic propagator is Q=195=v"00,=Kuyy"09". (13
) This induces the supersymmetry transformati¢dson the
: (8  component fields irDd(x, 6).

Pu(¥*+K,,y)—m’ The superalgebra generated QyandP,=i4,, is

ISe(p)=
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_ Ol 9~ wpv theory, since the coefficients,, would be associated with
[P QI=0. {Q.Qp=27"P,+2k,,y"P". (14 dynamical fields. Note also that, even ifiaear supersym-
By virtue of the Lorentz violation, manifest through the pres-metry in the underlying string theory breaks along with Lor-
ence ofk,,, this superalgebra lies outside the usual list ofentz symmetry, the modé#) demonstrates that an exact lin-
possible supersymmetric extensions of the PoinadeeSit-  ear supersymmetry could still exist in the effective low-
ter, or conformal algebrd4.0]. It appears feasible and would energy theory.
be of interest to obtain a general classification of such supe- We next consider the more difficult challenge of con-
ralgebras allowing for the possibility of Lorentz violation. ~ structing aCPT-violating extension of the Wess-Zumino
As a more technical remark, we observe that a superfiel¢hodel. It is a famous result of quantum field theory that a
covariant derivativeD can be introduced in analogy with the local Lorentz-invariant theory preserves the combination
usual case: CPT[12]. However, if Lorentz invariance is abandoned, one
can consider the addition of@P T-odd component t&,,
D=idgt+y*0d,+K,,y"03". (15
L=Lwz+ Lepr, (20
It obeys
where
= _ rp mwpv
{D,D}=—2y*P,—2k,,¥*P", (16) Ceprk (AFB—Ba#A) + BA(AP+ B)— K Trysyt o
and has vanishing anticommutators with Q. The form of (21
Eqg. (16) implies the geometry of superspace is changed i
that the torsion is modified by the presence of Lorentz vio
lation. The right projectiors (1+ ys)D defines a left-chiral
coordinatex’ through the conditiorDgx, =0:

"Here, theCPT violation is controlled by, , which is a real
“coefficient of mass dimension one transforming as a vector
under observer Lorentz transformations but as a collection of
four scalars under particle Lorentz transformations. The
terms (21) respectC but violate P or T, giving an overall
CPT violation. The terms with coefficierkzzkﬂk“ repre-
sent mass renormalizations varying with the particle boost
and orientation. This is necessary for the existence of the

X4 = x4+ i 0ysy 0+ 2k " 0ygy, . 17)

In terms ofx% , the left-chiral superfield11) takes the sim-

pler form supersymmetry below, except in the special case of lightlike
— k,.
= N "
P(x,0)= ¢(x+)+ V20rPL(X:) + OpOLF(X4),  (18) The model(20) transforms into a total derivative under
and is annihilated by, Dr® (X, ,0)=0. the infinitesimal supersymmetry transformations

The form(14) of the superalgebra involves the generator = =
P# of translations. A conserved canonical energy-momentum oA=ey, oB=leysy,
tensor6*” can be constructed, arR* is then recovered as - : :

- ’ S=—(ib+ A+ivysB)e+ (F+

the spatial integral of the componeri$* [5,7]. The pres- p=—(1d+ysk)(A+iysB)e+ (F+iysGe,
ence of derivative couplings i, oeni Means that care is SF=—e(id— K) i
required in physical interpretation because the physically YsRI¥
propagating supermultiplet differs by a field redefinition = .
from the superfield components ob(x,6). Also, the 6G=e(yst+ik)y. (22)
4-momenta for one-particle states obey modified dispersio

Hhe unigueness of this supersymmetry can be established on
laws. However,

dimensional grounds. Note that it acts differently on the left-

[Q,P?]=0, (19) chiral multiplet and its conjugate, for example,
so the eigenvalues d??> must be the same for members of S =(=10+K)(A+iB)er+(F~iG)e,
the supermultiplet. Since the superpotential containing the
mass and coupling terms is unaffected by the Lorentz viola-
tion, analogues should exist for various conventional results
on supersymmetry breakifd1]. Note also that a supersym-
metry current can be obtained because the supersymmetry is Y—e KXy (p, F)—e X, F). (24)
a continuous global symmetry of the Lagrangian. The exis-
tence of the superfield formulation implies a correspondingrhe components of the left-chiral multiplet and its conjugate
supercurrent superfield can be constructed. are therefore shifted by opposite position-dependent phases.

In the context of spontaneous Lorentz violation in an un-The mass and coupling terms 4l would acquireCPT- and
derlying covariant string field theory, the coefficierkg, Lorentz-violating position-dependent coefficients under the
would be related to one or more vacuum expectation valueBeld redefinition, so if energy-momentum is to be conserved
of Lorentz vector or tensor field$]. The form of the trans- they would need to be added afterwards. However, they are
formations(6) then suggests that the supersymmetry must béhen inconsistent with the supersymmet®2). The same is
realized in a nonlinear fashion in the underlying string fieldtrue of P-odd mass or coupling terms, such as the combina-

SYyr=(—10—K)(A—=iB)e +(F+iG)eR. (23

The terms(21) emerge fromLy,, via the redefinition
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tion (i yysy+2AG—2BF). In the absence of noninvariant Violation, although more general field redefinitions that mix

couplings, the field redefinition implies that tt@PT and  fields between multiplets would need to be considered. It

Lorentz violation in Eq(21) is unphysical. may also be useful to allow for variant multiplets in con-
Acting on the components of the left-chiral multiplet, the structing Lorentz-violating models. For example, the scalar

commutator of two supersymmetry transformatiof2o) ¢ can .be regarded as the _duaI.of an antisymmetrip 2—_te.nsor,
gives for which the extra spacetime indices might permit distinct

Lorentz-violating couplings. Note also that various renormal-
[81,0]|e= Zi:l?’”fz%—ZKM:w"fz, (25  izable Lorentz- andCPT-violating terms exist that age un-
used in the theories given above, includindA“¢B
which again involves the generator of translations. The last- B2jA), ¢irysy*y, andya™’d* . We are unaware of any
term is a special consequence of Lorentz violation, absent igupersymmetric role for these terms, which have dimension-
the conventional spacetime superalgebras but allowed hefgss coefficients for Lorentz ar@P T violation carrying one

becausek,, has mass dimension one. However, the commuor three spacetime indices. In this sense, the theories given
tator of two supersymmetry transformations on the rlght-above appear unigue.

chiral multiplet yields instead One can extend the considerations discussed here to other
_ _ representations of supersymmetry. For example, we expect
[81,82]lright=2i €17 €29, + 2K €17 €5 (260 the vector supermultiplet to have a Lorentz-violating gener-

alization, so a supersymmetric Lorentz-violating extension of

Tgfs r:?;“gi?ﬂj;?:nngﬁ %gsthfza:?jrte;errr;mcir?gglelrf?t:fchnst:J_ antum electrodynamics should exist. Similarly, it appears
PErsp ' asible to construct a supersymmetric Lorentz-violating

charges for conventional extended supersymmetry. It woul tandard-model extension, in which case potentially realistic

'?heislrl!;e()rg:rl\?v?ﬂ:oao(;)i?el?e?]?iE;szlgil;;;lgr?rjf;(:eesfﬁrrglyslag’lol’;‘e? odels could be obtained by including soft supersymmetry-
Persy breaking terms. These soft terms would include Lorentz-

try transformations that reproduces the intertwined relation§/. : : . ; .
iolating dimension-three operators of the types discussed in
(25) and(26). In any case, however, there would be an Ob'Ref. [5]. In the context of supergravity models, the saalef

stacle to construction of an invariant superpotential involvingthe soft terms is often related to the scMe of SUDErsvm-
the usualF-type terms: thd- term no longer transforms as a etry breaking bym~M(“”)/M” for somi integ?ann>y0
s P '

total derivative under a supersymmetry transformation, ag .
eneralizing the results here to local supersymmetry and lo-

follows from Eq.(22). o ;
Although it lies beyond our present scope, it would be ofCal L.Ofe”tz V|qlat|on might therefore eventually uncover _de-
' termining relationships among the scale of Lorentz violation,

interest to investigate the possibility of Lorentz-violating th e of v breaki 4 th derlvi
models with extended supersymmetry. Certaifly; 1 mod- Plgnickasiacl)e Supersymmetry breaking, an € underlying

els similar to those in Eq$4) and(20) but involving several
supermultiplets appear straightforward to construct. The This work was supported in part by DOE grant DE-FG02-
presence of several multiplets might permit physiC&#T  91ER40661.
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